JP2010088250A - Silicon-steel-plate laminate having simple vibration transmission waveform - Google Patents

Silicon-steel-plate laminate having simple vibration transmission waveform Download PDF

Info

Publication number
JP2010088250A
JP2010088250A JP2008256859A JP2008256859A JP2010088250A JP 2010088250 A JP2010088250 A JP 2010088250A JP 2008256859 A JP2008256859 A JP 2008256859A JP 2008256859 A JP2008256859 A JP 2008256859A JP 2010088250 A JP2010088250 A JP 2010088250A
Authority
JP
Japan
Prior art keywords
steel sheet
laminate
vibration transmission
transmission waveform
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256859A
Other languages
Japanese (ja)
Other versions
JP5212000B2 (en
Inventor
Hiroyasu Fujii
浩康 藤井
Mitsuharu Yamagata
光晴 山形
Takashi Mogi
尚 茂木
Noriko Yamada
紀子 山田
Yosuke Kurosaki
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008256859A priority Critical patent/JP5212000B2/en
Publication of JP2010088250A publication Critical patent/JP2010088250A/en
Application granted granted Critical
Publication of JP5212000B2 publication Critical patent/JP5212000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an annealed steel-plate laminate that facilitates vibration reduction. <P>SOLUTION: In the annealed steel-plate laminate, when measuring a vibration transmission waveform of the steel-plate laminate in a region of ≤2 kHz while setting an adhesion area ratio of a coating of the steel-plate surface to ≥5% and ≤100%, the number of waveform peaks having an intensity of ≥50% with respect to the strongest peak intensity is set to be ≤10 including the strongest peak. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は回転機用鉄芯として用いる珪素鋼板積層体に関するものであって、特に、鋼板積層体の段階で焼鈍を施す回転機用鉄芯に供する鋼板積層体に関するものである。   The present invention relates to a silicon steel sheet laminate used as an iron core for a rotating machine, and more particularly to a steel sheet laminate used for an iron core for a rotating machine that is annealed at the stage of the steel sheet laminate.

主に回転機用鉄芯の素材として用いられる無方向性珪素鋼板は金型を使って所定形状に打ち抜かれた後、積層され、固定化され積層体とされる。回転機としてより高い性能が要求される圧縮機用鉄芯においては、この段階でせん断歪等の除去を目的とした焼鈍が施される。ついで、この鋼板積層体に対し、銅製の巻き線を施し、周辺部品を取り付けた後、回転機製品となる。   A non-oriented silicon steel sheet mainly used as a material for an iron core for a rotating machine is punched into a predetermined shape using a mold, and then laminated and fixed to form a laminated body. In an iron core for a compressor that requires higher performance as a rotating machine, annealing for the purpose of removing shear strain and the like is performed at this stage. Then, the steel sheet laminate is subjected to copper winding and attached with peripheral components, and then a rotating machine product is obtained.

回転機製品においては磁気的性質、特に、鉄損特性が最も重要視されてきたが、最近は回転機の「振動特性」も重要視されるようになってきた。これは最近の環境意識、特に生活環境における騒音意識の高まりにより、回転機における振動が問題視されてきたためである。   In rotating machine products, magnetic properties, particularly iron loss characteristics, have been regarded as most important, but recently, "vibration characteristics" of rotating machines have also been emphasized. This is because vibration in a rotating machine has been regarded as a problem due to recent environmental awareness, particularly noise awareness in the living environment.

回転機における振動/騒音低減に対する取り組みはこれまで種々行われてきた。
例えば、回転軸と軸受や歯車同士の衝突によって発生する振動・騒音を、回転軸を軸受に押し付ける機構により低減できることが特許文献1に開示されている。
Various efforts have been made to reduce vibration / noise in rotating machines.
For example, Patent Document 1 discloses that vibration and noise generated by a collision between a rotating shaft and a bearing or gears can be reduced by a mechanism for pressing the rotating shaft against the bearing.

同じく、回転軸と軸受の間の衝突に対し、回転子と軸受の間にスラストワッシャとスプリングを付加し、軸長方向の振れを抑制する事で振動・騒音を低減できることも特許文献2に開示されている。   Similarly, it is disclosed in Patent Document 2 that vibration and noise can be reduced by adding a thrust washer and a spring between the rotor and the bearing against a collision between the rotating shaft and the bearing, and suppressing the vibration in the axial direction. Has been.

一方、固定子の変形に起因する振動・騒音に対しては、固定子の変形が少ない部位を固定子ヨークで保持し、固定子の変形振動が固定子ヨークに伝播し難くすることで振動・騒音を低減できることが特許文献3に開示されている。   On the other hand, with respect to vibration and noise caused by the deformation of the stator, the part where the deformation of the stator is small is held by the stator yoke, so that the deformation vibration of the stator is difficult to propagate to the stator yoke. Patent Document 3 discloses that noise can be reduced.

また、固定子や回転子を磁性粉末などを原料とした焼結体で製造することで振動・騒音の発生を抑制できることが特許文献4に開示されている。   Further, Patent Document 4 discloses that generation of vibration and noise can be suppressed by manufacturing a stator and a rotor with a sintered body made of magnetic powder or the like as a raw material.

更に、最近では、固定子の磁歪による伸びと、固定子/回転子間に働く磁気吸引力による縮みの両者に着目した低振動・低騒音化技術も特許文献5に提案されている。   Furthermore, recently, Patent Document 5 proposes a low vibration / noise reduction technique that focuses on both the elongation due to magnetostriction of the stator and the shrinkage due to the magnetic attractive force acting between the stator and the rotor.

特開平10−146012号公報Japanese Patent Laid-Open No. 10-146012 特開2003−348790号公報JP 2003-348790 A 特開平11−41884号公報JP 11-41884 A 特開平11−341715号公報JP-A-11-341715 特開平2008−167635号公報Japanese Patent Laid-Open No. 2008-167635 国際公開番号WO−2006/043612International Publication Number WO-2006 / 043612 特願2008−59633号Japanese Patent Application No. 2008-59633

提案されている技術はそれなりに効果がある。しかしながら、これらの技術を実施しても振動・騒音を大幅に低減するには至っていないのが現状であった。
こうした課題認識の下、鋼板から金型を用いて所定形状の鋼板を打ち抜き、積層して鋼板積層体を作製した後、銅巻き線を施すのに先立ち、打ち抜き歪みを除去するために焼鈍を施した鋼板積層体において、振動波形を単純なものにして、防振対策を安価・容易に実施できる鋼板積層体を提供することを目的に発明者らは開発に取り組んだ。
The proposed technology is effective. However, even if these technologies are implemented, vibration and noise have not been significantly reduced.
Recognizing these issues, steel plates of a predetermined shape are punched from a steel plate using a mold and laminated to produce a steel plate laminate, and then annealed to remove punching distortion prior to copper winding. The inventors of the present invention have made efforts to develop a steel sheet laminate in which the vibration waveform is simplified and a vibration prevention measure can be easily implemented at low cost.

回転機の発する騒音は回転機内で発生する様々な種類の振動が原因である。従って、回転機の発する騒音を低減するには振動を低減することが必要である。振動には様々なピーク周波数を持つものが存在する。幅広い周波数帯において数多くのピークを持つ振動特性であると、それら多種類の周波数ピークの振動に対し、ぞれぞれ防振対策を施すことが必要になる。そのため、防振対策費用が飛躍的に増大し、回転機全体のコストが高くなってしまう。従って、回転機において少ない費用で十分な防振対策を施すには鋼板積層体の発する振動特性において、周波数ピークが数少ない、即ち、振動伝達波形が単純であることが望ましい。   Noise generated by a rotating machine is caused by various types of vibrations generated in the rotating machine. Therefore, it is necessary to reduce the vibration in order to reduce the noise generated by the rotating machine. Some vibrations have various peak frequencies. If the vibration characteristics have many peaks in a wide frequency band, it is necessary to take anti-vibration measures for the vibrations of these various types of frequency peaks. As a result, the cost of vibration prevention measures increases dramatically, and the cost of the entire rotating machine increases. Therefore, in order to take sufficient vibration-proof measures at a low cost in a rotating machine, it is desirable that the vibration characteristics generated by the steel sheet laminate have few frequency peaks, that is, that the vibration transmission waveform is simple.

ここで鋼板積層体の振動特性測定方法について説明する。
鋼板積層体の振動特性は振動伝達波形を測定することによって評価できる。振動伝達波形とは、例えば、ハンマーを用いて鋼板積層体のある部分を打撃した時、その振動波が鋼板積層体の別の点に伝達された時の波形である。伝達してきた振動波形の検出には加速度ピックアップ等が用いられる。この振動波形が単純、即ち、振動波形におけるピーク数が少なければ、各々のピークに対する防振対策も少なくて済む。その結果、回転機に施す防振費用が少なくて済むわけである。
Here, a method for measuring vibration characteristics of the steel sheet laminate will be described.
The vibration characteristics of the steel sheet laminate can be evaluated by measuring the vibration transmission waveform. The vibration transmission waveform is, for example, a waveform when a vibration wave is transmitted to another point of the steel plate laminate when a certain portion of the steel plate laminate is hit using a hammer. An acceleration pickup or the like is used to detect the transmitted vibration waveform. If the vibration waveform is simple, that is, if the number of peaks in the vibration waveform is small, the number of anti-vibration measures for each peak is small. As a result, the vibration isolation cost applied to the rotating machine can be reduced.

以下、本発明を完成するに至った詳細を説明する。
まず、発明者らは、通常の固定化法を施した後に焼鈍した鋼板積層体において、単純な振動波形を持つ鋼板積層体が得られない理由について検討した。その結果、鋼板積層体における鋼板間の固定化方法に問題があるのではないか、と言う結論に達した。
Details of the present invention will be described below.
First, the inventors examined the reason why a steel plate laminate having a simple vibration waveform cannot be obtained in a steel plate laminate annealed after performing a normal fixing method. As a result, the conclusion was reached that there may be a problem with the method for fixing the steel sheets in the steel sheet laminate.

ここで回転機用鋼板積層体の固定化方法について述べる。
鋼板積層体の固定化方法は大きく分けて次の2つの方法がある。一つは溶接法で、もう一つはカシメ法である。溶接法とは鋼板積層体の端面の数箇所を溶接する事で固定化する方法である。一方、カシメ法とは所定の形状に鋼板を打ち抜く際、鋼板の一部に「ダボ」と呼ばれる凹凸部を形成する方法で、この凹凸部を上下の鋼板間で嵌合させることで固定化する方法である。
Here, the fixing method of the steel plate laminated body for rotary machines is described.
The fixing method of the steel sheet laminate is roughly divided into the following two methods. One is a welding method and the other is a caulking method. The welding method is a method of fixing by welding several places on the end face of the steel sheet laminate. On the other hand, the caulking method is a method of forming an uneven portion called “dough” on a part of a steel plate when punching a steel plate into a predetermined shape, and this uneven portion is fixed by fitting between the upper and lower steel plates. Is the method.

これら従来の鉄芯における鋼板間の結合は、溶接法では積層体端面の「線状」の溶接部であり、またカシメ法では積層面に数箇所設けられた「点状」のカシメ部のみであった。こうした「線や点」で鋼板同士が固定化された積層体では、ある部分に与えられた振動波が積層体内の別の部位に伝達される際、様々の経路が存在する。そのため、振動伝達波形には数多くのピークが観測されることになる。一方で、鋼板積層体がいわば、一体化していれば、ある点に与えられた振動波は特定の経路を伝達して別の部位に伝達することになり、波形中のピーク数は少ないものとなる。
従って、振動伝達波形のより単純な鋼板積層体を得るには鋼板同士が「面同士」で結合していることが望ましい。
Bonding between steel plates in these conventional iron cores is a “linear” weld on the end surface of the laminate in the welding method, and only “dot” caulking portions provided on the laminate surface in the caulking method. there were. In a laminate in which steel plates are fixed by such “lines and points”, various paths exist when a vibration wave applied to a certain portion is transmitted to another part in the laminate. Therefore, many peaks are observed in the vibration transmission waveform. On the other hand, if the steel sheet laminate is integrated, the vibration wave given to a certain point will be transmitted to another part through a specific path, and the number of peaks in the waveform will be small. Become.
Therefore, in order to obtain a simple steel plate laminate having a vibration transmission waveform, it is desirable that the steel plates are connected to each other by “surfaces”.

ところが、従来の固定化方法では積層された鋼板が「面同士」で結合しているわけではなかった。
そこで発明者らは皮膜面同士が結合した鋼板積層体を作ってやれば、鋼板積層体全体の剛性が高まり、より単純な振動伝達波形を持つ鋼板積層体を実現できるのでないかと考えた。そこで種々の検討を重ねた結果、焼鈍を施した鋼板積層体における接着面積率が5%から100%であれば、振動伝達波形を2kHz以下の領域において測定した時に、最強ピーク強度に対し、50%以上の強度を持つ波形ピーク数が最強ピークを含め、10個以下になることを突き止めた。このような鋼板積層体を作製してやれば、防振対策を施し易いので、振動を低コストで効果的に低減できることが期待される。
However, in the conventional fixing method, the laminated steel plates are not bonded “face to face”.
Therefore, the inventors considered that if a steel sheet laminate in which the coating surfaces are bonded to each other is made, the rigidity of the entire steel sheet laminate is increased, and a steel sheet laminate having a simpler vibration transmission waveform can be realized. As a result of various studies, if the adhesion area ratio in the steel sheet laminate subjected to annealing is 5% to 100%, the vibration transmission waveform is measured in the region of 2 kHz or less, and the maximum peak intensity is 50%. It was found that the number of waveform peaks having an intensity of at least% was 10 or less including the strongest peak. If such a steel sheet laminate is produced, vibration prevention measures can be easily taken, and it is expected that vibration can be effectively reduced at low cost.

本発明はこうした考え方に基づいてなされたもので、その要旨は以下の通りである。
(1)複数の皮膜付き珪素鋼板を積層した後、500℃以上の温度で焼鈍した、回転機用鉄芯として用いる珪素鋼板積層体であって、該鋼板積層体中の該鋼板表面の皮膜における接着面積率が5%以上100%以下で、かつ該鋼板積層体の振動伝達波形を2kHz以下の領域において測定した時に、最強ピーク強度に対し50%以上の強度を持つ波形ピーク数が、最強ピークを含め10個以下であることを特徴とする、振動伝達波形の単純な珪素鋼板積層体。
(2)鋼板表面の皮膜が珪酸塩と有機樹脂熱分解物からなることを特徴とする(1)に記載の振動伝達波形の単純な珪素鋼板積層体。
The present invention has been made based on such a concept, and the gist thereof is as follows.
(1) A silicon steel sheet laminate used as an iron core for a rotating machine, which is annealed at a temperature of 500 ° C. or higher after laminating a plurality of silicon steel sheets with a film, and in the film on the surface of the steel sheet in the steel sheet laminate When the adhesion area ratio is 5% or more and 100% or less and the vibration transmission waveform of the steel sheet laminate is measured in the region of 2 kHz or less, the number of waveform peaks having a strength of 50% or more with respect to the strongest peak strength is the strongest peak. A silicon steel laminate having a simple vibration transmission waveform, characterized in that the number is 10 or less.
(2) The simple silicon steel sheet laminate having a vibration transmission waveform according to (1), wherein the film on the surface of the steel sheet is composed of a silicate and a thermal decomposition product of an organic resin.

本発明によれば、振動低減を容易にかつ安価に施すことが可能な、振動伝達波形の単純な鋼板積層体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the simple steel plate laminated body of a vibration transmission waveform which can perform vibration reduction easily and cheaply can be provided.

以下、本発明について、発明者らが本発明を完成するに至った経緯とともに更に詳細に説明する。   Hereinafter, the present invention will be described in more detail together with the background of how the inventors have completed the present invention.

発明者らは、鋼板積層体において鋼板同士を「面」で接着する方法を考えた。その中で発明者らが特許文献6や特許文献7で提案している「耐熱接着性皮膜」に着目した。
この皮膜は無機成分と有機成分とで構成され、この皮膜を表面に形成した鋼板に対し、積層した状態で焼鈍を施すと皮膜成分、特に、無機成分が焼鈍中に軟化・溶融し、皮膜面同士の接着を起こすことができる。発明者らはここで提案されている技術を適用し、鋼板積層体において鋼板同士を皮膜面で接着させ、もって鋼板積層体を一体化させることを考えつき、検討を進めた。
The inventors have considered a method of bonding steel plates to each other by “surface” in a steel plate laminate. Among them, the inventors paid attention to the “heat-resistant adhesive film” proposed in Patent Document 6 and Patent Document 7.
This film is composed of an inorganic component and an organic component. When a steel sheet having this film formed on the surface is annealed in a laminated state, the film component, in particular, the inorganic component is softened and melted during annealing, and the film surface Adhesion between each other can occur. The inventors applied the technique proposed here, considered the idea of bonding the steel plates to each other in the steel plate laminate, and integrating the steel plate laminate, and proceeded with the study.

始めに、発明者らは焼鈍実施済みの鋼板積層体における振動伝達波形は鋼板間の接着面積率に依存するのではないかと考えた。即ち、接着面積率が高ければ振動伝達波形は単純で、接着面積率が低ければ、振動波形は複雑になるのではないかと考えたわけである。ここで言う接着面積率とは鋼板積層体を構成する鋼板間において、鋼板間を引きはがして観察した時に鋼板全体の面積に対する、皮膜面が接着している面積の比率である。   First, the inventors thought that the vibration transmission waveform in the steel sheet laminate that had been annealed depends on the adhesion area ratio between the steel sheets. That is, the vibration transmission waveform is simple when the adhesion area ratio is high, and the vibration waveform is complicated when the adhesion area ratio is low. The adhesion area ratio mentioned here is the ratio of the area where the coating surface is bonded to the area of the entire steel sheet when the steel sheets constituting the steel sheet laminate are peeled and observed between the steel sheets.

振動伝達波形については2kHz以下の周波数域においてピーク本数を10本以下にすることを目標に置いた。ピーク本数が10本よりも多いと、各々のピークに対し、それぞれ、防振対策が必要となり、多大な費用がかかってしまう。ピーク本数が10本以下であれば、それなりの費用の中で、効果的な防振対策を施すことができるのではないかと考えた。こうした理由から振動伝達波形の目標を2kHz以下の周波数におけるピーク本数を10本以下と定めた。   Regarding the vibration transmission waveform, the number of peaks was set to 10 or less in a frequency region of 2 kHz or less. When the number of peaks is more than 10, vibration-proof measures are required for each peak, and a great amount of cost is required. We thought that if the number of peaks was 10 or less, effective anti-vibration measures could be taken at a reasonable cost. For this reason, the target of the vibration transmission waveform is set to 10 or less peaks at a frequency of 2 kHz or less.

発明者らはこのような考えを検証するため、次に述べるような実験を行った。   Inventors conducted the following experiment in order to verify such an idea.

(鋼板積層体固定化方法と振動伝達波形ピーク数の関係)
まず、0.5mm厚さに冷延後、900℃で焼鈍し、皮膜を形成していない無方向性珪素鋼板を用意した。
これらの鋼板を素材として次の3つの異なる方法で固定化し、鋼板積層体を作製した。
(Relationship between steel plate laminate fixing method and peak number of vibration transmission waveform)
First, after cold rolling to 0.5 mm thickness, annealing was performed at 900 ° C. to prepare a non-oriented silicon steel sheet on which no film was formed.
These steel plates were used as raw materials and fixed by the following three different methods to produce steel plate laminates.

(カシメ法)
濃度50%の重リン酸アルミニウム水溶液100g、濃度30%のアクリル系有機樹脂水分散液40gの混合液を塗布し、到達板温300℃で焼き付けた。皮膜量は1.3g/mであった。この皮膜付き鋼板を金型を用いて内径10cm、外径12.5cmのリング状に打ち抜き、20枚積層した。この時、6箇所のカシメ部を形成させ、鋼板同士を嵌入させ固定化した。ついで、750℃で2時間、窒素雰囲気中で焼鈍した。ここで鋼板表面に形成してある皮膜は焼鈍中に皮膜間の接着は起こらない。
(Caulking method)
A mixed solution of 100 g of an aqueous solution of aluminum biphosphate having a concentration of 50% and 40 g of an aqueous dispersion of an acrylic organic resin having a concentration of 30% was applied and baked at a final plate temperature of 300 ° C. The coating amount was 1.3 g / m 2 . This coated steel sheet was punched into a ring shape having an inner diameter of 10 cm and an outer diameter of 12.5 cm using a mold, and 20 sheets were laminated. At this time, six crimping portions were formed, and the steel plates were fitted and fixed. Subsequently, it annealed in nitrogen atmosphere at 750 degreeC for 2 hours. Here, the film formed on the steel sheet surface does not adhere between the films during annealing.

(溶接法)
カシメ法と同じ皮膜付き鋼板を同じ金型を使い、カシメ部を形成させずに打ち抜き20枚積層した。この鋼板積層体の端面の6箇所を溶接し、固定化した。ついで、750℃で2時間、窒素雰囲気中で焼鈍した。ここで鋼板表面に形成してある皮膜は焼鈍中に皮膜間の接着は起こらない。
(Welding method)
Using the same die, the same coated steel sheet as in the caulking method was punched and laminated without forming the caulking portion. Six locations on the end face of the steel sheet laminate were welded and fixed. Subsequently, it annealed in nitrogen atmosphere at 750 degreeC for 2 hours. Here, the film formed on the steel sheet surface does not adhere between the films during annealing.

(耐熱性接着皮膜法)
皮膜を形成していない無方向性珪素鋼板に対し、濃度50%の珪酸ナトリウム水溶液50g、濃度50%の珪酸カリウム水溶液50g、濃度20%の珪酸リチウム水溶液300g、濃度20%のアクリル変性エポキシ樹脂の水分散液120gとを混合した液を塗布し、到達板温180℃で乾燥した。皮膜量は8g/mになるように調整した。
このようにして作製した鋼板からカシメ法、溶接法で鋼板積層体を作製した時に使用したのと同じ金型を使ってリング状の鋼板を作製した。ついで、このリング状の鋼板を20枚積層した状態で750℃で2時間、窒素雰囲気下で焼鈍した。焼鈍の際、次節で述べる重しによる面圧付与策は講じなかった。ここで鋼板表面に形成した皮膜は焼鈍中に皮膜間の接着を起こすことができる。
(Heat-resistant adhesive film method)
50 g of 50% sodium silicate aqueous solution, 50% 50% potassium silicate aqueous solution, 20% concentration lithium silicate aqueous solution 300 g, 20% concentration acrylic-modified epoxy resin A liquid mixed with 120 g of an aqueous dispersion was applied and dried at an ultimate plate temperature of 180 ° C. The coating amount was adjusted to 8 g / m 2 .
A ring-shaped steel sheet was produced from the steel sheet thus produced using the same mold as that used when a steel sheet laminate was produced by a caulking method and a welding method. Then, 20 ring-shaped steel plates were stacked and annealed at 750 ° C. for 2 hours in a nitrogen atmosphere. During annealing, we did not take measures to apply surface pressure with the weight described in the next section. Here, the film formed on the surface of the steel sheet can cause adhesion between the films during annealing.

このようにして作製した固定化方法の異なる鋼板積層体について、接着面積率と振動伝達波形及びピーク数を測定した。   With respect to the steel sheet laminates having different fixing methods thus produced, the adhesion area ratio, the vibration transmission waveform, and the number of peaks were measured.

接着面積率は次に述べる方法で測定した。
まず、鋼板積層体の端面に鋭利な刃を突き立て接着面を剥離させた。鋭利な刃としてはカッターナイフなど、刃先が鋼板積層体の鋼板間隙に侵入し易いものであれば何でも良い。刃先を挿入させただけでは剥離しない場合は刃先部の反対側をハンマー等で打撃し、鋼板積層体のより深部まで刃先を侵入させてやれば剥離できる。次に、剥離した面について、目視や顕微鏡観察を適宜併用して接着面積率を算出した。接着面積率の算出にあたっては、一定面積、例えば、1cmに限定して行ってもよい。
The adhesion area ratio was measured by the method described below.
First, a sharp blade was stuck on the end face of the steel sheet laminate to peel off the adhesion surface. The sharp blade may be anything such as a cutter knife as long as the cutting edge easily enters the steel plate gap of the steel plate laminate. If it does not peel off simply by inserting the cutting edge, it can be peeled off by hitting the opposite side of the cutting edge with a hammer or the like and letting the cutting edge penetrate deeper into the steel sheet laminate. Next, for the peeled surface, the adhesion area ratio was calculated by appropriately using visual observation or microscopic observation. The calculation of the adhesion area ratio may be limited to a certain area, for example, 1 cm 2 .

振動伝達波形の測定とピーク数の算出は次に述べる方法と手順で行なった。
まず、鋼板積層体をワイヤー等の重量物を懸架できる細線で吊り下げた。ついで、吊り下げた状態で鋼板積層体をハンマーで打撃した。この時、ハンマーで打撃するのとは別の位置に加速度ピックアップをセットしておき、ハンマーによる打撃により発生した振動波が伝達してきた波形を測定できるようにしておいた。このようにして測定した振動伝達波形について最も強度の強いピークを最強ピークと定め、この最強ピークの強度に対し、50%以上のピーク強度を持つピークを拾い出し、その本数を数え、最強線と併せた本数を算出した。
The measurement of the vibration transmission waveform and the calculation of the number of peaks were performed by the following method and procedure.
First, the steel sheet laminate was suspended by a thin wire that can suspend heavy objects such as wires. Next, the steel sheet laminate was hit with a hammer in a suspended state. At this time, the acceleration pickup was set at a position different from that of hitting with a hammer so that the waveform transmitted by the vibration wave generated by hitting with the hammer could be measured. For the vibration transmission waveform measured in this way, the strongest peak is defined as the strongest peak, and peaks having a peak intensity of 50% or more with respect to the strongest peak intensity are picked up, counted, and the strongest line. The combined number was calculated.

このようにしてそれぞれの固定化方法別に接着面積率と振動伝達波形のピーク本数を表1にまとめた。   Thus, the adhesion area ratio and the number of peaks of the vibration transmission waveform are summarized in Table 1 for each fixing method.

Figure 2010088250
Figure 2010088250

表1から次のことが分かる。
皮膜面が接着していないカシメ法(A1)や溶接法(A2)の鋼板積層体では振動伝達波形におけるピーク数がそれぞれ18本と16本と多い。一方、接着面積率が5%と鋼板面の一部の領域が接着している皮膜法(A3)の鋼板積層体ではピーク本数が8本と少ない。このことから、皮膜法により鋼板面積の一部(接着面積率=5%)でも接着させた鋼板積層体は、振動伝達波形が他の固定化方法の鋼板積層体に比べ単純になることがわかった。従って、振動・騒音低減を容易に実施できることが期待できる。
Table 1 shows the following.
In the caulking method (A1) and welding method (A2) steel plate laminates with the coating surfaces not adhered, the number of peaks in the vibration transmission waveform is as large as 18 and 16, respectively. On the other hand, the number of peaks is as small as 8 in the steel sheet laminate of the coating method (A3) in which a bonding area ratio is 5% and a partial region of the steel sheet surface is bonded. From this, it can be seen that the steel plate laminate bonded with a part of the steel plate area by the coating method (adhesive area ratio = 5%) has a simpler vibration transmission waveform than the steel plate laminates of other fixing methods. It was. Therefore, it can be expected that vibration and noise can be easily reduced.

(接着面積率と振動伝達波形ピーク数の関係)
次に発明者らは接着面積率と振動伝達波形のピーク数との関係について、以下に述べる実験を行って調べた。
(Relationship between adhesion area ratio and peak number of vibration transmission waveform)
Next, the inventors investigated the relationship between the adhesion area ratio and the number of peaks of the vibration transmission waveform by performing the following experiment.

まず、厚さ0.35mmに冷延後、950℃で焼鈍し、皮膜を形成していない無方向性珪素鋼板を用意した。
この鋼板に対し、濃度50%の珪酸ナトリウム水溶液50g、濃度50%の珪酸カリウム水溶液50g、濃度20%の珪酸リチウム水溶液200g、濃度20%のアクリル変性エポキシ樹脂の水分散液90gとを混合した液を塗布し、到達板温200℃で乾燥した。皮膜量は9g/mになるように調整した。このようにして作製した鋼板から金型を使って内径10cm、外径12.5cmのリング状の鋼板を作製した。ついで、このリング状の鋼板を20枚積層した状態で750℃で2時間、窒素雰囲気中で焼鈍した。この皮膜付き鋼板においては焼鈍中に皮膜間接着が起きる。また、焼鈍中に鋼板積層体の上に種々の重さの重りを載せて焼鈍することで面圧を変化させ、接着面積率の異なる鋼板積層体を作製した(B1〜B7)。
First, after cold rolling to a thickness of 0.35 mm, annealing was performed at 950 ° C. to prepare a non-oriented silicon steel sheet on which no film was formed.
A solution prepared by mixing 50 g of a 50% sodium silicate aqueous solution, 50 g of a 50% potassium silicate aqueous solution, 200 g of a 20% lithium silicate aqueous solution, and 90 g of an aqueous dispersion of an acrylic-modified epoxy resin having a concentration of 20%. And dried at a final plate temperature of 200 ° C. The coating amount was adjusted to 9 g / m 2 . A ring-shaped steel sheet having an inner diameter of 10 cm and an outer diameter of 12.5 cm was produced from the steel sheet thus produced using a mold. Next, 20 ring-shaped steel plates were laminated and annealed in a nitrogen atmosphere at 750 ° C. for 2 hours. In this coated steel sheet, adhesion between films occurs during annealing. Moreover, the surface pressure was changed by mounting weights of various weights on the steel sheet laminate during annealing, thereby producing steel sheet laminates having different adhesion area ratios (B1 to B7).

一方で、焼鈍中に皮膜面同士が接着しない皮膜付き鋼板素材として、濃度50%の重リン酸アルミニウム水溶液100g、濃度30%のアクリル系有機樹脂水分散液40gの混合液を塗布し、到達板温320℃で焼き付けたものも作製した。皮膜量は2.0g/mであった。この皮膜付き鋼板も同じ金型を用いて内径10cm、外径12.5cmのリング状に打ち抜き、20枚積層した。打ち抜きの際、6箇所のカシメ部を形成させ、鋼板同士を嵌入させ固定化した。ついで、750℃で2時間、窒素雰囲気中で焼鈍した。この皮膜付き鋼板では焼鈍中に皮膜間の接着は起こらない(B8)。 On the other hand, as a steel sheet material with a film in which the film surfaces do not adhere to each other during annealing, a mixed solution of 100 g of an aluminum biphosphate aqueous solution with a concentration of 50% and 40 g of an acrylic organic resin aqueous dispersion with a concentration of 30% is applied. What was baked at the temperature of 320 degreeC was also produced. The coating amount was 2.0 g / m 2 . This coated steel plate was also punched into a ring shape having an inner diameter of 10 cm and an outer diameter of 12.5 cm using the same mold, and 20 sheets were laminated. At the time of punching, six crimped portions were formed, and the steel plates were fitted and fixed. Subsequently, it annealed in nitrogen atmosphere at 750 degreeC for 2 hours. In this steel sheet with a film, adhesion between the films does not occur during annealing (B8).

このようにして作製したそれぞれの鋼板積層体について接着面積率と振動伝達波形を測定し、2kHz以下のピーク数を算出した。   The adhesion area ratio and the vibration transmission waveform were measured for each of the steel sheet laminates thus produced, and the number of peaks of 2 kHz or less was calculated.

Figure 2010088250
Figure 2010088250

表2から次のことが分かる。
まず、焼鈍中に皮膜間接着が起こらない非接着性の皮膜付き鋼板から作製した鋼板積層体においては振動伝達波形のピーク数が17本と多い(条件番号B8)。一方、焼鈍中に皮膜間接着が起こる接着性の皮膜付き鋼板から作製した鋼板積層体においては、いずれの条件においても振動伝達波形のピーク数が4本から10本と少ない。この時の接着面積率が5%から100%であったことから、接着面積率として5%以上100%以下であれば、鋼板積層体における振動伝達波形を10本以下にすることができると言える。
Table 2 shows the following.
First, in a steel sheet laminate manufactured from a non-adhesive coated steel sheet that does not cause adhesion between films during annealing, the number of peaks of vibration transmission waveforms is as many as 17 (condition number B8). On the other hand, in a steel sheet laminate produced from an adhesive-coated steel sheet in which adhesion between films occurs during annealing, the number of peaks of the vibration transmission waveform is as small as 4 to 10 under any condition. Since the adhesion area ratio at this time was 5% to 100%, if the adhesion area ratio is 5% or more and 100% or less, it can be said that the vibration transmission waveform in the steel sheet laminate can be 10 or less. .

(焼鈍温度)
次に発明者らは焼鈍温度の影響について、以下に述べる実験を行って調べた。
まず、厚さ0.35mmに冷延後、900℃で焼鈍し、皮膜を形成していない無方向性珪素鋼板を用意した。
この鋼板に対し、濃度50%の珪酸ナトリウム水溶液70g、濃度50%の珪酸カリウム水溶液70g、濃度20%の珪酸リチウム水溶液350g、濃度20%のアクリル変性エポキシ樹脂の水分散液130gとを混合した液を塗布し、到達板温190℃で乾燥した。皮膜量は10g/mになるように調整した。このようにして作製した鋼板から金型を使って内径10cm、外径12.5cmのリング状の鋼板を作製した。ついで、このリング状の鋼板を20枚積層した状態で焼鈍温度を変え、均熱時間2時間の焼鈍を窒素雰囲気中で実施した。焼鈍の際、特に面圧付与策は講じなかった。ここで鋼板表面に形成している皮膜は焼鈍中に皮膜間の接着を起こすことができる。
(Annealing temperature)
Next, the inventors investigated the influence of the annealing temperature by conducting the following experiment.
First, after cold rolling to a thickness of 0.35 mm, annealing was performed at 900 ° C. to prepare a non-oriented silicon steel sheet on which no film was formed.
A liquid prepared by mixing 70 g of a 50% sodium silicate aqueous solution, 70 g of a 50% potassium silicate aqueous solution, 350 g of a 20% lithium silicate aqueous solution, and 130 g of an aqueous dispersion of an acrylic-modified epoxy resin having a concentration of 20%. And dried at a reached plate temperature of 190 ° C. The coating amount was adjusted to 10 g / m 2 . A ring-shaped steel sheet having an inner diameter of 10 cm and an outer diameter of 12.5 cm was produced from the steel sheet thus produced using a mold. Subsequently, the annealing temperature was changed in a state where 20 pieces of the ring-shaped steel plates were laminated, and annealing for 2 hours of soaking time was performed in a nitrogen atmosphere. No special measures were taken during surface annealing. Here, the film formed on the surface of the steel sheet can cause adhesion between the films during annealing.

このようにして作製したそれぞれの鋼板積層体について接着面積率と振動伝達波形を測定し、2kHz以下のピーク数を算出した。   The adhesion area ratio and the vibration transmission waveform were measured for each of the steel sheet laminates thus produced, and the number of peaks of 2 kHz or less was calculated.

Figure 2010088250
Figure 2010088250

表3から次のことが分かる。
まず、焼鈍温度が300℃、400℃と低い条件においては、耐熱性接着皮膜組成と言えども、皮膜面の接着は実現できず、鋼板積層体として一体化できなかった。そのため、振動伝達波形を測定することができず、振動伝達波形のピーク数を算出することもできなかった(C1、C2)。一方、焼鈍温度が500℃から750℃の条件においては、鋼板積層体として一体化でき、何れの条件においても接着面積率が5%以上でかつ、振動伝達波形のピーク数も10本以下であった(C3からC8)。
Table 3 shows the following.
First, under conditions where the annealing temperature is as low as 300 ° C. and 400 ° C., even though the composition is a heat-resistant adhesive film, adhesion of the film surface cannot be realized, and the steel sheet laminate cannot be integrated. Therefore, the vibration transmission waveform could not be measured, and the number of peaks of the vibration transmission waveform could not be calculated (C1, C2). On the other hand, when the annealing temperature is 500 ° C. to 750 ° C., it can be integrated as a steel sheet laminate, and in any condition, the adhesion area ratio is 5% or more and the number of peaks of the vibration transmission waveform is 10 or less. (C3 to C8).

これらのことから焼鈍温度は500℃以上にすることが必要であることがわかる。
500℃以下であると皮膜成分、特に、皮膜間接着を司る無機成分の溶融・軟化が不十分となるので、皮膜間接着が十分に進行しないものと考えられる。
From these facts, it is understood that the annealing temperature needs to be 500 ° C. or higher.
When the temperature is 500 ° C. or less, the melting and softening of the film component, particularly the inorganic component that controls the adhesion between the films, is insufficient, and it is considered that the adhesion between the films does not proceed sufficiently.

焼鈍温度に上限はない。焼鈍温度が高いほど無機成分の溶融・軟化が進行し、皮膜間の接着が進むので接着面積率は増大し、振動伝達波形は単純になるものと予測される。但し、焼鈍温度が高すぎると、鋼板部において鉄結晶の粒成長が起こり、鋼板の磁気的性質や機械的性質が所期の特性から逸脱する可能性があるので、焼鈍温度の上限は750℃程度が望ましい。   There is no upper limit to the annealing temperature. As the annealing temperature is higher, melting and softening of the inorganic component progresses and adhesion between the coatings progresses, so that the adhesion area ratio increases and the vibration transmission waveform is predicted to be simpler. However, if the annealing temperature is too high, grain growth of iron crystals occurs in the steel plate part, and the magnetic properties and mechanical properties of the steel plate may deviate from the desired properties, so the upper limit of the annealing temperature is 750 ° C. Degree is desirable.

(適用可能な皮膜組成)
鋼板積層体において鋼板同士を「面」で接着するには、特許文献6や特許文献7において発明者らが提案している「耐熱接着性皮膜」を適用できる。この皮膜は有機樹脂と無機成分とで構成される。
(Applicable film composition)
In order to adhere the steel plates to each other with a “surface” in the steel plate laminate, the “heat resistant adhesive film” proposed by the inventors in Patent Document 6 and Patent Document 7 can be applied. This film is composed of an organic resin and an inorganic component.

本願発明に適用できる有機樹脂としては次のようなタイプの有機樹脂がある。
例えば、ポリアクリル樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリビニルアルコール樹脂、ポリフロピレン樹脂、ポリアミド樹脂、ポリウレタン樹脂、フェノール樹脂、エポキシ樹脂、アクリル変性エポキシ樹脂、酢酸ビニル樹脂の1種または2種以上からなる混合物を適用できる。
Examples of the organic resin applicable to the present invention include the following types of organic resins.
For example, one or two of polyacrylic resin, polystyrene resin, polyethylene resin, polyester resin, polyolefin resin, polyvinyl alcohol resin, polypropylene resin, polyamide resin, polyurethane resin, phenol resin, epoxy resin, acrylic modified epoxy resin, vinyl acetate resin Mixtures of more than species can be applied.

本願発明に適用できる無機成分としては次のようなものがある。
例えば、低融点ガラス、珪酸塩が適用できる。中でも珪酸ナトリウム、珪酸カリウム、珪酸リチウムの1種または2種以上からなる混合物が高濃度の水溶液を比較的安価に入手できる点で使い易い。
Examples of inorganic components applicable to the present invention are as follows.
For example, low melting point glass and silicate can be applied. Among them, a mixture composed of one or more of sodium silicate, potassium silicate, and lithium silicate is easy to use in that a high concentration aqueous solution can be obtained relatively inexpensively.

<実施例1> 固定化方法
0.5mm厚さに冷延後880℃で焼鈍し、皮膜を形成していない無方向性珪素鋼板を用意した。
これらの鋼板を素材として次の3つの異なる方法、即ち比較例(カシメ法と溶接法)と実施例(皮膜法)で固定化し、鋼板積層体を作製した。
<Example 1> Immobilization method A non-oriented silicon steel sheet having no film formed by cold rolling to 0.5 mm thickness and annealing at 880 ° C was prepared.
These steel plates were used as a raw material, and were fixed by the following three different methods, that is, a comparative example (caulking method and welding method) and an example (film method) to prepare a steel plate laminate.

(カシメ法:比較例)
濃度50%の重リン酸アルミニウム水溶液100g、濃度30%のアクリル系有機樹脂水分散液40gの混合液を塗布し、到達板温315℃で焼き付けた。皮膜量は1.5g/mであった。この皮膜付き鋼板を金型を用いて内径10cm、外径12.5cmのリング状に打ち抜き、20枚積層した。この時、6箇所のカシメ部を形成させ、鋼板同士を嵌入させ固定化した。ついで、750℃で2時間、窒素雰囲気中で焼鈍した。ここで鋼板表面に形成してある皮膜は焼鈍中に面間接着を起こさない。
(Caulking method: comparative example)
A mixed solution of 100 g of an aqueous solution of aluminum biphosphate having a concentration of 50% and 40 g of an aqueous dispersion of an acrylic organic resin having a concentration of 30% was applied and baked at a final plate temperature of 315 ° C. The coating amount was 1.5 g / m 2 . This coated steel sheet was punched into a ring shape having an inner diameter of 10 cm and an outer diameter of 12.5 cm using a mold, and 20 sheets were laminated. At this time, six crimping portions were formed, and the steel plates were fitted and fixed. Subsequently, it annealed in nitrogen atmosphere at 750 degreeC for 2 hours. Here, the film formed on the steel sheet surface does not cause inter-surface adhesion during annealing.

(溶接法:比較例)
カシメ法と同じ皮膜付き鋼板を同じ金型を使い、カシメ部を形成させずに打ち抜き20枚積層した。この積層体の端面の6箇所を溶接し、固定化した。ついで、750℃で2時間、窒素雰囲気中で焼鈍した。ここで鋼板表面に形成してある皮膜は焼鈍中に面間接着を起こさない。
(Welding method: comparative example)
Using the same die, the same coated steel sheet as in the caulking method was punched and laminated without forming the caulking portion. Six locations on the end face of this laminate were welded and fixed. Subsequently, it annealed in nitrogen atmosphere at 750 degreeC for 2 hours. Here, the film formed on the steel sheet surface does not cause inter-surface adhesion during annealing.

(皮膜法:実施例)
鋼板に対し、濃度50%の珪酸ナトリウム水溶液70g、濃度50%の珪酸カリウム水溶液70g、濃度20%の珪酸リチウム水溶液300g、濃度20%のアクリル変性エポキシ樹脂水分散液100gとを混合した液を塗布し、到達板温180℃で乾燥した。皮膜量は8g/mになるように調整した。このようにして作製した鋼板からカシメ法、溶接法で鋼板積層体を作製した時に使用したのと同じ金型を使ってリング状の鋼板を作製した。ついで、このリング状の鋼板を20枚積層した状態で750℃で2時間、窒素雰囲気中で焼鈍した。この時、50g/cmの面圧を付与した状態で焼鈍した。ここで鋼板表面に形成した皮膜は焼鈍中に皮膜間の接着を起こすことができる。
(Film method: Examples)
Apply a liquid mixture of 70 g of 50% sodium silicate aqueous solution, 70 g of 50% potassium silicate aqueous solution, 300 g of 20% lithium silicate aqueous solution, and 100 g of 20% acryl-modified epoxy resin aqueous dispersion to the steel sheet. And dried at an ultimate plate temperature of 180 ° C. The coating amount was adjusted to 8 g / m 2 . A ring-shaped steel sheet was produced from the steel sheet thus produced using the same mold as that used when a steel sheet laminate was produced by a caulking method and a welding method. Next, 20 ring-shaped steel plates were laminated and annealed in a nitrogen atmosphere at 750 ° C. for 2 hours. At this time, it annealed in the state which provided the surface pressure of 50 g / cm < 2 >. Here, the film formed on the surface of the steel sheet can cause adhesion between the films during annealing.

このようにして作製した固定化方法の異なる鋼板積層体について、接着面積率と振動伝達波形及びピーク数を測定し、結果を表4にまとめた。   With respect to the steel sheet laminates having different fixing methods, the adhesion area ratio, the vibration transmission waveform, and the number of peaks were measured, and the results are summarized in Table 4.

Figure 2010088250
Figure 2010088250

表4から次のことが分かる。
皮膜面が接着していないカシメ法(D1)や溶接法(D2)の比較例の鋼板積層体では振動伝達波形におけるピーク数がそれぞれ15本と19本と多い。一方、接着面積率が15%と鋼板面の一部の領域が接着している皮膜法(D3)の実施例の鋼板積層体ではピーク本数が7本と少ない。このことから皮膜法により鋼板面積の一部(接着面積率=15%)でも接着させた鋼板積層体は振動伝達波形が他の固定化方法の鋼板積層体に比べ単純である点で優れている。
Table 4 shows the following.
In the steel plate laminate of the comparative example of the caulking method (D1) or the welding method (D2) in which the film surface is not bonded, the number of peaks in the vibration transmission waveform is as large as 15 and 19, respectively. On the other hand, the steel plate laminate of the example of the coating method (D3) in which the adhesion area ratio is 15% and a part of the steel sheet surface is bonded has a small peak number of seven. For this reason, the steel plate laminate bonded with a part of the steel plate area by the coating method (adhesive area ratio = 15%) is superior in that the vibration transmission waveform is simpler than the steel plate laminates of other fixing methods. .

<実施例2> 接着面積率
0.25mm厚さに冷延後、1050℃で焼鈍し、皮膜を形成していない無方向性珪素鋼板を用意した。
この鋼板に対し、実施例として、皮膜を形成していない無方向性電磁鋼板に対し、濃度50%の珪酸ナトリウム水溶液100g、濃度20%の珪酸リチウム水溶液250g、濃度20%のアクリル/スチレン型の有機樹脂水分散液80gとを混合した液を皮膜塗布し、乾燥後の皮膜量が9g/mとなるように塗布し、到達板温180℃で乾燥した。このようにして作製した鋼板から金型を使って内径10cm、外径12.5cmのリング状の鋼板を作製し、リング状の鋼板を20枚積層した状態で750℃で2時間、窒素雰囲気中で焼鈍した。この時、鋼板積層体の上に重しをのせ、皮膜付き鋼板面に付与される面圧を変えて鋼板積層体を焼鈍した(実施例:E1からE7)。
<Example 2> Adhesive area ratio After cold-rolling to a thickness of 0.25 mm, a non-oriented silicon steel sheet which was annealed at 1050 ° C and had no film formed thereon was prepared.
For this steel sheet, as an example, a non-oriented electrical steel sheet having no film formed thereon is 100 g of sodium silicate aqueous solution with a concentration of 50%, 250 g of lithium silicate aqueous solution with a concentration of 20%, and acrylic / styrene type with a concentration of 20%. A liquid mixed with 80 g of the organic resin aqueous dispersion was applied to the film, applied so that the amount of the film after drying was 9 g / m 2, and dried at an ultimate plate temperature of 180 ° C. A ring-shaped steel sheet having an inner diameter of 10 cm and an outer diameter of 12.5 cm was prepared from the steel sheet thus prepared using a mold, and 20 ring-shaped steel sheets were stacked in a nitrogen atmosphere at 750 ° C. for 2 hours. Annealed with. At this time, the steel plate laminate was subjected to weighting, and the surface pressure applied to the coated steel plate surface was changed to anneal the steel plate laminate (Examples: E1 to E7).

実施例とは別に皮膜を形成していない無方向性珪素鋼板に対し、比較例として、濃度50%の重リン酸アルミニウム水溶液100gと濃度30%のアクリル系有機樹脂水分散液40gとを混合した塗布液を乾燥後の皮膜量が片面当たり2.5g/mとなるよう塗布し、到達板温355℃で乾燥した。このようにして作製した鋼板から金型を使って内径10cm、外径12.5cmのリング状の鋼板を作製した。この時、リング状鋼板を積層した状態で端面の6箇所を溶接し、固定化した。ついで、端面を溶接済みの鋼板積層体を750℃で2時間、窒素雰囲気中で焼鈍した(比較例:E8)。 As a comparative example, 100 g of an aqueous solution of aluminum biphosphate having a concentration of 50% and 40 g of an aqueous dispersion of an acrylic organic resin having a concentration of 30% were mixed as a comparative example with respect to the non-oriented silicon steel sheet on which no film was formed. The coating solution was applied so that the coating amount after drying was 2.5 g / m 2 per side, and dried at an ultimate plate temperature of 355 ° C. A ring-shaped steel sheet having an inner diameter of 10 cm and an outer diameter of 12.5 cm was produced from the steel sheet thus produced using a mold. At this time, in the state which laminated | stacked the ring-shaped steel plate, 6 places of the end surface were welded and fixed. Next, the steel plate laminate with the end faces welded was annealed at 750 ° C. for 2 hours in a nitrogen atmosphere (Comparative Example: E8).

実施例の皮膜では接着が起こり、比較例の皮膜では接着は起こらない。
このようにして作製した鋼板積層体について、接着面積率と振動伝達波形及びピーク数を測定し、結果を表5にまとめた。
Adhesion occurs in the film of the example, and no adhesion occurs in the film of the comparative example.
The steel sheet laminate thus produced was measured for the adhesion area ratio, vibration transmission waveform, and number of peaks, and the results are summarized in Table 5.

Figure 2010088250
Figure 2010088250

表5から次のことが分かる。
まず、焼鈍中に皮膜間接着が起こらない非接着性の皮膜付き鋼板から作製し、溶接法で固定化した鋼板積層体においては振動伝達波形のピーク数が15本と多い(条件番号E8)。一方、焼鈍中に皮膜間接着が起こる接着性の皮膜付き鋼板から作製した鋼板積層体においては、いずれの条件においても振動伝達波形のピーク数が5本から10本と少なく、この時の接着面積率は5%から100%であった。
Table 5 shows the following.
First, the number of peaks of the vibration transmission waveform is as large as 15 in a steel sheet laminate produced from a non-adhesive coated steel sheet that does not cause inter-film adhesion during annealing (condition number E8). On the other hand, in a steel sheet laminate produced from an adhesive-coated steel sheet in which adhesion between films occurs during annealing, the number of peaks of the vibration transmission waveform is small from 5 to 10 under any condition, and the adhesion area at this time The rate was 5% to 100%.

以上のことから接着面積率が5%から100%で、鋼板積層体における振動伝達波形のピーク数が10本以下の実施例は、接着面積率0%(接着していない)で、振動伝達波形のピーク数が15本の溶接コアの比較例に比べ優れている。   From the above, in the examples in which the adhesion area ratio is 5% to 100% and the peak number of vibration transmission waveforms in the steel sheet laminate is 10 or less, the adhesion area ratio is 0% (not bonded), and the vibration transmission waveform is The number of peaks is superior to that of the comparative example of 15 weld cores.

<実施例3> 焼鈍温度
まず、厚さ0.5mmに冷延後、850℃で焼鈍し、皮膜を形成していない無方向性珪素鋼板を用意した。
この鋼板に対し、濃度50%の珪酸カリウム水溶液120g、濃度20%の珪酸リチウム水溶液270g、濃度20%のエポキシ樹脂の水分散液110gとを混合した液を塗布し、到達板温180℃で乾燥した。皮膜量は9g/mになるように調整した。このようにして作製した鋼板から金型を使って内径10cm、外径12.5cmのリング状の鋼板を作製した。ついで、このリング状の鋼板を20枚積層した状態で焼鈍温度を変え、均熱時間2時間の焼鈍を窒素雰囲気中で実施した。焼鈍の際、鋼板積層体の上に重しをのせ、10g/cmの面圧が付与されるようにした。ここで鋼板表面に形成している皮膜は焼鈍中に皮膜間の接着を起こすことができる。
<Example 3> Annealing temperature First, after cold-rolling to a thickness of 0.5 mm, a non-oriented silicon steel sheet that was annealed at 850 ° C. and had no film formed thereon was prepared.
A solution obtained by mixing 120 g of a 50% concentration potassium silicate aqueous solution, 270 g of a 20% concentration lithium silicate aqueous solution and 110 g of an aqueous dispersion of an epoxy resin with a concentration of 20% is applied to the steel sheet and dried at a final plate temperature of 180 ° C. did. The coating amount was adjusted to 9 g / m 2 . A ring-shaped steel sheet having an inner diameter of 10 cm and an outer diameter of 12.5 cm was produced from the steel sheet thus produced using a mold. Subsequently, the annealing temperature was changed in a state where 20 pieces of the ring-shaped steel plates were laminated, and annealing for 2 hours of soaking time was performed in a nitrogen atmosphere. During the annealing, a weight was placed on the steel sheet laminate so that a surface pressure of 10 g / cm 2 was applied. Here, the film formed on the surface of the steel sheet can cause adhesion between the films during annealing.

このようにして作製したそれぞれの鋼板積層体について接着面積率と振動伝達波形を測定し、2kHz以下のピーク数を算出した。   The adhesion area ratio and the vibration transmission waveform were measured for each of the steel sheet laminates thus produced, and the number of peaks of 2 kHz or less was calculated.

Figure 2010088250
Figure 2010088250

表6から次のことが分かる。
まず、焼鈍温度が300℃、400℃と低い比較例においては、耐熱性接着皮膜組成と言えども、皮膜面の接着は実現できず、鋼板積層体として一体化できなかった。そのため、振動伝達波形を測定することができず、振動伝達波形のピーク数を算出することもできなかった(F1、F2)。一方、焼鈍温度が500℃から750℃の実施例においては、鋼板積層体として一体化でき、何れの条件においても接着面積率が5%以上でかつ、振動伝達波形のピーク数も10本以下であった(F3からF8)。
以上のことから比較例に比べ実施例は優れている。
Table 6 shows the following.
First, in the comparative examples where the annealing temperatures were as low as 300 ° C. and 400 ° C., even though the composition was a heat-resistant adhesive film, adhesion of the film surface could not be realized and integrated as a steel sheet laminate. Therefore, the vibration transmission waveform could not be measured, and the number of peaks of the vibration transmission waveform could not be calculated (F1, F2). On the other hand, in the examples where the annealing temperature is 500 ° C. to 750 ° C., it can be integrated as a steel sheet laminate, the adhesion area ratio is 5% or more under any condition, and the number of peaks of the vibration transmission waveform is 10 or less. (F3 to F8).
From the above, the example is superior to the comparative example.

<実施例4>
まず、厚さ0.35mmに冷延後、1000℃で焼鈍し、皮膜を形成していない無方向性珪素鋼板を用意した。
<Example 4>
First, after cold rolling to a thickness of 0.35 mm, annealing was performed at 1000 ° C. to prepare a non-oriented silicon steel sheet on which no film was formed.

(皮膜法:実施例/比較例)
この鋼板に対し、濃度50%の珪酸ナトリウム水溶液60g、濃度50%の珪酸カリウム水溶液75g、濃度20%の珪酸リチウム水溶液350g、濃度20%のアクリル変性エポキシ樹脂水分散液95gとを混合した液を塗布し、到達板温200℃で乾燥した。皮膜量は12g/mになるように調整した。このようにして作製した鋼板から金型を使って内径10cm、外径12.5cmのリング状の鋼板を作製した。ついで、このリング状の鋼板を20枚積層した状態で焼鈍温度を変え、均熱時間2時間の焼鈍を窒素雰囲気中で実施した。焼鈍の際、鋼板積層体の上に重さの異なる重しをのせ、焼鈍時の積層体に面圧が付与されるようにした。ここで鋼板表面に形成している皮膜は焼鈍中に皮膜間の接着を起こすことができる。このようにして作製したそれぞれの鋼板積層体について接着面積率と振動伝達波形を測定し、2kHz以下のピーク数を算出した(条件番号G1からG13)。
(Coating method: Examples / comparative examples)
A solution prepared by mixing 60 g of a 50% sodium silicate aqueous solution, 75 g of a 50% potassium silicate aqueous solution, 350 g of a 20% lithium silicate aqueous solution, and 95 g of a 20% acrylic modified epoxy resin aqueous dispersion with respect to this steel sheet. It was applied and dried at an ultimate plate temperature of 200 ° C. The coating amount was adjusted to 12 g / m 2 . A ring-shaped steel sheet having an inner diameter of 10 cm and an outer diameter of 12.5 cm was produced from the steel sheet thus produced using a mold. Subsequently, the annealing temperature was changed in a state where 20 pieces of the ring-shaped steel plates were laminated, and annealing for 2 hours of soaking time was performed in a nitrogen atmosphere. During the annealing, weights having different weights were placed on the steel sheet laminate so that surface pressure was applied to the laminate during annealing. Here, the film formed on the surface of the steel sheet can cause adhesion between the films during annealing. The adhesion area ratio and the vibration transmission waveform were measured for each of the steel plate laminates thus produced, and the number of peaks of 2 kHz or less was calculated (condition numbers G1 to G13).

(カシメ法、溶接法:比較例)
実施例とは別に、比較例として、皮膜を形成していない無方向性電磁鋼板に対し、濃度50%の重リン酸アルミニウム水溶液100gと濃度30%のアクリル系有機樹脂水分散液40gとを混合した塗布液を乾燥後の皮膜量が片面当たり1.3g/mとなるよう塗布し、到達板温305℃で乾燥した。このようにして作製した鋼板から金型を使って内径10cm、外径12.5cmのリング状の鋼板を作製し、20枚積層した。この時、6箇所のカシメ部を形成させ、鋼板同士を嵌入させ固定化した。また、カシメ法による鋼板積層体とは別に、リング状鋼板を積層した状態で端面の6箇所を溶接し、固定化した鋼板積層体も作製した。これらのカシメ法鋼板積層体と溶接法鋼板積層体も750℃で2時間、窒素雰囲気中で焼鈍した。この皮膜においては焼鈍中に皮膜間の接着は起こらない。このようにして作製した鋼板積層体についても、接着面積率と振動伝達波形を測定しピーク数を算出した(条件番号G14とG15)。結果を表7にまとめた。
(Caulking method, welding method: comparative example)
Separately from the examples, as a comparative example, 100 g of an aluminum biphosphate aqueous solution with a concentration of 50% and 40 g of an acrylic organic resin aqueous dispersion with a concentration of 30% were mixed with a non-oriented electrical steel sheet having no film formed thereon. The applied coating solution was applied so that the coating amount after drying was 1.3 g / m 2 per side, and dried at an ultimate plate temperature of 305 ° C. A ring-shaped steel plate having an inner diameter of 10 cm and an outer diameter of 12.5 cm was produced from the steel plates thus produced using a mold, and 20 sheets were laminated. At this time, six crimping portions were formed, and the steel plates were fitted and fixed. Separately from the steel plate laminate obtained by the caulking method, a fixed steel plate laminate was prepared by welding six locations on the end face in a state where the ring-shaped steel plates were laminated. These crimped steel plate laminates and welded steel plate laminates were also annealed at 750 ° C. for 2 hours in a nitrogen atmosphere. In this film, adhesion between the films does not occur during annealing. For the steel sheet laminate thus produced, the adhesion area ratio and vibration transmission waveform were measured to calculate the number of peaks (condition numbers G14 and G15). The results are summarized in Table 7.

Figure 2010088250
Figure 2010088250

表7から次のことがわかる。
鋼板積層体の固定化方法がカシメ法(G14)と溶接法(G15)の比較例、並びに鋼板積層体が皮膜法でも鋼板積層体焼鈍温度が350℃(G12)と450℃(G13)の比較例では、接着面積率が5%未満で振動伝達波形が10本よりも多い。
Table 7 shows the following.
Comparison of caulking method (G14) and welding method (G15) for fixing method of steel plate laminate, and comparison of steel plate laminate annealing temperature of 350 ° C (G12) and 450 ° C (G13) even when steel plate laminate is a coating method In the example, the adhesion area ratio is less than 5% and the vibration transmission waveform is more than ten.

一方、鋼板積層体の固定化方法が皮膜法で、鋼板積層体の焼鈍温度が500℃以上の条件(G1からG11)では接着面積率が5%以上100%以下で、振動伝達波形のピーク数が10本以下と少ない。
比較例に比べ実施例の方が振動伝達波形におけるピーク数が少なく優れており、振動・騒音低減策を安価・容易に実施できるものと期待できる。
On the other hand, when the method for fixing the steel plate laminate is a film method and the annealing temperature of the steel plate laminate is 500 ° C. or higher (G1 to G11), the adhesion area ratio is 5% or more and 100% or less, and the peak number of vibration transmission waveform Is less than 10 or less.
Compared with the comparative example, the example is superior in that the number of peaks in the vibration transmission waveform is small, and it can be expected that the measures for vibration and noise reduction can be implemented inexpensively and easily.

本発明は回転機用鉄芯として用いる珪素鋼板積層体に適用でき、特に、鋼板積層体の段階で焼鈍を施す圧縮機用鉄芯に供する鋼板積層体において、振動を安価・容易に低減できることができる。   The present invention can be applied to a silicon steel sheet laminate used as an iron core for a rotating machine, and in particular, in a steel sheet laminate used for a compressor iron core that is annealed at the stage of the steel sheet laminate, vibration can be reduced at low cost and easily. it can.

Claims (2)

複数の皮膜付き珪素鋼板を積層した後、500℃以上の温度で焼鈍した、回転機用鉄芯として用いる珪素鋼板積層体であって、該鋼板積層体中の該鋼板表面の皮膜における接着面積率が5%以上100%以下で、かつ該鋼板積層体の振動伝達波形を2kHz以下の領域において測定した時に、最強ピーク強度に対し、50%以上の強度を持つ波形ピーク数が、最強ピークを含め10個以下であることを特徴とする、振動伝達波形の単純な珪素鋼板積層体。   A silicon steel sheet laminate used as an iron core for a rotating machine, which is annealed at a temperature of 500 ° C. or higher after laminating a plurality of coated steel sheets, and the adhesion area ratio in the film on the steel sheet surface in the steel sheet laminate When the vibration transmission waveform of the steel sheet laminate is measured in the region of 2 kHz or less, the number of waveform peaks having an intensity of 50% or more with respect to the strongest peak intensity includes the strongest peak. A silicon steel sheet laminate having a simple vibration transmission waveform, characterized in that the number is 10 or less. 鋼板表面の皮膜が珪酸塩と有機樹脂熱分解物からなることを特徴とする請求項1記載の振動伝達波形の単純な珪素鋼板積層体。   2. A simple silicon steel sheet laminate having a vibration transmission waveform according to claim 1, wherein the coating on the surface of the steel sheet is composed of a silicate and an organic resin thermal decomposition product.
JP2008256859A 2008-10-01 2008-10-01 Silicon steel laminate with simple vibration transmission waveform Active JP5212000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256859A JP5212000B2 (en) 2008-10-01 2008-10-01 Silicon steel laminate with simple vibration transmission waveform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256859A JP5212000B2 (en) 2008-10-01 2008-10-01 Silicon steel laminate with simple vibration transmission waveform

Publications (2)

Publication Number Publication Date
JP2010088250A true JP2010088250A (en) 2010-04-15
JP5212000B2 JP5212000B2 (en) 2013-06-12

Family

ID=42251649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256859A Active JP5212000B2 (en) 2008-10-01 2008-10-01 Silicon steel laminate with simple vibration transmission waveform

Country Status (1)

Country Link
JP (1) JP5212000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176138A (en) * 2015-03-19 2016-10-06 Jfeスチール株式会社 Magnetic steel sheet with insulating coating, laminated magnetic steel sheet and production method of them

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174365A (en) * 1981-04-21 1982-10-27 Fuji Electric Co Ltd Adhesive
JPS5978275A (en) * 1982-10-28 1984-05-07 Shinto Paint Co Ltd Adhesive composition for clad steel stock preparation
JPH04361508A (en) * 1991-06-10 1992-12-15 Nippon Steel Corp Low noise laminated core and wound core using extra high silicon electromagnetic steel
JPH05300675A (en) * 1992-04-17 1993-11-12 Nippon Steel Corp Rotor for motor or generator
JPH11246834A (en) * 1997-11-21 1999-09-14 Lintec Corp Tacky body containing inorganic powder and fusion of its inorgnic powder
JP2003168603A (en) * 2001-11-30 2003-06-13 Kawasaki Steel Corp Non-oriented magnetic steel plate for motor iron core
WO2006043612A1 (en) * 2004-10-18 2006-04-27 Nippon Steel Corporation Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same.
JP2007232551A (en) * 2006-03-01 2007-09-13 Tokyo Univ Of Agriculture & Technology Method and apparatus for inspecting laminated mold

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174365A (en) * 1981-04-21 1982-10-27 Fuji Electric Co Ltd Adhesive
JPS5978275A (en) * 1982-10-28 1984-05-07 Shinto Paint Co Ltd Adhesive composition for clad steel stock preparation
JPH04361508A (en) * 1991-06-10 1992-12-15 Nippon Steel Corp Low noise laminated core and wound core using extra high silicon electromagnetic steel
JPH05300675A (en) * 1992-04-17 1993-11-12 Nippon Steel Corp Rotor for motor or generator
JPH11246834A (en) * 1997-11-21 1999-09-14 Lintec Corp Tacky body containing inorganic powder and fusion of its inorgnic powder
JP2003168603A (en) * 2001-11-30 2003-06-13 Kawasaki Steel Corp Non-oriented magnetic steel plate for motor iron core
WO2006043612A1 (en) * 2004-10-18 2006-04-27 Nippon Steel Corporation Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same.
JP2007232551A (en) * 2006-03-01 2007-09-13 Tokyo Univ Of Agriculture & Technology Method and apparatus for inspecting laminated mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176138A (en) * 2015-03-19 2016-10-06 Jfeスチール株式会社 Magnetic steel sheet with insulating coating, laminated magnetic steel sheet and production method of them

Also Published As

Publication number Publication date
JP5212000B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP2017011863A (en) Laminated electrical steel plate for motor core and production method therefor
JP5309431B2 (en) Laminated steel sheet of electromagnetic steel having high resistance between steel sheets on shear plane of steel sheet and caulking method thereof
JP2015164389A (en) Laminate iron core manufacturing method, laminate iron core manufacturing apparatus and laminate iron core
JP6064923B2 (en) Manufacturing method of laminated iron core
KR102335462B1 (en) Composite materials for stator laminates and rotor laminates
JP6344537B1 (en) Method for producing electrical steel sheet with adhesive insulating coating and method for producing laminated electrical steel sheet
JP6805978B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5212000B2 (en) Silicon steel laminate with simple vibration transmission waveform
EP4170690A1 (en) Electromagnetic steel sheet, lamianted core, and rotating electric machine
JP5750275B2 (en) Insulated steel sheet and laminated iron core
JP7129945B2 (en) Coating agent for insulating coating
JP2003100523A (en) Low-noise laminated core and wound core using high- silicon steel plate
CN110621496A (en) Composite material for transformer
JP2022529005A (en) How to connect the core laminate stack and the core laminate with adhesive
JP6984998B2 (en) Non-oriented electrical steel sheets for high-performance motors
JP6417832B2 (en) Quality judgment method for laminated metal sheets
JP4522688B2 (en) Magnetic substrate and laminate and method for producing the same
JP5098205B2 (en) Method for improving fatigue strength and magnetic properties of punched part of electrical steel sheet
JP2006129640A (en) Method of manufacturing iron core for electrical appliance
JP2001338824A (en) Method of manufacturing laminated iron core
JP2005340705A (en) Process for producing laminated core excellent in dimensional precision and core strength
JP2019161766A (en) Electromagnetic steel sheet
JP4620937B2 (en) Magnetic steel sheet for laminated iron core and manufacturing method thereof
JPWO2020129925A1 (en) Adhesive laminated core for stator and rotary electric machine
JP2000218727A (en) Resin-composite type damping metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R151 Written notification of patent or utility model registration

Ref document number: 5212000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350