WO2023148996A1 - Resin composition, resin composition coating, resin composition film, cured film, and electronic component - Google Patents

Resin composition, resin composition coating, resin composition film, cured film, and electronic component Download PDF

Info

Publication number
WO2023148996A1
WO2023148996A1 PCT/JP2022/026932 JP2022026932W WO2023148996A1 WO 2023148996 A1 WO2023148996 A1 WO 2023148996A1 JP 2022026932 W JP2022026932 W JP 2022026932W WO 2023148996 A1 WO2023148996 A1 WO 2023148996A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
film
compound
mass
polymer compound
Prior art date
Application number
PCT/JP2022/026932
Other languages
French (fr)
Japanese (ja)
Inventor
松村和行
加藤圭悟
楯岡佳子
嶋田彰
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023148996A1 publication Critical patent/WO2023148996A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to resin compositions, resin composition coatings, resin composition films, cured films, and electronic components. More particularly, the present invention relates to resin compositions suitably used for surface protective films of semiconductor elements and inductor devices, interlayer insulating films, structures of MEMS (Micro Electro Mechanical Systems), and the like.
  • MEMS Micro Electro Mechanical Systems
  • Patent Document 1 a chemically amplified photo-cationically polymerizable photosensitive material
  • Patent Document 2 a photocationic polymerizable material intended to improve mechanical properties and thermal properties by containing an epoxy resin with a specific structure
  • the present invention for solving the above problems is as follows.
  • a resin composition containing (A) a cationically polymerizable compound and (B) a photocationic polymerization initiator, and further containing (C) a sensitizer.
  • the resin composition of the present invention is a resin composition, a resin composition film, a resin composition film, a cured film, a resin composition coating, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, or a cured film. and electronic components.
  • the present invention provides a resin composition containing (A) a cationically polymerizable compound and (B) a photocationic polymerization initiator, and further containing (C) a sensitizer. is.
  • the photocationic polymerization initiator when irradiated with light, (B) the photocationic polymerization initiator generates an acid, and (A) the cationic polymerizable compound undergoes a polymerization reaction to cause a negative photosensitive property that becomes insoluble in a developer.
  • the resin composition of the present invention contains (A) a cationic polymerizable compound.
  • Cationic polymerizable compounds include cyclic ether compounds (epoxy compounds, oxetane compounds, etc.), ethylenically unsaturated compounds (vinyl ethers, styrenes, etc.), bicycloorthoesters, spiroorthocarbonates, spiroorthoesters, and the like.
  • epoxy compound known ones can be used, including aromatic epoxy compounds, alicyclic epoxy compounds and aliphatic epoxy compounds.
  • aromatic epoxy compounds include glycidyl ethers of monohydric or polyhydric phenols (phenol, bisphenol A, phenol novolak, and alkylene oxide adducts thereof) having at least one aromatic ring.
  • Examples of alicyclic epoxy compounds include compounds obtained by epoxidizing a compound having at least one cyclohexene or cyclopentene ring with an oxidizing agent (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, etc. ).
  • Aliphatic epoxy compounds include aliphatic polyhydric alcohols or polyglycidyl ethers of alkylene oxide adducts thereof (1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, etc.), aliphatic polybasic acids polyglycidyl esters (diglycidyl tetrahydrophthalate, etc.), and epoxidized long-chain unsaturated compounds (epoxidized soybean oil, epoxidized polybutadiene, etc.).
  • oxetane compound known ones can be used. -oxetanylmethyl)ether, 2-hydroxypropyl(3-ethyl-3-oxetanylmethyl)ether, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, oxetanylsilsesquioxetane and phenol novolac oxetane etc.
  • known cationic polymerizable monomers can be used, including aliphatic monovinyl ethers, aromatic monovinyl ethers, polyfunctional vinyl ethers, styrene and cationic polymerizable nitrogen-containing monomers.
  • the aliphatic monovinyl ethers include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether and cyclohexyl vinyl ether.
  • Aromatic monovinyl ethers include 2-phenoxyethyl vinyl ether, phenyl vinyl ether and p-methoxyphenyl vinyl ether.
  • polyfunctional vinyl ethers examples include butanediol-1,4-divinyl ether and triethylene glycol divinyl ether.
  • Styrenes include styrene, ⁇ -methylstyrene, p-methoxystyrene and ptert-butoxystyrene.
  • Examples of cationic polymerizable nitrogen-containing monomers include N-vinylcarbazole and N-vinylpyrrolidone.
  • Bicycloorthoesters include 1-phenyl-4-ethyl-2,6,7-trioxabicyclo[2.2.2]octane and 1-ethyl-4-hydroxymethyl-2,6,7-trioxabicyclo - [2.2.2] octane and the like.
  • spiro orthocarbonates examples include 1,5,7,11-tetraoxaspiro[5.5]undecane and 3,9-dibenzyl-1,5,7,11-tetraoxaspiro[5.5]undecane. be done.
  • Spiro orthoesters include 1,4,6-trioxaspiro[4.4]nonane, 2-methyl-1,4,6-trioxaspiro[4.4]nonane and 1,4,6-trioxas pyro[4.5]decane and the like.
  • epoxy compounds, oxetane compounds and vinyl ethers are preferred, epoxy compounds and oxetane compounds are more preferred, and epoxy compounds are particularly preferred.
  • a polyfunctional epoxy compound that is liquid at normal temperature (20° C.) is preferable, and the polyfunctional epoxy compound has an epoxy equivalent of 80 g/eq. above, 160 g/eq. The following are preferable.
  • the resin composition of the present invention preferably further contains (D) a polymer compound, as described later. It is preferable because the solubility is improved and fine pattern workability can be obtained.
  • the epoxy equivalent of the polyfunctional epoxy compound is 80 g/eq. above, 160 g/eq. It is preferable from the viewpoint that the heat resistance and chemical resistance of the cured film are improved by being below.
  • examples of the following epoxy compounds include TEPIC-VL (trade name, manufactured by Nissan Chemical Industries, Ltd.), bisphenol A type epoxy compound, bisphenol F type epoxy compound, SHOWFREE BATG, SHOWFREE PETG (trade name, all of which are manufactured by Showa Denko K.K.) and the like.
  • the cationically polymerizable compound may be used alone, or two or more of them may be used in combination.
  • the content of the cationic polymerizable compound (A) is preferably 30 parts by mass or more, More preferably, it is 50 parts by mass or more.
  • the content of the cationic polymerizable compound (A) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less.
  • the resin composition of the present invention contains (B) a cationic photopolymerization initiator.
  • the photocationic polymerization initiator is one that generates acid by light and causes cationic polymerization.
  • a known compound can be used without particular limitation, but an onium salt is preferred.
  • photocationic polymerization initiators include aromatic iodonium complex salts, aromatic sulfonium complex salts, aromatic borate complex salts, and aromatic gallate complex salts.
  • aromatic iodonium complex salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di(4-nonylphenyl)iodonium hexafluorophosphate, and the like.
  • photocationic polymerization initiators may be used alone, or two or more of them may be used in combination.
  • the content of the photocationic polymerization initiator (B) is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, when the cationically polymerizable compound (A) is 100 parts by mass. .7 parts by mass or more is more preferable. Thereby, the cationically polymerizable compound exhibits sufficient curability, and the pattern workability can be improved. On the other hand, it is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, from the viewpoint of improving the storage stability of the resin composition before curing.
  • the resin composition of the present invention contains (C) a sensitizer.
  • the (C) sensitizer is a compound that can absorb light, donate the absorbed light energy to the (B) photocationic polymerization initiator, generate an acid, and cause cationic polymerization. Since the sensitizer absorbs light with respect to the irradiation wavelength during patterning, it is possible to reduce the transmittance of the resin composition film formed from the resin composition. Therefore, the transmittance of the resin composition film can be arbitrarily controlled by the content of the sensitizer in the resin composition.
  • the sensitizer is not particularly limited, the sensitizer (C) is preferably an anthracene compound. ) is more preferred.
  • alkoxy groups include C1-C4 alkoxy groups such as methoxy, ethoxy and propoxy groups.
  • the 9,10-dialkoxy-anthracene derivative may further have a substituent.
  • substituents in the 9,10-dialkoxy-anthracene derivative include halogen atoms such as fluorine, chlorine, bromine and iodine atoms; C1-C4 alkyl groups such as methyl, ethyl and propyl; A sulfonic acid alkyl ester group, a carboxylic acid alkyl ester group, and the like are included.
  • alkyl in the sulfonic acid alkyl ester group and carboxylic acid alkyl ester examples include C1-C4 alkyl such as methyl, ethyl and propyl.
  • the substitution position of these substituents is preferably 2-position.
  • the total amount of the (C) sensitizer is preferably 0.1% by mass or more and 5.0% by mass or less, and the above (C) increase
  • the content of the sensitizing agent is not particularly limited, but is preferably 0.05% by mass or more, more preferably 0.1% by mass or more. This makes it possible to reduce the transmittance of the resin composition film, suppress light reflected from the substrate surface even on a substrate with a rough surface such as ceramics, and facilitate processing of fine patterns.
  • the content of is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the resin composition of the present invention contains (D) a polymer compound, and the (D) polymer compound is preferably at least one compound selected from the group consisting of polyamide, polyimide, polyamideimide, and polybenzoxazole. .
  • the polyimide precursor and the polybenzoxazole precursor respectively correspond to the above polyamides.
  • the resin composition of the present invention has excellent film-forming properties when it is formed into a film-like resin composition coating, and the cured film has excellent tensile strength and tensile elongation.
  • the weight-average molecular weight of (D) the polymer compound is not particularly limited, but the weight-average molecular weight is preferably 1,000 or more and 200,000 or less.
  • the polymer compound may be used alone or in combination of two or more.
  • the weight average molecular weight of the (D) polymer compound in the present invention is measured by a gel permeation chromatography method (GPC method) and calculated in terms of polystyrene.
  • the molecular chain end of the (D) polymer compound preferably has a structure derived from a carboxylic acid residue.
  • the resin composition of the present invention does not have a structure in which the molecular chain end is derived from a carboxylic acid residue, including the (D) polymer compound in which the molecular chain end is derived from a carboxylic acid residue. It is also possible to include polymeric compounds.
  • the content is preferably as small as possible.
  • the molecular chain end does not have a structure derived from a carboxylic acid residue (D) polymer compound is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and particularly preferably 0 to 2 parts by mass.
  • the content of the (D) polymer compound whose molecular chain end has a structure derived from a carboxylic acid residue is not particularly limited, but it may be contained in an amount of 20% by mass or more and 95% by mass or less in 100% by mass of the resin composition. It is preferably contained in an amount of 30% by mass or more and 85% by mass or less, and particularly preferably in an amount of 30% by mass or more and 70% by mass or less.
  • the cationic polymerization reaction proceeds more easily.
  • the chemical resistance of the cured film is improved.
  • the molecular chain end of the polymer compound has a structure derived from a carboxylic acid residue
  • the molecular chain end can be a functional group that inhibits cationic polymerization and has a molecular structure that does not possess an amine terminal structure.
  • (D) the structure derived from a carboxylic acid residue at the molecular chain end of the polymer compound is an organic group derived from a carboxylic acid residue that can constitute a polyamide, a polyimide, or a polyamideimide.
  • the structure derived from the carboxylic acid residue at the molecular chain end of the polymer compound is a structure derived from tetracarboxylic dianhydride.
  • a structure in which the molecular chain end is derived from a tetracarboxylic dianhydride is preferable in terms of improving the storage stability of the resin composition before heat curing.
  • the terminal carboxylic anhydride group becomes a reactive functional group, which is preferable in that the heat resistance and chemical resistance after thermosetting are improved.
  • the polymer compound is preferably alkali-soluble.
  • Alkali-soluble is preferable because development can be carried out with an alkaline aqueous solution without using an organic solvent, which is a factor of environmental load, in development during pattern processing.
  • the term “alkali-soluble” as used herein means that 0.1 g or more of a tetramethylammonium hydroxide solution dissolves in 100 g of a 2.38% by mass aqueous solution of tetramethylammonium hydroxide at 25°C.
  • the polymer compound desirably has an alkali-soluble functional group.
  • the alkali-soluble functional group is a functional group having acidity, and specific examples include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, and the like.
  • the alkali-soluble functional group is preferably a phenolic hydroxyl group in view of storage stability of the resin composition, corrosion of copper wiring as a conductor, and the like.
  • the polymer compound is preferably a compound having a phenolic hydroxyl group in the molecular chain.
  • the structure (organic group) in which the molecular chain end of the polymer compound is derived from a carboxylic acid residue includes aromatic dicarboxylic acids, aromatic dianhydrides, alicyclic dicarboxylic acids, and alicyclic dianhydrides. compounds, aliphatic dicarboxylic acids, aliphatic dianhydrides, and the like, but are not limited to these. Moreover, these are used individually or in combination of 2 or more types.
  • alicyclic carboxylic acid is preferred because it is possible to design a transparent resin with respect to the wavelength used for patterning, and as a result, it is possible to express fine pattern processability with a thick film.
  • Organic groups derived from residues are preferred.
  • the (D) polymer compound is preferably the polyamide, polyimide, and polyamideimide, but at least Compounds having one or more structures are preferred.
  • X 1 and X 2 independently represent a divalent to 10-valent organic group
  • X 2 represents a 4- to 10-valent organic group
  • Y 1 and Y 2 each independently represents a divalent to tetravalent organic group
  • R represents a hydrogen atom or an organic group having 1 to 20 carbon atoms
  • q is an integer of 0 to 2
  • r, s, t and u are Each is independently an integer from 0 to 4.
  • Y 1 and Y 2 in general formulas (1) and (2) each represent a divalent to tetravalent organic group, and represent an organic group derived from diamine.
  • Y 1 and Y 2 in general formulas (1) and ( 2 ) of the polymer compound (D) preferably contain a diamine residue having a phenolic hydroxyl group.
  • a diamine residue having a phenolic hydroxyl group moderate solubility of the resin in an alkaline developer can be obtained, so a high contrast between exposed and unexposed areas can be obtained, and a desired pattern can be formed.
  • diamines having a phenolic hydroxyl group include bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino- 4-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, 2,2'- Ditrifluoromethyl-5,5'-dihydroxyl-4,4'-diaminobiphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, 2,2'-bis(trifluoromethyl)-5,5'- Aromatic diamines such as dihydroxybenzidine, compounds in which some of the hydrogen atoms of these aromatic rings or hydrocarbons are substituted with alkyl groups having 1 to 10 carbon atoms, fluoroalkyl groups, halogen
  • Y 1 and Y 2 in general formulas (1) and (2) may contain a diamine residue having an aromatic group other than those mentioned above. Heat resistance can be improved by copolymerizing these.
  • aromatic diamine residues include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4 '-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 1,4-bis(4-aminophenoxy)benzene, benzine, m- phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenedi
  • aromatic diamines and compounds in which some of the hydrogen atoms of these aromatic rings or hydrocarbons are substituted with an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, a halogen atom, or the like. It is not limited to these.
  • Other diamines to be copolymerized can be used as they are or as corresponding diisocyanate compounds, trimethylsilylated diamines. Moreover, you may use combining these 2 or more types of diamine components.
  • X 1 and X 2 are preferably carboxylic acid residues, and X 1 is a divalent to decavalent organic group. is preferred, and X 2 is preferably a tetravalent to decavalent organic group.
  • the carboxylic acid residue preferably has a structure derived from an alicyclic tetracarboxylic dianhydride. That is, it is preferable that the polymer compound (D) is at least one compound selected from the group consisting of polyamide, polyimide, and polyamideimide, and further has a structure derived from an alicyclic tetracarboxylic dianhydride. .
  • the carboxylic acid residue has a structure derived from an alicyclic tetracarboxylic dianhydride, the light transmittance of the resin composition with respect to the exposure wavelength is increased, and processing into a thick film of 20 ⁇ m or more is facilitated. .
  • the (D) polymer compound has a structure derived from an alicyclic tetracarboxylic dianhydride, so that the reactivity of cationic polymerization is higher than that of an aromatic dianhydride. It is preferable in that it increases and the chemical resistance of the cured film is improved.
  • alicyclic tetracarboxylic dianhydrides having a polycyclic structure improve chemical resistance when cured and improve ion migration resistance. is preferred.
  • the (D) polymer compound in the present invention preferably has a structure derived from a compound represented by at least one of the following general formula (3) or (4).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a methyl group.
  • the polymer compound has a structure derived from the compound represented by the general formula (3) or (4), and the resin skeleton has flexibility, so that the resin composition before curing has an organic It is preferable because it has high solubility in a solvent, hardly causes precipitation of the resin in the composition, and is excellent in storage stability.
  • a specific example of the organic group derived from an alicyclic tetracarboxylic dianhydride having a polycyclic structure is 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4 -tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-4methyl-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-7-methyl-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, norbornane-2-spiro- 2′-Cyclopentanone-5′-spiro-2′′-norbornane-5,5′′,6,6′′-tetracarboxylic dianhydride, norbornane-2-s
  • the carboxylic acid residue may include an acid dianhydride other than the alicyclic tetracarboxylic dianhydride having the polycyclic structure.
  • an acid dianhydride other than the alicyclic tetracarboxylic dianhydride having the polycyclic structure.
  • the molar ratio of the structures represented by the general formulas (1) and (2) in the present invention is obtained by a method of calculating from the molar ratio of the monomers used for polymerization or by using a nuclear magnetic resonance spectrometer (NMR). It can be confirmed by a method for detecting peaks of a polyamide structure, an imide precursor structure, or an imide structure in a resin, a resin composition, or a cured film.
  • NMR nuclear magnetic resonance spectrometer
  • the (D) polymer compound having a structure derived from a carboxylic acid residue at the molecular chain end is, for example, in the case of a polyimide having a carboxylic acid residue at the molecular chain end, an acid anhydride with respect to the diamine used during polymerization. It can be obtained by increasing the content of the substance.
  • the total amount of carboxylic acid residues in the polymer compound (D) is 100 mol %
  • the total amount of amine residues is preferably 60 mol % or more and 98 mol % or less.
  • the polymer compound (D) is preferably a compound obtained by polymerizing 60 to 98 mol % of amine residues in total with respect to 100 mol % of carboxylic acid residues in total.
  • the weight average molecular weight tends to be 1,000 or more, and the film-forming property is excellent.
  • the content ratio of the polymer compound becomes smaller, the cationic polymerization reaction proceeds more easily, and the chemical resistance of the cured film is improved.
  • a specific compound specifically, an acid anhydride, among compounds generally used as a terminal blocking agent It can also be obtained by using a compound, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
  • Acid anhydrides monocarboxylic acids, monoacid chloride compounds as terminal blocking agents, and monoactive ester compounds as phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic acid Acid anhydrides such as anhydride, 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1- Monomers such as hydroxy-5-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid and 4-carboxybenzenesulfonic acid Carboxylic acids and monoacid chloride compounds in which these carboxyl groups are acid chlorides, terephthalic acid,
  • Polymer compounds into which these terminal blocking agents are introduced are (D) polymer compounds whose molecular chain ends are derived from carboxylic acid residues.
  • a terminal blocking agent that can be used to obtain the (D) polymer compound having a structure derived from a carboxylic acid residue at the molecular chain end can be easily detected by the following method.
  • the (A) polymer compound into which a terminal blocker has been introduced is dissolved in an acidic solution, decomposed into the amine component and the acid anhydride component, which are structural units, and analyzed by gas chromatography (GC) or NMR. can easily detect the terminal blocking agent used in the present invention. Apart from this, it can be easily detected by directly measuring the resin component into which the end blocking agent has been introduced by pyrolysis gas chromatography (PGC), infrared spectrum and 13C-NMR spectrum.
  • PPC pyrolysis gas chromatography
  • the (D) polymer compound is synthesized, for example, by the following method, but is not limited to this.
  • the polyimide structure is formed by replacing part of the diamine with a primary monoamine as a terminal blocker, or by replacing tetracarboxylic dianhydride with a dicarboxylic anhydride as a terminal blocker by a known method. synthesized.
  • a method of reacting a tetracarboxylic dianhydride, a diamine compound and a monoamine at a low temperature a method of reacting a tetracarboxylic dianhydride, a dicarboxylic anhydride and a diamine compound at a low temperature, and a method of reacting a tetracarboxylic dianhydride with a diamine compound.
  • a polyimide precursor is obtained by using a method such as a method of obtaining a diester with an alcohol, and then reacting a diamine, a monoamine, and a condensing agent. After that, a polyimide can be synthesized using a known imidization reaction method.
  • the polymer compound (D) is polymerized by the above method, then poured into a large amount of water or a mixture of methanol and water, etc., precipitated, filtered, dried, and isolated. .
  • the drying temperature is preferably 40-100°C, more preferably 50-80°C.
  • the imidization rate in the present invention can be easily determined, for example, by the following method. First, the infrared absorption spectrum of the polymer is measured to confirm the presence of absorption peaks (near 1780 cm ⁇ 1 and 1377 cm ⁇ 1 ) of the imide structure due to polyimide. Next, the polymer was heat-treated at 350 ° C. for 1 hour , and the infrared absorption spectrum was measured as a sample with an imidization rate of 100%. The imidization rate is obtained by calculating the content of imide groups in the pre-resin. The imidization rate is preferably 50% or more, more preferably 80% or more, in order to suppress the change in the ring closure rate during thermosetting and to obtain the effect of reducing the stress.
  • the resin composition of the present invention may contain a thermal cross-linking agent, preferably a compound having an alkoxymethyl group or a methylol group.
  • Examples having an alkoxymethyl group or a methylol group include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMO-PC, DMO-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML
  • the resin composition of the present invention can further contain a silane compound.
  • a silane compound By containing the silane compound, the adhesion of the heat-resistant resin coating is improved.
  • silane compounds include N-phenylaminoethyltrimethoxysilane, N-phenylaminoethyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-phenylaminopropyltriethoxysilane, N-phenylaminobutyltriethoxysilane.
  • the resin composition of the present invention may optionally contain surfactants, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, alcohols such as ethanol, cyclohexanone and methyl for the purpose of improving wettability with the support.
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate
  • alcohols such as ethanol, cyclohexanone and methyl
  • Ketones such as isobutyl ketone and ethers such as tetrahydrofuran and dioxane may be included.
  • inorganic particles such as silicon dioxide or titanium dioxide, polyimide powder, or the like may be contained.
  • the resin composition of the present invention has an appropriate transmittance, it suppresses diffusely reflected light from the surface of the ceramic substrate, so it is preferably used for pattern processing on the surface of the ceramic substrate.
  • the transmittance of a resin composition film having a thickness of 20 ⁇ m formed from the resin composition is 20% or more and 65% or less, and the (C) sensitizer is excluded from the resin composition. It is preferable that the transmittance of the resin composition C film having a thickness of 20 ⁇ m formed using the resin composition C is 70% or more and 100% or less.
  • the transmittance of a 20 ⁇ m resin composition film formed using the resin composition C is 70% or more and 100 or less, when patterning is performed using such a resin composition of the present invention, even in deep parts Irradiation light arrives. Furthermore, since the transmittance of the resin composition film of 20 ⁇ m formed from the resin composition of the present invention is 65% or less, the resin composition film can be used for pattern processing on a substrate with a rough surface such as ceramics. can be transmitted through the surface of the substrate, and the reflected light diffusely reflected on the substrate surface can be suppressed to obtain a fine pattern.
  • the transmittance is 20% or more
  • the sensitizer (C) absorbs light even at the bottom of the resin composition film, and the absorbed light energy is transferred to (B ) by donating to a photo-cationic polymerization initiator to generate acid, cationic polymerization proceeds, and a fine isolated pattern can be formed without exfoliation.
  • Resin composition C is a resin composition that is simply remixed by removing only (C) the sensitizer.
  • the resin Composition C means a resin composition containing (A) 50 parts by mass of a cationic polymerizable compound and (B) 50 parts by mass of a cationic photopolymerization initiator, for example, (A) 30 parts by mass of a cationic polymerizable compound , (B) 30 parts by weight of a photocationic polymerization initiator, (C) 30 parts by weight of a sensitizer, (D) 30 parts by weight of a polymer compound, and 30 parts by weight of other components of the resin composition of the present invention
  • the resin composition C contains (A) 30 parts by weight of a cationic polymerizable compound, (B) 50 parts by mass of a photocationic polymerization initiator, and (C) 50 parts by mass of a sensitizer.
  • the resin composition C contains (A) 30 parts by weight of a cationic polymerizable compound, (
  • the transmittance of a resin composition film having a thickness of 20 ⁇ m formed from the resin composition of the present invention is the transmittance measured by forming a resin composition film having a thickness of 20 ⁇ m using the resin composition of the present invention. means.
  • the transmittance of a resin composition C film having a thickness of 20 ⁇ m means the transmittance measured by blending the resin composition C and using it to form a resin composition film having a thickness of 20 ⁇ m. .
  • a method for producing a 20 ⁇ m thick resin composition film formed from the resin composition of the present invention and a method for producing a 20 ⁇ m thick resin composition C film are as follows. That is, the resin composition of the present invention or resin composition C is applied onto a polyethylene terephthalate (sometimes referred to as PET) film having a thickness of 50 ⁇ m using a comma roll coater and dried at 120° C. for 8 minutes. After that, a polypropylene (sometimes referred to as PP) film having a thickness of 30 ⁇ m is laminated as a protective film to obtain a resin composition film having a resin composition coating.
  • a polyethylene terephthalate sometimes referred to as PET
  • a polypropylene (sometimes referred to as PP) film having a thickness of 30 ⁇ m is laminated as a protective film to obtain a resin composition film having a resin composition coating.
  • the method for measuring the transmittance is as described in the section on the resin composition coating described later.
  • the transmittance of a 20 ⁇ m resin composition film may be obtained by forming a resin composition film having a film thickness of 15 ⁇ m or more and 25 ⁇ m or less, and correcting the measurement result of one of them to a thickness of 20 ⁇ m.
  • the details are as described in the section of the resin composition coating described later.
  • the shape of the resin composition of the present invention before curing is not limited, and examples thereof include a varnish shape and a film shape.
  • the film-shaped resin composition of the present invention is also referred to as the resin composition coating of the present invention.
  • the resin composition film of the present invention comprises a film-like form of the resin composition of the present invention and a support.
  • a resin composition film having a resin composition coating and a support. Therefore, the resin composition film of the present invention is in the form of a film formed on a support, that is, a resin composition film having a resin composition film formed from the resin composition of the present invention on a support.
  • a solution obtained by dissolving components (A) to (C) and optional components in an organic solvent can be used.
  • the resin composition film can be obtained, for example, by applying the resin composition of the present invention onto a support and then drying it if necessary.
  • the film-shaped resin composition of the present invention that is, the resin composition coating formed from the resin composition of the present invention preferably has a transmittance of 20% or more and 65% or less regardless of its thickness. More preferably, the transmittance at a thickness of 20 ⁇ m is 20% or more and 65% or less.
  • the transmittance of the resin composition film is 65% or less, when pattern processing is performed on a substrate with a rough surface such as ceramics, the reflected light that passes through the resin composition film and diffusely reflects on the substrate surface is suppressed. , fine patterns can be obtained.
  • the transmittance is 20% or more
  • the sensitizer (C) absorbs the light even at the bottom of the resin composition film, and the absorbed light energy ( B)
  • the sensitizer (C) absorbs the light even at the bottom of the resin composition film, and the absorbed light energy ( B)
  • B By donating to a photocationic polymerization initiator, an acid is generated, cationic polymerization proceeds, and a fine isolated pattern can be formed without exfoliation.
  • the transmittance of the resin composition coating and the transmittance at a thickness of 20 ⁇ m of the resin composition coating are transmittances at the wavelength of the light used for pattern processing.
  • the transmittance is measured at any wavelength of i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp, and at least one measurement wavelength is 20% or more and 65% or less. Good to have.
  • the transmittance of the resin composition film having a thickness of 20 ⁇ m may be obtained by correcting the measurement result of the resin composition film having a thickness of 15 ⁇ m or more and 25 ⁇ m or less to a thickness of 20 ⁇ m. That is, when the transmittance at a thickness of 20 ⁇ m is “T 20 ”%, the transmittance at the measured film thickness is “T t ”%, and the measured film thickness is “t” um, the value corrected by the following formula (1) is can be calculated.
  • the method for measuring the film thickness is JIS K7130 (1999) Plastics - film and sheet - thickness measurement method A method by mechanical scanning in thickness measurement method (average film thickness). Say things.
  • T 20 (T t /100) (20/t) ⁇ 100
  • the resin composition film of the present invention is obtained by applying a solution (varnish) of the resin composition onto a support and then drying it if necessary.
  • a resin composition varnish is obtained by adding an organic solvent to a resin composition. Any organic solvent that dissolves the resin composition may be used as the organic solvent.
  • organic solvents include ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether, Acetates such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate and butyl lactate , acetone, methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclopentanone, ketones such as 2-heptan
  • the resin composition varnish may be filtered using filter paper or a filter.
  • the filtration method is not particularly limited, but a method of filtering by pressure filtration using a filter having a retained particle size of 0.4 ⁇ m to 10 ⁇ m is preferred.
  • the resin composition film of the present invention is used by being formed on a support.
  • the support is not particularly limited, but various commercially available films such as polyethylene terephthalate (PET) film, polyphenylene sulfide film, and polyimide film can be used.
  • PET polyethylene terephthalate
  • the bonding surface between the support and the resin composition film may be surface-treated with silicone, a silane coupling agent, an aluminum chelating agent, polyurea, or the like in order to improve adhesion and releasability.
  • the thickness of the support is not particularly limited, but from the viewpoint of workability, it is preferably in the range of 10 to 100 ⁇ m.
  • the resin composition film of the present invention may have a protective film on the film in order to protect the surface. Thereby, the surface of the resin composition film can be protected from contaminants such as dirt and dust in the atmosphere.
  • protective films include polyolefin films and polyester films.
  • the protective film preferably has a small adhesive force to the resin composition film.
  • Methods for applying the resin composition varnish to the support include spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, and comma roll coater. , gravure coater, screen coater, slit die coater and the like.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, etc., it is generally preferable that the film thickness after drying is 0.5 ⁇ m or more and 100 ⁇ m or less.
  • Ovens, hot plates, infrared rays, etc. can be used for drying.
  • the drying temperature and drying time may be within a range in which the organic solvent can be volatilized, and it is preferable to appropriately set a range such that the resin composition film is in an uncured or semi-cured state. Specifically, it is preferable to carry out at a temperature in the range of 40° C. to 120° C. for 1 minute to several tens of minutes. Further, these temperatures may be combined and the temperature may be raised stepwise, for example, heat treatment may be performed at 70° C., 80° C., and 90° C. for 1 minute each.
  • the varnish is first applied to the substrate.
  • coating methods include spin coating using a spinner, spray coating, roll coating, and screen printing.
  • the coating film thickness varies depending on the coating method, the solid content concentration and viscosity of the resin composition, etc., but it is usually preferable to apply the coating so that the film thickness after drying is 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the substrate coated with the resin composition varnish is dried to obtain a resin composition film. Ovens, hot plates, infrared rays, etc. can be used for drying.
  • the drying temperature and drying time may be within a range in which the organic solvent can be volatilized, and it is preferable to appropriately set a range such that the resin composition film is in an uncured or semi-cured state. Specifically, it is preferable to carry out at a temperature in the range of 50 to 150° C. for 1 minute to several hours.
  • a resin composition film when used, if it has a protective film, it is peeled off, and the resin composition film and the substrate are opposed to each other and bonded together by thermocompression to obtain a resin composition coating.
  • Thermocompression bonding can be performed by heat press treatment, heat lamination treatment, heat vacuum lamination treatment, or the like.
  • the bonding temperature is preferably 40° C. or higher from the viewpoint of adhesion to the substrate and embedding.
  • the bonding temperature is preferably 150° C. or less in order to prevent the resin composition film from hardening during bonding and the resolution of pattern formation in the exposure and development steps from deteriorating.
  • the substrates to be used include silicon wafers, ceramics, gallium arsenide, organic circuit substrates, inorganic circuit substrates, and circuit-constituting materials arranged on these substrates. It is not limited to these.
  • organic circuit boards include glass-based copper-clad laminates such as glass cloth and epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven fabrics and epoxy copper-clad laminates, polyetherimide resin substrates, and polyetherimide resin substrates.
  • heat-resistant/thermoplastic substrates such as etherketone resin substrates and polysulfone resin substrates, and flexible substrates such as polyester copper-clad film substrates and polyimide copper-clad film substrates.
  • inorganic circuit substrates include ceramic substrates such as alumina substrates, aluminum nitride substrates and silicon carbide substrates, and metal substrates such as aluminum base substrates and iron base substrates.
  • circuit constituent materials include conductors containing metals such as silver, gold, and copper; resistors containing inorganic oxides; low dielectric materials containing glass materials and/or resins; Examples include high dielectric materials containing dielectric inorganic particles and the like, and insulators containing glass-based materials and the like.
  • the resin composition film formed by the above method is exposed to actinic rays through a mask having a desired pattern.
  • Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, etc.
  • the exposure may be performed without peeling the support from the resin composition film.
  • these alkaline aqueous solutions are added with a polar solvent such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be contained alone or in combination. good.
  • a polar solvent such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl
  • Development can be carried out by a method such as spraying the above developer onto the film surface, heaping the developer onto the film surface, immersing in the developer, or immersing and applying ultrasonic waves.
  • Developing conditions such as the developing time and the temperature of the developer in the developing step may be any conditions as long as the exposed portion can be removed and the pattern can be formed.
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing.
  • Baking may be performed before development if necessary. This may improve the resolution of the pattern after development and increase the allowable range of development conditions.
  • the baking temperature is preferably in the range of 50 to 180°C, more preferably in the range of 60 to 120°C.
  • the time is preferably 5 seconds to several hours.
  • unreacted cationic polymerizable compounds and photocationic polymerization initiators remain in the resin composition film. For this reason, they may be thermally decomposed to generate gas during thermocompression bonding or curing. In order to avoid this, it is preferable to irradiate the entire surface of the resin composition film after pattern formation with the above-described exposure light to generate acid from the photocationic polymerization initiator. By doing so, the reaction of the unreacted cationic polymerizable compound proceeds during thermocompression bonding or curing, and generation of gas due to thermal decomposition can be suppressed.
  • a temperature of 150°C to 500°C is applied to advance the thermal cross-linking reaction.
  • Crosslinking can improve heat resistance and chemical resistance.
  • a method for this heat treatment a method of selecting a temperature and increasing the temperature stepwise, or a method of selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours can be selected.
  • the former there is a method of heat-treating at 130° C. and 200° C. for 30 minutes each.
  • An example of the latter is a method of linearly raising the temperature from room temperature to 400° C. over 2 hours.
  • the cured film of the present invention is a cured film obtained by curing the resin composition coating of the resin composition of the present invention or the resin composition film of the present invention.
  • the cured film of the present invention can be used for electronic parts such as semiconductor devices. That is, the electronic component of the present invention includes the cured film of the present invention.
  • a semiconductor device which is one of electronic components, refers to all devices that can function by using the characteristics of semiconductor elements.
  • An electro-optical device in which a semiconductor element is connected to a substrate, a semiconductor circuit board, a stack of a plurality of semiconductor elements, and an electronic device including these are all included in the semiconductor device.
  • Semiconductor devices also include electronic parts such as multilayer wiring boards for connecting semiconductor elements. Specifically, semiconductor passivation films, surface protective films of semiconductor elements, interlayer insulating films between semiconductor elements and wiring, interlayer insulating films between a plurality of semiconductor elements, and interlayer insulation between wiring layers in multi-layer wiring for high-density mounting. Although it is suitably used for applications such as insulating films and insulating layers of organic electroluminescence elements, it is not limited thereto and can be used for various applications.
  • Resin composition C having a thickness of 20 ⁇ m was prepared in the same manner as in the evaluation of the transmittance of the resin composition coating having a thickness of 20 ⁇ m, using the resin composition C coating prepared in each example and comparative example. The transmittance in the coating was measured.
  • Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound (a) 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (hereinafter referred to as BAHF) (18.3 g, 0.05 mol) was added to 100 mL of acetone. , propylene oxide (17.4 g, 0.3 mol) and cooled to -15°C. A solution of 3-nitrobenzoyl chloride (20.4 g, 0.11 mol) dissolved in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was allowed to react at -15°C for 4 hours, and then returned to room temperature. The precipitated white solid was separated by filtration and vacuum dried at 50°C.
  • BAHF 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane
  • Synthesis Example 2 Synthesis of polyimide (D-1) Under a dry nitrogen stream, BAHF (29.30 g, 0.08 mol) was added to 80 g of ⁇ -butyrolactone (hereinafter referred to as GBL), and stirred and dissolved at 120°C. Next, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (hereinafter referred to as TDA-100) (30 0.03 g, 0.1 mol) was added with 20 g of GBL and stirred at 120° C. for 1 hour and then at 200° C. for 4 hours to obtain a reaction solution. Next, the reaction solution was poured into 3 L of water to collect a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 5 hours.
  • GBL ⁇ -butyrolactone
  • Synthesis Example 3 Synthesis of polyamideimide (D-2) Hydroxyl group-containing diamine compound (a) (15.72 g, 0.04 mol) and BAHF (14.65 g, 0.04 mol) were added to 100 g of GBL under a dry nitrogen stream. added and stirred at 120°C. Next, TDA-100 (30.03 g, 0.1 mol) was added together with 20 g of GBL and stirred at 120° C. for 1 hour and then at 200° C. for 4 hours to obtain a reaction solution. Next, the reaction solution was poured into 3 L of water to collect a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 5 hours.
  • Example 1 (A) component TEPIC-VL (trade name, manufactured by Nissan Chemical Industries, Ltd.) 10 g, (B) component CPI-310FG (trade name, San-Apro Co., Ltd.) 0.6 g, (C) component UVS- 1331 (trade name, manufactured by Kawasaki Kasei Co., Ltd.) 0.1 g, 1007 (trade name, manufactured by Mitsubishi Chemical Corporation) as a BisA type epoxy resin, 10 g, KBM-403 as a silane compound (trade name, Shin-Etsu Chemical Co., Ltd. ( Co., Ltd.) was dissolved in GBL. The amount of the solvent added was adjusted so that the solid content concentration was 60% by weight, with the additives other than the solvent being the solid content. Thereafter, pressure filtration was performed using a filter having a retained particle size of 1 ⁇ m to obtain a resin composition varnish.
  • the resulting resin composition varnish was applied on a 50 ⁇ m thick PET film using a comma roll coater, dried at 120° C. for 8 minutes, and then laminated with a 30 ⁇ m thick PP film as a protective film. to obtain a resin composition film.
  • the thickness of the resin composition film was adjusted to 20 ⁇ m.
  • the transmittance and pattern workability were evaluated as described above.
  • Examples 2-11 A resin composition film was prepared in the same manner as in Example 1 except that the components (A) to (C) and other components were changed to compounds having the following structures and the mixing ratios thereof were changed as shown in Table 1. were produced, and the transmittance and pattern workability were evaluated as described above. Table 1 shows the results.
  • Comparative Examples 1-2 A resin composition film was prepared in the same manner as in Example 1 except that the components (A) to (C) and other components were changed to compounds having the following structures and the mixing ratios thereof were changed as shown in Table 1. were produced, and the transmittance and pattern workability were evaluated as described above. Table 1 shows the results.
  • transmittance (%) means the transmittance of a resin composition film having a thickness of 20 ⁇ m formed from the resin compositions of Examples and Comparative Examples.
  • Transmittance (%) when component (C) is removed is a resin composition C film having a thickness of 20 ⁇ m formed from the resin compositions of Examples and Comparative Examples using Resin Composition C. means the transmittance of The structures of the compounds used in each Synthesis Example, Examples and Comparative Examples are shown below.
  • Polymer compound other than (D) 1007 (BisA type phenoxy resin, manufactured by Mitsubishi Chemical Corporation) Silane compound KBM-403 (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)
  • Formation Of Insulating Films (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided are a resin composition that enables fine pattern processing even on a rough-surfaced substrate made of a ceramic or the like, a resin composition film, and a semiconductor device in which these are used. A resin composition containing (A) a cationic polymerizable compound and (B) a photocationic polymerization initiator, wherein the resin composition is characterized by furthermore containing (C) a sensitizer.

Description

樹脂組成物、樹脂組成物被膜、樹脂組成物フィルム、硬化膜、および電子部品Resin composition, resin composition coating, resin composition film, cured film, and electronic component
 本発明は、樹脂組成物、樹脂組成物被膜、樹脂組成物フィルム、硬化膜、および電子部品に関する。より詳しくは、半導体素子やインダクタ装置の表面保護膜、層間絶縁膜、MEMS(マイクロエレクトロメカニカルシステムズ)の構造体などに好適に用いられる樹脂組成物に関する。 The present invention relates to resin compositions, resin composition coatings, resin composition films, cured films, and electronic components. More particularly, the present invention relates to resin compositions suitably used for surface protective films of semiconductor elements and inductor devices, interlayer insulating films, structures of MEMS (Micro Electro Mechanical Systems), and the like.
 従来、半導体素子の表面保護膜や層間絶縁膜には、耐熱性や電気絶縁性及び機械特性に優れたポリイミド系材料やポリベンゾオキサゾール系材料が広く使用されている。近年の半導体素子の高密度化や高性能化要求に伴い、生産効率の観点から、表面保護膜や層間絶縁膜には、感光性を有する材料が求められている。 Conventionally, polyimide-based materials and polybenzoxazole-based materials, which have excellent heat resistance, electrical insulation, and mechanical properties, have been widely used for surface protective films and interlayer insulating films of semiconductor devices. With the recent demand for higher density and higher performance of semiconductor devices, photosensitive materials are required for surface protective films and interlayer insulating films from the viewpoint of production efficiency.
 一方、感光性材料には、近年の半導体素子の様々なパッケージング構造や、MEMS向けに高アスペクト比の加工が要求されている。そのような要求に応えるために、化学増幅型の光カチオン重合系の感光性材料が開示されている(例えば、特許文献1)。また、化学増幅型の光カチオン重合系において、特定の構造のエポキシ樹脂を含有させることで、機械特性や熱特性の向上を意図した光カチオン重合系材料が開示されている(例えば、特許文献2)。 On the other hand, photosensitive materials are required to process various packaging structures for semiconductor devices in recent years and high aspect ratio processing for MEMS. In order to meet such demands, a chemically amplified photo-cationically polymerizable photosensitive material has been disclosed (for example, Patent Document 1). Further, in a chemically amplified cationic photopolymerization system, a photocationic polymerizable material intended to improve mechanical properties and thermal properties by containing an epoxy resin with a specific structure has been disclosed (for example, Patent Document 2. ).
国際公開第2008/007764号WO2008/007764 特開2019-38964号公報JP 2019-38964 A
 しかしながら、上記のような光カチオン重合系材料では、セラミックス等の表面の粗い基板上でのパターン加工時において、露光の際に樹脂組成物内部を透過した照射光が、基板表面で乱反射することで、未露光部でも光カチオン重合が進行し、微細なパターンを形成することが困難であった。 However, in the above-mentioned photo-cationically polymerizable materials, during pattern processing on a substrate with a rough surface such as ceramics, the irradiation light transmitted through the inside of the resin composition during exposure is diffusely reflected on the substrate surface. However, photocationic polymerization proceeds even in unexposed areas, making it difficult to form fine patterns.
 かかる状況に鑑み、筆者らは、鋭意検討した結果、光カチオン重合系材料に増感剤を含有させることによって、セラミックス等の表面の粗い基板上でも微細なパターン加工が可能なことを見出した。 In view of this situation, the authors have conducted extensive research and found that fine pattern processing is possible even on substrates with rough surfaces such as ceramics by including a sensitizer in the photo-cationically polymerized material.
 上記課題を解決するための本発明は、以下である。 The present invention for solving the above problems is as follows.
 (A)カチオン重合性化合物、及び(B)光カチオン重合開始剤を含有する樹脂組成物であって、さらに、(C)増感剤を含有することを特徴とする樹脂組成物。 A resin composition containing (A) a cationically polymerizable compound and (B) a photocationic polymerization initiator, and further containing (C) a sensitizer.
 本発明の樹脂脂組成物は、セラミックス等の表面の粗い基板上でも微細なパターン低温硬化条件においても微細なパターン加工性を有する樹脂組成物、樹脂組成物被膜、樹脂組成物フィルム、硬化膜、および電子部品を提供するものである。 The resin composition of the present invention is a resin composition, a resin composition film, a resin composition film, a cured film, a resin composition coating, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, a resin composition film, or a cured film. and electronic components.
 本発明は、(A)カチオン重合性化合物、及び(B)光カチオン重合開始剤を含有する樹脂組成物であって、さらに、(C)増感剤を含有することを特徴とする樹脂組成物である。 The present invention provides a resin composition containing (A) a cationically polymerizable compound and (B) a photocationic polymerization initiator, and further containing (C) a sensitizer. is.
 本発明の樹脂組成物は、光照射により、(B)光カチオン重合開始材が酸を発生し、(A)カチオン重合性化合物が重合反応を起こし、現像液に不溶となるネガ型の感光性を示す樹脂組成物、つまりネガ型感光性樹脂組成物であることが好ましい。 In the resin composition of the present invention, when irradiated with light, (B) the photocationic polymerization initiator generates an acid, and (A) the cationic polymerizable compound undergoes a polymerization reaction to cause a negative photosensitive property that becomes insoluble in a developer. is preferably a negative photosensitive resin composition.
 (A)カチオン重合性化合物
 本発明の樹脂組成物は、(A)カチオン重合性化合物を含有する。
(A) Cationic polymerizable compound The resin composition of the present invention contains (A) a cationic polymerizable compound.
 (A)カチオン重合性化合物は、環状エーテル化合物(エポキシ化合物及びオキセタン化合物等)、エチレン性不飽和化合物(ビニルエーテル及びスチレン類等)、ビシクロオルトエステル、スピロオルトカーボネート及びスピロオルトエステル等が挙げられる。 (A) Cationic polymerizable compounds include cyclic ether compounds (epoxy compounds, oxetane compounds, etc.), ethylenically unsaturated compounds (vinyl ethers, styrenes, etc.), bicycloorthoesters, spiroorthocarbonates, spiroorthoesters, and the like.
 エポキシ化合物としては、公知のもの等が使用でき、芳香族エポキシ化合物、脂環式エポキシ化合物及び脂肪族エポキシ化合物が含まれる。 As the epoxy compound, known ones can be used, including aromatic epoxy compounds, alicyclic epoxy compounds and aliphatic epoxy compounds.
 芳香族エポキシ化合物としては、少なくとも1個の芳香環を有する1価又は多価のフェノール(フェノール、ビスフェノールA、フェノールノボラック及びこれらのアルキレンオキシド付加体した化合物)のグリシジルエーテル等が挙げられる。 Examples of aromatic epoxy compounds include glycidyl ethers of monohydric or polyhydric phenols (phenol, bisphenol A, phenol novolak, and alkylene oxide adducts thereof) having at least one aromatic ring.
 脂環式エポキシ化合物としては、少なくとも1個のシクロヘキセンやシクロペンテン環を有する化合物を酸化剤でエポキシ化することによって得られる化合物(3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、等)が挙げられる。 Examples of alicyclic epoxy compounds include compounds obtained by epoxidizing a compound having at least one cyclohexene or cyclopentene ring with an oxidizing agent (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, etc. ).
 脂肪族エポキシ化合物としては、脂肪族多価アルコール又はこのアルキレンオキシド付加体のポリグリシジルエーテル(1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等)、脂肪族多塩基酸のポリグリシジルエステル(ジグリシジルテトラヒドロフタレート等)、長鎖不飽和化合物のエポキシ化物(エポキシ化大豆油及びエポキシ化ポリブタジエン等)が挙げられる。 Aliphatic epoxy compounds include aliphatic polyhydric alcohols or polyglycidyl ethers of alkylene oxide adducts thereof (1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, etc.), aliphatic polybasic acids polyglycidyl esters (diglycidyl tetrahydrophthalate, etc.), and epoxidized long-chain unsaturated compounds (epoxidized soybean oil, epoxidized polybutadiene, etc.).
 オキセタン化合物としては、公知のもの等が使用でき、例えば、3-エチル-3-ヒドロキシメ
チルオキセタン、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、オキセタニルシルセスキオキセタン及びフェノールノボラックオキセタン等が挙げられる。
As the oxetane compound, known ones can be used. -oxetanylmethyl)ether, 2-hydroxypropyl(3-ethyl-3-oxetanylmethyl)ether, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, oxetanylsilsesquioxetane and phenol novolac oxetane etc.
 エチレン性不飽和化合物としては、公知のカチオン重合性単量体等が使用でき、脂肪族モノビニルエーテル、芳香族モノビニルエーテル、多官能ビニルエーテル、スチレン及びカチオン重合性窒素含有モノマーが含まれる。 As the ethylenically unsaturated compound, known cationic polymerizable monomers can be used, including aliphatic monovinyl ethers, aromatic monovinyl ethers, polyfunctional vinyl ethers, styrene and cationic polymerizable nitrogen-containing monomers.
 脂肪族モノビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル及びシクロヘキシルビニルエーテル等が挙げられる。 The aliphatic monovinyl ethers include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether and cyclohexyl vinyl ether.
 芳香族モノビニルエーテルとしては、2-フェノキシエチルビニルエーテル、フェニルビニルエーテル及びp-メトキシフェニルビニルエーテル等が挙げられる。  Aromatic monovinyl ethers include 2-phenoxyethyl vinyl ether, phenyl vinyl ether and p-methoxyphenyl vinyl ether.
 多官能ビニルエーテルとしては、ブタンジオール-1,4-ジビニルエーテル及びトリエチレングリコールジビニルエーテル等が挙げられる。 Examples of polyfunctional vinyl ethers include butanediol-1,4-divinyl ether and triethylene glycol divinyl ether.
 スチレン類としては、スチレン、α-メチルスチレン、p-メトキシスチレン及びptert-ブトキシスチレン等が挙げられる。 Styrenes include styrene, α-methylstyrene, p-methoxystyrene and ptert-butoxystyrene.
 カチオン重合性窒素含有モノマーとしては、N-ビニルカルバゾール及びN-ビニルピロリドン等が挙げられる。 Examples of cationic polymerizable nitrogen-containing monomers include N-vinylcarbazole and N-vinylpyrrolidone.
 ビシクロオルトエステルとしては、1-フェニル-4-エチル-2,6,7-トリオキサビシクロ[2.2.2]オクタン及び1-エチル-4-ヒドロキシメチル-2,6,7-トリオキサビシクロ-[2.2.2]オクタン等が挙げられる。 Bicycloorthoesters include 1-phenyl-4-ethyl-2,6,7-trioxabicyclo[2.2.2]octane and 1-ethyl-4-hydroxymethyl-2,6,7-trioxabicyclo - [2.2.2] octane and the like.
 スピロオルトカーボネートとしては、1,5,7,11-テトラオキサスピロ[5.5]ウンデカン及び3,9-ジベンジル-1,5,7,11-テトラオキサスピロ[5.5]ウンデカン等が挙げられる。 Examples of spiro orthocarbonates include 1,5,7,11-tetraoxaspiro[5.5]undecane and 3,9-dibenzyl-1,5,7,11-tetraoxaspiro[5.5]undecane. be done.
 スピロオルトエステルとしては、1,4,6-トリオキサスピロ[4.4]ノナン、2-メチル-1,4,6-トリオキサスピロ[4.4]ノナン及び1,4,6-トリオキサスピロ[4.5]デカン等が挙げられる。 Spiro orthoesters include 1,4,6-trioxaspiro[4.4]nonane, 2-methyl-1,4,6-trioxaspiro[4.4]nonane and 1,4,6-trioxas pyro[4.5]decane and the like.
 これらのカチオン重合性化合物のうち、エポキシ化合物、オキセタン化合物及びビニルエーテルが好ましく、さらに好ましくはエポキシ化合物及びオキセタン化合物、特に好ましくはエポキシ化合物である。その中でも、常温(20℃)で液状である多官能エポキシ化合物が好ましく、当該多官能エポキシ化合物はエポキシ当量が80g/eq.以上、160g/eq.以下であることが好ましい。多官能エポキシ化合物が常温で液状であることにより、後述するように、本発明の樹脂組成物はさらに(D)高分子化合物を含有することが好ましいが、該(D)高分子化合物との相溶性が向上し、微細なパターン加工性が得られるから好ましい。一方、多官能エポキシ化合物のエポキシ当量が、80g/eq.以上、160g/eq.以下であることにより、硬化膜の耐熱性や耐薬品性が向上する点から好ましい。 Among these cationically polymerizable compounds, epoxy compounds, oxetane compounds and vinyl ethers are preferred, epoxy compounds and oxetane compounds are more preferred, and epoxy compounds are particularly preferred. Among them, a polyfunctional epoxy compound that is liquid at normal temperature (20° C.) is preferable, and the polyfunctional epoxy compound has an epoxy equivalent of 80 g/eq. above, 160 g/eq. The following are preferable. Since the polyfunctional epoxy compound is liquid at room temperature, the resin composition of the present invention preferably further contains (D) a polymer compound, as described later. It is preferable because the solubility is improved and fine pattern workability can be obtained. On the other hand, the epoxy equivalent of the polyfunctional epoxy compound is 80 g/eq. above, 160 g/eq. It is preferable from the viewpoint that the heat resistance and chemical resistance of the cured film are improved by being below.
 常温で液状である多官能エポキシ化合物であって、エポキシ当量が80g/eq.以上、160g/eq.以下であるエポキシ化合物としては、例えばTEPIC-VL、(商品名、日産化学(株)製)、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ショウフリーBATG、ショウフリーPETG(商品名、いずれも昭和電工(株)製)等があげられる。 A polyfunctional epoxy compound that is liquid at room temperature and has an epoxy equivalent of 80 g/eq. above, 160 g/eq. Examples of the following epoxy compounds include TEPIC-VL (trade name, manufactured by Nissan Chemical Industries, Ltd.), bisphenol A type epoxy compound, bisphenol F type epoxy compound, SHOWFREE BATG, SHOWFREE PETG (trade name, all of which are manufactured by Showa Denko K.K.) and the like.
 (A)カチオン重合性化合物は単独で使用してもよく、または2種以上を併用してもよい。 (A) The cationically polymerizable compound may be used alone, or two or more of them may be used in combination.
 十分なカチオン硬化性を示し、パターン加工性を向上させる点から、(D)高分子化合物を100質量部とした場合、前記(A)カチオン重合性化合物が30質量部以上であることが好ましく、より好ましくは50質量部以上である。一方、フィルム状、つまり樹脂組成物被膜にした際に、樹脂組成物被膜の表面のタックが無く、ハンドリングし易くなる観点や、硬化膜の強伸度が向上する点から、(D)高分子化合物を100質量部とした場合、前記(A)カチオン重合性化合物が200質量部以下であることが好ましく、より好ましくは150質量部以下である。 From the viewpoint of exhibiting sufficient cationic curability and improving pattern processability, when the polymer compound (D) is 100 parts by mass, the content of the cationic polymerizable compound (A) is preferably 30 parts by mass or more, More preferably, it is 50 parts by mass or more. On the other hand, when it is made into a film form, that is, the resin composition film, the surface of the resin composition film does not have tackiness, and from the viewpoint of easy handling and the improvement of the strength and elongation of the cured film, (D) polymer When the compound is 100 parts by mass, the content of the cationic polymerizable compound (A) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less.
 (B)光カチオン重合開始剤
 本発明の樹脂組成物は、(B)光カチオン重合開始剤を含有する。
(B) Cationic Photopolymerization Initiator The resin composition of the present invention contains (B) a cationic photopolymerization initiator.
 (B)光カチオン重合開始剤は、光により酸を発生しカチオン重合を生じさせるものである。(B)光カチオン重合開始剤としては、公知の化合物を、特に限定なく使用することができるが、オニウム塩であることが好ましい。 (B) The photocationic polymerization initiator is one that generates acid by light and causes cationic polymerization. (B) As the cationic photopolymerization initiator, a known compound can be used without particular limitation, but an onium salt is preferred.
 (B)光カチオン重合開始剤について具体的には、例えば芳香族ヨードニウム錯塩、芳香族スルホニウム錯塩、芳香族ボレート錯塩や芳香族ガレート錯塩等を挙げることができる。芳香族ヨードニウム錯塩の具体例としては、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート等が挙げられる。これらの(B)光カチオン重合開始剤は単独で使用してもよく、または2種以上を併用してもよい。 (B) Specific examples of photocationic polymerization initiators include aromatic iodonium complex salts, aromatic sulfonium complex salts, aromatic borate complex salts, and aromatic gallate complex salts. Specific examples of aromatic iodonium complex salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di(4-nonylphenyl)iodonium hexafluorophosphate, and the like. These (B) photocationic polymerization initiators may be used alone, or two or more of them may be used in combination.
 上記(B)光カチオン重合開始剤の含有量は、上記(A)カチオン重合性化合物を100質量部とした場合、0.3質量部以上が好ましく、0.5質量部以上がより好ましく、0.7質量部以上がさらに好ましい。これにより、カチオン重合性化合物が十分な硬化性を示し、パターン加工性を向上させることができる。一方、樹脂組成物の硬化前の保存安定性が向上する点から、10質量部以下が好ましく、より好ましくは8質量部以下である。 The content of the photocationic polymerization initiator (B) is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, when the cationically polymerizable compound (A) is 100 parts by mass. .7 parts by mass or more is more preferable. Thereby, the cationically polymerizable compound exhibits sufficient curability, and the pattern workability can be improved. On the other hand, it is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, from the viewpoint of improving the storage stability of the resin composition before curing.
 (C)増感剤
 本発明の樹脂組成物は、(C)増感剤を含有する。
(C) Sensitizer The resin composition of the present invention contains (C) a sensitizer.
 (C)増感剤は、光を吸収し、吸収した光エネルギーを(B)光カチオン重合開始剤に供与し、酸を発生しカチオン重合を生じさせることができる化合物である。増感剤は、パターン加工する際の照射波長に対して吸光するため、樹脂組成物から形成された樹脂組成物被膜の透過率を下げることができる。そのため、樹脂組成物における増感剤の含有量により、任意に樹脂組成物被膜の透過率を制御することが可能となる。 The (C) sensitizer is a compound that can absorb light, donate the absorbed light energy to the (B) photocationic polymerization initiator, generate an acid, and cause cationic polymerization. Since the sensitizer absorbs light with respect to the irradiation wavelength during patterning, it is possible to reduce the transmittance of the resin composition film formed from the resin composition. Therefore, the transmittance of the resin composition film can be arbitrarily controlled by the content of the sensitizer in the resin composition.
 増感剤としては特に限定されないものの、前記(C)増感剤が、アントラセン化合物であることが好ましく、例えば9位と10位にアルコキシ基を有するアントラセン化合物(9,10-ジアルコキシ-アントラセン誘導体)がより好ましい。アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基等のC1~C4のアルコキシ基が挙げられる。9,10-ジアルコキシ-アントラセン誘導体は、さらに置換基を有していても良い。9,10-ジアルコキシ-アントラセン誘導体中の置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メチル基、エチル基、プロピル基等のC1~C4のアルキル基やスルホン酸アルキルエステル基、カルボン酸アルキルエステル基等が挙げられる。スルホン酸アルキルエステル基やカルボン酸アルキルエステルにおけるアルキルとしては、例えばメチル、エチル、プロピル等のC1~C4のアルキルが挙げられる。これらの置換基の置換位置は2位が好ましい。 Although the sensitizer is not particularly limited, the sensitizer (C) is preferably an anthracene compound. ) is more preferred. Examples of alkoxy groups include C1-C4 alkoxy groups such as methoxy, ethoxy and propoxy groups. The 9,10-dialkoxy-anthracene derivative may further have a substituent. Examples of substituents in the 9,10-dialkoxy-anthracene derivative include halogen atoms such as fluorine, chlorine, bromine and iodine atoms; C1-C4 alkyl groups such as methyl, ethyl and propyl; A sulfonic acid alkyl ester group, a carboxylic acid alkyl ester group, and the like are included. Examples of the alkyl in the sulfonic acid alkyl ester group and carboxylic acid alkyl ester include C1-C4 alkyl such as methyl, ethyl and propyl. The substitution position of these substituents is preferably 2-position.
 本発明の樹脂組成物は、樹脂組成物全体を100質量%とした場合、前記(C)増感剤の合計が0.1質量%以上5.0質量%以下が好ましく、上記(C)増感剤の含有量は、特に制限はないが、0.05質量%以上が好ましく、0.1質量%以上がより好ましい。これにより、樹脂組成物被膜の透過率を下げることが出来、セラミックス等の表面が粗い基板上においても、基板面から反射光を抑制し、微細パターンの加工を容易にする。一方、樹脂組成物から形成された樹脂組成物被膜の硬化膜の機械特性や熱特性の低下を抑制する点から、樹脂組成物全体の質量を100質量%とした場合、(C)増感剤の含有量は10質量%以下が好ましく、5質量%以下がさらに好ましい。 In the resin composition of the present invention, when the entire resin composition is 100% by mass, the total amount of the (C) sensitizer is preferably 0.1% by mass or more and 5.0% by mass or less, and the above (C) increase The content of the sensitizing agent is not particularly limited, but is preferably 0.05% by mass or more, more preferably 0.1% by mass or more. This makes it possible to reduce the transmittance of the resin composition film, suppress light reflected from the substrate surface even on a substrate with a rough surface such as ceramics, and facilitate processing of fine patterns. On the other hand, from the viewpoint of suppressing the deterioration of the mechanical properties and thermal properties of the cured film of the resin composition film formed from the resin composition, when the mass of the entire resin composition is 100% by mass, (C) a sensitizer The content of is preferably 10% by mass or less, more preferably 5% by mass or less.
 本発明の樹脂組成物は、(D)高分子化合物を含有し、該(D)高分子化合物は、ポリアミド、ポリイミド、ポリアミドイミド、及びポリベンゾオキサゾールからなる群より選ばれる少なくとも1つの化合物が好ましい。本発明においてポリイミド前駆体およびポリベンゾオキサゾール前駆体は、それぞれ、上記のポリアミドに相当する。 The resin composition of the present invention contains (D) a polymer compound, and the (D) polymer compound is preferably at least one compound selected from the group consisting of polyamide, polyimide, polyamideimide, and polybenzoxazole. . In the present invention, the polyimide precursor and the polybenzoxazole precursor respectively correspond to the above polyamides.
 本発明の樹脂組成物は、この(D)高分子化合物を含有することにより、フィルム状の樹脂組成物被膜にする際の製膜性に優れ、また硬化膜の引張強度・引張伸度に優れる。(D)高分子化合物は、その重量平均分子量は特に限定されないが、重量平均分子量が1,000以上200,000以下であることが好ましい。(D)高分子化合物は、単独で使用しても2種以上を併用してもよい。本発明における(D)高分子化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)によって測定し、ポリスチレン換算で算出する。 By containing this (D) polymer compound, the resin composition of the present invention has excellent film-forming properties when it is formed into a film-like resin composition coating, and the cured film has excellent tensile strength and tensile elongation. . The weight-average molecular weight of (D) the polymer compound is not particularly limited, but the weight-average molecular weight is preferably 1,000 or more and 200,000 or less. (D) The polymer compound may be used alone or in combination of two or more. The weight average molecular weight of the (D) polymer compound in the present invention is measured by a gel permeation chromatography method (GPC method) and calculated in terms of polystyrene.
 本発明の樹脂組成物は、(D)高分子化合物の分子鎖末端が、カルボン酸残基に由来する構造であることが好ましい。本発明の樹脂組成物は、分子鎖末端がカルボン酸残基に由来する構造となった(D)高分子化合物を含めば、分子鎖末端がカルボン酸残基に由来する構造とはなっていない高分子化合物を含むことも可能である。本発明の樹脂組成物において、分子鎖末端がカルボン酸残基に由来する構造とはなっていない高分子化合物を含む場合には、その含有量は少ないほど好ましく、具体的には、分子鎖末端がカルボン酸残基に由来する構造となった(D)高分子化合物の合計100質量部に対して、分子鎖末端がカルボン酸残基に由来する構造とはなっていない(D)高分子化合物の含有量は0質量部以上10質量部以下であることが好ましく、0質量部以上5質量部以下であることがより好ましく、0質量部以上2質量部以下であることが特に好ましい。 In the resin composition of the present invention, the molecular chain end of the (D) polymer compound preferably has a structure derived from a carboxylic acid residue. The resin composition of the present invention does not have a structure in which the molecular chain end is derived from a carboxylic acid residue, including the (D) polymer compound in which the molecular chain end is derived from a carboxylic acid residue. It is also possible to include polymeric compounds. When the resin composition of the present invention contains a polymer compound whose molecular chain end does not have a structure derived from a carboxylic acid residue, the content is preferably as small as possible. With respect to a total of 100 parts by mass of the (D) polymer compound having a structure derived from a carboxylic acid residue, the molecular chain end does not have a structure derived from a carboxylic acid residue (D) polymer compound is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and particularly preferably 0 to 2 parts by mass.
 分子鎖末端がカルボン酸残基に由来する構造となった(D)高分子化合物の含有量は、特に限定されないが、樹脂組成物100質量%において、20質量%以上95質量%以下含むことが好ましく、30質量%以上85質量%以下含むことがより好ましく、30質量%以上70質量%以下含むことが特に好ましい。分子鎖末端がカルボン酸残基に由来する構造となった(D)高分子化合物を樹脂組成物中に20質量%以上含むことによって、硬化膜の膜強度が向上する。一方、分子鎖末端がカルボン酸残基に由来する構造となった(A)高分子化合物の含有量を樹脂組成物中に95質量%以下とすることにより、カチオン重合反応が進行し易くなり、硬化膜の耐薬品性が向上する。 The content of the (D) polymer compound whose molecular chain end has a structure derived from a carboxylic acid residue is not particularly limited, but it may be contained in an amount of 20% by mass or more and 95% by mass or less in 100% by mass of the resin composition. It is preferably contained in an amount of 30% by mass or more and 85% by mass or less, and particularly preferably in an amount of 30% by mass or more and 70% by mass or less. By containing 20% by mass or more of the polymer compound (D) having a structure derived from a carboxylic acid residue at the molecular chain end, the strength of the cured film is improved. On the other hand, by setting the content of the polymer compound (A) having a structure derived from a carboxylic acid residue to 95% by mass or less in the resin composition, the cationic polymerization reaction proceeds more easily. The chemical resistance of the cured film is improved.
 (D)高分子化合物の分子鎖末端がカルボン酸残基に由来する構造であることによって、分子鎖末端が、カチオン重合の阻害官能基となり得る、アミン末端構造を保有しない分子構造とすることができ、結果として、ポリアミドやポリイミドおよびポリアミドイミドを用いた際においても、十分なカチオン重合性を発現することができる点で好ましい。 (D) Since the molecular chain end of the polymer compound has a structure derived from a carboxylic acid residue, the molecular chain end can be a functional group that inhibits cationic polymerization and has a molecular structure that does not possess an amine terminal structure. As a result, even when polyamide, polyimide, and polyamideimide are used, sufficient cationic polymerizability can be expressed, which is preferable.
 ここで、(D)高分子化合物の分子鎖末端におけるカルボン酸残基に由来する構造とは、ポリアミドやポリイミドまたはポリアミドイミドを構成し得る、カルボン酸残基に由来する有機基であり、モノカルボン酸やジカルボン酸、モノ酸クロリド化合物、ジ酸クロリド化合物、テトラカルボン酸または酸無水物、酸二無水物等に由来する構造を言う。上記の中でも特に、(D)高分子化合物の分子鎖末端のカルボン酸残基に由来する構造が、テトラカルボン酸二無水物に由来する構造であることが好ましい。分子鎖末端がテトラカルボン酸二無水物に由来する構造であると、熱硬化前の樹脂組成物の保存安定性が向上する点で好ましい。一方、硬化膜として、末端のカルボン酸無水物基が反応性官能基となり、熱硬化後の耐熱性や耐薬品性が向上する点で好ましい。 Here, (D) the structure derived from a carboxylic acid residue at the molecular chain end of the polymer compound is an organic group derived from a carboxylic acid residue that can constitute a polyamide, a polyimide, or a polyamideimide. A structure derived from an acid, a dicarboxylic acid, a monoacid chloride compound, a diacid chloride compound, a tetracarboxylic acid or an acid anhydride, an acid dianhydride, or the like. Among the above, it is particularly preferable that (D) the structure derived from the carboxylic acid residue at the molecular chain end of the polymer compound is a structure derived from tetracarboxylic dianhydride. A structure in which the molecular chain end is derived from a tetracarboxylic dianhydride is preferable in terms of improving the storage stability of the resin composition before heat curing. On the other hand, as a cured film, the terminal carboxylic anhydride group becomes a reactive functional group, which is preferable in that the heat resistance and chemical resistance after thermosetting are improved.
 (D)高分子化合物は、アルカリ可溶性であることが好ましい。アルカリ可溶性であると、パターン加工時の現像で、環境負荷の要因となる有機溶媒を使用することなく、アルカリ水溶液で現像をすることができるため好ましい。ここで言うアルカリ可溶性とは、水酸化テトラメチルアンモニウムの2.38質量%水溶液100gに対して、25℃で0.1g以上溶解するものを指す。アルカリ可溶性を発現するために、(D)高分子化合物は、アルカリ可溶性の官能基を有することが望ましい。アルカリ可溶性の官能基とは酸性を有する官能基であり、具体的には、フェノール性水酸基、カルボキシル基、スルホン酸基などが挙げられる。上記、アルカリ可溶性の官能基の中でも、樹脂組成物の保存安定性や、導体である銅配線への腐食等の問題から、アルカリ可溶性の官能基はフェノール性水酸基であることが好ましい。(D)高分子化合物は、分子鎖内にフェノール性水酸基を有する化合物であることが好ましい。 (D) The polymer compound is preferably alkali-soluble. Alkali-soluble is preferable because development can be carried out with an alkaline aqueous solution without using an organic solvent, which is a factor of environmental load, in development during pattern processing. The term “alkali-soluble” as used herein means that 0.1 g or more of a tetramethylammonium hydroxide solution dissolves in 100 g of a 2.38% by mass aqueous solution of tetramethylammonium hydroxide at 25°C. In order to exhibit alkali solubility, (D) the polymer compound desirably has an alkali-soluble functional group. The alkali-soluble functional group is a functional group having acidity, and specific examples include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, and the like. Among the above-mentioned alkali-soluble functional groups, the alkali-soluble functional group is preferably a phenolic hydroxyl group in view of storage stability of the resin composition, corrosion of copper wiring as a conductor, and the like. (D) The polymer compound is preferably a compound having a phenolic hydroxyl group in the molecular chain.
 (D)高分子化合物の分子鎖末端がカルボン酸残基に由来する構造(有機基)としては、芳香族ジカルボン酸、芳香族酸二無水物、脂環式ジカルボン酸、脂環式酸二無水物、脂肪族ジカルボン酸、脂肪族酸二無水物などを挙げることができるが、これらに限定されない。また、これらは単独でまたは2種以上を組み合わせて使用される。 (D) The structure (organic group) in which the molecular chain end of the polymer compound is derived from a carboxylic acid residue includes aromatic dicarboxylic acids, aromatic dianhydrides, alicyclic dicarboxylic acids, and alicyclic dianhydrides. compounds, aliphatic dicarboxylic acids, aliphatic dianhydrides, and the like, but are not limited to these. Moreover, these are used individually or in combination of 2 or more types.
 これらの中でも、パターニングの際に使用する波長に対して、透明な樹脂を設計することができ、結果として厚膜で微細なパターン加工性を発現することができる点から、脂環式のカルボン酸残基に由来する有機基であることが好ましい。 Among these, alicyclic carboxylic acid is preferred because it is possible to design a transparent resin with respect to the wavelength used for patterning, and as a result, it is possible to express fine pattern processability with a thick film. Organic groups derived from residues are preferred.
 本発明において、前記(D)高分子化合物は、前記ポリアミド、ポリイミド、およびポリアミドイミドであることが好ましいが、これらが一般式(1)および一般式(2)で表される構造から選ばれる少なくとも1種類以上の構造を有する化合物であることが好ましい。 In the present invention, the (D) polymer compound is preferably the polyamide, polyimide, and polyamideimide, but at least Compounds having one or more structures are preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(一般式(1)および(2)中、XおよびXは独立に、Xは2~10価の有機基を示し、Xは4~10価の有機基を示し、YおよびYはそれぞれ独立に2~4価の有機基を示し、Rは水素原子または炭素数1~20の有機基を示す。qは0~2の整数であり、r,s,t,uはそれぞれ独立に0~4の整数である。)
 一般式(1)および(2)中のYおよびYは2価~4価の有機基を示し、ジアミン由来の有機基を表している。
(In general formulas (1) and (2), X 1 and X 2 independently represent a divalent to 10-valent organic group, X 2 represents a 4- to 10-valent organic group, Y 1 and Y 2 each independently represents a divalent to tetravalent organic group, R represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, q is an integer of 0 to 2, r, s, t and u are Each is independently an integer from 0 to 4.)
Y 1 and Y 2 in general formulas (1) and (2) each represent a divalent to tetravalent organic group, and represent an organic group derived from diamine.
 前記(D)高分子化合物の一般式(1)および(2)中のYおよびYは、フェノール性水酸基を有するジアミン残基を含有することが好ましい。フェノール性水酸基を有するジアミン残基を含有させることで、樹脂のアルカリ現像液への適度な溶解性が得られるため、露光部と未露光部の高いコントラストが得られ、所望のパターンが形成できる。 Y 1 and Y 2 in general formulas (1) and ( 2 ) of the polymer compound (D) preferably contain a diamine residue having a phenolic hydroxyl group. By containing a diamine residue having a phenolic hydroxyl group, moderate solubility of the resin in an alkaline developer can be obtained, so a high contrast between exposed and unexposed areas can be obtained, and a desired pattern can be formed.
 フェノール性水酸基を有するジアミンの具体的な例としては、例えば、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、2,2’-ジトリフルオロメチル-5,5’-ジヒドロキシル-4,4’-ジアミノビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-5,5’-ジヒドロキシベンジジンなどの芳香族ジアミンや、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物、また、下記に示す構造を有するジアミンなどを挙げることができるが、これらに限定されない。共重合させる他のジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして用いることができる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。 Specific examples of diamines having a phenolic hydroxyl group include bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino- 4-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, 2,2'- Ditrifluoromethyl-5,5'-dihydroxyl-4,4'-diaminobiphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, 2,2'-bis(trifluoromethyl)-5,5'- Aromatic diamines such as dihydroxybenzidine, compounds in which some of the hydrogen atoms of these aromatic rings or hydrocarbons are substituted with alkyl groups having 1 to 10 carbon atoms, fluoroalkyl groups, halogen atoms, etc., and the following Examples include, but are not limited to, diamines having the structures shown. Other diamines to be copolymerized can be used as they are or as corresponding diisocyanate compounds, trimethylsilylated diamines. Moreover, you may use combining these 2 or more types of diamine components.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)および(2)中のYおよびYは、前記以外の芳香族を有するジアミン残基を含んでもよい。これらを共重合することで、耐熱性が向上できる。芳香族を有するジアミン残基の具体的な例としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミンや、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物などを挙げることができるが、これらに限定されない。共重合させる他のジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして用いることができる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。 Y 1 and Y 2 in general formulas (1) and (2) may contain a diamine residue having an aromatic group other than those mentioned above. Heat resistance can be improved by copolymerizing these. Specific examples of aromatic diamine residues include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4 '-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 1,4-bis(4-aminophenoxy)benzene, benzine, m- phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxyphenyl)sulfone, bis(3-aminophenoxyphenyl)sulfone, bis(4-aminophenoxy)biphenyl , bis{4-(4-aminophenoxy)phenyl}ether, 1,4-bis(4-aminophenoxy)benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-diethyl- 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2',3,3'-tetramethyl -4,4'-diaminobiphenyl, 3,3',4,4'-tetramethyl-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, etc. and aromatic diamines, and compounds in which some of the hydrogen atoms of these aromatic rings or hydrocarbons are substituted with an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, a halogen atom, or the like. It is not limited to these. Other diamines to be copolymerized can be used as they are or as corresponding diisocyanate compounds, trimethylsilylated diamines. Moreover, you may use combining these 2 or more types of diamine components.
 本発明における上記一般式(1)や一般式(2)中、XおよびXは独立に、XおよびXはカルボン酸残基が好ましく、Xは2価~10価の有機基が好ましく、Xは4価~10価の有機基が好ましい。 In the general formula (1) and general formula (2) in the present invention, X 1 and X 2 are preferably carboxylic acid residues, and X 1 is a divalent to decavalent organic group. is preferred, and X 2 is preferably a tetravalent to decavalent organic group.
 前記カルボン酸残基としては、脂環式テトラカルボン酸二無水物に由来する構造を有することが好ましい。つまり(D)高分子化合物が、ポリアミド、ポリイミド、及びポリアミドイミドからなる群より選ばれる少なくとも1つの化合物であって、さらに、脂環式テトラカルボン酸二無水物に由来する構造を有することが好ましい。カルボン酸残基が、脂環式テトラカルボン酸二無水物に由来する構造を有することにより、露光波長に対する樹脂組成物の光透過率が高くなり、20μm以上の厚膜での加工が容易となる。更に理由は定かではないが、(D)高分子化合物が脂環式テトラカルボン酸二無水物に由来する構造を有することにより、芳香族酸二無水物と比較して、カチオン重合の反応性が高くなり、硬化膜の耐薬品性が向上する点で好ましい。 The carboxylic acid residue preferably has a structure derived from an alicyclic tetracarboxylic dianhydride. That is, it is preferable that the polymer compound (D) is at least one compound selected from the group consisting of polyamide, polyimide, and polyamideimide, and further has a structure derived from an alicyclic tetracarboxylic dianhydride. . When the carboxylic acid residue has a structure derived from an alicyclic tetracarboxylic dianhydride, the light transmittance of the resin composition with respect to the exposure wavelength is increased, and processing into a thick film of 20 μm or more is facilitated. . Furthermore, although the reason is not clear, the (D) polymer compound has a structure derived from an alicyclic tetracarboxylic dianhydride, so that the reactivity of cationic polymerization is higher than that of an aromatic dianhydride. It is preferable in that it increases and the chemical resistance of the cured film is improved.
 脂環式テトラカルボン酸二無水物の中でも、硬化物とした際の耐薬品性が向上し、イオンマイグレーション耐性が向上する点から、多環構造を有する脂環式テトラカルボン酸二無水物であることが好ましい。 Among the alicyclic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides having a polycyclic structure improve chemical resistance when cured and improve ion migration resistance. is preferred.
 本発明における(D)高分子化合物は下記一般式(3)または(4)の少なくとも一方で表される化合物に由来する構造を有することが好ましい。 The (D) polymer compound in the present invention preferably has a structure derived from a compound represented by at least one of the following general formula (3) or (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、Rはそれぞれ独立に、水素原子またはメチル基を表す。)
 (D)高分子化合物が前記一般式(3)または(4)で表される化合物に由来する構造を有することで、樹脂骨格が屈曲性を有することで、硬化前の樹脂組成物として、有機溶剤への溶解性が高く、組成物中において樹脂の析出が発生し難く、保存安定性に優れる点から好ましい。
(In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a methyl group.)
(D) The polymer compound has a structure derived from the compound represented by the general formula (3) or (4), and the resin skeleton has flexibility, so that the resin composition before curing has an organic It is preferable because it has high solubility in a solvent, hardly causes precipitation of the resin in the composition, and is excellent in storage stability.
 多環構造を有する脂環式テトラカルボン酸二無水物に由来する有機基の具体的な例としては、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-4メチル-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-7メチル-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物が挙げられる。 A specific example of the organic group derived from an alicyclic tetracarboxylic dianhydride having a polycyclic structure is 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4 -tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-4methyl-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-7-methyl-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, norbornane-2-spiro- 2′-Cyclopentanone-5′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-2′-cyclohexanone-6′ -spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride.
 前記カルボン酸残基としては、前記多環構造を有する脂環式テトラカルボン酸二無水物以外の酸二無水物を含んでもよい。具体的には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物などの芳香族テトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、2,3,5-トリカルボキシ-2-シクロペンタン酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物などを挙げることができるが、これらに限定されない。また、これらは単独でまたは2種以上を組み合わせて使用される。 The carboxylic acid residue may include an acid dianhydride other than the alicyclic tetracarboxylic dianhydride having the polycyclic structure. Specifically, pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′-biphenyltetracarboxylic dianhydride, 2, 2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride product, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (3,4- dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-di carboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid Dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fluoric acid dianhydride, 9,9-bis{4-(3,4-dicarboxyphenoxy)phenyl}fluoric acid dianhydride, 2 ,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,2 - aromatic tetracarboxylic dianhydrides such as bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 1,2 ,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 5-(2 ,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, 2,3,5-tricarboxy-2-cyclopentaneacetic dianhydride, 2,3,4 ,5-tetrahydrofurantetracarboxylic dianhydride and the like, but are not limited thereto. Moreover, these are used individually or in combination of 2 or more types.
 本発明における一般式(1)および(2)で表される構造のモル比は、重合する際に用いるモノマーのモル比から算出する方法や、核磁気共鳴装置(NMR)を用いて、得られた樹脂、樹脂組成物、硬化膜におけるポリアミド構造やイミド前駆体構造、イミド構造のピークを検出する方法において確認できる。 The molar ratio of the structures represented by the general formulas (1) and (2) in the present invention is obtained by a method of calculating from the molar ratio of the monomers used for polymerization or by using a nuclear magnetic resonance spectrometer (NMR). It can be confirmed by a method for detecting peaks of a polyamide structure, an imide precursor structure, or an imide structure in a resin, a resin composition, or a cured film.
 分子鎖末端がカルボン酸残基に由来する構造である(D)高分子化合物は、例えば分子鎖末端がカルボン酸残基であるポリイミドの場合には、重合の際に用いるジアミンに対して酸無水物の含有量を多くすることで得ることができる。その際、(D)高分子化合物のカルボン酸残基の合計を100モル%とした場合、アミン残基の合計は60モル%以上98モル%以下であることが好ましい。つまり(D)高分子化合物は、カルボン酸残基の合計を100モル%とした場合に、アミン残基の合計を60~98モル%として重合させて得られる化合物であることが好ましい。アミン残基の合計が60モル%以上であると、重量平均分子量が1,000以上となり易く、フィルム状にする際の製膜性に優れ、98モル%以下であると末端がアミン残基となる高分子化合物が含有される割合が小さくなり、カチオン重合反応が進行し易くなり、硬化膜の耐薬品性が向上する。 The (D) polymer compound having a structure derived from a carboxylic acid residue at the molecular chain end is, for example, in the case of a polyimide having a carboxylic acid residue at the molecular chain end, an acid anhydride with respect to the diamine used during polymerization. It can be obtained by increasing the content of the substance. At that time, when the total amount of carboxylic acid residues in the polymer compound (D) is 100 mol %, the total amount of amine residues is preferably 60 mol % or more and 98 mol % or less. That is, the polymer compound (D) is preferably a compound obtained by polymerizing 60 to 98 mol % of amine residues in total with respect to 100 mol % of carboxylic acid residues in total. When the total amount of amine residues is 60 mol% or more, the weight average molecular weight tends to be 1,000 or more, and the film-forming property is excellent. The content ratio of the polymer compound becomes smaller, the cationic polymerization reaction proceeds more easily, and the chemical resistance of the cured film is improved.
 分子鎖末端がカルボン酸残基に由来する構造である(D)高分子化合物を得る別の方法として、一般に末端封止剤として用いられる化合物の中から特定の化合物、具体的には、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物を用いることによっても得る事ができる。 As another method for obtaining the (D) polymer compound whose molecular chain end is a structure derived from a carboxylic acid residue, a specific compound, specifically, an acid anhydride, among compounds generally used as a terminal blocking agent It can also be obtained by using a compound, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
 (D)高分子化合物の分子鎖末端を水酸基、カルボキシル基、スルホン酸基、チオール基、ビニル基、エチニル基、またはアリル基を有するカルボン酸または酸無水物の末端封止剤により封止することで、前記(D)高分子化合物のアルカリ水溶液に対する溶解速度や得られる硬化膜の機械特性を好ましい範囲に容易に調整することができる。また、複数の末端封止剤を反応させ、複数の異なる末端基を導入してもよい。 (D) blocking the molecular chain ends of the polymer compound with a carboxylic acid or acid anhydride terminal blocker having a hydroxyl group, a carboxyl group, a sulfonic acid group, a thiol group, a vinyl group, an ethynyl group, or an allyl group; Therefore, the dissolution rate of the (D) polymer compound in an alkaline aqueous solution and the mechanical properties of the resulting cured film can be easily adjusted within a preferable range. Also, a plurality of terminal blocking agents may be reacted to introduce a plurality of different terminal groups.
 末端封止剤としての酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の一方のカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやイミダゾール、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物などが好ましい。これらを2種以上用いてもよい。 Acid anhydrides, monocarboxylic acids, monoacid chloride compounds as terminal blocking agents, and monoactive ester compounds as phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic acid Acid anhydrides such as anhydride, 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1- Monomers such as hydroxy-5-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid and 4-carboxybenzenesulfonic acid Carboxylic acids and monoacid chloride compounds in which these carboxyl groups are acid chlorides, terephthalic acid, phthalic acid, maleic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7- Mono-acid chloride compounds in which only one carboxyl group of dicarboxylic acids such as dicarboxynaphthalene and 2,6-dicarboxynaphthalene is acid-chlorinated, mono-acid chloride compounds and N-hydroxybenzotriazole, imidazole, N-hydroxy-5- Active ester compounds obtained by reaction with norbornene-2,3-dicarboximide are preferred. You may use 2 or more types of these.
 これらの末端封止剤を導入した高分子化合物は、分子鎖末端がカルボン酸残基に由来する構造である(D)高分子化合物となる。そして分子鎖末端がカルボン酸残基に由来する構造である(D)高分子化合物を得るために用いることのできる末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された(A)高分子化合物を、酸性溶液に溶解し、構成単位であるアミン成分と酸無水物成分に分解し、これをガスクロマトグラフィー(GC)や、NMRにより、本発明に使用された末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂成分を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13C-NMRスペクトルで測定することによっても、容易に検出できる。 Polymer compounds into which these terminal blocking agents are introduced are (D) polymer compounds whose molecular chain ends are derived from carboxylic acid residues. A terminal blocking agent that can be used to obtain the (D) polymer compound having a structure derived from a carboxylic acid residue at the molecular chain end can be easily detected by the following method. For example, the (A) polymer compound into which a terminal blocker has been introduced is dissolved in an acidic solution, decomposed into the amine component and the acid anhydride component, which are structural units, and analyzed by gas chromatography (GC) or NMR. can easily detect the terminal blocking agent used in the present invention. Apart from this, it can be easily detected by directly measuring the resin component into which the end blocking agent has been introduced by pyrolysis gas chromatography (PGC), infrared spectrum and 13C-NMR spectrum.
 本発明において、(D)高分子化合物は、たとえば、次の方法により合成されるが、これに限定はされない。ポリイミド構造は、ジアミンの一部を末端封止剤である1級モノアミンに置き換えて、または、テトラカルボン酸二無水物を、末端封止剤であるジカルボン酸無水物に置き換えて、公知の方法で合成される。例えば、低温中でテトラカルボン酸二無水物とジアミン化合物とモノアミンを反応させる方法、低温中でテトラカルボン酸二無水物とジカルボン酸無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミンとモノアミンと縮合剤の存在下で反応させる方法などの方法を利用して、ポリイミド前駆体を得る。その後、公知のイミド化反応法を利用してポリイミドを合成することができる。 In the present invention, the (D) polymer compound is synthesized, for example, by the following method, but is not limited to this. The polyimide structure is formed by replacing part of the diamine with a primary monoamine as a terminal blocker, or by replacing tetracarboxylic dianhydride with a dicarboxylic anhydride as a terminal blocker by a known method. synthesized. For example, a method of reacting a tetracarboxylic dianhydride, a diamine compound and a monoamine at a low temperature, a method of reacting a tetracarboxylic dianhydride, a dicarboxylic anhydride and a diamine compound at a low temperature, and a method of reacting a tetracarboxylic dianhydride with a diamine compound. A polyimide precursor is obtained by using a method such as a method of obtaining a diester with an alcohol, and then reacting a diamine, a monoamine, and a condensing agent. After that, a polyimide can be synthesized using a known imidization reaction method.
 本発明において、(D)高分子化合物は、上記の方法で重合させた後、多量の水またはメタノールおよび水の混合液などに投入し、沈殿させて濾別乾燥し、単離することが好ましい。乾燥温度は40~100℃が好ましく、より好ましくは50~80℃である。この操作によって未反応のモノマーや、2量体や3量体などのオリゴマー成分が除去され、熱硬化後の膜特性を向上させることができる。 In the present invention, it is preferable that the polymer compound (D) is polymerized by the above method, then poured into a large amount of water or a mixture of methanol and water, etc., precipitated, filtered, dried, and isolated. . The drying temperature is preferably 40-100°C, more preferably 50-80°C. By this operation, unreacted monomers and oligomer components such as dimers and trimers are removed, and the film properties after thermal curing can be improved.
 本発明における、イミド化率は、例えば以下の方法で容易に求めることができる。まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm-1付近、1377cm-1付近)の存在を確認する。次に、そのポリマーを350℃で1時間熱処理したもののイミド化率を100%のサンプルとして赤外吸収スペクトルを測定し、熱処理前後の樹脂の1377cm-1付近のピーク強度を比較することによって、熱処理前樹脂中のイミド基の含量を算出し、イミド化率を求める。熱硬化時の閉環率の変化を抑制し、低応力化の効果が得られるため、イミド化率は50%以上が好ましく、80%以上がさらに好ましい。 The imidization rate in the present invention can be easily determined, for example, by the following method. First, the infrared absorption spectrum of the polymer is measured to confirm the presence of absorption peaks (near 1780 cm −1 and 1377 cm −1 ) of the imide structure due to polyimide. Next, the polymer was heat-treated at 350 ° C. for 1 hour , and the infrared absorption spectrum was measured as a sample with an imidization rate of 100%. The imidization rate is obtained by calculating the content of imide groups in the pre-resin. The imidization rate is preferably 50% or more, more preferably 80% or more, in order to suppress the change in the ring closure rate during thermosetting and to obtain the effect of reducing the stress.
 本発明の樹脂組成物は、熱架橋剤を含有してもよく、アルコキシメチル基、メチロール基を有する化合物が好ましい。 The resin composition of the present invention may contain a thermal cross-linking agent, preferably a compound having an alkoxymethyl group or a methylol group.
 アルコキシメチル基またはメチロール基を有する例としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標)MX-290、NIKALAC MX-280、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。 Examples having an alkoxymethyl group or a methylol group include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMO-PC, DMO-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (trade names, manufactured by Honshu Chemical Industry Co., Ltd.), NIKALAC (registered trademark) MX-290 , NIKALAC MX-280, NIKALAC MW-100LM, and NIKALAC MX-750LM (all trade names, manufactured by Sanwa Chemical Co., Ltd.).
 本発明の樹脂組成物は、さらにシラン化合物を含有することができる。シラン化合物を含有することにより、耐熱性樹脂被膜の密着性が向上する。シラン化合物の具体例としては、N-フェニルアミノエチルトリメトキシシラン、N-フェニルアミノエチルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリエトキシシラン、N-フェニルアミノブチルトリメトキシシラン、N-フェニルアミノブチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシランなどを挙げることができる。 The resin composition of the present invention can further contain a silane compound. By containing the silane compound, the adhesion of the heat-resistant resin coating is improved. Specific examples of silane compounds include N-phenylaminoethyltrimethoxysilane, N-phenylaminoethyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-phenylaminopropyltriethoxysilane, N-phenylaminobutyltriethoxysilane. methoxysilane, N-phenylaminobutyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris(β-methoxyethoxy)silane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltri Methoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane and the like can be mentioned.
 本発明の樹脂組成物は、必要に応じて、支持体との塗れ性を向上させる目的で界面活性剤、乳酸エチルやプロピレングリコールモノメチルエーテルアセテートなどのエステル類、エタノールなどのアルコール類、シクロヘキサノン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類を含有してもよい。また、熱膨張係数の抑制や高誘電率化、低誘電率化のなどの目的で、二酸化ケイ素、二酸化チタンなどの無機粒子、あるいはポリイミドの粉末などを含有してもよい。 The resin composition of the present invention may optionally contain surfactants, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, alcohols such as ethanol, cyclohexanone and methyl for the purpose of improving wettability with the support. Ketones such as isobutyl ketone and ethers such as tetrahydrofuran and dioxane may be included. In addition, for the purpose of suppressing the thermal expansion coefficient, increasing the dielectric constant, or decreasing the dielectric constant, inorganic particles such as silicon dioxide or titanium dioxide, polyimide powder, or the like may be contained.
 本発明の樹脂組成物は、適度な透過率を有することで、セラミックス基板表面で乱反射する反射光を抑制するため、セラミックス基板の表面の上でパターン加工する用途に用いることが好ましい。 Because the resin composition of the present invention has an appropriate transmittance, it suppresses diffusely reflected light from the surface of the ceramic substrate, so it is preferably used for pattern processing on the surface of the ceramic substrate.
 本発明の樹脂組成物は、樹脂組成物から形成された厚み20μmの樹脂組成物被膜の透過率が、20%以上65%以下であって、樹脂組成物から前記(C)増感剤を除いた樹脂組成物Cを用いて形成された厚み20μmの樹脂組成物C被膜の透過率が70%以上100%以下であることが好ましい。 In the resin composition of the present invention, the transmittance of a resin composition film having a thickness of 20 μm formed from the resin composition is 20% or more and 65% or less, and the (C) sensitizer is excluded from the resin composition. It is preferable that the transmittance of the resin composition C film having a thickness of 20 μm formed using the resin composition C is 70% or more and 100% or less.
 樹脂組成物Cを用いて形成された20μmの樹脂組成物被膜の透過率が70%以上100以下であると、そのような本発明の樹脂組成物を用いてパターン加工する際に、深部にも照射光が到達する。更に、本発明の樹脂組成物から形成された20μmの樹脂組成物被膜の透過率が65%以下であることによって、セラミックス等の表面が粗い基板上でパターン加工をする際に、樹脂組成物被膜を透過し、基板表面で乱反射する反射光を抑制し、微細なパターンを得ることができる。一方、該透過率が20%以上であることによって、深部にも照射光が到達し、樹脂組成物被膜の底部においても(C)増感剤が光を吸収し、吸収した光エネルギーを(B)光カチオン重合開始剤に供与し、酸を発生しカチオン重合が進行し、微細な孤立パターンが剥離することなく形成することができる。 When the transmittance of a 20 μm resin composition film formed using the resin composition C is 70% or more and 100 or less, when patterning is performed using such a resin composition of the present invention, even in deep parts Irradiation light arrives. Furthermore, since the transmittance of the resin composition film of 20 μm formed from the resin composition of the present invention is 65% or less, the resin composition film can be used for pattern processing on a substrate with a rough surface such as ceramics. can be transmitted through the surface of the substrate, and the reflected light diffusely reflected on the substrate surface can be suppressed to obtain a fine pattern. On the other hand, when the transmittance is 20% or more, the irradiated light reaches a deep portion, and the sensitizer (C) absorbs light even at the bottom of the resin composition film, and the absorbed light energy is transferred to (B ) by donating to a photo-cationic polymerization initiator to generate acid, cationic polymerization proceeds, and a fine isolated pattern can be formed without exfoliation.
 樹脂組成物Cは、単純に(C)増感剤のみを除いて配合しなおした樹脂組成物である。例えば、(A)カチオン重合性化合物50質量部、(B)光カチオン重合開始剤50質量部、及び(C)増感剤50質量部を含有する本発明の樹脂組成物の場合には、樹脂組成物Cは、(A)カチオン重合性化合物50質量部、及び(B)光カチオン重合開始剤50質量部を含有する樹脂組成物を意味し、例えば、(A)カチオン重合性化合物30質量部、(B)光カチオン重合開始剤30質量部、(C)増感剤30質量部、(D)高分子化合物30質量部、及びその他の成分30質量部を含有する本発明の樹脂組成物の場合には、樹脂組成物Cは、(A)カチオン重合性化合物30質量部、(B)光カチオン重合開始剤30質量部、(D)高分子化合物30質量部、及びその他の成分30質量部を含有する樹脂組成物を意味する。 Resin composition C is a resin composition that is simply remixed by removing only (C) the sensitizer. For example, in the case of the resin composition of the present invention containing (A) 50 parts by mass of a cationic polymerizable compound, (B) 50 parts by mass of a photocationic polymerization initiator, and (C) 50 parts by mass of a sensitizer, the resin Composition C means a resin composition containing (A) 50 parts by mass of a cationic polymerizable compound and (B) 50 parts by mass of a cationic photopolymerization initiator, for example, (A) 30 parts by mass of a cationic polymerizable compound , (B) 30 parts by weight of a photocationic polymerization initiator, (C) 30 parts by weight of a sensitizer, (D) 30 parts by weight of a polymer compound, and 30 parts by weight of other components of the resin composition of the present invention In the case, the resin composition C contains (A) 30 parts by weight of a cationic polymerizable compound, (B) 30 parts by weight of a photocationic polymerization initiator, (D) 30 parts by weight of a polymer compound, and 30 parts by weight of other components means a resin composition containing
 本発明の樹脂組成物から形成された厚み20μmの樹脂組成物被膜の透過率とは、本発明の樹脂組成物を用いて20μmの樹脂組成物被膜を形成することで測定した場合の透過率を意味する。同様に、厚み20μmの樹脂組成物C被膜の透過率とは、樹脂組成物Cを配合して、それを用いて20μmの樹脂組成物被膜を形成することで測定した場合の透過率を意味する。 The transmittance of a resin composition film having a thickness of 20 μm formed from the resin composition of the present invention is the transmittance measured by forming a resin composition film having a thickness of 20 μm using the resin composition of the present invention. means. Similarly, the transmittance of a resin composition C film having a thickness of 20 μm means the transmittance measured by blending the resin composition C and using it to form a resin composition film having a thickness of 20 μm. .
 本発明の樹脂組成物から形成された20μmの樹脂組成物被膜の作成方法並びに20μmの樹脂組成物C被膜の作成方法は、下記の通りである。つまり、本発明の樹脂組成物、又は樹脂組成物Cを、コンマロールコーターを用いて、厚さ50μmのポリエチレンテレフタレート(PETということがある)フィルム上に塗布し、120℃で8分間乾燥を行った後、保護フィルムとして、厚さ30μmのポリプロピレン(PPということがある)フィルムをラミネートし、樹脂組成物被膜を有する樹脂組成物フィルムを得ることが出来る。 A method for producing a 20 μm thick resin composition film formed from the resin composition of the present invention and a method for producing a 20 μm thick resin composition C film are as follows. That is, the resin composition of the present invention or resin composition C is applied onto a polyethylene terephthalate (sometimes referred to as PET) film having a thickness of 50 μm using a comma roll coater and dried at 120° C. for 8 minutes. After that, a polypropylene (sometimes referred to as PP) film having a thickness of 30 μm is laminated as a protective film to obtain a resin composition film having a resin composition coating.
 透過率の測定方法は、後述する樹脂組成物被膜の項に記した方法の通りである。 The method for measuring the transmittance is as described in the section on the resin composition coating described later.
 20μmの樹脂組成物被膜の透過率は、膜厚15μm以上25μm以下の樹脂組成物被膜を形成して、そのいずれかにおける測定結果を厚み20μmに補正したもので良い。この詳細は、後述する樹脂組成物被膜の項に記した方法の通りである。 The transmittance of a 20 μm resin composition film may be obtained by forming a resin composition film having a film thickness of 15 μm or more and 25 μm or less, and correcting the measurement result of one of them to a thickness of 20 μm. The details are as described in the section of the resin composition coating described later.
 本発明の樹脂組成物は、硬化前の形状は限定されず、例えば、ワニス状やフィルム状などが挙げられる。ここでフィルム状とした本発明の樹脂組成物は、本発明の樹脂組成物被膜ともよぶ。そして本発明の樹脂組成物フィルムは、本発明の樹脂組成物の形態をフィルム状としたものと支持体とを有する、つまり本発明の樹脂組成物フィルムは、本発明の樹脂組成物から形成された樹脂組成物被膜及び支持体を有する樹脂組成物フィルムである。そのため本発明の樹脂組成物フィルムは、支持体上に形成されたフィルム状、つまり支持体上に本発明の樹脂組成物から形成された樹脂組成物被膜を有する樹脂組成物フィルムである。ワニス状で用いる場合は、(A)~(C)成分および必要に応じ加えられる成分を有機溶媒に溶解させたものを用いることができる。また、樹脂組成物フィルムは、例えば本発明の樹脂組成物を支持体上に塗布し、次いでこれを必要により乾燥することにより得られる。 The shape of the resin composition of the present invention before curing is not limited, and examples thereof include a varnish shape and a film shape. Here, the film-shaped resin composition of the present invention is also referred to as the resin composition coating of the present invention. The resin composition film of the present invention comprises a film-like form of the resin composition of the present invention and a support. A resin composition film having a resin composition coating and a support. Therefore, the resin composition film of the present invention is in the form of a film formed on a support, that is, a resin composition film having a resin composition film formed from the resin composition of the present invention on a support. When used in the form of a varnish, a solution obtained by dissolving components (A) to (C) and optional components in an organic solvent can be used. Also, the resin composition film can be obtained, for example, by applying the resin composition of the present invention onto a support and then drying it if necessary.
 フィルム状とした本発明の樹脂組成物、つまり本発明の樹脂組成物から形成された樹脂組成物被膜は、その厚みによらず、透過率が20%以上65%以下であることが好ましい。そしてより好ましくは、厚み20μmにおける透過率が、20%以上65%以下であることが好ましい。樹脂組成物被膜の透過率が65%以下であることによって、セラミックス等の表面が粗い基板上でパターン加工をする際に、樹脂組成物被膜を透過し、基板表面で乱反射する反射光を抑制し、微細なパターンを得ることができる。一方、該透過率が20%以上であることによって、深部にも照射光が到達し、樹脂組成物被膜の底部においても(C)増感剤が、光を吸収し、吸収した光エネルギーを(B)光カチオン重合開始剤に供与し、酸を発生しカチオン重合が進行し、微細な孤立パターンが剥離することなく形成することができる。 The film-shaped resin composition of the present invention, that is, the resin composition coating formed from the resin composition of the present invention preferably has a transmittance of 20% or more and 65% or less regardless of its thickness. More preferably, the transmittance at a thickness of 20 μm is 20% or more and 65% or less. When the transmittance of the resin composition film is 65% or less, when pattern processing is performed on a substrate with a rough surface such as ceramics, the reflected light that passes through the resin composition film and diffusely reflects on the substrate surface is suppressed. , fine patterns can be obtained. On the other hand, when the transmittance is 20% or more, the irradiated light reaches a deep portion, and the sensitizer (C) absorbs the light even at the bottom of the resin composition film, and the absorbed light energy ( B) By donating to a photocationic polymerization initiator, an acid is generated, cationic polymerization proceeds, and a fine isolated pattern can be formed without exfoliation.
 樹脂組成物被膜の透過率及び樹脂組成物被膜の厚み20μmにおける透過率は、本発明ではパターン加工をする際に用いる光の波長における透過率である。好ましくは、水銀灯のi線(365nm)、h線(405nm)、g線(436nm)のいずれかの波長で測定した際の透過率であり、少なくとも1つの測定波長において20%以上65%以下であれば良い。 In the present invention, the transmittance of the resin composition coating and the transmittance at a thickness of 20 μm of the resin composition coating are transmittances at the wavelength of the light used for pattern processing. Preferably, the transmittance is measured at any wavelength of i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp, and at least one measurement wavelength is 20% or more and 65% or less. Good to have.
 樹脂組成物被膜の厚み20μmにおける透過率は、膜厚15μm以上25μm以下の樹脂組成物被膜における測定結果を、厚み20μmに補正したもので良い。つまり、厚み20μmにおける透過率を『T20』%、実測膜厚での透過率を『T』%、実測膜厚を『t』umとした場合、下記式(1)で補正した値を算出することができる。なお、膜厚の測定方法は、JIS K7130(1999)プラスチック‐フィルム及びシート‐厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて測定される膜厚(平均膜厚)のことをいう。 The transmittance of the resin composition film having a thickness of 20 μm may be obtained by correcting the measurement result of the resin composition film having a thickness of 15 μm or more and 25 μm or less to a thickness of 20 μm. That is, when the transmittance at a thickness of 20 μm is “T 20 ”%, the transmittance at the measured film thickness is “T t ”%, and the measured film thickness is “t” um, the value corrected by the following formula (1) is can be calculated. The method for measuring the film thickness is JIS K7130 (1999) Plastics - film and sheet - thickness measurement method A method by mechanical scanning in thickness measurement method (average film thickness). Say things.
  式(1)  T20=(T/100)(20/t)×100
 次に、本発明の樹脂組成物を用いて樹脂組成物フィルムを作製する方法について説明する。本発明の樹脂組成物フィルムは樹脂組成物の溶液(ワニス)を支持体上に塗布し、次いでこれを必要により乾燥することにより得られる。樹脂組成物ワニスは、樹脂組成物に有機溶剤を添加することで得られる。ここで使用される有機溶剤としては、樹脂組成物を溶解するものであればよい。
Formula (1) T 20 =(T t /100) (20/t) ×100
Next, a method for producing a resin composition film using the resin composition of the present invention will be described. The resin composition film of the present invention is obtained by applying a solution (varnish) of the resin composition onto a support and then drying it if necessary. A resin composition varnish is obtained by adding an organic solvent to a resin composition. Any organic solvent that dissolves the resin composition may be used as the organic solvent.
 有機溶剤としては、具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテルなどのエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類、アセトン、メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類、ブチルアルコール、イソブチルアルコール、ペンタノ-ル、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、その他、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトンなどが挙げられる。 Specific examples of organic solvents include ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether, Acetates such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate and butyl lactate , acetone, methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclopentanone, ketones such as 2-heptanone, butyl alcohol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, alcohols such as diacetone alcohol, aromatic hydrocarbons such as toluene and xylene, and others, N-methyl-2-pyrrolidone, N-cyclohexyl- 2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, γ-butyrolactone and the like.
 樹脂組成物ワニスを濾紙やフィルターを用いて濾過しても良い。濾過方法は特に限定されないが、保留粒子径0.4μm~10μmのフィルターを用いて加圧濾過により濾過する方法が好ましい。 The resin composition varnish may be filtered using filter paper or a filter. The filtration method is not particularly limited, but a method of filtering by pressure filtration using a filter having a retained particle size of 0.4 μm to 10 μm is preferred.
 本発明の樹脂組成物フィルムは、支持体上に形成されて用いられる。支持体は特に限定されないが、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。支持体と樹脂組成物フィルムとの接合面には、密着性と剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理を施してもよい。また、支持体の厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましい。 The resin composition film of the present invention is used by being formed on a support. The support is not particularly limited, but various commercially available films such as polyethylene terephthalate (PET) film, polyphenylene sulfide film, and polyimide film can be used. The bonding surface between the support and the resin composition film may be surface-treated with silicone, a silane coupling agent, an aluminum chelating agent, polyurea, or the like in order to improve adhesion and releasability. The thickness of the support is not particularly limited, but from the viewpoint of workability, it is preferably in the range of 10 to 100 μm.
 本発明の樹脂組成物フィルムは、表面を保護するために、膜上に保護フィルムを有してもよい。これにより、大気中のゴミやチリ等の汚染物質から樹脂組成物フィルム表面を保護することができる。保護フィルムとしては、ポリオレフィンフィルム、ポリエステルフィルム等が挙げられる。保護フィルムは、樹脂組成物フィルムとの接着力が小さいものが好ましい。 The resin composition film of the present invention may have a protective film on the film in order to protect the surface. Thereby, the surface of the resin composition film can be protected from contaminants such as dirt and dust in the atmosphere. Examples of protective films include polyolefin films and polyester films. The protective film preferably has a small adhesive force to the resin composition film.
 樹脂組成物ワニスを支持体に塗布する方法としてはスピンナを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、0.5μm以上100μm以下であることが好ましい。 Methods for applying the resin composition varnish to the support include spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, and comma roll coater. , gravure coater, screen coater, slit die coater and the like. In addition, although the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, etc., it is generally preferable that the film thickness after drying is 0.5 μm or more and 100 μm or less.
 乾燥には、オーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、樹脂組成物フィルムが未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、40℃から120℃の範囲で1分から数十分行うことが好ましい。また、これらの温度を組み合わせて段階的に昇温してもよく、例えば、70℃、80℃、90℃で各1分ずつ熱処理してもよい。 Ovens, hot plates, infrared rays, etc. can be used for drying. The drying temperature and drying time may be within a range in which the organic solvent can be volatilized, and it is preferable to appropriately set a range such that the resin composition film is in an uncured or semi-cured state. Specifically, it is preferable to carry out at a temperature in the range of 40° C. to 120° C. for 1 minute to several tens of minutes. Further, these temperatures may be combined and the temperature may be raised stepwise, for example, heat treatment may be performed at 70° C., 80° C., and 90° C. for 1 minute each.
 次に、本発明の樹脂組成物のワニス、または樹脂組成物フィルムをパターン加工する方法、および他の部材に熱圧着する方法について、例を挙げて説明する。 Next, a method for patterning the varnish of the resin composition or the resin composition film of the present invention and a method for thermocompression bonding to other members will be described with examples.
 まず、本発明の樹脂組成物、または樹脂組成物フィルムを用いて、基板上に樹脂組成物被膜を形成する方法について説明する。 First, a method for forming a resin composition film on a substrate using the resin composition or resin composition film of the present invention will be described.
 樹脂組成物ワニスを用いる場合は、まずワニスを基板上に塗布する。塗布方法としてはスピンナを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷などの方法が挙げられる。また、塗布膜厚は、塗布手法、樹脂組成物の固形分濃度および粘度などによって異なるが、通常、乾燥後の膜厚が0.5μm以上100μm以下になるように塗布することが好ましい。次に、樹脂組成物ワニスを塗布した基板を乾燥して、樹脂組成物被膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、樹脂組成物被膜が未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、50~150℃の範囲で1分から数時間行うのが好ましい。 When using a resin composition varnish, the varnish is first applied to the substrate. Examples of coating methods include spin coating using a spinner, spray coating, roll coating, and screen printing. The coating film thickness varies depending on the coating method, the solid content concentration and viscosity of the resin composition, etc., but it is usually preferable to apply the coating so that the film thickness after drying is 0.5 μm or more and 100 μm or less. Next, the substrate coated with the resin composition varnish is dried to obtain a resin composition film. Ovens, hot plates, infrared rays, etc. can be used for drying. The drying temperature and drying time may be within a range in which the organic solvent can be volatilized, and it is preferable to appropriately set a range such that the resin composition film is in an uncured or semi-cured state. Specifically, it is preferable to carry out at a temperature in the range of 50 to 150° C. for 1 minute to several hours.
 一方、樹脂組成物フィルムを用いる場合は、保護フィルムを有する場合にはこれを剥離し、樹脂組成物フィルムと基板を対向させ、熱圧着により貼り合わせて、樹脂組成物被膜を得る。熱圧着は、熱プレス処理、熱ラミネート処理、熱真空ラミネート処理等によって行うことができる。貼り合わせ温度は、基板への密着性、埋め込み性の点から40℃以上が好ましい。また、貼り合わせ時に樹脂組成物フィルムが硬化し、露光・現像工程におけるパターン形成の解像度が悪くなることを防ぐために、貼り合わせ温度は150℃以下が好ましい。 On the other hand, when a resin composition film is used, if it has a protective film, it is peeled off, and the resin composition film and the substrate are opposed to each other and bonded together by thermocompression to obtain a resin composition coating. Thermocompression bonding can be performed by heat press treatment, heat lamination treatment, heat vacuum lamination treatment, or the like. The bonding temperature is preferably 40° C. or higher from the viewpoint of adhesion to the substrate and embedding. In addition, the bonding temperature is preferably 150° C. or less in order to prevent the resin composition film from hardening during bonding and the resolution of pattern formation in the exposure and development steps from deteriorating.
 いずれの場合にも、用いられる基板は、シリコンウェハ、セラミックス類、ガリウムヒ素、有機系回路基板、無機系回路基板、およびこれらの基板に回路の構成材料が配置されたものなどが挙げられるが、これらに限定されない。有機系回路基板の例としては、ガラス布・エポキシ銅張積層板などのガラス基材銅張積層板、ガラス不織布・エポキシ銅張積層板などのコンポジット銅張積層板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板などの耐熱・熱可塑性基板、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板などのフレキシブル基板が挙げられる。また、無機系回路基板の例は、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板などのセラミックス基板、アルミニウムベース基板、鉄ベース基板などの金属系基板が挙げられる。回路の構成材料の例は、銀、金、銅などの金属を含有する導体、無機系酸化物などを含有する抵抗体、ガラス系材料および/または樹脂などを含有する低誘電体、樹脂や高誘電率無機粒子などを含有する高誘電体、ガラス系材料などを含有する絶縁体などが挙げられる。 In any case, the substrates to be used include silicon wafers, ceramics, gallium arsenide, organic circuit substrates, inorganic circuit substrates, and circuit-constituting materials arranged on these substrates. It is not limited to these. Examples of organic circuit boards include glass-based copper-clad laminates such as glass cloth and epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven fabrics and epoxy copper-clad laminates, polyetherimide resin substrates, and polyetherimide resin substrates. Examples include heat-resistant/thermoplastic substrates such as etherketone resin substrates and polysulfone resin substrates, and flexible substrates such as polyester copper-clad film substrates and polyimide copper-clad film substrates. Examples of inorganic circuit substrates include ceramic substrates such as alumina substrates, aluminum nitride substrates and silicon carbide substrates, and metal substrates such as aluminum base substrates and iron base substrates. Examples of circuit constituent materials include conductors containing metals such as silver, gold, and copper; resistors containing inorganic oxides; low dielectric materials containing glass materials and/or resins; Examples include high dielectric materials containing dielectric inorganic particles and the like, and insulators containing glass-based materials and the like.
 次に、上記方法によって形成された樹脂組成物被膜上に、所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いるのが好ましい。樹脂組成物フィルムにおいて、支持体がこれらの光線に対して透明な材質である場合は、樹脂組成物フィルムから支持体を剥離せずに露光を行ってもよい。 Next, the resin composition film formed by the above method is exposed to actinic rays through a mask having a desired pattern. Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, etc. In the present invention, it is preferable to use i-ray (365 nm), h-ray (405 nm) and g-ray (436 nm) of a mercury lamp. . In the resin composition film, when the support is made of a material transparent to these light rays, the exposure may be performed without peeling the support from the resin composition film.
 パターンを形成するには、露光後、現像液にて露光部を除去する。現像液としては、水酸化テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを含有してもよい。 To form a pattern, remove the exposed area with a developer after exposure. As a developer, aqueous solution of tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol , dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine, and other alkaline compounds. In some cases, these alkaline aqueous solutions are added with a polar solvent such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, γ-butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be contained alone or in combination. good.
 現像は、上記の現像液を被膜面にスプレーする、被膜面に現像液を液盛りする、現像液中に浸漬する、あるいは浸漬して超音波をかけるなどの方法によって行うことができる。現像時間や現像ステップ現像液の温度などの現像条件は、露光部が除去されパターン形成が可能な条件であればよい。 Development can be carried out by a method such as spraying the above developer onto the film surface, heaping the developer onto the film surface, immersing in the developer, or immersing and applying ultrasonic waves. Developing conditions such as the developing time and the temperature of the developer in the developing step may be any conditions as long as the exposed portion can be removed and the pattern can be formed.
 現像後は水にてリンス処理を行うことが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしても良い。 It is preferable to rinse with water after development. Also here, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing.
 必要に応じて現像前にベーク処理を行ってもよい。これにより、現像後のパターンの解像度が向上し、現像条件の許容幅が増大する場合がある。このベーク処理温度は50~180℃の範囲が好ましく、特に60~120℃の範囲がより好ましい。時間は5秒~数時間が好ましい。 Baking may be performed before development if necessary. This may improve the resolution of the pattern after development and increase the allowable range of development conditions. The baking temperature is preferably in the range of 50 to 180°C, more preferably in the range of 60 to 120°C. The time is preferably 5 seconds to several hours.
 パターン形成後、樹脂組成物被膜中には未反応のカチオン重合性化合物や光カチオン重合開始剤が残存している。このため、熱圧着あるいは硬化の際にこれらが熱分解しガスが発生することがある。これを避けるため、パターン形成後の樹脂組成物被膜の全面に上述の露光光を照射し、光カチオン重合開始剤から酸を発生させておくことが好ましい。こうすることによって、熱圧着あるいは硬化の際に、未反応のカチオン重合性化合物の反応が進行し、熱分解由来のガスの発生を抑制することができる。 After pattern formation, unreacted cationic polymerizable compounds and photocationic polymerization initiators remain in the resin composition film. For this reason, they may be thermally decomposed to generate gas during thermocompression bonding or curing. In order to avoid this, it is preferable to irradiate the entire surface of the resin composition film after pattern formation with the above-described exposure light to generate acid from the photocationic polymerization initiator. By doing so, the reaction of the unreacted cationic polymerizable compound proceeds during thermocompression bonding or curing, and generation of gas due to thermal decomposition can be suppressed.
 現像後、150℃~500℃の温度を加えて熱架橋反応を進行させる。架橋により、耐熱性および耐薬品性を向上させることができる。この加熱処理の方法は、温度を選び、段階的に昇温する方法や、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する方法を選択できる。前者の一例として、130℃、200℃で各30分ずつ熱処理する方法が挙げられる。後者の一例として室温より400℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。 After development, a temperature of 150°C to 500°C is applied to advance the thermal cross-linking reaction. Crosslinking can improve heat resistance and chemical resistance. As a method for this heat treatment, a method of selecting a temperature and increasing the temperature stepwise, or a method of selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours can be selected. As an example of the former, there is a method of heat-treating at 130° C. and 200° C. for 30 minutes each. An example of the latter is a method of linearly raising the temperature from room temperature to 400° C. over 2 hours.
 本発明の硬化膜は、本発明の樹脂組成物または本発明の樹脂組成物フィルムの樹脂組成物被膜を硬化した硬化膜である。本発明の硬化膜は、半導体装置等の電子部品に使用することができる。つまり本発明の電子部品とは、本発明の硬化膜を含む。 The cured film of the present invention is a cured film obtained by curing the resin composition coating of the resin composition of the present invention or the resin composition film of the present invention. The cured film of the present invention can be used for electronic parts such as semiconductor devices. That is, the electronic component of the present invention includes the cured film of the present invention.
 電子部品の一つである半導体装置とは、半導体素子の特性を利用することで機能し得る装置全般を指す。半導体素子を基板に接続した電気光学装置や半導体回路基板、複数の半導体素子を積層したもの、並びにこれらを含む電子装置は、全て半導体装置に含まれる。また、半導体素子を接続するための多層配線板等の電子部品も半導体装置に含める。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、半導体素子と配線の間の層間絶縁膜、複数の半導体素子の間の層間絶縁膜、高密度実装用多層配線の配線層間の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられるが、これに制限されず、様々な用途に用いることができる。 A semiconductor device, which is one of electronic components, refers to all devices that can function by using the characteristics of semiconductor elements. An electro-optical device in which a semiconductor element is connected to a substrate, a semiconductor circuit board, a stack of a plurality of semiconductor elements, and an electronic device including these are all included in the semiconductor device. Semiconductor devices also include electronic parts such as multilayer wiring boards for connecting semiconductor elements. Specifically, semiconductor passivation films, surface protective films of semiconductor elements, interlayer insulating films between semiconductor elements and wiring, interlayer insulating films between a plurality of semiconductor elements, and interlayer insulation between wiring layers in multi-layer wiring for high-density mounting. Although it is suitably used for applications such as insulating films and insulating layers of organic electroluminescence elements, it is not limited thereto and can be used for various applications.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited to these.
 <厚み20μmにおける透過率の評価>
 各実施例および比較例で作製した樹脂組成物フィルムの、保護フィルムがある場合はそれを剥離し、該剥離面を、5cm角のホウケイ酸塩ガラス基板上に、真空ダイアフラム式ラミネータ((株)名機製作所製、MVLP-500/600)を用いて、上下熱盤温度80℃、真空引き時間20秒、真空プレス時間30秒、貼付圧力0.5MPaの条件でラミネートし、ガラス基板上に厚み20μmの樹脂組成物被膜を形成した。そして、支持体フィルムがある場合はそれを剥離した後、紫外可視分光光度計にて365nmにおける樹脂組成物被膜の透過率を測定した。
<Evaluation of transmittance at a thickness of 20 μm>
If there is a protective film of the resin composition film prepared in each example and comparative example, it is peeled off, and the peeled surface is placed on a 5 cm square borosilicate glass substrate with a vacuum diaphragm laminator (Co., Ltd.). Meiki Seisakusho, MVLP-500/600), the upper and lower heating plate temperature is 80 ° C., the vacuum time is 20 seconds, the vacuum press time is 30 seconds, and the lamination pressure is 0.5 MPa. A 20 μm thick resin composition film was formed. Then, if there was a support film, after peeling it off, the transmittance of the resin composition film at 365 nm was measured with an ultraviolet-visible spectrophotometer.
 <(C)成分を除いた樹脂組成物を用いて形成された厚み20μmの樹脂組成物C被膜における透過率の評価>
 各実施例および比較例で作製した、樹脂組成物C被膜を用い、前記、厚み20μmにおける樹脂組成物被膜の透過率の評価と同様に、樹脂組成物Cを用いた厚み20μmの樹脂組成物C被膜における透過率を測定した。
<Evaluation of Transmittance in Resin Composition C Coating with Thickness of 20 μm Formed Using Resin Composition Excluding Component (C)>
Resin composition C having a thickness of 20 μm was prepared in the same manner as in the evaluation of the transmittance of the resin composition coating having a thickness of 20 μm, using the resin composition C coating prepared in each example and comparative example. The transmittance in the coating was measured.
 <パターン加工性の評価>
 各実施例および比較例で作製した樹脂組成物フィルムの、保護フィルムがある場合はそれを剥離し、該剥離面を、5cm角のアルミナ基板上に、真空ダイアフラム式ラミネータ((株)名機製作所製、MVLP-500/600)を用いて、上下熱盤温度80℃、真空引き時間20秒、真空プレス時間30秒、貼付圧力0.5MPaの条件でラミネートし、アルミナ基板上に樹脂組成物被膜を形成した。そして、支持体フィルムがある場合はそれを剥離した後、露光装置にビアサイズが30μmφ、20μmφ、10μmφのパターンおよび、ライン幅/スペース幅が60μm/30μm、40μm/20μm、20μm/10μmのパターンを有するマスクをセットし、マスクと樹脂組成物フィルムの露光ギャップ100μmの条件下で、i線バンドパスフィルターを備え付けた超高圧水銀灯を用いて、露光量200mJ/cm、300mJ/cm、400mJ/cm、500mJ/cm(i線換算)で露光を行った。露光後、ホットプレートで90℃、10分間、露光後加熱を行った。その後、ディップ現像にて、プロピレングリコールモノメチルエーテルアセテート(PGMEA)または水酸化テトラメチルアンモニウムの2.38質量%水溶液(TMAH)を用いて未露光部を除去し、その後、イソプロパノール(IPA)または水にてリンス処理をした。現像時間は、未露光部が完全に溶解した時間の2倍の時間とした。この様にして得られたパターンを、光学顕微鏡で観察し、パターンにツマリ等の異常のない場合の最小のサイズを解像度の評価とした。また、パターンが解像しなかったものを0(不良)とした。各実施例で用いた現像液およびリンス液は表1に示した。
<Evaluation of pattern workability>
If there is a protective film of the resin composition film produced in each example and comparative example, it is peeled off, and the peeled surface is placed on a 5 cm square alumina substrate with a vacuum diaphragm laminator (Meiki Seisakusho Co., Ltd.). (manufactured by MVLP-500/600), laminated under the conditions of upper and lower heating plate temperatures of 80 ° C, vacuum drawing time of 20 seconds, vacuum press time of 30 seconds, and lamination pressure of 0.5 MPa, and coated with a resin composition on an alumina substrate. formed. Then, if there is a support film, after peeling it off, patterns with via sizes of 30 μmφ, 20 μmφ, and 10 μmφ, and patterns with line/space widths of 60 μm/30 μm, 40 μm/20 μm, and 20 μm/10 μm are formed in the exposure device. A mask was set, and an exposure amount of 200 mJ/cm 2 , 300 mJ/cm 2 , and 400 mJ/cm was applied using an ultra-high pressure mercury lamp equipped with an i-line bandpass filter under the condition of an exposure gap of 100 μm between the mask and the resin composition film. 2 , exposure was performed at 500 mJ/cm 2 (i-line conversion). After exposure, post-exposure heating was performed on a hot plate at 90° C. for 10 minutes. After that, in dip development, remove the unexposed areas using propylene glycol monomethyl ether acetate (PGMEA) or a 2.38% by mass aqueous solution of tetramethylammonium hydroxide (TMAH), then isopropanol (IPA) or water. was rinsed. The development time was twice the time required for the unexposed areas to completely dissolve. The pattern thus obtained was observed with an optical microscope, and the minimum size when there was no abnormality such as clogging in the pattern was used as the evaluation of resolution. In addition, 0 (defective) was given when the pattern was not resolved. Table 1 shows the developer and rinse solution used in each example.
 合成例1 ヒドロキシル基含有ジアミン化合物(a)の合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以降BAHFと呼ぶ)(18.3g、0.05モル)をアセトン100mL、プロピレンオキシド(17.4g、0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド(20.4g、0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色個体をろ別し、50℃で真空乾燥した。
Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound (a) 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (hereinafter referred to as BAHF) (18.3 g, 0.05 mol) was added to 100 mL of acetone. , propylene oxide (17.4 g, 0.3 mol) and cooled to -15°C. A solution of 3-nitrobenzoyl chloride (20.4 g, 0.11 mol) dissolved in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was allowed to react at -15°C for 4 hours, and then returned to room temperature. The precipitated white solid was separated by filtration and vacuum dried at 50°C.
 得られた白色個体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5%パラジウム―炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(a)を得た。得られた個体はそのまま反応に使用した。 30 g of the resulting white solid was placed in a 300 mL stainless steel autoclave, dispersed in 250 mL of methyl cellosolve, and 2 g of 5% palladium-carbon was added. Hydrogen was introduced here with a balloon, and the reduction reaction was carried out at room temperature. After about 2 hours, the reaction was terminated after confirming that the balloon did not deflate any more. After completion of the reaction, the palladium compound as a catalyst was removed by filtration and concentrated with a rotary evaporator to obtain a hydroxyl group-containing diamine compound (a) represented by the following formula. The obtained individual was used for the reaction as it was.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 合成例2 ポリイミド(D-1)の合成
 乾燥窒素気流下、BAHF(29.30g、0.08モル)をγ―ブチロラクトン(以下、GBLとする)80gに添加し、120℃で攪拌溶解した。次に、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物(以下、TDA-100とする)(30.03g、0.1モル)をGBL20gとともに加えて、120℃で1時間攪拌し、次いで200℃で4時間攪拌して反応溶液を得た。次に、反応溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で5時間乾燥した。
Synthesis Example 2 Synthesis of polyimide (D-1) Under a dry nitrogen stream, BAHF (29.30 g, 0.08 mol) was added to 80 g of γ-butyrolactone (hereinafter referred to as GBL), and stirred and dissolved at 120°C. Next, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (hereinafter referred to as TDA-100) (30 0.03 g, 0.1 mol) was added with 20 g of GBL and stirred at 120° C. for 1 hour and then at 200° C. for 4 hours to obtain a reaction solution. Next, the reaction solution was poured into 3 L of water to collect a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 5 hours.
 合成例3 ポリアミドイミド(D-2)の合成
 乾燥窒素気流下、ヒドロキシル基含有ジアミン化合物(a)(15.72g、0.04モル)およびBAHF(14.65g、0.04モル)をGBL100gに添加し、120℃で攪拌した。次に、TDA-100(30.03g、0.1モル)をGBL20gとともに加えて、120℃で1時間攪拌し、次いで200℃で4時間攪拌して反応溶液を得た。次に、反応溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で5時間乾燥した。
Synthesis Example 3 Synthesis of polyamideimide (D-2) Hydroxyl group-containing diamine compound (a) (15.72 g, 0.04 mol) and BAHF (14.65 g, 0.04 mol) were added to 100 g of GBL under a dry nitrogen stream. added and stirred at 120°C. Next, TDA-100 (30.03 g, 0.1 mol) was added together with 20 g of GBL and stirred at 120° C. for 1 hour and then at 200° C. for 4 hours to obtain a reaction solution. Next, the reaction solution was poured into 3 L of water to collect a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 5 hours.
 実施例1
 (A)成分としてTEPIC-VL(商品名、日産化学(株)製)10g、(B)成分としてCPI-310FG(商品名、サンアプロ(株)製)0.6g、(C)成分としてUVS-1331(商品名、川崎化成工業(株)製)0.1g、BisA型エポキシ樹脂として1007(商品名、三菱化学(株)製)10g、シラン化合物としてKBM-403(商品名、信越化学工業(株)製)0.8gをGBLに溶解した。溶媒の添加量は、溶媒以外の添加物を固形分とし、固形分濃度が60重量%となるように調整した。その後、保留粒子径1μmのフィルターを用いて加圧ろ過し、樹脂組成物ワニスを得た。
Example 1
(A) component TEPIC-VL (trade name, manufactured by Nissan Chemical Industries, Ltd.) 10 g, (B) component CPI-310FG (trade name, San-Apro Co., Ltd.) 0.6 g, (C) component UVS- 1331 (trade name, manufactured by Kawasaki Kasei Co., Ltd.) 0.1 g, 1007 (trade name, manufactured by Mitsubishi Chemical Corporation) as a BisA type epoxy resin, 10 g, KBM-403 as a silane compound (trade name, Shin-Etsu Chemical Co., Ltd. ( Co., Ltd.) was dissolved in GBL. The amount of the solvent added was adjusted so that the solid content concentration was 60% by weight, with the additives other than the solvent being the solid content. Thereafter, pressure filtration was performed using a filter having a retained particle size of 1 μm to obtain a resin composition varnish.
 得られた樹脂組成物ワニスを、コンマロールコーターを用いて、厚さ50μmのPETフィルム上に塗布し、120℃で8分間乾燥を行った後、保護フィルムとして、厚さ30μmのPPフィルムをラミネートし、樹脂組成物フィルムを得た。樹脂組成物フィルムの膜厚は20μmとなるように調整した。得られた樹脂組成物フィルムを用いて、前記のように、透過率、およびパターン加工性の評価を行った。 The resulting resin composition varnish was applied on a 50 μm thick PET film using a comma roll coater, dried at 120° C. for 8 minutes, and then laminated with a 30 μm thick PP film as a protective film. to obtain a resin composition film. The thickness of the resin composition film was adjusted to 20 μm. Using the obtained resin composition film, the transmittance and pattern workability were evaluated as described above.
 更に、(A)成分としてTEPIC-VLを10g、(B)成分としてCPI-310FGを0.6g、BisA型エポキシとして1007を10g、シラン化合物としてKBM-403を0.8gを用い、前記と同様に樹脂組成物フィルムを作製し、(C)成分を除いた樹脂組成物フィルムの透過率の評価を行った。結果を表1に示す。 Further, 10 g of TEPIC-VL as component (A), 0.6 g of CPI-310FG as component (B), 10 g of 1007 as BisA type epoxy, and 0.8 g of KBM-403 as silane compound were used in the same manner as above. A resin composition film was prepared in 1, and the transmittance of the resin composition film excluding the component (C) was evaluated. Table 1 shows the results.
 実施例2~11
 (A)~(C)成分および、その他成分を下記の構造の化合物に変更し、それらの混合比を表1に記載のように変更した以外は実施例1と同様にして、樹脂組成物フィルムを作製し、前記のように、透過率、およびパターン加工性の評価を行った。結果を表1に示す。
Examples 2-11
A resin composition film was prepared in the same manner as in Example 1 except that the components (A) to (C) and other components were changed to compounds having the following structures and the mixing ratios thereof were changed as shown in Table 1. were produced, and the transmittance and pattern workability were evaluated as described above. Table 1 shows the results.
 比較例1~2
 (A)~(C)成分および、その他成分を下記の構造の化合物に変更し、それらの混合比を表1に記載のように変更した以外は実施例1と同様にして、樹脂組成物フィルムを作製し、前記のように、透過率、およびパターン加工性の評価を行った。結果を表1に示す。
Comparative Examples 1-2
A resin composition film was prepared in the same manner as in Example 1 except that the components (A) to (C) and other components were changed to compounds having the following structures and the mixing ratios thereof were changed as shown in Table 1. were produced, and the transmittance and pattern workability were evaluated as described above. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表中、「透過率(%)」とは、実施例や比較例の樹脂組成物から形成された厚み20μmの樹脂組成物被膜の透過率を意味する。 In the table, "transmittance (%)" means the transmittance of a resin composition film having a thickness of 20 µm formed from the resin compositions of Examples and Comparative Examples.
 表中、「(C)成分を除いた際の透過率(%)」とは、実施例や比較例の樹脂組成物から樹脂組成物Cを用いて形成された厚み20μmの樹脂組成物C被膜の透過率を意味する。
なお、各合成例、実施例および比較例で用いた化合物の構造を下記に示した。
In the table, "Transmittance (%) when component (C) is removed" is a resin composition C film having a thickness of 20 μm formed from the resin compositions of Examples and Comparative Examples using Resin Composition C. means the transmittance of
The structures of the compounds used in each Synthesis Example, Examples and Comparative Examples are shown below.
 (A)カチオン重合性化合物
 TEPIC-VL(日産化学(株)製)、常温において液体、エポキシ当量=128g/eq.
 PETG(昭和電工(株)製)、常温において液体、エポキシ当量=90g/eq.
 BATG(昭和電工(株)製)、常温において液体、エポキシ当量=113g/eq.。
(A) Cationic polymerizable compound TEPIC-VL (manufactured by Nissan Chemical Industries, Ltd.), liquid at room temperature, epoxy equivalent = 128 g/eq.
PETG (manufactured by Showa Denko KK), liquid at room temperature, epoxy equivalent = 90 g/eq.
BATG (manufactured by Showa Denko KK), liquid at room temperature, epoxy equivalent = 113 g/eq. .
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (B)カチオン重合開始剤
 CPI-210S(オニウム塩系光酸発生剤、サンアプロ(株)製)
 CPI-310FG(オニウム塩系光酸発生剤、サンアプロ(株)製)。
(B) cationic polymerization initiator CPI-210S (onium salt-based photoacid generator, manufactured by San-Apro Co., Ltd.)
CPI-310FG (an onium salt-based photoacid generator, manufactured by San-Apro Co., Ltd.).
 (C)増感剤
 UVS-1331(アントラセン化合物、川崎化成工業(株)製)。
(C) Sensitizer UVS-1331 (anthracene compound, manufactured by Kawasaki Chemical Industry Co., Ltd.).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (D)高分子化合物
 D-1:分子鎖末端がカルボン酸残基のポリイミド
 D-2:分子鎖末端がカルボン酸残基のポリアミドイミド。
(D) Polymer compounds D-1: Polyimide having a carboxylic acid residue at the molecular chain end D-2: Polyamideimide having a carboxylic acid residue at the molecular chain end.
 (D)以外の高分子化合物
 1007(BisA型フェノキシ樹脂、三菱化学(株)製)
 シラン化合物
 KBM-403(3-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製)。
Polymer compound other than (D) 1007 (BisA type phenoxy resin, manufactured by Mitsubishi Chemical Corporation)
Silane compound KBM-403 (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.).

Claims (15)

  1.  (A)カチオン重合性化合物、及び(B)光カチオン重合開始剤を含有する樹脂組成物であって、さらに、(C)増感剤を含有することを特徴とする樹脂組成物。 A resin composition containing (A) a cationically polymerizable compound and (B) a photocationic polymerization initiator, and further containing (C) a sensitizer.
  2.  樹脂組成物全体を100質量%とした場合、前記(C)増感剤の合計が0.1質量%以上5.0質量%以下である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the total amount of the sensitizer (C) is 0.1% by mass or more and 5.0% by mass or less when the entire resin composition is 100% by mass.
  3.  樹脂組成物から形成された厚み20μmの樹脂組成物被膜の透過率が、20%以上65%以下であって、
     樹脂組成物から前記(C)増感剤を除いた樹脂組成物Cを用いて形成された厚み20μmの樹脂組成物C被膜の透過率が、70%以上100%以下である、請求項1又は2に記載の樹脂組成物。
    The transmittance of a resin composition film having a thickness of 20 μm formed from the resin composition is 20% or more and 65% or less,
    2. The transmittance of the resin composition C film having a thickness of 20 μm formed using the resin composition C obtained by removing the (C) sensitizer from the resin composition is 70% or more and 100% or less. 2. The resin composition according to 2.
  4.  さらに、(D)高分子化合物を含有し、前記(D)高分子化合物は、ポリアミド、ポリイミド、ポリアミドイミド、及びポリベンゾオキサゾールからなる群より選ばれる少なくとも1つの化合物である、請求項1~3のいずれかに記載の樹脂組成物。 Claims 1 to 3, further comprising (D) a polymer compound, wherein the (D) polymer compound is at least one compound selected from the group consisting of polyamide, polyimide, polyamideimide, and polybenzoxazole. The resin composition according to any one of.
  5.  前記(D)高分子化合物の分子鎖末端が、カルボン酸残基に由来する構造である、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the molecular chain end of the (D) polymer compound has a structure derived from a carboxylic acid residue.
  6.  前記(D)高分子化合物を100質量部とした場合、前記(A)カチオン重合性化合物が30質量部以上200質量部以下である、請求項4又は5に記載の樹脂組成物。 The resin composition according to claim 4 or 5, wherein the (A) cationically polymerizable compound is 30 parts by mass or more and 200 parts by mass or less when the (D) polymer compound is 100 parts by mass.
  7.  前記(C)増感剤が、アントラセン化合物である、請求項1~6のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the (C) sensitizer is an anthracene compound.
  8.  前記(D)高分子化合物が、ポリアミド、ポリイミド、及びポリアミドイミドからなる群より選ばれる少なくとも1つの化合物であって、さらに、脂環式テトラカルボン酸二無水物に由来する構造を有する、請求項4~7のいずれかに記載の樹脂組成物。 The above-mentioned (D) polymer compound is at least one compound selected from the group consisting of polyamide, polyimide, and polyamideimide, and further has a structure derived from an alicyclic tetracarboxylic dianhydride. The resin composition according to any one of 4 to 7.
  9.  ネガ型の感光性樹脂組成物である、請求項1~8のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, which is a negative photosensitive resin composition.
  10.  セラミックス基板の表面の上でパターン加工する用途に用いる、請求項1~9のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, which is used for pattern processing on the surface of a ceramic substrate.
  11.  請求項1~10のいずれかに記載の樹脂組成物から形成された樹脂組成物被膜。 A resin composition film formed from the resin composition according to any one of claims 1 to 10.
  12.  透過率が、20%以上65%以下である、請求項11に記載の樹脂組成物被膜。 The resin composition film according to claim 11, which has a transmittance of 20% or more and 65% or less.
  13.  請求項11又は12に記載の樹脂組成物被膜、及び、支持体を有する、樹脂組成物フィルム。 A resin composition film comprising the resin composition coating according to claim 11 or 12 and a support.
  14.  請求項1~10のいずれかに記載の樹脂組成物、又は、請求項11又は12に記載の樹脂組成物被膜を硬化した硬化膜。 A cured film obtained by curing the resin composition according to any one of claims 1 to 10 or the resin composition coating according to claim 11 or 12.
  15.  請求項14に記載の硬化膜を含む、電子部品。 An electronic component comprising the cured film according to claim 14.
PCT/JP2022/026932 2021-03-04 2022-07-07 Resin composition, resin composition coating, resin composition film, cured film, and electronic component WO2023148996A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021034269 2021-03-04
JP2022-015523 2022-02-03
JP2022015523A JP2022135945A (en) 2021-03-04 2022-02-03 Resin composition, resin composition coated film, resin composition film, cured film, and semiconductor device using them

Publications (1)

Publication Number Publication Date
WO2023148996A1 true WO2023148996A1 (en) 2023-08-10

Family

ID=83231148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026932 WO2023148996A1 (en) 2021-03-04 2022-07-07 Resin composition, resin composition coating, resin composition film, cured film, and electronic component

Country Status (3)

Country Link
JP (1) JP2022135945A (en)
TW (1) TW202332712A (en)
WO (1) WO2023148996A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021049A1 (en) * 2016-07-28 2018-02-01 日産化学工業株式会社 Resin composition
WO2021059843A1 (en) * 2019-09-24 2021-04-01 東レ株式会社 Resin composition, resin composition film, cured film, hollow structure using same, and semiconductor device
WO2022019205A1 (en) * 2020-07-22 2022-01-27 株式会社カネカ Thin film transistor element and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021049A1 (en) * 2016-07-28 2018-02-01 日産化学工業株式会社 Resin composition
WO2021059843A1 (en) * 2019-09-24 2021-04-01 東レ株式会社 Resin composition, resin composition film, cured film, hollow structure using same, and semiconductor device
WO2022019205A1 (en) * 2020-07-22 2022-01-27 株式会社カネカ Thin film transistor element and method for manufacturing same

Also Published As

Publication number Publication date
JP2022135945A (en) 2022-09-15
TW202332712A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP7375761B2 (en) Negative photosensitive resin composition, negative photosensitive resin composition film, cured film, hollow structure using these, and electronic components
KR102456965B1 (en) Photosensitive resin composition, manufacturing method of cured resin film, and semiconductor device
JP6724363B2 (en) Resin and photosensitive resin composition
CN109642028B (en) Resin composition
JPWO2012002134A1 (en) Photosensitive resin composition, photosensitive resin composition film, and semiconductor device using the same
WO2018159384A1 (en) Resin composition, resin sheet, curing pattern, and semiconductor electronic component or semiconductor device
JP2021055055A (en) Resin composition, resin composition film, cured film, and semiconductor device including the same
JP6776772B2 (en) Photosensitive resin composition
WO2023139814A1 (en) Resin composition, film, cured membrane, semiconductor device, and multilayer circuit board
JP7131133B2 (en) resin composition
JP2018036329A (en) Photosensitive resin composition
JP2020168803A (en) Laminate dna method for manufacturing laminate
WO2023162718A1 (en) Resin composition, resin composition coating film, resin composition film, cured film, and semiconductor device using these products
WO2023148996A1 (en) Resin composition, resin composition coating, resin composition film, cured film, and electronic component
JP7315127B1 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, electronic component using these
JP2020094194A (en) Resin composition, resin sheet, cured film, cured film relief pattern manufacturing method, protective film, insulator film, electronic component, and display device
WO2020246565A1 (en) Photosensitive polyimide resin composition
WO2023032467A1 (en) Resin composition, resin composition film, cured film, and semiconductor device
JP2024046877A (en) Resin composition, resin composition coating, resin composition film, cured film, and semiconductor device using the same
JP7259475B2 (en) Photosensitive resin composition, photosensitive resin composition film, and semiconductor device using these
JP2024023052A (en) Negative photosensitive resin composition, negative photosensitive resin composition coating film, negative photosensitive resin composition film, cured film, and electronic component using the same
WO2023182041A1 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, and electronic component using same
TWI830255B (en) Photosensitive polyimide resin composition
JP2022162611A (en) Negative photosensitive resin composition, resin composition film, cured film, and semiconductor device
WO2022202486A1 (en) Negative photosensitive resin composition, negative photosensitive resin composition film, cured product, preparation method of cured product, hollow structure, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924901

Country of ref document: EP

Kind code of ref document: A1