WO2020246565A1 - Photosensitive polyimide resin composition - Google Patents

Photosensitive polyimide resin composition Download PDF

Info

Publication number
WO2020246565A1
WO2020246565A1 PCT/JP2020/022220 JP2020022220W WO2020246565A1 WO 2020246565 A1 WO2020246565 A1 WO 2020246565A1 JP 2020022220 W JP2020022220 W JP 2020022220W WO 2020246565 A1 WO2020246565 A1 WO 2020246565A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
solvent
polyimide
mol
photosensitive polyimide
Prior art date
Application number
PCT/JP2020/022220
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 鉄秋
稲太郎 黒沢
Original Assignee
株式会社ピーアイ技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピーアイ技術研究所 filed Critical 株式会社ピーアイ技術研究所
Priority to KR1020217032896A priority Critical patent/KR20220018957A/en
Priority to JP2021524910A priority patent/JPWO2020246565A1/ja
Priority to CN202080041583.6A priority patent/CN113994257A/en
Publication of WO2020246565A1 publication Critical patent/WO2020246565A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/008Azides
    • G03F7/012Macromolecular azides; Macromolecular additives, e.g. binders
    • G03F7/0125Macromolecular azides; Macromolecular additives, e.g. binders characterised by the polymeric binder or the macromolecular additives other than the macromolecular azides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/008Azides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/008Azides
    • G03F7/0085Azides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a photosensitive polyimide resin composition.
  • FO-WLP Fan-out Wafer Level Package
  • the key materials in the organic material used for this FO-WLP are a sealing material and various protective film materials, and photosensitive polyimide is used as the protective film material.
  • photosensitive polyimide has several photosensitizing methods (Patent Document 1), and is roughly classified into a positive type and a negative type according to the image forming process.
  • the positive type has higher sensitivity than the negative type, but it is difficult to expect improvement in physical properties due to the photoreaction because it uses a photodecomposition reaction.
  • the negative type has a feature that the chemical resistance and the heat resistance are easily improved because the exposed portion undergoes a photocrosslinking reaction and remains after the development treatment. Therefore, the negative type has some problems in sensitivity when used as a permanent insulating film, but can provide a highly reliable one.
  • Negative photosensitive polyimide is roughly classified into a method in which a photosensitive group is introduced into a precursor such as polyamic acid and heat imidization is performed after a photoreaction, and a method in which the ring-closed polyimide itself is made photosensitive.
  • Typical methods that have been put into practical use in this field are those in which a polyamic acid is ester-bonded with a hydroxy acrylate (Patent Document 2), or a polyamic acid mixed with an amino acrylate or the like and a photosensitive group is introduced by a salt bond. (Patent Document 3).
  • Patent Document 4 a method using a polyimide copolymer obtained by a polycondensation reaction between a tetracarboxylic acid dianhydride having a benzophenone structure and a diamine (Patent Document 4) and , A method of adding an acryloyl group to the side chain of a solvent-soluble polyimide block copolymer synthesized by two-step polycondensation has been reported (Patent Document 5).
  • a photosensitive polyimide which is soluble in a developing solution during development and insoluble in a developing solution after photocrosslinking, and which can achieve good film physical properties and improved sensitivity is required.
  • An object of the present invention is to provide a photosensitive polyimide resin composition which is soluble in a developing solution during development and insoluble in a developing solution after photocrosslinking, and can achieve good film physical properties and high sensitivity.
  • the present inventors have made a block copolymer having a ring-closed polyimide having an aromatic acid dianhydride having a benzophenone structure and a specific diamine in the main chain.
  • a photosensitive polyimide resin composition having solvent solubility during development and solvent insolubility after photocrosslinking, which can achieve good film physical properties and high sensitivity, can be obtained.
  • the present invention has been completed by finding that it can be provided.
  • a photosensitive polyimide resin composition containing (A) a solvent-soluble polyimide and (B) a diamine compound as essential components, wherein the (A) solvent-soluble polyimide has (a) an aromatic tetra having a benzophenone structure. At least one selected from the group consisting of a carboxylic acid dianhydride residue, (b) an aromatic diamine having an alkyl group at the ortho position of the amino group, an aromatic diamine having an indan structure, and a diamine having a polysiloxane structure.
  • Photosensitive polyimide resin composition It is a block copolymer having a diamine residue in the main chain, and the content of the (B) diazide compound is 2.0 to 150 parts by weight with respect to 100 parts by weight of the (A) solvent-soluble polyimide.
  • Photosensitive polyimide resin composition (2) The resin composition according to (1), wherein the residue of at least one of the diamines is a residue of an aromatic diamine having a phenylindane structure.
  • the present invention by using a ring-closed photosensitive polyimide and a specific amount of diazide compound without using a polyamic acid that requires imidization at a high temperature, both solvent-soluble during development and solvent-insolubility after photocrosslinking are used. It is possible to provide a photosensitive polyimide resin composition which can achieve good film physical properties and high sensitivity equal to or higher than that of photosensitive polyimide using polyamic acid.
  • a sufficient crosslinked structure of polyimide can be realized by adding a diazide compound to the composition.
  • the polyimide resin composition contains a photobase generator and an epoxy resin, and the photobase generator is used.
  • a sufficient crosslinked structure can be realized by photocrosslinking the epoxy resin.
  • the photosensitive polyimide resin composition of the present invention is a resin composition containing (A) a solvent-soluble polyimide and (B) a diazide compound as essential components.
  • the (A) solvent-soluble polyimide in the present invention comprises (a) an aromatic acid dianhydride having a benzophenone structure and (b-1) an aromatic diamine having an alkyl group at the ortho position of the amino group. , (B-2) A block copolymer having at least one diamine (b) in the main chain selected from the group consisting of an aromatic diamine having an indan structure and (b-3) a diamine having a polysiloxane structure. Is.
  • the solvent-soluble polyimide (A) of the present invention is a block copolymer having at least one, preferably two or more of the repeating units represented by the following general formulas [I] to [III]. Is.
  • Z 1 is an aromatic tetracarboxylic dianhydride residue
  • Ar 1 is an aromatic diamine residue having an alkyl group at the ortho position of the amino group.
  • Z 2 is an aromatic tetracarboxylic dianhydride residue and Ar 2 is an aromatic diamine residue having an indane structure.
  • Z 3 is an aromatic tetracarboxylic dianhydride residue and Ar 3 is a diamine residue having a polysiloxane structure).
  • At least one of Z 1 in the general formula [I], Z 2 in the general formula [II], and Z 3 in the general formula [III] has (a) a benzophenone structure.
  • it is an aromatic tetracarboxylic dianhydride residue having, it is preferable that Z 1 , Z 2 and Z 3 are all (a) aromatic tetracarboxylic dianhydride residues having a benzophenone structure.
  • aromatic acid dianhydride (a) which is an aromatic acid dianhydride residue having a benzophenone structure in the present invention
  • aromatic acid dianhydride (a) which is an aromatic acid dianhydride residue having a benzophenone structure in the present invention
  • aromatic acid dianhydride (a) which is an aromatic acid dianhydride residue having a benzophenone structure in the present invention
  • examples thereof include 4,5,3', 4'-benzophenonetetracarboxylic dianhydride (BTDA) and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA).
  • the morphology of BTDA-based polyimide also changes due to photocrosslinking. That is, it is said that the agglutinated state is densified. This also contributes to the improvement of chemical resistance and heat resistance.
  • the aromatic dianhydride having a benzophenone structure is preferably contained in an amount of 10 mol% or more, 45 mol% or more, and further 50 mol% or more of all the aromatic acid dianhydrides constituting the solvent-soluble polyimide.
  • content of the aromatic dianhydride having a benzophenone structure is less than 10 mol%, the solvent resistance of the polyimide resin composition after photocrosslinking tends to decrease, and the sensitivity tends to decrease.
  • Examples other than the aromatic tetracarboxylic dianhydride residue having the benzophenone structure of Z 1 , Z 2 and Z 3 in the above general formulas [I] to [III] are not particularly limited, but are pyromellitic dianhydride.
  • Examples include ether dianhydride, 2,2-bis- (3,4-dicarboxyphenyl) hexafluoropropane, anhydride, 4,4'-oxydiphthalic dianhydride and the like.
  • the solvent-soluble polyimide (A) may have a repeating unit composed of an aromatic tetracarboxylic dianhydride residue and a diamine residue other than the above general formulas [I] to [III].
  • Aromatic diamine having an alkyl group at the ortho position of the amino group is an amino group.
  • Specific examples thereof include aromatic amine residues having a linear or branched alkyl group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms at the ortho position. Is a structure represented by the following formulas (1) to (3).
  • the free bond (two bond positions where the amino group is bonded) exists in the meta position or the para position relative to each other.
  • the free bond (two bond positions where the amino group is bonded) is preferably present at the meta position or the para position with respect to R 11 , and R 5 and R 6 are at the two ortho positions of the free bond. Is bound to.
  • R 11 is -O-, -S-, -SS-, -SO-, -SO 2- , -CO-, -COO-, -NH-, -CONH-, -CON-alkyl group- (alkyl group The number of carbon atoms n represents 1 to 6), -CON-benzyl group-.
  • R 5 and R 6 are two ortho positions of the free bond Is bound to.
  • R 5 and R 6 are linear or branched alkyl groups having 1 to 12 carbon atoms, preferably alkyl groups having 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. Alkyl group of.
  • the aromatic diamine residue (Ar 1 ) having an alkyl group at the ortho position of the amino group is 30 mol% or more, more particularly 50 mol% or more, particularly 50 mol% or more in all the diamines constituting the (A) solvent-soluble polyimide. Is preferably contained in an amount of 70 mol% or more. If it is less than 50 mol%, the crosslink density tends to decrease.
  • Aromatic diamine having an indane structure In the present invention, the aromatic diamine residue (Ar 2 ) having an indane structure is represented by the following formula (IV) or (V) in the following indane skeleton. Those having such a structure can be mentioned.
  • R 1 and R 2 represent an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms or an alkoxy alkyl group having 2 to 12 carbon atoms, and R 1 and R 2 are free. It is preferably bonded to two ortho positions of the bond (two bonding positions to which the amino group is bonded).
  • R 1 , R 2 and R 3 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and each of R 4 and R 5 independently represents a hydrogen atom or carbon.
  • a solvent-soluble polyimide having an aromatic diamine residue having a phenylindane structure represented by the above formula (V) in the main chain is preferable.
  • the aromatic diamine residue (Ar 2 ) having an indane structure in the present invention should be contained in all the diamines constituting the solvent-soluble polyimide (A) in an amount of 50 mol% or more, further 60 mol% or more, particularly 70 mol% or more. Is preferable. If it is less than 50 mol%, the crosslink density tends to decrease.
  • Diamine residue having a polysiloxane structure examples include ⁇ , ⁇ -bis (2-aminoethyl) polydimethylsiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane, ⁇ , ⁇ -bis (4-aminophenyl) polydimethylsiloxane, ⁇ , ⁇ -bis (4-amino-3-methylphenyl) polydimethylsiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydiphenylsiloxane, ⁇ , ⁇ -Bis (4-aminobutyl) polydimethylsiloxane and the like can be mentioned.
  • the diamine residue (Ar 3 ) having a polysiloxane structure in the present invention is preferably contained in an amount of 2.0 to 30 mol%, preferably 5.0 to 20 mol%, in all the diamines constituting the solvent-soluble polyimide (A). It is more preferable to let it. If the content of the diamine having a polysiloxane structure exceeds 30 mol%, the solvent solubility may become too high, and Tg also tends to decrease.
  • a known method may be used for synthesizing the solvent-soluble polyimide, and the method is not particularly limited. However, the above-mentioned tetracarboxylic acid dianhydride and aromatic diamine are used in substantially equal amounts to form an organic polarity.
  • a solvent-soluble polyimide can be synthesized by reacting in a solvent at 160 to 200 ° C. for several hours in the presence of a catalyst and a dehydrating agent.
  • organic polar solvent examples include N-methylpyrrolidone (NMP), ⁇ -butyrolactone, N, N'-dimethylacetamide, N, N'-dimethylformamide, dimethyl sulfoxide, tetramethylurea, tetrahydrothiophene-1,1-oxide and the like. Is used.
  • the solvent-soluble polyimide (A) in the present invention is a block copolymer and can be synthesized by performing a block copolymer reaction as needed.
  • it can be produced by a two-step sequential addition reaction, in which the polyimide oligomer is synthesized from the tetracarboxylic acid dianhydride and the aromatic diamine in the first step, and then further in the second step, the tetracarboxylic acid dianhydride and / Or an aromatic diamine can be added and polycondensed to obtain a block copolymer polyimide.
  • the dehydration imidization reaction can be promoted by using a two-component acid-base catalyst utilizing the equilibrium reaction of lactone.
  • a two-component catalyst of ⁇ -valerolactone and pyridine or N-methylmorpholine is used.
  • water is generated as the imidization progresses, and the produced water participates in the equilibrium of the lactone to become an acid-base catalyst and exhibits catalytic action.
  • the water produced by the imidization reaction is removed from the system by azeotropic boiling with a dehydrating agent such as toluene or xylene coexisting in the polar solvent.
  • a dehydrating agent such as toluene or xylene coexisting in the polar solvent.
  • the acid-base catalyst becomes ⁇ -valerolactone and pyridine or N-methylmorpholine, which is removed from the system. In this way, a high-purity polyimide solution can be obtained.
  • oxalic acid or malonic acid and pyridine or N-methylmorpholine can be used as the other two-component catalyst.
  • oxalate or malonate promotes the imidization reaction as an acid catalyst.
  • a catalytic amount of oxalic acid or malonic acid remains in the produced polyimide solvent.
  • this polyimide solution After applying this polyimide solution to the substrate, it is heated to 200 ° C. or higher, and when the solvent is removed to form a film, the oxalic acid or malonic acid remaining in the polyimide is thermally decomposed as shown in the following formula. Excluded from the system as gas.
  • high-purity (A) solvent-soluble polyimide can be obtained.
  • the oxalic acid-pyridine catalyst has stronger activity than the Valerolactone-pyridine catalyst, and can produce a high molecular weight polyimide in a short time.
  • solvent-soluble in the present invention is a term used for an organic polar solvent used in the synthesis of polyimide and a solvent used for a film described later, and is a polyimide that dissolves 5 g or more in 100 g of a solvent.
  • the solvent include polar solvents such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, and tetramethylurea.
  • the solvent-soluble polyimide (A) synthesized as described above is used in the state of a solution dissolved in the organic polar solvent or the solvent used for the membrane described later so that the solid content is, for example, 10 to 30% by weight. be able to.
  • the molecular weight of the solvent-soluble polyimide (A) is preferably 10,000 to 400,000 as a polystyrene-equivalent weight average molecular weight. Within this range, good solvent solubility, film physical properties and insulating properties can be achieved.
  • the appropriate viscosity of the solvent-soluble polyimide (A) is when the solid content is 20 to 40% by weight, preferably 2 to 10 Pa ⁇ s / 25 ° C.
  • the glass transition temperature (Tg) (according to the TMA measurement method) of the solvent-soluble polyimide is preferably 200 ° C. or higher, more preferably 250 ° C. or higher.
  • the concentration of the solvent-soluble polyimide (A) in the solution is preferably 5 to 50% by weight, more preferably 10 to 40% by weight.
  • the polyimide obtained by the direct imidization reaction using the above-mentioned catalytic system composed of lactone and base can be obtained in the form of a solution dissolved in a polar solvent, and the concentration of the polyimide is also within the above-mentioned preferable range. Therefore, the produced polyimide solution can be preferably used as it is.
  • the produced polyimide solution can be further diluted with a diluent if desired.
  • Diluents include solvents that do not significantly impair solubility, such as dioxane, dioxolane, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, methyl lactate, anisole, etc. Examples thereof include, but are not limited to, methyl benzoate and ethyl acetate.
  • (B) Diazide Compound in the present invention, by adding the (B) diazide compound as another essential component to the photosensitive polyimide resin composition, there is an effect that the exposure and developability are remarkably improved.
  • diazide compound examples include 4,4'-diazidobenzalacetophenone, 2,6-di (4'-azidobenzal) cyclohexanone, and 2,6-di (4'-azidobenzal) -4-methylcyclohexanone, 2.
  • the diazide compound is contained in the photosensitive polyimide resin composition in an amount of 2.0 to 150 parts by weight, more preferably 5.0 to 100 parts by weight, particularly 10.0, based on 100 parts by weight of the solvent-soluble polyimide (A). It is preferably contained in an amount of about 80 parts by weight. If it is less than 2.0 parts by weight, the crosslink density tends to decrease, and if it exceeds 150 parts by weight, the physical properties of the film tend to decrease.
  • a diazirine compound, maleimide or bismaleimide compound may be used in combination to complement the crosslinkability.
  • the photosensitive polyimide resin composition of the present invention is inferior in light transmission on the low wavelength side, the pattern shape tends to have a reverse taper seen in negative solvent development, especially in the case of a thick film specification.
  • it has been found that it is also effective to use a photosensitive monomer or polymer of a different photosensitive cross-linking length method in combination.
  • the most effective component of the photosensitive polyimide resin composition of the present invention is a combination of (C) epoxy resin and (D) photobase generator, which are excellent in compatibility with the photosensitive polyimide resin composition. I found that there is.
  • the (C) epoxy resin is not particularly limited and can be selected depending on the reactivity with the photobase generator and the compatibility with the photosensitive polyimide resin composition, and can be selected as the epoxy resin.
  • phenol novolac type epoxy resin cresol novolac type epoxy resin, bisphenol A novolut type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, naphthalene-type epoxy resin, biphenyl-type epoxy resin, crystalline epoxy resin, Bisphenol A type epoxy resins and the like can be used, and their high molecular weight epoxy resins can also be used.
  • the content of the (C) epoxy resin in the photosensitive polyimide resin composition is preferably 2 to 50 parts by weight, most preferably 2 to 20 parts by weight, based on 100 parts by weight of the solvent-soluble polyimide (A).
  • Photobase generator is a component that generates an anion (base) by irradiation with ultraviolet rays, and is roughly classified into a nonionic type and an ionic type.
  • the non-ionic type includes those that absorb light to generate primary amines, secondary amines, imidazoles, and the like, and the ionic types include those that generate organic strong bases such as amidine, guanidine, and phosphazene.
  • (D) photobase generators those that generate primary amines and secondary amines in the reaction with (C) epoxy resin are unlikely to undergo a chain reaction, so imidazole in the nonionic type and imidazole in the ionic type. Those that generate amidine, guanidine, etc. are preferable.
  • a commercially available product can be used as the (D) photobase generator in the present invention.
  • WPBG-018, WPBG-140, WPBG-266, WPBG-300, WPBG-345, WPBG-027, WPBG-165 (all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and the like can be mentioned.
  • the content of the (D) photobase generator in the photosensitive polyimide resin composition is preferably 0.5 to 8% by weight, more preferably 1 to 6% by weight, based on the (C) epoxy resin.
  • the photosensitive polyimide resin composition of the present invention may contain a photosensitizer in order to be suitable for each final use, and the sensitivity of pattern resolution can be increased.
  • a photosensitizer those that act on the long wavelength (> 350 nm) side are particularly preferable.
  • the photosensitizer include anthracene-based sensitizers and thioxanthone-based sensitizers.
  • the content of the photosensitizer is preferably about 0.3 to 2% by weight with respect to the photosensitive polyimide resin composition.
  • anthracene-based sensitizers include, for example, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-di.
  • anthracene-based sensitizer Commercially available products can be used as the anthracene-based sensitizer. Examples of commercially available products include “Antracure UVS-1331”, “Antracure UVS-1101” and “Antracure UVS-1221” (all manufactured by Kawasaki Kasei Chemicals, Inc.).
  • Examples of the thioxanthone-based sensitizer include 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, chloropropoxythioxanthone and the like.
  • a commercially available product can be used as the thioxanthone-based sensitizer. Examples of commercially available products include “KAYACURE DETX-S” (manufactured by Nippon Kayaku Co., Ltd.), “Speedcure ITX”, “Speedcure DETX”, and “Speedcure CPTX” (manufactured by LAMBSON).
  • the photosensitive polyimide resin composition of the present invention includes a modifier added to a normal photosensitive polyimide resin composition, for example, a coupling agent, a plasticizer, a film-forming resin, a surfactant, a stabilizer, and a spectrum.
  • a sensitivity adjuster or the like may be added.
  • coupling agents such as vinyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxy Silane, 3-aminopropyltrimethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3-trimethoxysilyl Silane cups of propyl succinic anhydride, hexamethyldisiloxane, hexamethyldisilazane, 1,3-bis (3-aminopropyl) tetramethyldisiloxane, N- [3- (triethoxysilyl) propyl] phthal
  • an azole compound can be added to the photosensitive polyimide resin composition in order to suppress discoloration of the substrate.
  • the azole compound include 1H-benzotriazole, tolyltriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 5-carboxy-1H-benzotriazole and 4-carboxy-1H. -Benzotriazole and the like can be mentioned.
  • the amount of the azole compound added is preferably 0.1 to 1% by weight of the photosensitive polyimide resin composition.
  • a hindered phenol compound can be added to the photosensitive polyimide resin composition in order to suppress discoloration on copper.
  • the hindered phenol compound include 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6-( 1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-5-ethyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4 , 6- (1H, 3H, 5H) -trione and 1,3,5-tris (4-triethylmethyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4 , 6- (1H, 3H, 5H) -trion and the like.
  • the amount of the hindered phenol compound added is preferably 0.1 to 2% by weight of the photosensitive polyimide resin composition.
  • examples of other resins that can be used in combination include polyarylate resin and polyether sulfone resin.
  • the photosensitive polyimide resin composition of the present invention can be in the form of a solution suitable for application on a substrate.
  • a polar solvent such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, or tetramethylurea, which is used as a solvent for the imidization reaction, may be used. it can.
  • a photosensitive polyimide pattern can be produced on a substrate by using a photosensitive polyimide resin composition containing the above-mentioned components. Specifically, (1) a step of forming a resin layer on the substrate by applying the above-mentioned photosensitive polyimide resin composition of the present invention on the substrate, and (2) a step of exposing the resin layer. , (3) A step of developing the exposed resin layer to form an insulating material for electronic parts and a photosensitive polyimide pattern such as a passivation film, a buffer coat film, and an interlayer insulating film in a semiconductor package, and (4).
  • a photosensitive polyimide pattern can be produced by a method including a step of heat-treating the photosensitive polyimide pattern to complete it as a permanent insulating film.
  • a step of forming a resin layer on a substrate by applying a photosensitive resin composition on the substrate In this step, the photosensitive resin composition of the present invention is applied onto a substrate such as a silicon wafer, a metal substrate, a ceramic substrate, or an organic substrate, and if necessary, dried thereafter to form a resin layer.
  • a coating method a method conventionally used for coating a photosensitive resin composition, for example, a method of coating with a spin coater, a bar coater, a blade coater, a curtain coater, a screen printing machine, or the like, or spray coating with a spray coater. A method or the like can be used.
  • the coating film made of the photosensitive resin composition can be dried.
  • the drying method methods such as air drying, heat drying using an oven or a hot plate, and vacuum drying are used. Specifically, when air-drying or heat-drying is performed, drying can be performed at 20 to 140 ° C. for 1 to 30 minutes. It is not limited to this range as long as it does not inhibit various properties of the photosensitive resin composition of the present invention.
  • Step of exposing the resin layer In this step, the resin layer formed in the above step (1) is exposed with an exposure device such as a contact aligner, a mirror projection, a stepper, etc., through a photomask or reticle having a pattern, or directly with an ultraviolet light source or the like. To do. After that, for the purpose of improving the light sensitivity and the like, post-exposure baking and / or pre-development baking may be performed at an arbitrary combination of temperature and time, if necessary.
  • the range of the baking conditions is preferably 40 to 120 ° C. and 10 to 240 seconds, but is not limited to this range as long as it does not inhibit various properties of the photosensitive resin composition of the present invention.
  • Step of developing the resin layer after exposure to form a photosensitive polyimide pattern In this step, the unexposed portion of the photosensitive resin layer after exposure is developed and removed.
  • the developing method any method can be selected and used from conventionally known photoresist developing methods such as a rotary spray method, a paddle method, and a dipping method accompanied by ultrasonic treatment.
  • post-development baking may be performed at an arbitrary combination of temperature and time, if necessary, for the purpose of adjusting the shape of the photosensitive polyimide pattern.
  • a good solvent for the photosensitive resin composition or a combination of the good solvent and a poor solvent is preferable.
  • a good solvent N-methylpyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylacetamide, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone and the like are preferable.
  • the poor solvent toluene, xylene, methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate and the like are preferable.
  • a good solvent and a poor solvent are mixed and used, it is preferable to adjust the ratio of the poor solvent to the good solvent by the solubility of the polymer in the photosensitive resin composition. Further, for each of the good solvent and the poor solvent, two or more kinds of solvents, for example, several kinds can be used in combination.
  • a step of heat-treating the photosensitive polyimide pattern to complete it as a permanent insulating film In this step, the photosensitive polyimide pattern obtained by the above development is heated to complete it as a permanent insulating film. That is, unlike the polyamic acid type, since imidization has already been completed, it can be completed as a permanent insulating film by removing residues such as a solvent.
  • a method of heat curing various methods such as a hot plate method, an oven method, and a temperature rise type oven in which a temperature program can be set can be selected.
  • the heating is a sufficient condition for evaporating the contained solvent and the like, and can be performed, for example, at 150 to 250 ° C. for about 30 minutes to 2 hours. Air may be used as the atmospheric gas during heating, or an inert gas such as nitrogen or argon may be used.
  • the photosensitive polyimide pattern formed as described above can be used as an interlayer insulating film, a passivation film or a surface protective film of a semiconductor package, an electronic element, a display element or an organic multilayer wiring board.
  • Synthesis Example 2 A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 1,3-bis (3-aminophenoxy) benzene 29.23 g (0. 1 mol), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged, stirred at room temperature in a nitrogen atmosphere at 200 rpm for 30 minutes, and then 180.
  • BTDA 3,4,3', 4'-benzophenonetetracarboxylic dianhydride
  • Synthesis Example 3 A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 1,3-bis (3-aminophenoxy) benzene 29.23 g (0. 1 mol), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged, stirred at room temperature in a nitrogen atmosphere at 200 rpm for 30 minutes, and then 180.
  • BTDA 3,4,3', 4'-benzophenonetetracarboxylic dianhydride
  • the reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
  • Synthesis Example 4 A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 5-amino-1- (4'-aminophenyl) -1,3 2-trimethylindane 26.64 g (0.1 mol) (phenylindane structure-containing aromatic diamine), valerolactone 1.5 g (0.015 mol), pyridine 2.4 g (0.03 mol), NMP 200 g, toluene 30 g Was charged, and the mixture was stirred at 200 rpm for 30 minutes at room temperature under a nitrogen atmosphere, then heated to 180 ° C.
  • BTDA 3,4,3', 4'-benzophenonetetracarboxylic dianhydride
  • Synthesis Example 5 A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 2,4-diaminotoluene 12.22 g (0.1 mol) (N- Aromatic diamine having an alkyl group at the ortho position), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged at room temperature under a nitrogen atmosphere.
  • BTDA 3,4,3', 4'-benzophenonetetracarboxylic dianhydride
  • Synthesis Example 6 A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenone tetracarboxylic acid dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 5-amino-1- (4'-aminophenyl) -1,3 3-trimethylindan 15.98 g (0.06 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane 9.94 g (0.04 mol), Valerolactone 1.5 g (0.015 mol) , 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged, and the mixture was stirred at room temperature for 30 minutes, then heated to 180 ° C.
  • BTDA 3,4,3', 4'-benzophenone tetracar
  • Synthesis comparison example 1 A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 58.84 g (0.2 mol) of 3,4,3', 4'-biphenyltetracarboxylic dianhydride, 29.23 g (0.1 mol) of 1,3-bis (3-aminophenoxy) benzene, 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene. After charging, the mixture was stirred at 200 rpm for 30 minutes at room temperature in a nitrogen atmosphere, then heated to 180 ° C.
  • Synthesis comparison example 2 A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 2,4-diaminotoluene 12.22 g (0.1 mol) (N- Aromatic diamine having an alkyl group at the ortho position), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged at room temperature under a nitrogen atmosphere.
  • BTDA 3,4,3', 4'-benzophenonetetracarboxylic dianhydride
  • Example 7 In Example 1 (using the polyimide solution of Synthesis Example 1), 2,6-di (4'-azidobenzal) -4-methyl instead of 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone.
  • a photosensitive resin composition was prepared using the same method except that cyclohexanone was used.
  • Example 8 Except that 4,4'-diazidobenzalacetophenone was used instead of 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone in Example 1 (using the polyimide solution of Synthesis Example 1). Prepared a photosensitive resin composition using the same method.
  • Example 9 In Example 1 (using the polyimide solution of Synthesis Example 1), 16.7 parts of YX-6954BH30 (polymer epoxy; manufactured by Mitsubishi Chemical Industries, Ltd.), WPBG-300 (photobase generator: Fuji Film Wako Pure Chemical Industries, Ltd.) A photosensitive resin composition was prepared using the same method except that 0.25 parts were added.
  • Example 10 In Example 1 (using the polyimide solution of Synthesis Example 1), 5 parts of TEPIC-VL (trifunctional epoxy: manufactured by Nissan Chemical Industries, Ltd.) and WPBG-300 (photobase generator: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) ) A photosensitive resin composition was prepared using the same method except that 0.25 parts were added.
  • TEPIC-VL trifunctional epoxy: manufactured by Nissan Chemical Industries, Ltd.
  • WPBG-300 photobase generator: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Example 7 using the polyimide solution of Synthesis Example 1
  • the photosensitive resin composition was prepared by using the same method except that 2,6-di (4'-azidobenzal) -4-methylcyclohexanone was not used.
  • Comparative Example 2 The same method except that in Example 7 (using the polyimide solution of Synthesis Example 1), 1.5 parts of 2,6-di (4'-azidobenzal) -4-methylcyclohexanone was used instead of 20 parts. A photosensitive resin composition was prepared using.
  • Adhesion strength A dry resin film formed on the silicon wafer produced above is used. (1) Using a utility knife on the test surface, make 11 cuts that reach the substrate and make 100 grids. Use a cutter guide and set the cut spacing to 1 mm. (2) Scotch tape (registered trademark) is strongly crimped to the grid portion, the end of the tape is peeled off at a stretch at an angle of 45 °, and the state of the grid is evaluated by comparing with the standard drawing. The adhesion strength after 240 hours in the normal state and HAST (80 ° C. ⁇ 85% RH) is determined.
  • HAST 80 ° C. ⁇ 85% RH
  • the negative photosensitive polyimide resin composition of the present invention includes, for example, semiconductor packages such as FO-WLP and WLP, electronic elements such as thin film magnetic heads, thin film inductors, thin film magnetic elements such as common mode choke coils, and TFT liquid crystal elements. It is useful for manufacturing display elements such as color filter elements and organic EL elements, and organic multilayer wiring substrates, and can be suitably used in the field of photosensitive materials.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The purpose of the present invention is to provide a photosensitive polyimide resin composition which has developer liquid solubility during development and developer liquid insolubility after photo-crosslinking, and which enables the achievement of good film properties and high sensitivity. The present invention provides a photosensitive polyimide resin composition which contains, as essential components, (A) a solvent-soluble polyimide and (B) a diazide compound, wherein: the solvent-soluble polyimide (A) is a block copolymer that comprises, in the main chain, (a) an aromatic tetracarboxylic acid dianhydride residue having a benzophenone structure and (b) a residue of at least one diamine that is selected from the group consisting of an aromatic diamine having an alkyl group at the ortho position of an amino group, an aromatic diamine having an indane structure, and a diamine having a polysiloxane structure; and the content of the diazide compound (B) is from 2.0 to 150 parts by weight relative to 100 parts by weight of the solvent-soluble polyimide (A).

Description

感光性ポリイミド樹脂組成物Photosensitive polyimide resin composition
 本発明は、感光性ポリイミド樹脂組成物に関する。 The present invention relates to a photosensitive polyimide resin composition.
 近年、半導体パッケージ基板においては、FC-CSPやFC-BGAから、低背化、電気特性(R,L,C)の向上、反りの低減化が可能なFan-out Wafer Level Package(FO-WLP)への移行が盛んに検討されており、FO-WLPの一部は量産化されている。このFO-WLPに使用される有機材料でキー材料となるのが封止材料と各種の保護膜材料であり、この保護膜材料として感光性ポリイミドが使用されている。 In recent years, in semiconductor package substrates, Fan-out Wafer Level Package (FO-WLP) that can reduce the height, improve the electrical characteristics (R, L, C), and reduce the warp from FC-CSP and FC-BGA. ) Is being actively considered, and a part of FO-WLP has been mass-produced. The key materials in the organic material used for this FO-WLP are a sealing material and various protective film materials, and photosensitive polyimide is used as the protective film material.
 感光性ポリイミドはいくつかの感光性付与方式があることが知られており(特許文献1)、画像形成プロセスからポジ型とネガ型に大別される。ポジ型はネガ型より高感度であるが、光分解反応を用いるために光反応による物性向上が期待し難い。一方、ネガ型は露光部分が光架橋反応を起こし現像処理後に残存するため、耐薬品性や耐熱性が向上し易いという特徴がある。そのため、ネガ型の方が、永久絶縁膜として用いた場合に感度に多少の問題はあるが、信頼性に優れたものを提供することができる。 It is known that photosensitive polyimide has several photosensitizing methods (Patent Document 1), and is roughly classified into a positive type and a negative type according to the image forming process. The positive type has higher sensitivity than the negative type, but it is difficult to expect improvement in physical properties due to the photoreaction because it uses a photodecomposition reaction. On the other hand, the negative type has a feature that the chemical resistance and the heat resistance are easily improved because the exposed portion undergoes a photocrosslinking reaction and remains after the development treatment. Therefore, the negative type has some problems in sensitivity when used as a permanent insulating film, but can provide a highly reliable one.
 ネガ型感光性ポリイミドは、ポリアミック酸等の前駆体に感光性基を導入し、光反応後に加熱イミド化を行う方法と、閉環されたポリイミド自体に感光性を持たせる方法に大別される。当該分野で実用化されている代表的な方法は、ポリアミック酸のヒドロキシアクリレートとエステル結合されたもの(特許文献2)や、ポリアミック酸にアミノアクリレート等を配合して感光性基を塩結合で導入するもの(特許文献3)である。 Negative photosensitive polyimide is roughly classified into a method in which a photosensitive group is introduced into a precursor such as polyamic acid and heat imidization is performed after a photoreaction, and a method in which the ring-closed polyimide itself is made photosensitive. Typical methods that have been put into practical use in this field are those in which a polyamic acid is ester-bonded with a hydroxy acrylate (Patent Document 2), or a polyamic acid mixed with an amino acrylate or the like and a photosensitive group is introduced by a salt bond. (Patent Document 3).
 また、閉環されたポリイミド自体に感光性を持たせる方法としては、ベンゾフェノン構造を有するテトラカルボン酸二無水物とジアミンとの重縮合反応によって得られるポリイミド共重合体を用いる方法(特許文献4)や、二段階重縮合により合成した溶剤可溶性のポリイミドブロック共重合体の側鎖にアクリロイル基を付加させる方法(特許文献5)が報告されている。 Further, as a method for making the ring-closed polyimide itself photosensitive, a method using a polyimide copolymer obtained by a polycondensation reaction between a tetracarboxylic acid dianhydride having a benzophenone structure and a diamine (Patent Document 4) and , A method of adding an acryloyl group to the side chain of a solvent-soluble polyimide block copolymer synthesized by two-step polycondensation has been reported (Patent Document 5).
福田健一,上田充,高分子論文集,vol63,No.9,pp.561-576Kenichi Fukuda, Mitsuru Ueda, Polymer Papers, vol63, No. 9, pp. 561-576 特公昭55-41422号公報Special Publication No. 55-41422 特開昭54-145794号公報JP-A-54-145794 特開平5-39281号公報Japanese Unexamined Patent Publication No. 5-39281 特開2000-147768号公報Japanese Unexamined Patent Publication No. 2000-147768
 半導体パッケージ基板等への要求は年々厳しさを増しており、FO-WLPにおいても例外ではなく、パターンの細線化、接続ビアの小径化、多層化等が要求されている。これらの要求に対応するため、感光性ポリイミドについても、感度の向上や薄膜の信頼性に加え、FO-WLPの最大の課題であるコストの低減に深く関与する、大パネルサイズでの反りの減少や寸法安定性の向上が求められている。 The demands for semiconductor package substrates, etc. are becoming stricter year by year, and FO-WLP is no exception, and there are demands for thinner patterns, smaller diameters of connecting vias, and multiple layers. In order to meet these demands, photosensitive polyimide also has improved sensitivity, reliability of thin films, and reduction of warpage in large panel sizes, which is deeply involved in cost reduction, which is the biggest issue of FO-WLP. And improvement of dimensional stability is required.
 しかし、現在実用化されているポリアミック酸を用い光反応後に加熱イミド化を行う方法は、イミド化のために高温(例えば、350~450℃)を要し、その際に脱水収縮や感光性基の脱離又は揮散が起こり、大きな膜ベリが発生する。これは、半導体パッケージや電子素子の製造プロセスにおいて、反りや寸法安定性に大きな影響を与え、保存安定性も低下する要因となっていた。 However, the currently practical method of performing heat imidization after a photoreaction using a polyamic acid requires a high temperature (for example, 350 to 450 ° C.) for imidization, and at that time, dehydration shrinkage or a photosensitive group. Desorption or volatilization occurs, and large film burrs occur. This has had a great influence on warpage and dimensional stability in the manufacturing process of semiconductor packages and electronic devices, and has been a factor of lowering storage stability.
 また、閉環されたポリイミドを用いる場合でも、現像時には現像液可溶性であるとともに、感光後には感光部が現像液不溶性となる構造とする必要があるという課題があり、従来報告されている方法では、露光・現像性が不十分であるという問題があった。 Further, even when a ring-closed polyimide is used, there is a problem that it is necessary to have a structure in which the developing solution is soluble at the time of development and the photosensitive part becomes insoluble in the developing solution after exposure, and the conventionally reported method has a problem. There was a problem that the exposure and developability were insufficient.
 このように半導体パッケージ基板等の保護膜材料としては、現像時の現像液可溶性と光架橋後の現像液不溶性を備え、且つ、良好な膜物性と感度の向上を達成し得る感光性ポリイミドが求められていた。 As described above, as a protective film material for a semiconductor package substrate or the like, a photosensitive polyimide which is soluble in a developing solution during development and insoluble in a developing solution after photocrosslinking, and which can achieve good film physical properties and improved sensitivity is required. Was being done.
 本発明は、現像時の現像液可溶性と光架橋後の現像液不溶性を備え、良好な膜物性と高い感度を達成し得る感光性ポリイミド樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a photosensitive polyimide resin composition which is soluble in a developing solution during development and insoluble in a developing solution after photocrosslinking, and can achieve good film physical properties and high sensitivity.
 本発明者らは、上記課題を解決するために鋭意検討した結果、閉環されたポリイミドとして、ベンゾフェノン構造を有する芳香族酸二無水物と特定のジアミンを主鎖中に有する構造のブロック共重合体を用い、更にこのポリイミドと特定量のジアジド化合物を組み合わせることにより、現像時の溶剤可溶性と光架橋後の溶剤不溶性を備え、良好な膜物性と高い感度を達成し得る感光性ポリイミド樹脂組成物を提供できることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have made a block copolymer having a ring-closed polyimide having an aromatic acid dianhydride having a benzophenone structure and a specific diamine in the main chain. By further combining this polyimide with a specific amount of diazid compound, a photosensitive polyimide resin composition having solvent solubility during development and solvent insolubility after photocrosslinking, which can achieve good film physical properties and high sensitivity, can be obtained. The present invention has been completed by finding that it can be provided.
 すなわち、本発明は以下のものを提供する。
(1)(A)溶剤可溶性ポリイミド及び(B)ジアジド化合物を必須成分として含有する感光性ポリイミド樹脂組成物であって、前記(A)溶剤可溶性ポリイミドが、(a)ベンゾフェノン構造を有する芳香族テトラカルボン酸二無水物残基と、(b)アミノ基のオルト位にアルキル基を有する芳香族ジアミン、インダン構造を有する芳香族ジアミン、及びポリシロキサン構造を有するジアミンからなる群から選ばれる少なくとも1種のジアミンの残基を主鎖中に有するブロック共重合体であり、前記(B)ジアジド化合物の含有量が、前記(A)溶剤可溶性ポリイミド100重量部に対し2.0~150重量部である感光性ポリイミド樹脂組成物。
(2)前記少なくとも1種のジアミンの残基が、フェニルインダン構造を有する芳香族ジアミンの残基であることを特徴とする、(1)に記載の樹脂組成物。
(3)前記(B)ジアジド化合物が、2,6-ジ(4’-アジドベンザル)-4-エチルシクロヘキサノンであることを特徴とする、(1)又は(2)に記載の樹脂組成物。
(4)前記感光性ポリイミド樹脂組成物が、更に(C)エポキシ樹脂と(D)光塩基発生剤を含有することを特徴とする、(1)~(3)のいずれかに記載の樹脂組成物。
(5)前記感光性ポリイミド樹脂組成物が、ネガ型溶剤現像組成物であることを特徴とする、(1)~(4)のいずれかに記載の樹脂組成物。
(6)(1)~(5)のいずれかに記載の樹脂組成物で被覆した基板を紫外線照射により露光し、未露光部を現像除去することを特徴とするパターン形成方法。
(7)(1)~(5)のいずれかに記載の樹脂組成物を用いて形成された層間絶縁膜、パッシベーション膜又は表面保護膜を有する半導体パッケージ、電子素子、表示素子又は有機多層配線基板。
That is, the present invention provides the following.
(1) A photosensitive polyimide resin composition containing (A) a solvent-soluble polyimide and (B) a diamine compound as essential components, wherein the (A) solvent-soluble polyimide has (a) an aromatic tetra having a benzophenone structure. At least one selected from the group consisting of a carboxylic acid dianhydride residue, (b) an aromatic diamine having an alkyl group at the ortho position of the amino group, an aromatic diamine having an indan structure, and a diamine having a polysiloxane structure. It is a block copolymer having a diamine residue in the main chain, and the content of the (B) diazide compound is 2.0 to 150 parts by weight with respect to 100 parts by weight of the (A) solvent-soluble polyimide. Photosensitive polyimide resin composition.
(2) The resin composition according to (1), wherein the residue of at least one of the diamines is a residue of an aromatic diamine having a phenylindane structure.
(3) The resin composition according to (1) or (2), wherein the (B) diazide compound is 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone.
(4) The resin composition according to any one of (1) to (3), wherein the photosensitive polyimide resin composition further contains (C) an epoxy resin and (D) a photobase generator. Stuff.
(5) The resin composition according to any one of (1) to (4), wherein the photosensitive polyimide resin composition is a negative solvent developing composition.
(6) A pattern forming method comprising exposing a substrate coated with the resin composition according to any one of (1) to (5) by ultraviolet irradiation to develop and remove an unexposed portion.
(7) A semiconductor package, electronic element, display element or organic multilayer wiring board having an interlayer insulating film, a passivation film or a surface protective film formed by using the resin composition according to any one of (1) to (5). ..
 本発明により、高温でのイミド化が必要なポリアミック酸を用いなくても、閉環した感光性ポリイミドと特定量のジアジド化合物を用いることにより、現像時の溶剤可溶性と光架橋後の溶剤不溶性の両方を備え、且つ、ポリアミック酸を用いた感光性ポリイミドと同等以上の良好な膜物性と高い感度を達成し得る感光性ポリイミド樹脂組成物を提供することができる。 According to the present invention, by using a ring-closed photosensitive polyimide and a specific amount of diazide compound without using a polyamic acid that requires imidization at a high temperature, both solvent-soluble during development and solvent-insolubility after photocrosslinking are used. It is possible to provide a photosensitive polyimide resin composition which can achieve good film physical properties and high sensitivity equal to or higher than that of photosensitive polyimide using polyamic acid.
 従来使用されていたベンゾフェノン骨格を有するポリイミドを用いた場合には、ベンゾフェノン部と隣接アルキル基との水素引き抜き架橋の量子収率が低く十分な架橋構造が得られなかったが、本発明においてポリイミド樹脂組成物にジアジド化合物を添加することによりポリイミドの十分な架橋構造を実現することができる。 When a polyimide having a benzophenone skeleton, which has been used conventionally, is used, the quantum yield of hydrogen abstraction cross-linking between the benzophenone portion and the adjacent alkyl group is low and a sufficient cross-linked structure cannot be obtained. A sufficient crosslinked structure of polyimide can be realized by adding a diazide compound to the composition.
 更に、ポリイミド樹脂組成物を用いて形成された膜の厚みが大きい場合、例えば、10μm以上の場合には、ポリイミド樹脂組成物に光塩基発生剤とエポキシ樹脂を含有させて、光塩基発生剤によりエポキシ樹脂を光架橋させることにより十分な架橋構造を実現することができる。 Further, when the thickness of the film formed by using the polyimide resin composition is large, for example, when it is 10 μm or more, the polyimide resin composition contains a photobase generator and an epoxy resin, and the photobase generator is used. A sufficient crosslinked structure can be realized by photocrosslinking the epoxy resin.
 本発明の感光性ポリイミド樹脂組成物は、(A)溶剤可溶性ポリイミド及び(B)ジアジド化合物を必須成分として含有する樹脂組成物である。 The photosensitive polyimide resin composition of the present invention is a resin composition containing (A) a solvent-soluble polyimide and (B) a diazide compound as essential components.
(A)溶剤可溶性ポリイミド
 本発明における(A)溶剤可溶性ポリイミドは、(a)ベンゾフェノン構造を有する芳香族酸二無水物と、(b-1)アミノ基のオルト位にアルキル基を有する芳香族ジアミン、(b-2)インダン構造を有する芳香族ジアミン、及び(b-3)ポリシロキサン構造を有するジアミンからなる群から選ばれる少なくとも1種のジアミン(b)を主鎖中に有するブロック共重合体である。
(A) Solvent-soluble polyimide The (A) solvent-soluble polyimide in the present invention comprises (a) an aromatic acid dianhydride having a benzophenone structure and (b-1) an aromatic diamine having an alkyl group at the ortho position of the amino group. , (B-2) A block copolymer having at least one diamine (b) in the main chain selected from the group consisting of an aromatic diamine having an indan structure and (b-3) a diamine having a polysiloxane structure. Is.
 具体的には、本発明の(A)溶剤可溶性ポリイミドは、下記一般式[I]~[III]で表される繰返し単位のうちの少なくとも1つ、好ましくは2つ以上を有するブロック共重合体である。 Specifically, the solvent-soluble polyimide (A) of the present invention is a block copolymer having at least one, preferably two or more of the repeating units represented by the following general formulas [I] to [III]. Is.
Figure JPOXMLDOC01-appb-C000001
(式中、Zは芳香族テトラカルボン酸二無水物残基であり、Arはアミノ基のオルト位にアルキル基を有する芳香族ジアミン残基である)
Figure JPOXMLDOC01-appb-C000001
(In the formula, Z 1 is an aromatic tetracarboxylic dianhydride residue, and Ar 1 is an aromatic diamine residue having an alkyl group at the ortho position of the amino group.)
Figure JPOXMLDOC01-appb-C000002
(式中、Zは芳香族テトラカルボン酸二無水物残基であり、Arはインダン構造を有する芳香族ジアミン残基である)
Figure JPOXMLDOC01-appb-C000002
(In the formula, Z 2 is an aromatic tetracarboxylic dianhydride residue and Ar 2 is an aromatic diamine residue having an indane structure.)
Figure JPOXMLDOC01-appb-C000003
(式中、Zは芳香族テトラカルボン酸二無水物残基であり、Arはポリシロキサン構造を有するジアミン残基である)
Figure JPOXMLDOC01-appb-C000003
(In the formula, Z 3 is an aromatic tetracarboxylic dianhydride residue and Ar 3 is a diamine residue having a polysiloxane structure).
 本発明において、上記一般式[I]中のZ、上記一般式[II]中のZ、上記一般式[III]中のZのうちの少なくとも1つは、(a)ベンゾフェノン構造を有する芳香族テトラカルボン酸二無水物残基であるが、Z、Z及びZはいずれも(a)ベンゾフェノン構造を有する芳香族テトラカルボン酸二無水物残基であるのが好ましい。 In the present invention, at least one of Z 1 in the general formula [I], Z 2 in the general formula [II], and Z 3 in the general formula [III] has (a) a benzophenone structure. Although it is an aromatic tetracarboxylic dianhydride residue having, it is preferable that Z 1 , Z 2 and Z 3 are all (a) aromatic tetracarboxylic dianhydride residues having a benzophenone structure.
 本発明における(a)ベンゾフェノン構造を有する芳香族酸二無水物残基となる芳香族酸二無水物としては、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,5,3’,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)等が挙げられる。BTDA系ポリイミドは、光架橋によりモルフォロジーも変化する。すなわち凝集状態の緻密化が起こるとされている。このことは、耐薬品性や耐熱性の向上にも寄与する。 Examples of the aromatic acid dianhydride (a) which is an aromatic acid dianhydride residue having a benzophenone structure in the present invention include 2,2', 3,3'-benzophenonetetracarboxylic dianhydride (BTDA). Examples thereof include 4,5,3', 4'-benzophenonetetracarboxylic dianhydride (BTDA) and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The morphology of BTDA-based polyimide also changes due to photocrosslinking. That is, it is said that the agglutinated state is densified. This also contributes to the improvement of chemical resistance and heat resistance.
 ベンゾフェノン構造を有する芳香族酸二無水物は、溶剤可溶性ポリイミドを構成する全ての芳香族酸二無水物の10mol%以上、45mol%以上、更には50mol%以上含有させることが好ましい。ベンゾフェノン構造を有する芳香族酸二無水物の含有量が10mol%未満の場合には、光架橋後のポリイミド樹脂組成物の耐溶剤性が低下し、感度が低くなる傾向がある。 The aromatic dianhydride having a benzophenone structure is preferably contained in an amount of 10 mol% or more, 45 mol% or more, and further 50 mol% or more of all the aromatic acid dianhydrides constituting the solvent-soluble polyimide. When the content of the aromatic dianhydride having a benzophenone structure is less than 10 mol%, the solvent resistance of the polyimide resin composition after photocrosslinking tends to decrease, and the sensitivity tends to decrease.
 上記一般式[I]~[III]におけるZ、Z及びZのベンゾフェノン構造を有する芳香族テトラカルボン酸二無水物残基以外の例としては、特に制限はないが、ピロメリット酸ジ無水物、3,4,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,4,3’,4’-ジフェニルテトラカルボン酸二無水物、ビス-(3,4-ジカルボキシフェニル)エーテル二無水物、2,2-ビス-(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンに無水物、4,4’-オキシジフタル酸二無水物等が挙げられる。 Examples other than the aromatic tetracarboxylic dianhydride residue having the benzophenone structure of Z 1 , Z 2 and Z 3 in the above general formulas [I] to [III] are not particularly limited, but are pyromellitic dianhydride. Anhydride, 3,4,3', 4'-benzophenonetetracarboxylic dianhydride, 3,4,3', 4'-diphenyltetracarboxylic dianhydride, bis- (3,4-dicarboxyphenyl) Examples include ether dianhydride, 2,2-bis- (3,4-dicarboxyphenyl) hexafluoropropane, anhydride, 4,4'-oxydiphthalic dianhydride and the like.
 また、(A)溶剤可溶性ポリイミドは、上記一般式[I]~[III]以外の、芳香族テトラカルボン酸二無水物残基とジアミン残基からなる繰返し単位を有していてもよい。 Further, the solvent-soluble polyimide (A) may have a repeating unit composed of an aromatic tetracarboxylic dianhydride residue and a diamine residue other than the above general formulas [I] to [III].
(b)ジアミン
(b-1)アミノ基のオルト位にアルキル基を有する芳香族ジアミン
 本発明におけるアミノ基のオルト位にアルキル基を有する芳香族ジアミン残基(Ar)としては、アミノ基のオルト位に炭素数1~12の直鎖又は分岐のアルキル基、好ましくは炭素数1~5、更に好ましくは炭素数1~3のアルキル基を有する芳香族ジアミン残基が挙げられ、具体的には下記式(1)~(3)で表される構造であるものが挙げられる。
(B) Diamine (b-1) Aromatic diamine having an alkyl group at the ortho position of the amino group The aromatic diamine residue (Ar 1 ) having an alkyl group at the ortho position of the amino group in the present invention is an amino group. Specific examples thereof include aromatic amine residues having a linear or branched alkyl group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms at the ortho position. Is a structure represented by the following formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(1)において、遊離結合(アミノ基が結合する2つの結合位置)は互いに相対的にメタ位またはパラ位に存在する。
 上記式(2)において、遊離結合(アミノ基が結合する2つの結合位置)は好ましくはR11に対してメタ位またはパラ位に存在し、RとRは遊離結合の2つのオルト位に結合している。R11は-O-,-S-,-SS-,-SO-,-SO-,-CO-,-COO-,-NH-,-CONH-,-CON-アルキル基-(アルキル基の炭素数nは1~6),-CON-ベンジル基-を表す。
 上記式(3)において、遊離結合(アミノ基が結合する2つの結合位置)は2-,3-,6-または7-位に存在し、RとRは遊離結合の2つのオルト位に結合している。
 上記式(1)~(3)において、RとRは炭素数1~12の直鎖又は分岐のアルキル基、好ましくは炭素数1~5のアルキル基、更に好ましくは炭素数1~3のアルキル基である。
In the above formula (1), the free bond (two bond positions where the amino group is bonded) exists in the meta position or the para position relative to each other.
In the above formula (2), the free bond (two bond positions where the amino group is bonded) is preferably present at the meta position or the para position with respect to R 11 , and R 5 and R 6 are at the two ortho positions of the free bond. Is bound to. R 11 is -O-, -S-, -SS-, -SO-, -SO 2- , -CO-, -COO-, -NH-, -CONH-, -CON-alkyl group- (alkyl group The number of carbon atoms n represents 1 to 6), -CON-benzyl group-.
In the above formula (3), the free bond (two coupling positions where the amino group is bound) is 2-, 3-, 6- or 7-position to present, R 5 and R 6 are two ortho positions of the free bond Is bound to.
In the above formulas (1) to (3), R 5 and R 6 are linear or branched alkyl groups having 1 to 12 carbon atoms, preferably alkyl groups having 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. Alkyl group of.
 本発明において、アミノ基のオルト位にアルキル基を有する芳香族ジアミン残基(Ar)は、(A)溶剤可溶性ポリイミドを構成する全てのジアミン中に30mol%以上、更には50mol%以上、特には70mol%以上含有させることが好ましい。50mol%未満では架橋密度が低下する傾向がある。 In the present invention, the aromatic diamine residue (Ar 1 ) having an alkyl group at the ortho position of the amino group is 30 mol% or more, more particularly 50 mol% or more, particularly 50 mol% or more in all the diamines constituting the (A) solvent-soluble polyimide. Is preferably contained in an amount of 70 mol% or more. If it is less than 50 mol%, the crosslink density tends to decrease.
(b-2)インダン構造を有する芳香族ジアミン
 本発明において、インダン構造を有する芳香族ジアミン残基(Ar)とは、下記のインダン骨格に、下記式(IV)又は(V)で表される構造を有するものが挙げられる。
(B-2) Aromatic diamine having an indane structure In the present invention, the aromatic diamine residue (Ar 2 ) having an indane structure is represented by the following formula (IV) or (V) in the following indane skeleton. Those having such a structure can be mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(IV)において、RとRは炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又は炭素数2~12のアルコキシアルキル基を表し、RとRは遊離結合(アミノ基が結合する2つの結合位置)の2つのオルト位に結合していることが好ましい。 In the above formula (IV), R 1 and R 2 represent an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms or an alkoxy alkyl group having 2 to 12 carbon atoms, and R 1 and R 2 are free. It is preferably bonded to two ortho positions of the bond (two bonding positions to which the amino group is bonded).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(V)において、R,R及びRは独立して水素原子または炭素数1~5のアルキル基を表し、Rの各々及びRの各々は独立して水素原子または炭素数1~5のアルキル基を表す。具体例としては、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン、6-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダンが挙げられる。
 本発明においては、上記式(V)で表されるフェニルインダン構造を有する芳香族ジアミン残基を主鎖中に有する溶剤可溶性ポリイミドが好ましい。
In the above formula (V), R 1 , R 2 and R 3 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and each of R 4 and R 5 independently represents a hydrogen atom or carbon. Represents an alkyl group of numbers 1-5. Specific examples include 5-amino-1- (4'-aminophenyl) -1,3,3-trimethylindane and 6-amino-1- (4'-aminophenyl) -1,3,3-trimethylindane. Can be mentioned.
In the present invention, a solvent-soluble polyimide having an aromatic diamine residue having a phenylindane structure represented by the above formula (V) in the main chain is preferable.
 本発明におけるインダン構造を有する芳香族ジアミン残基(Ar)は、(A)溶剤可溶性ポリイミドを構成する全てのジアミン中に50mol%以上、更には60mol%以上、特には70mol%以上含有させることが好ましい。50mol%未満では架橋密度が低下する傾向がある。 The aromatic diamine residue (Ar 2 ) having an indane structure in the present invention should be contained in all the diamines constituting the solvent-soluble polyimide (A) in an amount of 50 mol% or more, further 60 mol% or more, particularly 70 mol% or more. Is preferable. If it is less than 50 mol%, the crosslink density tends to decrease.
(b-3)ポリシロキサン構造を有するジアミン残基(Ar
 本発明におけるポリシロキサン構造を有するジアミン残基(Ar)としては、α,ω-ビス(2-アミノエチル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(4-アミノフェニル)ポリジメチルシロキサン、α,ω-ビス(4-アミノ-3-メチルフェニル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジフェニルシロキサン、α,ω-ビス(4-アミノブチル)ポリジメチルシロキサン等が挙げられる。
(B-3) Diamine residue having a polysiloxane structure (Ar 3 )
Examples of the diamine residue (Ar 3 ) having a polysiloxane structure in the present invention include α, ω-bis (2-aminoethyl) polydimethylsiloxane, α, ω-bis (3-aminopropyl) polydimethylsiloxane, α, ω-bis (4-aminophenyl) polydimethylsiloxane, α, ω-bis (4-amino-3-methylphenyl) polydimethylsiloxane, α, ω-bis (3-aminopropyl) polydiphenylsiloxane, α, ω -Bis (4-aminobutyl) polydimethylsiloxane and the like can be mentioned.
 本発明におけるポリシロキサン構造を有するジアミン残基(Ar)は、(A)溶剤可溶性ポリイミドを構成する全てのジアミン中に2.0~30mol%含有させることが好ましく、5.0~20mol%含有させることが更に好ましい。ポリシロキサン構造を有するジアミンの含有量が30mol%を超えると、溶剤溶解性が高くなりすぎる場合があり、Tgも低下する傾向がある。 The diamine residue (Ar 3 ) having a polysiloxane structure in the present invention is preferably contained in an amount of 2.0 to 30 mol%, preferably 5.0 to 20 mol%, in all the diamines constituting the solvent-soluble polyimide (A). It is more preferable to let it. If the content of the diamine having a polysiloxane structure exceeds 30 mol%, the solvent solubility may become too high, and Tg also tends to decrease.
(A)溶剤可溶性ポリイミドの合成方法
 溶剤可溶性ポリイミドの合成方法は公知の方法を用いればよく、特に制限されないが、上述したテトラカルボン酸二無水物と芳香族ジアミンをほぼ等量用いて、有機極性溶媒中、触媒及び脱水剤の存在下、160~200℃で数時間反応させることにより、溶剤可溶性のポリイミドを合成できる。有機極性溶媒としては、N-メチルピロリドン(NMP)、γ-ブチロラクトン、N,N’-ジメチルアセトアミド、N,N’-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、テトラヒドロチオフェン-1,1-オキシド等が用いられる。
(A) Method for synthesizing solvent-soluble polyimide A known method may be used for synthesizing the solvent-soluble polyimide, and the method is not particularly limited. However, the above-mentioned tetracarboxylic acid dianhydride and aromatic diamine are used in substantially equal amounts to form an organic polarity. A solvent-soluble polyimide can be synthesized by reacting in a solvent at 160 to 200 ° C. for several hours in the presence of a catalyst and a dehydrating agent. Examples of the organic polar solvent include N-methylpyrrolidone (NMP), γ-butyrolactone, N, N'-dimethylacetamide, N, N'-dimethylformamide, dimethyl sulfoxide, tetramethylurea, tetrahydrothiophene-1,1-oxide and the like. Is used.
 本発明における(A)溶剤可溶性ポリイミドは、ブロック共重合体であり、必要に応じてブロック共重合反応を行うことにより合成することができる。例えば、二段階の逐次添加反応によって製造することができ、第一段階でテトラカルボン酸ジ無水物と芳香族ジアミンからポリイミドオリゴマーを合成し、次いで第二段階で、更にテトラカルボン酸ジ無水物及び/又は芳香族ジアミンを添加して、重縮合させてブロック共重合ポリイミドとすることができる。 The solvent-soluble polyimide (A) in the present invention is a block copolymer and can be synthesized by performing a block copolymer reaction as needed. For example, it can be produced by a two-step sequential addition reaction, in which the polyimide oligomer is synthesized from the tetracarboxylic acid dianhydride and the aromatic diamine in the first step, and then further in the second step, the tetracarboxylic acid dianhydride and / Or an aromatic diamine can be added and polycondensed to obtain a block copolymer polyimide.
 ブロック共重合反応の触媒としては、ラクトンの平衡反応を利用した二成分系の酸-塩基触媒を用いることにより、脱水イミド化反応を促進することができる。具体的には、γ-バレロラクトンとピリジン又はN-メチルモルホリンの二成分系触媒を用いる。下記式に示すように、イミド化が進むにつれて水が生成し、生成した水がラクトンの平衡に関与して、酸-塩基触媒となり触媒作用を示す。 As the catalyst for the block copolymerization reaction, the dehydration imidization reaction can be promoted by using a two-component acid-base catalyst utilizing the equilibrium reaction of lactone. Specifically, a two-component catalyst of γ-valerolactone and pyridine or N-methylmorpholine is used. As shown in the following formula, water is generated as the imidization progresses, and the produced water participates in the equilibrium of the lactone to become an acid-base catalyst and exhibits catalytic action.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 イミド化反応によって生成する水は、極性溶媒中に共存するトルエン又はキシレン等の脱水剤と共沸によって系外に除かれる。反応が完結すると溶液中の水が除去され、酸-塩基触媒はγ-バレロラクトンとピリジン又はN-メチルモルホリンとなり系外に除去される。このようにして高純度のポリイミド溶液を得ることができる。 The water produced by the imidization reaction is removed from the system by azeotropic boiling with a dehydrating agent such as toluene or xylene coexisting in the polar solvent. When the reaction is completed, the water in the solution is removed, and the acid-base catalyst becomes γ-valerolactone and pyridine or N-methylmorpholine, which is removed from the system. In this way, a high-purity polyimide solution can be obtained.
 他の二成分系触媒としては、シュウ酸又はマロン酸とピリジン又はN-メチルモルホリンを用いることができる。160~200℃の反応溶液中で、シュウ酸塩又はマロン酸塩は酸触媒としてイミド化反応を促進する。生成したポリイミド溶媒中には触媒量のシュウ酸又はマロン酸が残留する。このポリイミド溶液を基材に塗布した後に200℃以上に加熱し、脱溶媒を行って製膜をする時に、ポリイミド中に残存するシュウ酸又はマロン酸は、下記式に示すように熱分解し、ガスとして系外に除かれる。 As the other two-component catalyst, oxalic acid or malonic acid and pyridine or N-methylmorpholine can be used. In the reaction solution at 160-200 ° C., oxalate or malonate promotes the imidization reaction as an acid catalyst. A catalytic amount of oxalic acid or malonic acid remains in the produced polyimide solvent. After applying this polyimide solution to the substrate, it is heated to 200 ° C. or higher, and when the solvent is removed to form a film, the oxalic acid or malonic acid remaining in the polyimide is thermally decomposed as shown in the following formula. Excluded from the system as gas.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 以上の方法により、高純度の(A)溶剤可溶性ポリイミドを得ることができる。シュウ酸-ピリジン系触媒は、バレロラクトン-ピリジン系触媒に比べて活性が強く、短時間で高分子量のポリイミドを生成することができる。 By the above method, high-purity (A) solvent-soluble polyimide can be obtained. The oxalic acid-pyridine catalyst has stronger activity than the Valerolactone-pyridine catalyst, and can produce a high molecular weight polyimide in a short time.
 本発明における「溶剤可溶性」なる用語は、ポリイミドの合成において使用する有機極性溶媒と、後述する膜に使用する溶剤に対して使用する用語であり、100gの溶剤中に5g以上溶解するポリイミドであることを意味する。ここで、溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、テトラメチル尿素等の極性溶媒が挙げられる。 The term "solvent-soluble" in the present invention is a term used for an organic polar solvent used in the synthesis of polyimide and a solvent used for a film described later, and is a polyimide that dissolves 5 g or more in 100 g of a solvent. Means that. Here, examples of the solvent include polar solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, and tetramethylurea.
 上記のように合成された(A)溶剤可溶性ポリイミドは、上記有機極性溶媒又は後述する膜に使用する溶剤に、例えば、固形分が10~30重量%となるよう溶解させた溶液の状態で用いることができる。(A)溶剤可溶性ポリイミドの分子量は、ポリスチレン換算の重量平均分子量として1万~40万が好ましい。この範囲であると良好な溶剤可溶性と膜物性及び絶縁性を達成できる。(A)溶剤可溶性ポリイミドの適正な粘度は、固形分が20~40重量%の場合で、好ましくは2~10Pa・s/25℃である。また、溶剤可溶性ポリイミドのガラス転移温度(Tg)(TMA測定法による)は200℃以上が好ましく、250℃以上が更に好ましい。 The solvent-soluble polyimide (A) synthesized as described above is used in the state of a solution dissolved in the organic polar solvent or the solvent used for the membrane described later so that the solid content is, for example, 10 to 30% by weight. be able to. The molecular weight of the solvent-soluble polyimide (A) is preferably 10,000 to 400,000 as a polystyrene-equivalent weight average molecular weight. Within this range, good solvent solubility, film physical properties and insulating properties can be achieved. The appropriate viscosity of the solvent-soluble polyimide (A) is when the solid content is 20 to 40% by weight, preferably 2 to 10 Pa · s / 25 ° C. The glass transition temperature (Tg) (according to the TMA measurement method) of the solvent-soluble polyimide is preferably 200 ° C. or higher, more preferably 250 ° C. or higher.
 溶液中の(A)溶剤可溶性ポリイミドの濃度は5~50重量%が好ましく、さらに好ましくは10~40重量%である。なお、上記のラクトンと塩基から成る触媒系を用いた直接イミド化反応により得られるポリイミドは、極性溶媒中に溶解した溶液の形態で得ることができ、しかも、ポリイミドの濃度も上記の好ましい範囲内とすることができるので、製造されたポリイミド溶液をそのままの状態で好ましく用いることができる。 The concentration of the solvent-soluble polyimide (A) in the solution is preferably 5 to 50% by weight, more preferably 10 to 40% by weight. The polyimide obtained by the direct imidization reaction using the above-mentioned catalytic system composed of lactone and base can be obtained in the form of a solution dissolved in a polar solvent, and the concentration of the polyimide is also within the above-mentioned preferable range. Therefore, the produced polyimide solution can be preferably used as it is.
 製造されたポリイミド溶液は、所望により、希釈剤を用いてさらに希釈することができる。希釈剤としては、溶解性を著しく損なわないような溶剤、例えば、ジオキサン、ジオキソラン、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、アニソール、安息香酸メチル、酢酸エチル等が挙げられるが、特にこれらに限定されない。 The produced polyimide solution can be further diluted with a diluent if desired. Diluents include solvents that do not significantly impair solubility, such as dioxane, dioxolane, N-methyl-2-pyrrolidone, γ-butyrolactone, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, methyl lactate, anisole, etc. Examples thereof include, but are not limited to, methyl benzoate and ethyl acetate.
(B)ジアジド化合物
 本発明においては、感光性ポリイミド樹脂組成物にもう1つの必須成分として(B)ジアジド化合物を添加することにより、露光・現像性が顕著に向上するという効果がある。 
(B) Diazide Compound In the present invention, by adding the (B) diazide compound as another essential component to the photosensitive polyimide resin composition, there is an effect that the exposure and developability are remarkably improved.
 (B)ジアジド化合物としては、4,4’-ジアジドベンザルアセトフェノン、2,6-ジ(4’-アジドベンザル)シクロヘキサノン、2,6-ジ(4’-アジドベンザル)-4-メチルシクロヘキサノン、2,6-ジ(4’-アジドベンザル)-4-エチルシクロヘキサノン、2,6-ジ(4’-アジドベンザル)-4-t-アミルシクロヘキサノン、4,4’-ジアジドジフェニルスルホン、4,4’-ジアジドジフェニルエーテル、4,4’-ジアジドフェニルスルフィド、4,4’-ジアジドジフェニルメタン等が挙げられる。これらの中でもアジドベンザルシクロヘキサノン構造を有するものが好ましく、架橋性及び保存安定性の観点から、2,6-ジ(4’-アジドベンザル)-4-エチルシクロヘキサノンが特に優れる。 (B) Examples of the diazide compound include 4,4'-diazidobenzalacetophenone, 2,6-di (4'-azidobenzal) cyclohexanone, and 2,6-di (4'-azidobenzal) -4-methylcyclohexanone, 2. , 6-di (4'-azidobenzal) -4-ethylcyclohexanone, 2,6-di (4'-azidobenzal) -4-t-amylcyclohexanone, 4,4'-diazidodiphenylsulfone, 4,4'- Examples thereof include diazidodiphenyl ether, 4,4'-diazidephenyl sulfide, and 4,4'-diazidodiphenylmethane. Among these, those having an azidobenzalcyclohexanone structure are preferable, and 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone is particularly excellent from the viewpoint of crosslinkability and storage stability.
 (B)ジアジド化合物は、感光性ポリイミド樹脂組成物中に、(A)溶剤可溶性ポリイミド100重量部に対し2.0~150重量部、更には5.0~100重量部、特には10.0~80重量部含有させることが好ましい。2.0重量部未満では架橋密度が低下する傾向があり、150重量部を超えると膜物性が低下する傾向がある。架橋性を補完するために、ジアジリン化合物やマレイミド又はビスマレイミド化合物を併用しても良い。 The diazide compound is contained in the photosensitive polyimide resin composition in an amount of 2.0 to 150 parts by weight, more preferably 5.0 to 100 parts by weight, particularly 10.0, based on 100 parts by weight of the solvent-soluble polyimide (A). It is preferably contained in an amount of about 80 parts by weight. If it is less than 2.0 parts by weight, the crosslink density tends to decrease, and if it exceeds 150 parts by weight, the physical properties of the film tend to decrease. A diazirine compound, maleimide or bismaleimide compound may be used in combination to complement the crosslinkability.
 本発明の感光性ポリイミド樹脂組成物は低波長側では光透過性に劣るため、特に厚膜仕様の場合、パターン形状がネガ型溶剤現像で見られる逆テーパーになり易い。これを改善するために、異なる感光架橋長方式の感光性モノマー又はポリマーを併用することも効果があることを見出した。その中でも、本発明の感光性ポリイミド樹脂組成物の成分として特に効果があるのは、感光性ポリイミド樹脂組成物との相溶性に優れる(C)エポキシ樹脂と(D)光塩基発生剤の組み合わせであることを見出した。 Since the photosensitive polyimide resin composition of the present invention is inferior in light transmission on the low wavelength side, the pattern shape tends to have a reverse taper seen in negative solvent development, especially in the case of a thick film specification. In order to improve this, it has been found that it is also effective to use a photosensitive monomer or polymer of a different photosensitive cross-linking length method in combination. Among them, the most effective component of the photosensitive polyimide resin composition of the present invention is a combination of (C) epoxy resin and (D) photobase generator, which are excellent in compatibility with the photosensitive polyimide resin composition. I found that there is.
(C)エポキシ樹脂
 (C)エポキシ樹脂としては、特に限定されることはなく、光塩基発生剤との反応性や感光性ポリイミド樹脂組成物との相溶性により選択することができ、エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラツク型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、結晶性エポキシ樹脂、ビスフェノールA型エポキシ樹脂等を用いることができ、それらの高分子エポキシ樹脂を用いることもできる。感光性ポリイミド樹脂組成物中の(C)エポキシ樹脂の含有量は、(A)溶剤可溶性ポリイミド100重量部に対し2~50重量部が好ましく、2~20部が最も好ましい。
(C) Epoxy resin The (C) epoxy resin is not particularly limited and can be selected depending on the reactivity with the photobase generator and the compatibility with the photosensitive polyimide resin composition, and can be selected as the epoxy resin. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolut type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, naphthalene-type epoxy resin, biphenyl-type epoxy resin, crystalline epoxy resin, Bisphenol A type epoxy resins and the like can be used, and their high molecular weight epoxy resins can also be used. The content of the (C) epoxy resin in the photosensitive polyimide resin composition is preferably 2 to 50 parts by weight, most preferably 2 to 20 parts by weight, based on 100 parts by weight of the solvent-soluble polyimide (A).
(D)光塩基発生剤
 (D)光塩基発生剤は、紫外線の照射によってアニオン(塩基)を発生する成分であり、非イオン型とイオン型に大別される。非イオン型としては、光吸収して第1級アミンや第2級アミン、イミダゾール等を発生するものがあり、イオン型にはアミジン、グアニジン、ホスファゼン等の有機強塩基を発生するものがある。
 (D)光塩基発生剤は、(C)エポキシ樹脂との反応において第1級アミンや第2級アミンを発生するものは連鎖的な反応が起こりにくいため、非イオン型ではイミダゾール、イオン型ではアミジン、グアニジン等を発生するものが好適である。
(D) Photobase generator (D) Photobase generator is a component that generates an anion (base) by irradiation with ultraviolet rays, and is roughly classified into a nonionic type and an ionic type. The non-ionic type includes those that absorb light to generate primary amines, secondary amines, imidazoles, and the like, and the ionic types include those that generate organic strong bases such as amidine, guanidine, and phosphazene.
As for (D) photobase generators, those that generate primary amines and secondary amines in the reaction with (C) epoxy resin are unlikely to undergo a chain reaction, so imidazole in the nonionic type and imidazole in the ionic type. Those that generate amidine, guanidine, etc. are preferable.
 本発明における(D)光塩基発生剤としては市販品を使用することができる。例えば、WPBG-018、WPBG-140、WPBG-266、WPBG-300、WPBG-345、WPBG-027、WPBG-165(以上、富士フィルム和光純薬社製)等が挙げられる。
 感光性ポリイミド樹脂組成物中の(D)光塩基発生剤の含有量は、(C)エポキシ樹脂に対し0.5~8重量%が好ましく、1~6重量%がより好ましい。
A commercially available product can be used as the (D) photobase generator in the present invention. For example, WPBG-018, WPBG-140, WPBG-266, WPBG-300, WPBG-345, WPBG-027, WPBG-165 (all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and the like can be mentioned.
The content of the (D) photobase generator in the photosensitive polyimide resin composition is preferably 0.5 to 8% by weight, more preferably 1 to 6% by weight, based on the (C) epoxy resin.
(光増感剤)
 本発明の感光性ポリイミド樹脂組成物には、それぞれの最終用途に適合させるために光増感剤を含有させてパターン解像の感度を高めることができる。光増感剤としては、特に長波長(>350nm)側に作用するものが好ましい。光増感剤としては、例えば、アントラセン系増感剤、チオキサントン系増感剤等が挙げられる。光増感剤の含有量は感光性ポリイミド樹脂組成物に対し0.3~2重量%程度が好ましい。
(Photosensitizer)
The photosensitive polyimide resin composition of the present invention may contain a photosensitizer in order to be suitable for each final use, and the sensitivity of pattern resolution can be increased. As the photosensitizer, those that act on the long wavelength (> 350 nm) side are particularly preferable. Examples of the photosensitizer include anthracene-based sensitizers and thioxanthone-based sensitizers. The content of the photosensitizer is preferably about 0.3 to 2% by weight with respect to the photosensitive polyimide resin composition.
 アントラセン系増感剤の具体例としては、例えば、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジイソプロポキシアントラセン、9,10-ジブトキシアントラセン、9,10-ジペンチルオキシアントラセン、9,10-ジヘキシルオキシアントラセン、9,10-ビス(2-メトキシエトキシ)アントラセン、9,10-ビス(2-エトキシエトキシ)アントラセン、9,10-ビス(2-ブトキシエトキシ)アントラセン、9,10-ビス(3-ブトキシプロポキシ)アントラセン、2-メチル-または2-エチル-9,10ジメトキシアントラセン、2-メチル-または2-エチル-9,10-ジエトキシアントラセン、2-メチル-または2-エチル-9,10-ジプロポキシアントラセン、2-メチル-または2-エチル-9,10-ジイソプロポキシアントラセン、2-メチル-または2-エチル-9,10-ジブトキシアントラセン、2-メチル-または2-エチル-9,10-ジペンチルオキシアントラセン、2-メチル-または2-エチル-9,10-ジヘキシルオキシアントラセン、等が挙げられる。
 アントラセン系増感剤としては市販品を使用することができる。市販品としては、例えば、「アントラキュアー UVS-1331」、「アントラキュアー UVS-1101」「アントラキュアー UVS-1221」(以上、川崎化成工業社製)等が挙げられる。
Specific examples of anthracene-based sensitizers include, for example, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-di. Butoxyanthracene, 9,10-dipentyloxyanthracene, 9,10-dihexyloxyanthracene, 9,10-bis (2-methoxyethoxy) anthracene, 9,10-bis (2-ethoxyethoxy) anthracene, 9,10-bis (2-Butoxyethoxy) anthracene, 9,10-bis (3-butoxypropoxy) anthracene, 2-methyl- or 2-ethyl-9,10 dimethoxyanthracene, 2-methyl- or 2-ethyl-9,10-di Ethoxyanthracene, 2-methyl- or 2-ethyl-9,10-dipropoxyanthracene, 2-methyl- or 2-ethyl-9,10-diisopropoxyanthracene, 2-methyl- or 2-ethyl-9,10 -Dibutoxyanthracene, 2-methyl- or 2-ethyl-9,10-dipentyloxyanthracene, 2-methyl- or 2-ethyl-9,10-dihexyloxyanthracene, and the like.
Commercially available products can be used as the anthracene-based sensitizer. Examples of commercially available products include "Antracure UVS-1331", "Antracure UVS-1101" and "Antracure UVS-1221" (all manufactured by Kawasaki Kasei Chemicals, Inc.).
 また、チオキサントン系増感剤としては、例えば、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、クロロプロポキシチオキサントン等が挙げられる。チオキサントン系増感剤としては市販品を使用することができる。市販品としては、例えば、「KAYACURE DETX-S」(日本化薬社製)、「Speedcure ITX」、「Speedcure DETX」、「Speedcure CPTX」(以上、LAMBSON社製)等が挙げられる。 Examples of the thioxanthone-based sensitizer include 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, chloropropoxythioxanthone and the like. A commercially available product can be used as the thioxanthone-based sensitizer. Examples of commercially available products include "KAYACURE DETX-S" (manufactured by Nippon Kayaku Co., Ltd.), "Speedcure ITX", "Speedcure DETX", and "Speedcure CPTX" (manufactured by LAMBSON).
(その他の添加剤)
 本発明の感光性ポリイミド樹脂組成物には、通常の感光性ポリイミド樹脂組成物中に添加される改質剤、例えば、カップリング剤、可塑剤、膜形成樹脂、界面活性剤、安定剤、スペクトル感度調節剤等を添加してもよい。とりわけ、基板に対するポリイミドの密着性がよくない場合には、カップリング剤、特に例えばビニルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、N-[3-(トリエトキシシリル)プロピル]フタルアミド酸等のシランカップリング剤を添加することにより基板への密着性を良好にすることができる。この場合、シランカップリング剤の添加量は、感光性ポリイミド樹脂組成物の0.1~5重量%が好ましい。
(Other additives)
The photosensitive polyimide resin composition of the present invention includes a modifier added to a normal photosensitive polyimide resin composition, for example, a coupling agent, a plasticizer, a film-forming resin, a surfactant, a stabilizer, and a spectrum. A sensitivity adjuster or the like may be added. In particular, when the adhesion of polyimide to the substrate is not good, coupling agents such as vinyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxy Silane, 3-aminopropyltrimethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3-trimethoxysilyl Silane cups of propyl succinic anhydride, hexamethyldisiloxane, hexamethyldisilazane, 1,3-bis (3-aminopropyl) tetramethyldisiloxane, N- [3- (triethoxysilyl) propyl] phthalamic acid, etc. Adhesion to the substrate can be improved by adding a ring agent. In this case, the amount of the silane coupling agent added is preferably 0.1 to 5% by weight of the photosensitive polyimide resin composition.
 また、銅又は銅合金からなる基板を用いる場合には、基板変色を抑制するために、感光性ポリイミド樹脂組成物にアゾール化合物を配合することができる。アゾール化合物としては、例えば、1H-ベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアール、4-メチル-1H-ベンゾトリアール、5-カルボキシ-1H-ベンゾトリアール及び4-カルボキシ-1H-ベンゾトリアール等が挙げられる。この場合、アゾール化合物の添加量は、感光性ポリイミド樹脂組成物の0.1~1重量%が好ましい。 Further, when a substrate made of copper or a copper alloy is used, an azole compound can be added to the photosensitive polyimide resin composition in order to suppress discoloration of the substrate. Examples of the azole compound include 1H-benzotriazole, tolyltriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 5-carboxy-1H-benzotriazole and 4-carboxy-1H. -Benzotriazole and the like can be mentioned. In this case, the amount of the azole compound added is preferably 0.1 to 1% by weight of the photosensitive polyimide resin composition.
 更に、銅上の変色を抑制するために、感光性ポリイミド樹脂組成物にヒンダードフェノール化合物を配合することができる。
 ヒンダードフェノール化合物としては、例えば、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン及び、1,3,5-トリス(4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられる。
 この場合、ヒンダードフェノール化合物の添加量は、感光性ポリイミド樹脂組成物の0.1~2重量%が好ましい。また、その他の併用可能な樹脂としては、ポリアリレート樹脂、ポリエーテルスルフォン樹脂等が挙げられる。
Further, a hindered phenol compound can be added to the photosensitive polyimide resin composition in order to suppress discoloration on copper.
Examples of the hindered phenol compound include 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6-( 1H, 3H, 5H) -trione, 1,3,5-tris (4-t-butyl-5-ethyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4 , 6- (1H, 3H, 5H) -trione and 1,3,5-tris (4-triethylmethyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4 , 6- (1H, 3H, 5H) -trion and the like.
In this case, the amount of the hindered phenol compound added is preferably 0.1 to 2% by weight of the photosensitive polyimide resin composition. In addition, examples of other resins that can be used in combination include polyarylate resin and polyether sulfone resin.
 本発明の感光性ポリイミド樹脂組成物は、基材上への適用に適した溶液の形態とすることができる。この場合、溶剤としては、イミド化反応の溶媒として用いられる、N-メチル-2-ピロリドン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、テトラメチル尿素等の極性溶媒を用いることができる。 The photosensitive polyimide resin composition of the present invention can be in the form of a solution suitable for application on a substrate. In this case, as the solvent, a polar solvent such as N-methyl-2-pyrrolidone, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, or tetramethylurea, which is used as a solvent for the imidization reaction, may be used. it can.
感光性ポリイミドパターンの製造方法
 上述した成分を含有する感光性ポリイミド樹脂組成物を用いて、基板上に感光性ポリイミドパターンを製造することができる。具体的には、(1)上述した本発明の感光性ポリイミド樹脂組成物を基板上に塗布することによって樹脂層を該基板上に形成する工程と、(2)該樹脂層を露光する工程と、(3)該露光後の樹脂層を現像して、電子部品の絶縁材料、並びに半導体パッケージにおけるパッシベーション膜、バッファーコート膜及び層間絶縁膜等の感光性ポリイミドパターンを形成する工程と、(4)該感光性ポリイミドパターンを加熱処理することによって永久絶縁膜として完成させる工程とを含む方法により、感光性ポリイミドパターンを製造することができる。
Method for Producing Photosensitive Polyimide Pattern A photosensitive polyimide pattern can be produced on a substrate by using a photosensitive polyimide resin composition containing the above-mentioned components. Specifically, (1) a step of forming a resin layer on the substrate by applying the above-mentioned photosensitive polyimide resin composition of the present invention on the substrate, and (2) a step of exposing the resin layer. , (3) A step of developing the exposed resin layer to form an insulating material for electronic parts and a photosensitive polyimide pattern such as a passivation film, a buffer coat film, and an interlayer insulating film in a semiconductor package, and (4). A photosensitive polyimide pattern can be produced by a method including a step of heat-treating the photosensitive polyimide pattern to complete it as a permanent insulating film.
 以下、各工程の典型的な態様について説明する。
(1)感光性樹脂組成物を基板上に塗布することによって樹脂層を該基板上に形成する工程:
 本工程では、本発明の感光性樹脂組成物をシリコンウェハー、金属基板、セラミック基板、有機基板等の基材上に塗布し、必要に応じてその後乾燥させて樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
Hereinafter, typical embodiments of each step will be described.
(1) A step of forming a resin layer on a substrate by applying a photosensitive resin composition on the substrate:
In this step, the photosensitive resin composition of the present invention is applied onto a substrate such as a silicon wafer, a metal substrate, a ceramic substrate, or an organic substrate, and if necessary, dried thereafter to form a resin layer. As a coating method, a method conventionally used for coating a photosensitive resin composition, for example, a method of coating with a spin coater, a bar coater, a blade coater, a curtain coater, a screen printing machine, or the like, or spray coating with a spray coater. A method or the like can be used.
 必要に応じて、感光性樹脂組成物から成る塗膜を乾燥させることができる。乾燥方法としては、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。具体的には、風乾又は加熱乾燥を行う場合、20~140℃で1~30分間の条件で乾燥を行うことができる。本発明の感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限定されない。 If necessary, the coating film made of the photosensitive resin composition can be dried. As the drying method, methods such as air drying, heat drying using an oven or a hot plate, and vacuum drying are used. Specifically, when air-drying or heat-drying is performed, drying can be performed at 20 to 140 ° C. for 1 to 30 minutes. It is not limited to this range as long as it does not inhibit various properties of the photosensitive resin composition of the present invention.
(2)樹脂層を露光する工程:
 本工程では、上記工程(1)で形成した樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク若しくはレチクルを介して又は直接に、紫外線光源等により露光する。この後、光感度の向上等の目的で、必要に応じて、任意の温度及び時間の組合せによる露光後ベーク及び/又は現像前ベークを施してもよい。ベーク条件の範囲は、温度は40~120℃であり、時間は10~240秒間が好ましいが、本発明の感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限定されない。
(2) Step of exposing the resin layer:
In this step, the resin layer formed in the above step (1) is exposed with an exposure device such as a contact aligner, a mirror projection, a stepper, etc., through a photomask or reticle having a pattern, or directly with an ultraviolet light source or the like. To do. After that, for the purpose of improving the light sensitivity and the like, post-exposure baking and / or pre-development baking may be performed at an arbitrary combination of temperature and time, if necessary. The range of the baking conditions is preferably 40 to 120 ° C. and 10 to 240 seconds, but is not limited to this range as long as it does not inhibit various properties of the photosensitive resin composition of the present invention.
(3)露光後の樹脂層を現像して感光性ポリイミドパターンを形成する工程:
 本工程においては、露光後の感光性樹脂層の未露光部を現像除去する。現像方法としては、従来知られているフォトレジストの現像方法、例えば回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、感光性ポリイミドパターンの形状を調整する等の目的で、必要に応じて任意の温度及び時間の組合せによる現像後ベークを施してもよい。
(3) Step of developing the resin layer after exposure to form a photosensitive polyimide pattern:
In this step, the unexposed portion of the photosensitive resin layer after exposure is developed and removed. As the developing method, any method can be selected and used from conventionally known photoresist developing methods such as a rotary spray method, a paddle method, and a dipping method accompanied by ultrasonic treatment. Further, after development, post-development baking may be performed at an arbitrary combination of temperature and time, if necessary, for the purpose of adjusting the shape of the photosensitive polyimide pattern.
 現像に使用される現像液としては、感光性樹脂組成物に対する良溶媒、又は該良溶媒と貧溶媒との組合せが好ましい。例えば、良溶媒としては、N-メチルピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン等が好ましい。貧溶媒としてはトルエン、キシレン、メタノール、エタノール、イソプロピルアルコール、乳酸エチル及びプロピレングリコールメチルエーテルアセテート等が好ましい。良溶媒と貧溶媒とを混合して用いる場合には、感光性樹脂組成物中のポリマーの溶解性によって良溶媒に対する貧溶媒の割合を調整することが好ましい。また、良溶媒と貧溶媒のそれぞれについて、2種以上の溶媒、例えば数種類を組合せて用いることもできる。 As the developing solution used for development, a good solvent for the photosensitive resin composition or a combination of the good solvent and a poor solvent is preferable. For example, as a good solvent, N-methylpyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylacetamide, cyclopentanone, cyclohexanone, γ-butyrolactone, α-acetyl-γ-butyrolactone and the like are preferable. As the poor solvent, toluene, xylene, methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate and the like are preferable. When a good solvent and a poor solvent are mixed and used, it is preferable to adjust the ratio of the poor solvent to the good solvent by the solubility of the polymer in the photosensitive resin composition. Further, for each of the good solvent and the poor solvent, two or more kinds of solvents, for example, several kinds can be used in combination.
(4)感光性ポリイミドパターンを加熱処理することによって、永久絶縁膜として完成させる工程:
 本工程では、上記現像により得られた感光性ポリイミドパターンを加熱することによって、永久絶縁膜として完成させる。即ち、ポリアミック酸タイプと違い、既にイミド化が終了しているため、溶剤等の残留物を取り除くことにより永久絶縁膜として完成できる。加熱硬化の方法としては、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、含有溶剤等を蒸発させる十分な条件であり、例えば150~250℃で30分~2時間程度の条件で行うことができる。加熱の際の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
(4) A step of heat-treating the photosensitive polyimide pattern to complete it as a permanent insulating film:
In this step, the photosensitive polyimide pattern obtained by the above development is heated to complete it as a permanent insulating film. That is, unlike the polyamic acid type, since imidization has already been completed, it can be completed as a permanent insulating film by removing residues such as a solvent. As a method of heat curing, various methods such as a hot plate method, an oven method, and a temperature rise type oven in which a temperature program can be set can be selected. The heating is a sufficient condition for evaporating the contained solvent and the like, and can be performed, for example, at 150 to 250 ° C. for about 30 minutes to 2 hours. Air may be used as the atmospheric gas during heating, or an inert gas such as nitrogen or argon may be used.
 以上のようにして形成された感光性ポリイミドパターンは、半導体パッケージ、電子素子、表示素子又は有機多層配線基板の層間絶縁膜、パッシベーション膜又は表面保護膜として使用することができる。 The photosensitive polyimide pattern formed as described above can be used as an interlayer insulating film, a passivation film or a surface protective film of a semiconductor package, an electronic element, a display element or an organic multilayer wiring board.
 以下、本発明を実施例を用いて詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
(ブロック共重合ポリイミドの合成)
合成実施例1
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物(以下、BTDAという)64.45g(0.2モル)、1,3-ビス(3-アミノフェノキシ)ベンゼン29.23g(0.1モル)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。反応中、トルエン-水の共沸分を除いた。
 室温に冷却後、BTDA48.33g(0.15モル)、2,4-ジエチル-6-メチル-1,3-ベンゼンジアミン44.57g(0.25モル)(N-に対しオルソ位にアルキル基を有する芳香族ジアミン)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
(Synthesis of block copolymer polyimide)
Synthesis Example 1
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 1,3-bis (3-aminophenoxy) benzene 29.23 g (0) .1 mol), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged, and after stirring at room temperature in a nitrogen atmosphere at 200 rpm for 30 minutes. The temperature was raised to 180 ° C., and the mixture was heated and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After cooling to room temperature, BTDA 48.33 g (0.15 mol), 2,4-diethyl-6-methyl-1,3-benzenediamine 44.57 g (0.25 mol) (N-alkyl group at the ortho position) (Aromatic diamine having), NMP 360 g, and toluene 90 g were added, and the mixture was stirred at room temperature for 30 minutes, then heated to 180 ° C. and heated and stirred for 1 hour. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
合成実施例2
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物(以下BTDAという)64.45g(0.2モル)、1,3-ビス(3-アミノフェノキシ)ベンゼン29.23g(0.1モル)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。反応中、トルエン-水の共沸分を除いた。
 室温に冷却後、BTDA48.33g(0.15モル)、5,7-ジアミノ-1,1,4,6-テトラメチルインダン51.08g(0.25モル)(N-に対しオルソ位にアルキル基を有する芳香族ジアミン)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
Synthesis Example 2
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 1,3-bis (3-aminophenoxy) benzene 29.23 g (0. 1 mol), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged, stirred at room temperature in a nitrogen atmosphere at 200 rpm for 30 minutes, and then 180. The temperature was raised to ° C., and the mixture was heated and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After cooling to room temperature, BTDA 48.33 g (0.15 mol), 5,7-diamino-1,1,4,6-tetramethylindan 51.08 g (0.25 mol) (alkyl at the ortho position with respect to N-) Aromatic diamine having a group), 360 g of NMP, and 90 g of toluene were added, and the mixture was stirred at room temperature for 30 minutes, then heated to 180 ° C. and heated and stirred for 1 hour. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
合成実施例3
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物(以下BTDAという)64.45g(0.2モル)、1,3-ビス(3-アミノフェノキシ)ベンゼン29.23g(0.1モル)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。反応中、トルエン-水の共沸分を除いた。
 室温に冷却後、3,4,3’,4’-ビフェニルテトラカルボン酸ジ無水物44.13g(0.15モル)、2,4-ジエチル-6-メチル-1,3-ベンゼンジアミン44.57g(0.25モル)(N-に対しオルソ位にアルキル基を有する芳香族ジアミン)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
Synthesis Example 3
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 1,3-bis (3-aminophenoxy) benzene 29.23 g (0. 1 mol), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged, stirred at room temperature in a nitrogen atmosphere at 200 rpm for 30 minutes, and then 180. The temperature was raised to ° C., and the mixture was heated and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After cooling to room temperature, 44.13 g (0.15 mol) of 3,4,3', 4'-biphenyltetracarboxylic dianhydride, 2,4-diethyl-6-methyl-1,3-benzenediamine 44. 57 g (0.25 mol) (aromatic diamine having an alkyl group at the ortho position with respect to N-), 360 g of NMP, and 90 g of toluene were added, stirred at room temperature for 30 minutes, then heated to 180 ° C. and heated for 1 hour. Stirred. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
合成実施例4
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物(以下BTDAという)64.45g(0.2モル)、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン26.64g(0.1モル)(フェニルインダン構造含有芳香族ジアミン)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。反応中、トルエン-水の共沸分を除いた。
 室温に冷却後、BTDA48.33g(0.15モル)、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン66,60g(0.25モル)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
Synthesis Example 4
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 5-amino-1- (4'-aminophenyl) -1,3 2-trimethylindane 26.64 g (0.1 mol) (phenylindane structure-containing aromatic diamine), valerolactone 1.5 g (0.015 mol), pyridine 2.4 g (0.03 mol), NMP 200 g, toluene 30 g Was charged, and the mixture was stirred at 200 rpm for 30 minutes at room temperature under a nitrogen atmosphere, then heated to 180 ° C. and heated and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After cooling to room temperature, BTDA 48.33 g (0.15 mol), 5-amino-1- (4'-aminophenyl) -1,3,3-trimethylindan 66,60 g (0.25 mol), NMP360 g, toluene After adding 90 g and stirring at room temperature for 30 minutes, the temperature was raised to 180 ° C., and the mixture was heated and stirred for 1 hour. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
合成実施例5
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物(以下BTDAという)64.45g(0.2モル)、2,4-ジアミノトルエン12.22g(0.1モル)(N-に対しオルソ位にアルキル基を有する芳香族ジアミン)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。反応中、トルエン-水の共沸分を除いた。
 室温に冷却後、BTDA48.33g(0.15モル)、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン66.60g(0.25モル)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
Synthesis Example 5
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 2,4-diaminotoluene 12.22 g (0.1 mol) (N- Aromatic diamine having an alkyl group at the ortho position), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged at room temperature under a nitrogen atmosphere. After stirring at 200 rpm for 30 minutes, the temperature was raised to 180 ° C. and the mixture was heated and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After cooling to room temperature, BTDA 48.33 g (0.15 mol), 5-amino-1- (4'-aminophenyl) -1,3,3-trimethylindan 66.60 g (0.25 mol), NMP360 g, toluene After adding 90 g and stirring at room temperature for 30 minutes, the temperature was raised to 180 ° C., and the mixture was heated and stirred for 1 hour. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
合成実施例6
ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物(以下BTDAという)64.45g(0.2モル)、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン15.98g(0.06モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン9.94g(0.04モル)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で30分間攪拌した後、180℃に昇温し、1時間攪拌した。反応中、トルエン-水の共沸分を除いた。
 室温に冷却後、BTDA48.33g(0.15モル)、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン66.60g(0.25モル)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
Synthesis Example 6
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenone tetracarboxylic acid dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 5-amino-1- (4'-aminophenyl) -1,3 3-trimethylindan 15.98 g (0.06 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane 9.94 g (0.04 mol), Valerolactone 1.5 g (0.015 mol) , 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged, and the mixture was stirred at room temperature for 30 minutes, then heated to 180 ° C. and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After cooling to room temperature, BTDA 48.33 g (0.15 mol), 5-amino-1- (4'-aminophenyl) -1,3,3-trimethylindan 66.60 g (0.25 mol), NMP360 g, toluene After adding 90 g and stirring at room temperature for 30 minutes, the temperature was raised to 180 ° C., and the mixture was heated and stirred for 1 hour. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
合成比較例1
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ビフェニルテトラカルボン酸ジ無水物58.84g(0.2モル)、
1,3-ビス(3-アミノフェノキシ)ベンゼン29.23g(0.1モル)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。反応中、トルエン-水の共沸分を除いた。
 室温に冷却後、3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物48.33g(0.15モル)、2,4-ジエチル-6-メチル-1,3-ベンゼンジアミン44.57g(0.25モル)(N-に対しオルソ位にアルキル基を有する芳香族ジアミン)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
Synthesis comparison example 1
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 58.84 g (0.2 mol) of 3,4,3', 4'-biphenyltetracarboxylic dianhydride,
29.23 g (0.1 mol) of 1,3-bis (3-aminophenoxy) benzene, 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene. After charging, the mixture was stirred at 200 rpm for 30 minutes at room temperature in a nitrogen atmosphere, then heated to 180 ° C. and heated and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After cooling to room temperature, 48.33 g (0.15 mol) of 3,4,3', 4'-benzophenonetetracarboxylic dianhydride, 2,4-diethyl-6-methyl-1,3-benzenediamine 44. 57 g (0.25 mol) (aromatic diamine having an alkyl group at the ortho position with respect to N-), 360 g of NMP, and 90 g of toluene were added, stirred at room temperature for 30 minutes, then heated to 180 ° C. and heated for 1 hour. Stirred. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
合成比較例2
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物(以下BTDAという)64.45g(0.2モル)、2,4-ジアミノトルエン12.22g(0.1モル)(N-に対しオルソ位にアルキル基を有する芳香族ジアミン)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。反応中、トルエン-水の共沸分を除いた。
 空冷後、BTDA48.33g(0.15モル)、1,3-ビス(3-アミノフェノキシ)ベンゼン73.08g(0.25モル)(芳香族エーテル結合含有芳香族ジアミン)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸の還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
Synthesis comparison example 2
A glass separable three-necked flask was fitted with a stirrer, a nitrogen introduction tube, and a cooling tube equipped with a water receptor. 3,4,3', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 64.45 g (0.2 mol), 2,4-diaminotoluene 12.22 g (0.1 mol) (N- Aromatic diamine having an alkyl group at the ortho position), 1.5 g (0.015 mol) of valerolactone, 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were charged at room temperature under a nitrogen atmosphere. After stirring at 200 rpm for 30 minutes, the temperature was raised to 180 ° C. and the mixture was heated and stirred for 1 hour. During the reaction, the toluene-water azeotropic component was removed.
After air cooling, 48.33 g (0.15 mol) of BTDA, 73.08 g (0.25 mol) of 1,3-bis (3-aminophenoxy) benzene (aromatic diamine containing aromatic ether bond), 360 g of NMP, and 90 g of toluene were added. In addition, after stirring at room temperature for 30 minutes, the temperature was raised to 180 ° C., and the mixture was heated and stirred for 1 hour. The reaction was completed by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux product of water-toluene azeotrope from the system. NMP was added to the obtained product and diluted to obtain a block copolymer polyimide solution having a solid content of 20% by weight.
(感光性ポリイミド樹脂組成物の調製)
 以下の実施例及び比較例において、「部」は「重量部」を意味する。
実施例1~6
 合成実施例1~6のブロック共重合ポリイミド溶液(固形分20重量%)500部に、2,6-ジ(4’-アジドベンザル)-4-エチルシクロヘキサノン20部、9,10-ジブトキシアントラセン1部、3-グリシドキシプロピルメチルジメトキシシラン1部、5-メチル-1H-ベンゾトリアール0.1部、1,3,5-トリス(4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン1部を加え、安息香酸メチルに溶解して固形分20%の感光性樹脂組成物とした。
(Preparation of photosensitive polyimide resin composition)
In the following examples and comparative examples, "part" means "part by weight".
Examples 1 to 6
Synthesis In 500 parts of the block copolymer polyimide solution (solid content 20% by weight) of Examples 1 to 6, 20 parts of 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone, 9,10-dibutoxyanthracene 1 Part, 3-glycidoxypropylmethyldimethoxysilane 1 part, 5-methyl-1H-benzotrial 0.1 part, 1,3,5-tris (4-triethylmethyl-3-hydroxy-2,6-dimethyl) Benzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione was added and dissolved in methyl benzoate to prepare a photosensitive resin composition having a solid content of 20%. ..
実施例7
 実施例1(合成実施例1のポリイミド溶液を使用)において、2,6-ジ(4’-アジドベンザル)-4-エチルシクロヘキサノンの代わりに2,6-ジ(4’-アジドベンザル)-4-メチルシクロヘキサノンを用いたこと以外は同様の方法を用いて感光性樹脂組成物を調製した。
Example 7
In Example 1 (using the polyimide solution of Synthesis Example 1), 2,6-di (4'-azidobenzal) -4-methyl instead of 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone. A photosensitive resin composition was prepared using the same method except that cyclohexanone was used.
実施例8
 実施例1(合成実施例1のポリイミド溶液を使用)において、2,6-ジ(4’-アジドベンザル)-4-エチルシクロヘキサノンの代わりに4,4’-ジアジドベンザルアセトフェノンを用いたこと以外は同様の方法を用いて感光性樹脂組成物を調製した。
Example 8
Except that 4,4'-diazidobenzalacetophenone was used instead of 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone in Example 1 (using the polyimide solution of Synthesis Example 1). Prepared a photosensitive resin composition using the same method.
実施例9
 実施例1(合成実施例1のポリイミド溶液を使用)において、更にYX-6954BH30(高分子エポキシ;三菱ケミカル社製)16.7部、WPBG-300(光塩基発生剤:富士フィルム和光純薬社製)0.25部を加えたこと以外は同様の方法を用いて感光性樹脂組成物を調製した。
Example 9
In Example 1 (using the polyimide solution of Synthesis Example 1), 16.7 parts of YX-6954BH30 (polymer epoxy; manufactured by Mitsubishi Chemical Industries, Ltd.), WPBG-300 (photobase generator: Fuji Film Wako Pure Chemical Industries, Ltd.) A photosensitive resin composition was prepared using the same method except that 0.25 parts were added.
実施例10
 実施例1(合成実施例1のポリイミド溶液を使用)において、更にTEPIC-VL(3官能エポキシ:日産化学工業社製)5部、WPBG-300(光塩基発生剤:富士フィルム和光純薬社製)0.25部を加えたこと以外は同様の方法を用いて感光性樹脂組成物を調製した。
Example 10
In Example 1 (using the polyimide solution of Synthesis Example 1), 5 parts of TEPIC-VL (trifunctional epoxy: manufactured by Nissan Chemical Industries, Ltd.) and WPBG-300 (photobase generator: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) ) A photosensitive resin composition was prepared using the same method except that 0.25 parts were added.
比較例1
 実施例7(合成実施例1のポリイミド溶液を使用)において、2,6-ジ(4’-アジドベンザル)-4-メチルシクロヘキサノンを用いなかったこと以外は同様の方法を用いて感光性樹脂組成物を調製した。
Comparative Example 1
In Example 7 (using the polyimide solution of Synthesis Example 1), the photosensitive resin composition was prepared by using the same method except that 2,6-di (4'-azidobenzal) -4-methylcyclohexanone was not used. Was prepared.
比較例2
 実施例7(合成実施例1のポリイミド溶液を使用)において、2,6-ジ(4’-アジドベンザル)-4-メチルシクロヘキサノンを20部の代わりに1.5部用いたこと以外は同様の方法を用いて感光性樹脂組成物を調製した。
Comparative Example 2
The same method except that in Example 7 (using the polyimide solution of Synthesis Example 1), 1.5 parts of 2,6-di (4'-azidobenzal) -4-methylcyclohexanone was used instead of 20 parts. A photosensitive resin composition was prepared using.
(ポリイミド樹脂組成物の性能評価)
1.機械的強度、熱膨張係数及び5%熱重量減少温度
 実施例1~10及び比較例1~2で得られた樹脂組成物を、6インチシリコンウェハーに最終乾燥後の膜厚さが15~17μmとなるようにスピンコートし、90℃360秒間プリベークを行った後、高圧水銀灯を用いて、i線換算で2,500mJ/cm全波長露光を行い、シクロペンタノン溶液に120秒間浸漬した後に、200℃(又は180℃)で90分間加熱乾燥を行い、乾燥樹脂膜を作製した。
 この樹脂乾燥膜をフッ化水素酸によりウェハーから剥離して、機械的強度、熱膨張係数及び5%熱重量減少温度測定用の試験サンプルとした。
(Performance evaluation of polyimide resin composition)
1. 1. Mechanical strength, coefficient of thermal expansion and 5% thermal weight reduction temperature The resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 and 2 were put on a 6-inch silicon wafer and the film thickness after final drying was 15 to 17 μm. After spin-coating and pre-baking at 90 ° C. for 360 seconds, a high-pressure mercury lamp was used to perform 2,500 mJ / cm 2 full-wavelength exposure in terms of i-ray, and then immersed in a cyclopentanone solution for 120 seconds. , 200 ° C. (or 180 ° C.) for 90 minutes to prepare a dried resin film.
This dry resin film was peeled off from the wafer with hydrofluoric acid to prepare a test sample for measuring mechanical strength, coefficient of thermal expansion and 5% thermogravimetric reduction temperature.
2.密着強度
 上記で作製したシリコンウェハー上に形成した乾燥樹脂膜を用いる。
(1)試験面にカッターナイフを用いて、素地に達する11本の切り傷をつけ100個の碁盤目を作る。カッターガイドを使用し、切り傷の間隔は1mmとする。
(2)碁盤目部分にセロテープ(登録商標)を強く圧着させ、テープの端を45°の角度で一気に引き剥がし、碁盤目の状態を標準図と比較して評価する。常態とHAST(80℃×85%RH)における240時間後の密着強度を判定する。
2. 2. Adhesion strength A dry resin film formed on the silicon wafer produced above is used.
(1) Using a utility knife on the test surface, make 11 cuts that reach the substrate and make 100 grids. Use a cutter guide and set the cut spacing to 1 mm.
(2) Scotch tape (registered trademark) is strongly crimped to the grid portion, the end of the tape is peeled off at a stretch at an angle of 45 °, and the state of the grid is evaluated by comparing with the standard drawing. The adhesion strength after 240 hours in the normal state and HAST (80 ° C. × 85% RH) is determined.
3.残膜率
 実施例1~10及び比較例1~2で得られた樹脂組成物を、6インチシリコンウェハーに最終乾燥後の膜厚さが5~7μm及び10~12μmとなるようにスピンコートし、90℃で240秒間及び90℃で300秒間プリベークを行った後に膜厚計で厚さ(t)を測定する。次に高圧水銀灯を用いて、i線換算で1,000(又は2,500)mJ/cm全波長露光を行い、シクロペンタノン溶液に120秒間浸漬した後に膜厚計で厚さ(t)を測定する。更に200℃(又は180℃)で90分間加熱乾燥を行い、その後に膜厚計で厚さ(t)を測定する。これらの測定値から、t/t1、/t及びt/tを計算し残膜率とした。
3. 3. Residual film ratio The resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 and 2 were spin-coated on a 6-inch silicon wafer so that the film thickness after final drying was 5 to 7 μm and 10 to 12 μm. After prebaking at 90 ° C. for 240 seconds and 90 ° C. for 300 seconds, the thickness (t 1 ) is measured with a film thickness meter. Next, using a high-pressure mercury lamp, 1,000 (or 2,500) mJ / cm 2 full-wavelength exposure was performed in terms of i-line, and after immersing in a cyclopentanone solution for 120 seconds, the thickness (t 2 ) was measured with a film thickness meter. ) Is measured. Further, heat drying is performed at 200 ° C. (or 180 ° C.) for 90 minutes, and then the thickness (t 3 ) is measured with a film thickness meter. From these measured values, t 2 / t 1, t 3 / t 1 and t 3 / t 2 were calculated and used as the residual film ratio.
4.露光・現像性
 パターン評価は以下の方法により行った。
(1)解像度
 実施例1~10及び比較例1~2で得られた樹脂組成物を6インチのシリコンウェハー上に滴下して30秒間回転塗布し、次いで、90℃のホットプレートで240秒間プリベークした。この時、ベーク後の膜厚が約6~8μmとなるよう塗布回転を調節した。次いで、高圧水銀灯を用いて露光した。i線にて測定した露光量は1,000mJ/cmであった。その後、シクロペンタノンで現像し、次いでリンスしてから200℃(又は180℃)で90分間加熱乾燥した。L/S=5/5,10/10,15/15,20/20,30/30,50/50μm、正方形ビアホールパターン10,15,20,30,40,50μmのうち解像している最小のものを解像度とした。
4. Exposure / developability The pattern evaluation was performed by the following method.
(1) Resolution The resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 and 2 were dropped onto a 6-inch silicon wafer, spun-coated for 30 seconds, and then prebaked on a hot plate at 90 ° C. for 240 seconds. did. At this time, the coating rotation was adjusted so that the film thickness after baking was about 6 to 8 μm. Then, it was exposed using a high-pressure mercury lamp. The exposure amount measured by i-line was 1,000 mJ / cm 2 . Then, it was developed with cyclopentanone, then rinsed and then heated and dried at 200 ° C. (or 180 ° C.) for 90 minutes. L / S = 5/5, 10/10, 15/15, 20/20, 30/30, 50/50 μm, square via hole pattern 10, 15, 20, 30, 40, 50 μm, the smallest resolution Was taken as the resolution.
(2)パターンエッジ残渣、クラック
 上記(1)と同様の方法でパターン加工を行い、まず、現像後の膜表面に異常がないかを目視で観察した。次に、光学顕微鏡で15μmの正方形ビアホールパターンを観察し、パターンのコーナーにひびが入っている場合をクラックありとした。更に、L/S=15/15のパターンエッジを観察し、現像残りが発生している場合を残渣ありとした。
(2) Pattern edge residue and cracks Pattern processing was performed in the same manner as in (1) above, and first, it was visually observed whether or not there was any abnormality on the film surface after development. Next, a 15 μm square via hole pattern was observed with an optical microscope, and the case where the corner of the pattern was cracked was regarded as cracked. Further, the pattern edge of L / S = 15/15 was observed, and the case where the development residue was generated was regarded as having a residue.
 実施例1~10及び比較例1~2で得られた樹脂組成物の評価結果を下記表1及び表2に示す。比較例1~2で得られた樹脂組成物は、残膜率及び露光現像性の評価において、露光後にシクロペンタノン溶液に浸漬させると膜が溶解した。この結果は、比較例1~2で得られた樹脂組成物は、光架橋後に良好な溶剤不溶性を備えていなかったことを示している。そのため、比較例1~2で得られた樹脂組成物のTg、熱膨張係数、5%熱重量減少温度、機械強度、密着強度は、樹脂組成物をシクロペンタノン溶液に浸漬させずにサンプルを作製し評価を行った。一方、実施例1~10で得られた樹脂組成物は、現像時の溶剤可溶性と光架橋後の溶剤不溶性の両方を備えると共に、良好な膜物性と高い感度を達成したことが分かる。 The evaluation results of the resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 and 2 are shown in Tables 1 and 2 below. In the evaluation of the residual film ratio and the exposure developability of the resin compositions obtained in Comparative Examples 1 and 2, the film was dissolved when immersed in a cyclopentanone solution after exposure. This result indicates that the resin compositions obtained in Comparative Examples 1 and 2 did not have good solvent insolubility after photocrosslinking. Therefore, the Tg, coefficient of thermal expansion, 5% thermogravimetric reduction temperature, mechanical strength, and adhesion strength of the resin composition obtained in Comparative Examples 1 and 2 are such that the sample is prepared without immersing the resin composition in the cyclopentanone solution. It was prepared and evaluated. On the other hand, it can be seen that the resin compositions obtained in Examples 1 to 10 have both solvent solubility during development and solvent insolubility after photocrosslinking, and have achieved good film physical properties and high sensitivity.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明のネガ型感光性ポリイミド樹脂組成物は、例えば、FO-WLP,WLP等の半導体パッケージ、薄膜磁気ヘッド,薄膜インダクタ,コモンモードチョークコイル等の薄膜磁気素子等の電子素子、TFT液晶素子,カラーフィルター素子,有機EL素子等の表示素子及び有機多層配線基板等の製造に有用であり、感光性材料の分野で好適に利用することができる。 The negative photosensitive polyimide resin composition of the present invention includes, for example, semiconductor packages such as FO-WLP and WLP, electronic elements such as thin film magnetic heads, thin film inductors, thin film magnetic elements such as common mode choke coils, and TFT liquid crystal elements. It is useful for manufacturing display elements such as color filter elements and organic EL elements, and organic multilayer wiring substrates, and can be suitably used in the field of photosensitive materials.

Claims (7)

  1.  (A)溶剤可溶性ポリイミド及び(B)ジアジド化合物を必須成分として含有する感光性ポリイミド樹脂組成物であって、
     前記(A)溶剤可溶性ポリイミドが、(a)ベンゾフェノン構造を有する芳香族テトラカルボン酸二無水物残基と、(b)アミノ基のオルト位にアルキル基を有する芳香族ジアミン、インダン構造を有する芳香族ジアミン、及びポリシロキサン構造を有するジアミンからなる群から選ばれる少なくとも1種のジアミンの残基を主鎖中に有するブロック共重合体であり、
     前記(B)ジアジド化合物の含有量が、前記(A)溶剤可溶性ポリイミド100重量部に対し2.0~150重量部である感光性ポリイミド樹脂組成物。
    A photosensitive polyimide resin composition containing (A) a solvent-soluble polyimide and (B) a diazide compound as essential components.
    The solvent-soluble polyimide (A) has (a) an aromatic tetracarboxylic acid dianhydride residue having a benzophenone structure, (b) an aromatic diamine having an alkyl group at the ortho position of the amino group, and an aromatic having an indan structure. A block copolymer having at least one diamine residue selected from the group consisting of group diamines and diamines having a polysiloxane structure in the main chain.
    A photosensitive polyimide resin composition in which the content of the (B) diazide compound is 2.0 to 150 parts by weight with respect to 100 parts by weight of the solvent-soluble polyimide (A).
  2.  前記少なくとも1種のジアミンの残基が、フェニルインダン構造を有する芳香族ジアミンの残基であることを特徴とする、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the residue of at least one of the diamines is a residue of an aromatic diamine having a phenylindane structure.
  3.  前記(B)ジアジド化合物が、2,6-ジ(4’-アジドベンザル)-4-エチルシクロヘキサノンであることを特徴とする、請求項1又は2記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the diazide compound (B) is 2,6-di (4'-azidobenzal) -4-ethylcyclohexanone.
  4.  前記感光性ポリイミド樹脂組成物が、更に(C)エポキシ樹脂と(D)光塩基発生剤を含有することを特徴とする、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the photosensitive polyimide resin composition further contains (C) an epoxy resin and (D) a photobase generator.
  5.  前記感光性ポリイミド樹脂組成物が、ネガ型溶剤現像組成物であることを特徴とする、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the photosensitive polyimide resin composition is a negative solvent developing composition.
  6.  請求項1~5のいずれか1項に記載の樹脂組成物で被覆した基板を紫外線照射により露光し、未露光部を現像除去することを特徴とするパターン形成方法。 A pattern forming method characterized in that a substrate coated with the resin composition according to any one of claims 1 to 5 is exposed to ultraviolet irradiation, and an unexposed portion is developed and removed.
  7.  請求項1~5のいずれか1項に記載の樹脂組成物を用いて形成された層間絶縁膜、パッシベーション膜又は表面保護膜を有する半導体パッケージ、電子素子、表示素子又は有機多層配線基板。 A semiconductor package, an electronic element, a display element or an organic multilayer wiring board having an interlayer insulating film, a passivation film or a surface protective film formed by using the resin composition according to any one of claims 1 to 5.
PCT/JP2020/022220 2019-06-06 2020-06-05 Photosensitive polyimide resin composition WO2020246565A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217032896A KR20220018957A (en) 2019-06-06 2020-06-05 Photosensitive polyimide resin composition
JP2021524910A JPWO2020246565A1 (en) 2019-06-06 2020-06-05
CN202080041583.6A CN113994257A (en) 2019-06-06 2020-06-05 Photosensitive polyimide resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-106246 2019-06-06
JP2019106246 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020246565A1 true WO2020246565A1 (en) 2020-12-10

Family

ID=73652770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022220 WO2020246565A1 (en) 2019-06-06 2020-06-05 Photosensitive polyimide resin composition

Country Status (5)

Country Link
JP (1) JPWO2020246565A1 (en)
KR (1) KR20220018957A (en)
CN (1) CN113994257A (en)
TW (1) TW202104371A (en)
WO (1) WO2020246565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220169913A (en) 2021-06-21 2022-12-28 가부시키가이샤 피아이 기쥬츠 켄큐쇼 Photosensitive polyimide resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216179B2 (en) * 1971-10-11 1977-05-07
JPS6256948A (en) * 1985-09-04 1987-03-12 チバ−ガイギ− アクチエンゲゼルシヤフト Cover material
JPS62179563A (en) * 1986-01-31 1987-08-06 Hitachi Chem Co Ltd Photosensitive polymer composition
JPH08137105A (en) * 1994-11-07 1996-05-31 Hitachi Chem Co Ltd Photosensitive resin composition and production of pattern

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952822B2 (en) 1978-04-14 1984-12-21 東レ株式会社 Heat-resistant photosensitive material
JPS5541422A (en) 1978-09-18 1980-03-24 Fujitsu Ltd Encipherment treatment system
EP0438382A1 (en) 1990-01-19 1991-07-24 Ciba-Geigy Ag Disubstituted aromatic dianhydrides and polyimides prepared therefrom
JP2000147768A (en) 1998-11-07 2000-05-26 Pi Gijutsu Kenkyusho:Kk Negative photosensitive polyimide composition and insulating film
US7648815B2 (en) * 2000-09-12 2010-01-19 Pi R&D Co., Ltd. Negative photosensitive polyimide composition and method for forming image the same
JP4603215B2 (en) * 2001-09-06 2010-12-22 三井化学株式会社 Negative photosensitive resin composition and use thereof
JP2006083307A (en) * 2004-09-16 2006-03-30 Kyocera Chemical Corp Photosensitive polyimide-siloxane and its composition
WO2008126818A1 (en) * 2007-04-10 2008-10-23 Nippon Kayaku Kabushiki Kaisha Photosensitive resin composition
CN101423606B (en) * 2007-10-31 2012-05-02 比亚迪股份有限公司 Negative photosensitive polyimide material and preparation method thereof
JP5379507B2 (en) * 2009-02-12 2013-12-25 旭化成イーマテリアルズ株式会社 Photosensitive resin composition and circuit board using the same
JP5515394B2 (en) * 2009-04-30 2014-06-11 株式会社ピーアイ技術研究所 Photosensitive modified polyimide resin composition and use thereof
EP2590025B1 (en) * 2010-07-02 2014-09-17 Toray Industries, Inc. Photosensitive resin composition, photosensitive resin composition film, and semiconductor device using the photosensitive resin composition or the photosensitive resin composition film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216179B2 (en) * 1971-10-11 1977-05-07
JPS6256948A (en) * 1985-09-04 1987-03-12 チバ−ガイギ− アクチエンゲゼルシヤフト Cover material
JPS62179563A (en) * 1986-01-31 1987-08-06 Hitachi Chem Co Ltd Photosensitive polymer composition
JPH08137105A (en) * 1994-11-07 1996-05-31 Hitachi Chem Co Ltd Photosensitive resin composition and production of pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220169913A (en) 2021-06-21 2022-12-28 가부시키가이샤 피아이 기쥬츠 켄큐쇼 Photosensitive polyimide resin composition

Also Published As

Publication number Publication date
TW202104371A (en) 2021-02-01
JPWO2020246565A1 (en) 2020-12-10
KR20220018957A (en) 2022-02-15
CN113994257A (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JP6644113B2 (en) Method for producing photosensitive resin composition and cured relief pattern
WO2016140024A1 (en) Photosensitive resin composition, method for manufacturing cured resin film, and semiconductor device
KR20170133486A (en) Photosensitive resin composition, polyimide production method, and semiconductor device
JP7059927B2 (en) Resin compositions, resin sheets, curing patterns and semiconductor electronic components or semiconductor devices
WO2007034604A1 (en) Negative photosensitive resin composition, method of pattern forming and electronic part
CN114995061B (en) Low-water-absorption positive photosensitive resin composition and preparation method and application thereof
CN111830785B (en) Resin composition, pattern forming method, cured film forming method, interlayer insulating film, surface protecting film, and electronic component
CN115220305A (en) Positive photosensitive resin composition and preparation method and application thereof
JP5109471B2 (en) Negative photosensitive resin composition, pattern manufacturing method, and electronic component
JP4736864B2 (en) Positive photosensitive polyamideimide resin composition, pattern manufacturing method, and electronic component
JP2009235311A (en) Polyimide resin and heat-resistant resin composition using the same
TWI470353B (en) A photosensitive resin composition and a hardening film
KR101750463B1 (en) Positive photosensitive resin composition, photosensitive resin film prepared by using the same, and display device
JP4771412B2 (en) Photosensitive resin and method for producing the same
WO2020246565A1 (en) Photosensitive polyimide resin composition
US5573886A (en) Photosensitive resin composition comprising a polyimide precursor and method for making a polyimide film pattern from the same
JP7264688B2 (en) Photosensitive resin composition, dry film, cured product, and electronic component
TWI830255B (en) Photosensitive polyimide resin composition
JP2020094194A (en) Resin composition, resin sheet, cured film, cured film relief pattern manufacturing method, protective film, insulator film, electronic component, and display device
WO2023162718A1 (en) Resin composition, resin composition coating film, resin composition film, cured film, and semiconductor device using these products
JP7403268B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
WO2023148996A1 (en) Resin composition, resin composition coating, resin composition film, cured film, and electronic component
WO2023032467A1 (en) Resin composition, resin composition film, cured film, and semiconductor device
JPH05310933A (en) Production of polyimide soluble in solvent
TW202348687A (en) Resin composition, method for manufacturing polyimide, method for manufacturing cured relief pattern, and semiconductor device capable of obtaining a polyimide film (cured relief pattern) that has a good coloration degree (low transmittance) and maintains sufficient film elongation before and after a heating (curing) step

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817636

Country of ref document: EP

Kind code of ref document: A1