JP4522688B2 - Magnetic substrate and laminate and method for producing the same - Google Patents

Magnetic substrate and laminate and method for producing the same Download PDF

Info

Publication number
JP4522688B2
JP4522688B2 JP2003364490A JP2003364490A JP4522688B2 JP 4522688 B2 JP4522688 B2 JP 4522688B2 JP 2003364490 A JP2003364490 A JP 2003364490A JP 2003364490 A JP2003364490 A JP 2003364490A JP 4522688 B2 JP4522688 B2 JP 4522688B2
Authority
JP
Japan
Prior art keywords
heat
resistant resin
laminate
magnetic
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364490A
Other languages
Japanese (ja)
Other versions
JP2005129767A (en
Inventor
辺 洋 渡
子 展 弘 丸
田 光 伸 吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA SPECIAL STEEL CO., INC.
Original Assignee
NAKAGAWA SPECIAL STEEL CO., INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA SPECIAL STEEL CO., INC. filed Critical NAKAGAWA SPECIAL STEEL CO., INC.
Priority to JP2003364490A priority Critical patent/JP4522688B2/en
Publication of JP2005129767A publication Critical patent/JP2005129767A/en
Application granted granted Critical
Publication of JP4522688B2 publication Critical patent/JP4522688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、新規なケイ素鋼板を含む磁性基材、積層体およびその製造方法に関する。   The present invention relates to a magnetic substrate including a novel silicon steel plate, a laminate, and a method for producing the same.

電力をはじめとするエネルギーの節減という世界的な動向の中、電気機器についても、その高効率化が強く望まれている。また、電気機器の小型化という観点から、特に鉄心の小型化に対する要望も高まっている。   In the global trend of energy savings including electric power, it is strongly desired to improve the efficiency of electrical equipment. In addition, from the viewpoint of miniaturization of electrical equipment, there is a growing demand for miniaturization of iron cores.

このような電気機器に用いられる電磁トランス、インダクタ、モータなど、あるいは、電力用送受電トランスのコア材料に、鉄にケイ素を含有したケイ素鋼板が広く使用されている。近年、ケイ素鋼板においては、鉄損の低減化をめざし鋼板を薄板化する傾向にある。しかしながら、鋼板の薄板化は、例えば、モ−タなどの積層体においては薄板化に伴うかしめ部位の増加による積層体強度の劣化、占積率が低下するという問題点があった。また、打抜、剪断、曲げなどの機械的な加工歪により磁気特性も劣化するので、この歪をとり、本来の性質を回復させるために歪取焼鈍が必要であった。   Silicon steel sheets containing silicon in iron are widely used as the core material of electromagnetic transformers, inductors, motors, etc. used in such electrical equipment or power transmission / reception transformers. In recent years, silicon steel sheets tend to be thinned with the aim of reducing iron loss. However, the thinning of the steel sheet has a problem that, for example, in a laminated body such as a motor, the strength of the laminated body is deteriorated due to an increase in the caulking part accompanying the thinning, and the space factor is lowered. Moreover, since the magnetic properties are also deteriorated by mechanical processing strain such as punching, shearing, bending, etc., strain relief annealing is necessary to remove this strain and restore its original properties.

小型化、軽量化を図るため、ケイ素鋼板を薄くすると、鋼板の機械的強度や表面部分がもろくなることあった。このため、薄いケイ素鋼板を使用するためには、樹脂を複合化されることが望まれるが、通常、ケイ素鋼の歪み取り焼鈍、600〜800℃の高温で行われるため、ケイ素鋼板を樹脂と複合化しようとすると、焼鈍工程以後に行わなければならなかった。しかしながら、一旦焼鈍工程を経たものを使用して複合しようとすると、複合時に応力がかかり、ひずみが発生し、磁気的特性が低下してしまうことがあった。   If the silicon steel sheet is made thin in order to reduce the size and weight, the mechanical strength and surface portion of the steel sheet may be fragile. For this reason, in order to use a thin silicon steel plate, it is desirable that the resin be compounded. However, since silicon steel is usually subjected to strain relief annealing at a high temperature of 600 to 800 ° C., the silicon steel plate is used as a resin. In order to make it composite, it had to be performed after the annealing process. However, if an attempt is made to use a material that has undergone an annealing process, stress is applied at the time of compounding, strain is generated, and magnetic characteristics may be deteriorated.

また、焼鈍工程以後に樹脂と複合したものでは、接着性も充分ではないので打ち抜き性が不充分であり、クラックが発生したり、歩留まりが悪いなどの問題点があった。またモ−タ用の積層体においては、かしめ部位の増加による積層体強度の劣化、占積率が低下することがあった。   In addition, the composite with the resin after the annealing step has a problem that the adhesiveness is not sufficient, so that the punchability is insufficient, cracks are generated, and the yield is poor. Moreover, in the laminated body for motors, deterioration of the laminated body due to the increase of the caulking site and the space factor may be lowered.

このような情況のもと、本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の加熱条件で熱処理を施すことにより、焼鈍されたケイ素鋼板と樹脂とからなる磁性基材および積層体が得られることを見出した。なお、従来よりケイ素鋼板表面に有機樹脂層を設けることは行われてきたが、これは、絶縁性被膜であり、電磁鋼板として使用される際に除去されている。本発明では、ケイ素鋼板と耐熱性樹脂、特に熱可塑性耐熱樹脂が一体化された磁性基材により、積層体の機械的強度に優れ、歪み取り焼鈍が可能な、磁性基材および積層体とその製造方法を開発した。   Under such circumstances, the present inventors have intensively studied to solve the above problems, and as a result, by performing heat treatment under specific heating conditions, a magnetic base material composed of an annealed silicon steel plate and a resin, and It has been found that a laminate can be obtained. Conventionally, an organic resin layer has been provided on the surface of a silicon steel plate, but this is an insulating coating and has been removed when used as an electromagnetic steel plate. In the present invention, a magnetic base material and laminated body, which are excellent in mechanical strength of the laminate and capable of strain relief annealing, are obtained by a magnetic base material in which a silicon steel plate and a heat resistant resin, particularly a thermoplastic heat resistant resin are integrated. A manufacturing method was developed.

本発明に係る磁性基材は、ケイ素鋼板の片面または両面の少なくとも一部分に耐熱性樹脂および/または耐熱性樹脂の前駆体が付与されてなり、
ケイ素鋼板中に含まれるケイ素量が0.5〜7.5重量%の範囲にあり、
耐熱性樹脂および/またはその前駆体の厚さが全厚さの1/2以下であることを特徴とす
る。
The magnetic base material according to the present invention has a heat resistant resin and / or a precursor of a heat resistant resin applied to at least a part of one side or both sides of a silicon steel plate,
The amount of silicon contained in the silicon steel sheet is in the range of 0.5 to 7.5% by weight,
The thickness of the heat resistant resin and / or its precursor is not more than 1/2 of the total thickness.

前記磁性基材は、
180℃≦Ta≦1000℃、かつ、1000≦Ta×t≦260000(℃・分) を満たす条件で熱
処理をされてなることが好ましい;(Taは熱処理温度(℃)、tは熱処理時間(分)である)。
The magnetic substrate is
It is preferable that the heat treatment is performed under the conditions of 180 ° C. ≦ Ta ≦ 1000 ° C. and 1000 ≦ Ta × t ≦ 260000 (° C./min); (Ta is the heat treatment temperature (° C.), and t is the heat treatment time (min) )).

前記耐熱性樹脂が、熱可塑性樹脂が挙げられる。この耐熱性樹脂としては、ポリイミド、ポリエーテルーテルケトン、ポリエ−テルサルホンが挙げられる。   Examples of the heat resistant resin include thermoplastic resins. Examples of the heat resistant resin include polyimide, polyether-terketone, and polyethersulfone.

本発明に係る積層体は、前記記載の磁性基材を2枚以上積層してなることを特徴としている。また本発明に係る積層体は、前記磁性基材または磁性基材の積層体を打ち抜き、これらが積層一体化されてなることを特徴としている。さらに本発明に係る積層体は、前記磁性基材または磁性基材の積層体を打ち抜き、かしめにより積層一体化されてなることを特徴としている。   The laminate according to the present invention is characterized in that two or more magnetic base materials described above are laminated. The laminate according to the present invention is characterized in that the magnetic base material or the laminate of the magnetic base material is punched out, and these are laminated and integrated. Furthermore, the laminate according to the present invention is characterized in that the magnetic substrate or the laminate of the magnetic substrate is punched out and laminated and integrated by caulking.

前記積層体が、180℃≦Ta≦1000℃、かつ、1000≦Ta×t≦260000(℃・分) を
満たす条件で加熱接着および熱処理をされてなることが好ましい;(Taは熱処理温度(℃)、tは熱処理時間(分)である)。
It is preferable that the laminate is heat-bonded and heat-treated under the conditions of 180 ° C. ≦ Ta ≦ 1000 ° C. and 1000 ≦ Ta × t ≦ 260000 (° C./min); ), T is the heat treatment time (minutes).

本発明に係る磁性基材の製造方法としては、
ケイ素鋼板の片面または両面の少なくとも一部分に耐熱性樹脂および/または耐熱性樹脂の前駆体を付与したのち、
必要に応じて得られた磁性基材を積層し、打ち抜き、
ついで、 180℃≦Ta≦1000℃、かつ、1000≦Ta×t≦260000(℃・分) を満た
す条件で熱処理することを特徴とする;(Taは熱処理温度(℃)、tは熱処理時間(分)である)。
As a method for producing a magnetic substrate according to the present invention,
After applying a heat resistant resin and / or a precursor of a heat resistant resin to at least a part of one side or both sides of a silicon steel plate,
Laminate and punch the magnetic base material obtained as necessary,
Next, heat treatment is performed under the conditions of 180 ° C. ≦ Ta ≦ 1000 ° C. and 1000 ≦ Ta × t ≦ 260000 (° C./min); (Ta is heat treatment temperature (° C.), t is heat treatment time ( Min)).

前記製造方法において、加圧下において、熱処理を行うことが好ましい。   In the manufacturing method, it is preferable to perform heat treatment under pressure.

このような条件で加熱接着および熱処理をすることにより、機械的歪が緩和され、積層一体化によりコア強度が高く、占積率の高い、磁気特性の優れた積層体が得られる。また、加圧下において、熱処理を行うことによりこの効果はより向上する。   By performing heat bonding and heat treatment under such conditions, mechanical strain is alleviated, and a laminated body with high core strength, high space factor, and excellent magnetic properties can be obtained by lamination integration. In addition, this effect is further improved by performing heat treatment under pressure.

本発明では、ケイ素鋼板に耐熱性樹脂が付与された磁性基材および磁性積層体により、積層体の強度が高く、占積率の高い、また、磁気特性の優れる積層体が短時間で、量産性よく作製可能となるとともに、打ち抜き時のクラックの低減や、金型寿命の向上が得られる。   In the present invention, a magnetic base material and a magnetic laminate in which a heat-resistant resin is applied to a silicon steel plate, a laminate having high strength, a high space factor, and excellent magnetic properties can be mass-produced in a short time. It is possible to manufacture with good performance, and it is possible to reduce cracking at the time of punching and to improve the mold life.

以下、本発明の磁性基材およびその製造方法についてさらに詳細に説明する。
(磁性基材)
本発明に係る磁性基基材は、ケイ素鋼板の片面または両面の少なくとも一部分に耐熱性樹脂および/または耐熱性樹脂の前駆体が付与されている。
Hereinafter, the magnetic substrate of the present invention and the production method thereof will be described in more detail.
(Magnetic substrate)
In the magnetic base material according to the present invention, a heat resistant resin and / or a precursor of a heat resistant resin is applied to at least a part of one side or both sides of a silicon steel plate.

ケイ素鋼板
本発明に用いるケイ素鋼板は、通常、市販されている鋼板の表面に無機質の絶縁被膜が付与されているものでもよいし、ケイ素鋼板の製造工程の過程で得られる、表面に無機質の絶縁被膜が付与されないものでもよい。
Silicon steel plate The silicon steel plate used in the present invention may be one in which an inorganic insulating coating is usually applied to the surface of a commercially available steel plate, or it is obtained in the course of the manufacturing process of a silicon steel plate, and an inorganic insulation on the surface. The film may not be applied.

ケイ素鋼板としては、含まれるケイ素量が0.5〜7.5重量%、好適には1.0〜7重量%、さらに好適には3〜6.5重量%の範囲で含まれている。   As a silicon steel plate, the amount of silicon contained is 0.5 to 7.5% by weight, preferably 1.0 to 7% by weight, and more preferably 3 to 6.5% by weight.

Siは、鋼の電気抵抗を増大し鉄損を改善するのに有用な元素であり、上記範囲で含まれていると、充分な鉄損改善効果を示す。またこの範囲にあれば加工性が高く冷間圧延が容易となる。   Si is an element useful for increasing the electrical resistance of steel and improving iron loss, and when included in the above range, it exhibits a sufficient iron loss improving effect. Further, if it is within this range, workability is high and cold rolling becomes easy.

本発明で使用されるケイ素鋼板の組成は特に限定されることはなく、従来公知のものいずれもが適合する。   The composition of the silicon steel sheet used in the present invention is not particularly limited, and any conventionally known one is suitable.

たとえば、好適な組成範囲を例示すると次のとおりである。   For example, a preferred composition range is as follows.

炭素(C)は、基本的に少ない方がよく0.10重量%以下の範囲にあることが望ましい。   Carbon (C) is basically preferably as little as possible and is preferably in the range of 0.10% by weight or less.

Mnは2重量%以下の範囲にあることが望ましい。Mnは、熱間脆化を防止する効果がある
ものの、2重量%以上になると冷間圧延性の劣化を誘発する。そのため、2重量%以下にする必要がある。
It is desirable that Mn is in the range of 2% by weight or less. Mn has an effect of preventing hot embrittlement, but when it exceeds 2% by weight, it induces deterioration of cold rollability. Therefore, it is necessary to make it 2% by weight or less.

また、ケイ素鋼板にはインヒビタ成分が含まれていてもよい。インヒビタ成分とは、MnSeやMnS,AlN等のいわゆる主インヒビタと呼ばれる分散析出物の形成に用いられる、SeやS,Mn,Al,N等のことである。、インヒビタ成分としては、上記したS, Se, Alの他、Cu, Sn, Sb, Mo, Te及びBi等も有利に作用するのでそれぞれ少量併せて含有させることもできる。これらの各インヒビタ成分についても、単独使用及び複合使用のいずれもが可能である。   The silicon steel sheet may contain an inhibitor component. The inhibitor component is Se, S, Mn, Al, N, or the like used to form a dispersion precipitate called a so-called main inhibitor such as MnSe, MnS, or AlN. As the inhibitor component, Cu, Sn, Sb, Mo, Te, Bi and the like other than the above-described S, Se, Al are also advantageous, so they can be contained in small amounts. Each of these inhibitor components can be used alone or in combination.

鋼板の製造方法については、特に限定されることはなく、従来公知の製造条件で行えばよい。すなわち、含ケイ素鋼スラブを、熱間圧延した後、1回または中間焼鈍を含む2回の冷間圧延を施して最終板厚とし、ついで脱炭焼鈍後、鋼板表面に焼鈍分離剤を塗布してから、2次再結晶焼鈍および純化焼鈍を施せばよい。   The method for producing the steel sheet is not particularly limited, and may be performed under conventionally known production conditions. That is, after hot rolling a silicon-containing steel slab, it is subjected to cold rolling twice or twice including intermediate annealing to obtain a final plate thickness, and after decarburization annealing, an annealing separator is applied to the steel plate surface. Then, secondary recrystallization annealing and purification annealing may be performed.

このようなケイ素鋼板の厚さは、目的とする用途に応じて適宜選択されるが、通常、25〜400μm程度であればよい。   The thickness of such a silicon steel sheet is appropriately selected according to the intended use, but it is usually sufficient if it is about 25 to 400 μm.

また、通常、市販されているケイ素鋼板は、表面には無機系の絶縁被膜が付与されているが、本発明においては、ケイ素鋼板の表面にある無機系絶縁被膜があっても、また、なくても、本発明の耐熱樹脂を付与された磁性基材として十分に得られる。必要に応じてエッチングなどの手段によって無機系絶縁被膜を除去してもよい。   In addition, usually, commercially available silicon steel plates have an inorganic insulating coating provided on the surface, but in the present invention, there is an inorganic insulating coating on the surface of the silicon steel plate. However, it can be sufficiently obtained as a magnetic substrate provided with the heat-resistant resin of the present invention. If necessary, the inorganic insulating coating may be removed by means such as etching.

耐熱性樹脂
本発明において耐熱性樹脂とは、窒素雰囲気下300℃、2時間の熱履歴を経た際の熱分解による重量減少率が5重量%以下のものである。
Heat Resistant Resin In the present invention, the heat resistant resin is one having a weight reduction rate of 5% by weight or less due to thermal decomposition when subjected to a thermal history at 300 ° C. for 2 hours in a nitrogen atmosphere.

さらに、以下の特性を1つ以上有していることが好ましい。
(1)窒素雰囲気下350℃、2時間の熱履歴を経た後の引っ張り強度が30MPa以上であること、
(2)ガラス転移温度が120℃〜250℃であること、
(3)融粘度が1000Pa・sである温度が、250℃以上400℃以下であること
(4)400℃から120℃まで0.5℃/分の一定速度で降温した後、樹脂中の結晶物による融解熱が10J/g以下であることを特徴とする。
Furthermore, it is preferable to have one or more of the following characteristics.
(1) The tensile strength after passing through a heat history at 350 ° C. for 2 hours in a nitrogen atmosphere is 30 MPa or more,
(2) The glass transition temperature is 120 ° C to 250 ° C,
(3) The temperature at which the melt viscosity is 1000 Pa · s is 250 ° C. or more and 400 ° C. or less. (4) After the temperature is lowered from 400 ° C. to 120 ° C. at a constant rate of 0.5 ° C./min, crystals in the resin The heat of fusion by the object is 10 J / g or less.

このような耐熱性樹脂として、熱可塑性樹脂が使用される。   A thermoplastic resin is used as such a heat resistant resin.

具体的な樹脂としては、ポリイミド系樹脂、ケイ素含有樹脂、ケトン系樹脂、ポリアミ
ド系樹脂、液晶ポリマー,ニトリル系樹脂,チオエ−テル系樹脂,ポリエステル系樹脂,アリレ−ト系樹脂,サルホン系樹脂,イミド系樹脂,アミドイミド系樹脂を挙げることができる。これらのうちポリイミド系樹脂、(PI),ポリエーテルエーテルケトン樹脂(PEEK)、ポリエ-テルサルホン(PES)を用いることが好ましい。PI、PEEK、PESは高耐熱性の
熱可塑性樹脂でかつケイ素鋼板との良好な接着性を有するので好適である。また、これらの樹脂を二種類以上複合化したものでもよい。また、これらの樹脂は前駆体であってもよい。前駆体としてはポリイミド前駆体のポリアミド酸溶液などが挙げられる。
Specific resins include polyimide resins, silicon-containing resins, ketone resins, polyamide resins, liquid crystal polymers, nitrile resins, thioether resins, polyester resins, arylate resins, sulfone resins, Examples thereof include imide resins and amide imide resins. Of these, it is preferable to use polyimide resin, (PI), polyetheretherketone resin (PEEK), or polyethersulfone (PES). PI, PEEK, and PES are suitable because they are high heat-resistant thermoplastic resins and have good adhesion to silicon steel sheets. Also, a composite of two or more of these resins may be used. These resins may be precursors. Examples of the precursor include a polyamic acid solution of a polyimide precursor.

このような耐熱性樹脂の厚さとしては、耐熱性樹脂および/またはその前駆体から形成される層の厚さが基材全厚さの1/2以下とする。この範囲の厚さであれば、基材として充
分な強度を保持できる。
As the thickness of such a heat resistant resin, the thickness of the layer formed from the heat resistant resin and / or its precursor is set to 1/2 or less of the total thickness of the base material. If it is the thickness of this range, sufficient intensity | strength as a base material can be hold | maintained.

また、下限としては少しでも耐熱性樹脂層が設けられていればよく、基材の前厚さの1/1000以上であればよい。   Further, as a lower limit, it is sufficient that a heat-resistant resin layer is provided as much as possible, and it may be 1/1000 or more of the previous thickness of the substrate.

このような磁性基材は以下に示すような特定の熱処理がされたものが好ましい。
(磁性基材の製造)
本発明に係る磁性基材の製造方法は、ケイ素鋼板に耐熱性樹脂を付与した磁性材料基材が、この基材を打ち抜いた後に高温の歪取り焼鈍が可能であることを特徴としている。
Such a magnetic substrate is preferably subjected to a specific heat treatment as shown below.
(Manufacture of magnetic substrate)
The method for producing a magnetic base material according to the present invention is characterized in that a magnetic material base material provided with a heat-resistant resin on a silicon steel plate can be subjected to high-temperature strain relief annealing after punching out the base material.

ケイ素鋼板に、耐熱性樹脂(またはその前駆体)を付与する。耐熱性樹脂は、必要に応じて、溶媒に分散・または溶解させて使用することも可能である。溶媒としては、耐熱性樹脂を溶解・分散可能なものであって、低温で容易に揮散するものであれば特に制限されない。   A heat resistant resin (or a precursor thereof) is applied to the silicon steel plate. The heat-resistant resin can be used by being dispersed or dissolved in a solvent as necessary. The solvent is not particularly limited as long as it can dissolve and disperse the heat-resistant resin and can be easily volatilized at a low temperature.

耐熱性樹脂の付与方法としては、特に制限されるものではなく、含浸法、コーティング法、スプレー噴霧法など、公知の方法が採用される。溶媒が使用されている場合、脱溶媒処理(溶媒沸点での加熱乾燥、または減圧乾燥、風乾など)を施して行うことがよい。また耐熱性樹脂の前駆体を耐熱性樹脂に変化させてもよい。   The method for applying the heat resistant resin is not particularly limited, and a known method such as an impregnation method, a coating method, a spray spraying method, or the like is employed. In the case where a solvent is used, it is preferably carried out by performing a solvent removal treatment (heat drying at the boiling point of the solvent, drying under reduced pressure, air drying, etc.). Further, the precursor of the heat resistant resin may be changed to a heat resistant resin.

耐熱性樹脂は、ケイ素鋼板の片面に設けられていても、また両面に設けられていてもよい。耐熱性樹脂は、ケイ素鋼板表面の全面に設けられていてもよく、また、部分的に設けられていてもよい。たとえば、スプレーで散布した場合、散在するように耐熱性樹脂を付与してもよい。部分的に設けられていても、加熱処理時の熱や加圧によって広げられるので、全面を被覆することが可能となる。   The heat resistant resin may be provided on one side or both sides of the silicon steel plate. The heat resistant resin may be provided on the entire surface of the silicon steel plate or may be provided partially. For example, when sprayed, the heat resistant resin may be applied so as to be scattered. Even if it is partially provided, it is spread by heat or pressure during the heat treatment, so that the entire surface can be covered.

また、前駆体を反応させる際に、後述する加熱処理によって、ケイ素鋼板を焼鈍させるとともに、耐熱性樹脂を生成させてもよい。   Moreover, when making a precursor react, while heat-treating later, a silicon steel plate may be annealed and a heat resistant resin may be generated.

こうして耐熱性樹脂層が形成されたケイ素鋼板を、必要な枚数積み上げて積層体を形成してもよい。さらに積層体を打ち抜いてもよく、積層体を打ち抜き、さらにかしめてもよい。さらに積層体を積み上げて新たな積層体として形成してもよい。   A laminated body may be formed by stacking the necessary number of silicon steel plates on which the heat-resistant resin layer is formed in this manner. Further, the laminate may be punched out, or the laminate may be punched out and further caulked. Furthermore, a laminate may be stacked to form a new laminate.

打ち抜きはプレス加工など、公知の手段を制限なく採用することが可能である。また、打ち抜く際にかしめ加工すれば基板・積層体をかしめることも可能となる。   For the punching, known means such as press working can be used without limitation. In addition, it is possible to caulk the substrate / stacked body by caulking when punching.

また、耐熱性樹脂の前駆体を用いる場合は、耐熱性樹脂の形成と同時に積層体の形成を行うことも可能である。   Moreover, when using the precursor of a heat resistant resin, it is also possible to form a laminated body simultaneously with formation of a heat resistant resin.

加熱接着および熱処理を行う場合、本発明における加熱処理条件は、
180℃≦Ta≦1000℃、かつ、1000≦Ta×t≦260000(℃・分)
を満たす条件である。
When performing heat bonding and heat treatment, the heat treatment conditions in the present invention are:
180 ℃ ≦ Ta ≦ 1000 ℃ and 1000 ≦ Ta × t ≦ 260000 (℃ ・ min)
It is a condition that satisfies.

この範囲であれば加熱処理によって、ケイ素鋼板同士の接着や、モータ用コアの加工歪を緩和する切断などの歪取を十分に行うことができる。さらに、歪取の熱処理後の積層体(モータコア)の強度を高く保つことができるとともに、耐熱性樹脂が変性することもない。   If it is this range, distortion removal, such as the adhesion | attachment between silicon steel plates and the cutting | disconnection which relieve | moderates the process distortion of the core for motors, can fully be performed by heat processing. Furthermore, the strength of the laminate (motor core) after heat treatment for strain removal can be kept high, and the heat resistant resin is not denatured.

Ta×tの下限としては、歪取り焼鈍が可能であり、耐熱性樹脂が変性しない条件であれば特に制限されるものではないが、高温短時間である、1000℃で1分の場合のTa×t
=1000(℃・分)が下限として選ばれ。上限値は、低温長時間が望ましいが、熱処理時間は生産性を考慮すると24時間以下が望ましく、180℃で24時間の場合であり、Ta×t=260000とする。本発明では、ケイ素鋼板に耐熱性樹脂が付与された磁性基材およびこれを
用いた積層体の磁気特性と強度を両立させる場合、この範囲で加熱接着または熱処理することで十分な効果が得られる。
The lower limit of Ta × t is not particularly limited as long as it can be subjected to strain relief annealing and the heat-resistant resin is not denatured. Xt
= 1000 (℃ ・ min) is chosen as the lower limit. The upper limit is preferably a low temperature and a long time, but the heat treatment time is preferably 24 hours or less in consideration of productivity, and is 24 hours at 180 ° C., and Ta × t = 260,000. In the present invention, when the magnetic base material in which a heat resistant resin is applied to a silicon steel sheet and the magnetic properties and strength of a laminate using the same are made compatible, sufficient effects can be obtained by heat bonding or heat treatment in this range. .

(熱処理方法)
熱処理方法としては、特に制限されるものではないが、高周波誘導加熱法、赤外線集光加熱法、レ−ザ加熱法、熱風加熱法、高温体接触加熱法、抵抗過熱法などが採用される。
(Heat treatment method)
Although it does not restrict | limit especially as a heat processing method, A high frequency induction heating method, an infrared condensing heating method, a laser heating method, a hot-air heating method, a high temperature body contact heating method, a resistance overheating method, etc. are employ | adopted.

本発明に係る製造方法では、以下のような素工程を考えることができる。本発明の磁性基材の製造は、これらの1種類またはいくつかの組み合わせにより製造される。
(1)工程A:ケイ素鋼板に耐熱性樹脂の前駆体を付与し、前駆体を反応させて所望の樹脂が形成したのち、加熱処理を行う。
(2)工程B;積層工程であり、磁性基材の樹脂を溶融させて、別の磁性基材のケイ素鋼板に融着させてもよい。いずれの状態も、ケイ素鋼板の間には耐熱性樹脂が存在しており,積層体とはこのような状態を指すものである。
(3)工程C;工程B同様に、積層工程であり、磁性基材のケイ素鋼板に付与されている樹脂同士を溶融させて融着させてより強固に一体化することができる。
In the manufacturing method according to the present invention, the following elementary steps can be considered. The magnetic substrate of the present invention is produced by one or a combination of these.
(1) Step A: A heat-resistant resin precursor is applied to a silicon steel sheet, and the precursor is reacted to form a desired resin, followed by heat treatment.
(2) Step B: Lamination step, the resin of the magnetic base material may be melted and fused to a silicon steel plate of another magnetic base material. In any state, a heat-resistant resin exists between the silicon steel plates, and the laminate indicates such a state.
(3) Step C: Like the step B, it is a lamination step, in which the resins imparted to the silicon steel plate of the magnetic base material can be melted and fused to be integrated more firmly.

工程Bと工程Cは,通常,熱プレス等により,同時に行われる。   Process B and process C are usually performed simultaneously by hot pressing or the like.

その具体的には、以下に代表される組み合わせ方法がある。上記素工程は複数の工程を同時に行っても良く、例えば、
(i)加熱処理を行っていない磁性基材を積み重ねた後に熱融着により積層体を形成した
のち、上記加熱処理を行う方法。(工程Bと工程Cを同時に行う)
(ii)加熱処理を行った磁性基材を積み重ねた後に熱融着により積層体を形成する方法。(工程Bと工程Cを同時に行う)
(iii)耐熱性樹脂の前駆体を用い、該前駆体を、加熱処理を行っていない磁性基材を積
み重ねた後に耐熱性樹脂の形成と同時に積層体を形成したのち、加熱処理を行う方法。(工程Bと工程Cを同時に行う)
(iv)耐熱性樹脂の前駆体を用い、該前駆体を、加熱処理を行った磁性基材を積み重ねた後に耐熱性樹脂の形成と同時に積層体を形成する方法。(工程Bと工程Cを同時に行う)(v)耐熱性樹脂または耐熱性樹脂の前駆体が付与された磁性基材を積み重ねた後、加熱
処理を行うと同時に積層接着する方法。
Specifically, there are combination methods represented by the following. The above elementary process may be performed at the same time, for example,
(I) A method in which the heat treatment is performed after a laminated body is formed by heat fusion after stacking magnetic base materials that have not been heat-treated. (Process B and process C are performed simultaneously)
(Ii) A method of forming a laminate by heat fusion after stacking heat-treated magnetic substrates. (Process B and process C are performed simultaneously)
(Iii) A method in which a heat-resistant resin precursor is used, and the precursor is stacked on a magnetic base material that has not been subjected to heat treatment, and then a laminate is formed simultaneously with the formation of the heat-resistant resin, followed by heat treatment. (Process B and process C are performed simultaneously)
(Iv) A method in which a precursor of a heat resistant resin is used, and a laminate is formed simultaneously with the formation of the heat resistant resin after the precursor is stacked on a heat-treated magnetic base material. (Steps B and C are performed at the same time) (v) A method in which a heat-resistant resin or a precursor of a heat-resistant resin is stacked, and then heat-treated and then laminated and bonded.

積層体を作成する場合に、単層のものを必要な枚数積み上げて積層体を形成してもよいし、積層体を積み上げて積層体として形成してもよい。また、耐熱性樹脂の前駆体を用いる場合は、耐熱性樹脂の形成と同時に積層体の形成を行うことも可能である。   When creating a laminated body, a laminated body may be formed by stacking a required number of single-layer ones, or a laminated body may be stacked and formed as a laminated body. Moreover, when using the precursor of a heat resistant resin, it is also possible to form a laminated body simultaneously with formation of a heat resistant resin.

積層体は用途に応じて、適当な層数のものが用いられる。積層体の各層は、同一種類の磁性基材であってもよいし、異なる種類の磁性基材であってもよい。
(加圧熱処理方法)
本発明においては、ケイ素鋼板の片面または両面に何らかの方法で樹脂を付与した後に、加圧して磁気特性を向上させるための熱処理することが特徴である。
A laminate having an appropriate number of layers is used depending on the application. The layers of the laminate may be the same type of magnetic substrate or different types of magnetic substrates.
(Pressurized heat treatment method)
The present invention is characterized in that a resin is applied to one side or both sides of a silicon steel plate by some method and then heat-treated to improve the magnetic properties by applying pressure.

加圧熱処理は、通常、0.01〜500MPaの圧力下、180〜1000℃の温度で
行なわれる。処理は、1度に行ってもよいし複数回に分けて行ってもよい。複数回に分けて行う場合には、異なる条件を用いてもよい。
The pressure heat treatment is usually performed at a temperature of 180 to 1000 ° C. under a pressure of 0.01 to 500 MPa. The process may be performed once or divided into a plurality of times. Different conditions may be used when performing multiple times.

以上のように、本発明によれば、ケイ素鋼板と耐熱性樹脂とからなる新規な磁性基材が得られる。このような磁性基材は、積層体としての機械的強度が向上され、しかも、歪み取りの熱処理による残存応力の低減により優れた磁気特性を得ることができる。さらには、生産性に優れ、極めて短時間で、量産性よく作製可能となる。このような磁性基材および積層体は製造が容易であり、連続的に製造できるので、量産化に適しモ−タ用、トランス用などの複雑な形状に制約をうけない。   As described above, according to the present invention, a novel magnetic substrate made of a silicon steel plate and a heat resistant resin can be obtained. Such a magnetic substrate has improved mechanical strength as a laminate, and can obtain excellent magnetic properties by reducing residual stress by heat treatment for strain relief. Furthermore, it is excellent in productivity, and can be manufactured with high productivity in a very short time. Such magnetic substrates and laminates are easy to manufacture and can be manufactured continuously, so that they are suitable for mass production and are not restricted by complicated shapes such as for motors and transformers.

実施例
以下、本発明を実施例により説明するが、本発明はこれらの実施例に何ら限定的に解釈されるものではない。
(実施例1〜6、比較例1および2)
Si量約3%を含有した、板厚約150μmのケイ素鋼板に、以下に示すようにして種々の耐
熱接着樹脂の樹脂層を約3μm付与させた磁性基材(片面)からモ−タ用のステ−タ形状にプレスにより打ち抜いた磁性基材を320枚重ね、高さ約5cm、直径10cmのステ−タ積層体を作製し、JIS C0041に準拠した耐衝撃試験を行った。ステ−タ積層体は、加熱接着、かしめ+加熱接着、そして従来のかしめ法により固定し積層一体化したものを用いた。
EXAMPLES The present invention will be described below with reference to examples, but the present invention should not be construed as being limited to these examples.
(Examples 1-6, Comparative Examples 1 and 2)
For a motor from a magnetic base material (single side) in which a resin layer of various heat-resistant adhesive resins is applied to a silicon steel plate containing about 3% Si and having a thickness of about 150 μm, as shown below, with a resin layer of various heat-resistant adhesive resins. A stack of 320 magnetic substrates punched into a stator shape by pressing was stacked to produce a stator laminate having a height of about 5 cm and a diameter of 10 cm, and an impact resistance test in accordance with JIS C0041 was performed. As the stator laminate, one obtained by heat bonding, caulking + heat bonding, and fixing and laminating and integrating by a conventional caulking method was used.

実施例1、2および4の積層体は、ケイ素鋼板にポリアミック酸のワニス(樹脂分18%)をグラビアコ−タでコ−テング、実施例3はスプレ−コ−ト後(部分的な霧状)熱風乾燥して平均厚さ3μmになるように磁性基材を形成し、汎用のプレス加工により、ステ−タ形状に打ち抜き積層した。   The laminates of Examples 1, 2 and 4 were coated with a polyamic acid varnish (resin content 18%) on a silicon steel plate with a gravure coater, and Example 3 was spray coated (partial mist). Shape) A magnetic base material was formed so as to have an average thickness of 3 μm by drying with hot air, and punched and laminated into a stator shape by general-purpose pressing.

実施例2、3は抜きかしめ加工して、かしめた。   Examples 2 and 3 were caulked and then caulked.

実施例1〜4では、得られた積層体を、270℃で10分加熱し積層体を固定化接着し、続
けて、打ち抜き加工歪みを緩和するため、350℃で4時間熱処理した。
In Examples 1 to 4, the obtained laminate was heated at 270 ° C. for 10 minutes to immobilize and adhere the laminate, and subsequently heat treated at 350 ° C. for 4 hours in order to reduce punching distortion.

なお、実施例4に用いたケイ素鋼板は、表面の無機質層をエッチングにより取り除いた
ものを使用した。
The silicon steel plate used in Example 4 was obtained by removing the surface inorganic layer by etching.

実施例5はDMAcの溶剤に溶解させたワニス(PES重量30%)をケイ素鋼板の表面に塗布し熱風乾燥させて形成し、280℃で30分加熱し積層体を固定化接着し実施例2と同
様の方法で積層体を作製し、これを350℃で4時間熱処理した。
In Example 5, varnish (PES weight 30%) dissolved in a DMAc solvent was applied to the surface of a silicon steel plate and dried with hot air, heated at 280 ° C. for 30 minutes, and the laminate was fixed and adhered. A laminate was prepared in the same manner as above, and this was heat-treated at 350 ° C. for 4 hours.

実施例6の液晶ポリマ−は溶融させた樹脂をケイ素鋼板の表面に付与した後、実施例2と同様の方法で積層体を作製しこれを350℃で4時間熱処理した。   For the liquid crystal polymer of Example 6, after applying a molten resin to the surface of the silicon steel plate, a laminate was prepared in the same manner as in Example 2 and heat treated at 350 ° C. for 4 hours.

比較例1および2は、低粘度のエポキシ、アクリル接着材を、ケイ素鋼板の表面に付与し熱風乾燥させて樹脂層を形成した。得られた磁性基材を実施例2、3と同様にして抜きかしめ加工してかしめ、350℃、4時間で歪み取りの熱処理を行った。   In Comparative Examples 1 and 2, a resin layer was formed by applying a low-viscosity epoxy or acrylic adhesive to the surface of a silicon steel plate and drying it with hot air. The obtained magnetic base material was punched and caulked in the same manner as in Examples 2 and 3, and subjected to heat treatment for removing strain at 350 ° C. for 4 hours.

比較例3は、ケイ素鋼板をそのまま積層し、接着のための熱処理を行うことなく、実施例2、3と同様にして抜きかしめ加工してかしめ、350℃、4時間で歪み取りの熱処理を行った。   In Comparative Example 3, the silicon steel plates were laminated as they were, and without being subjected to heat treatment for bonding, they were punched and caulked in the same manner as in Examples 2 and 3, and heat treatment for strain relief was performed at 350 ° C. for 4 hours. It was.

結果を表1に示す。   The results are shown in Table 1.

Figure 0004522688
Figure 0004522688

表1より明らかなように、比較例3の従来のかしめでは、積層端面に一部剥離が見られるが、本発明の熱可塑性ポリイミド樹脂、熱可塑性ポリエーテルサルホン、溶融型液晶ポリマーの積層体では試験前と同様に積層体に劣化は認められなかった。また、エポキシ、アクリルなどの耐熱性の低い樹脂を付与した磁性基材を用いたステ−タ形状の積層体では、350℃、4時間程度の歪みとりの熱処理において、樹脂の劣化が生じてしまい、積層体の強度は、かしめ法のみと変わらない結果となった。
(実施例7、比較例4) 積層体の歪み取り熱処理の効果
実施例7では、ケイ素鋼板にポリアミック酸のワニス(樹脂分18%)をグラビアコ−タでコ−テング、平均厚さ3μmになるように熱可塑性ポリイミド樹脂を形成した磁性基材から汎用のプレス機で、リング状(外形28mm、内径20mm)に打ち抜いたものを7枚積
層し、これを、270℃、30分で積層一体化したトロイダル状の積層体を作製した。
As is clear from Table 1, in the conventional caulking of Comparative Example 3, some peeling is seen on the end face of the laminate, but the laminate of the thermoplastic polyimide resin of the present invention, the thermoplastic polyethersulfone, and the melt type liquid crystal polymer. However, as in the case before the test, no deterioration was observed in the laminate. In addition, in a stator-shaped laminate using a magnetic base material provided with a resin having low heat resistance such as epoxy and acrylic, the resin deteriorates during heat treatment for removing strain at 350 ° C. for about 4 hours. The strength of the laminate was the same as that of the caulking method alone.
(Example 7, Comparative Example 4) Effect of heat treatment for strain relief of laminated body In Example 7, a varnish of polyamic acid (resin content: 18%) was coated on a silicon steel plate with a gravure coater to an average thickness of 3 μm. Seven pieces of ring-shaped (outer diameter 28 mm, inner diameter 20 mm) punched out from a magnetic base material formed with thermoplastic polyimide resin were laminated with a general-purpose press, and this was laminated and integrated at 270 ° C for 30 minutes. A toroidal laminate was prepared.

比較例4は、ポリアミック酸ワニスの代わりにアクリル樹脂ワニスを用いて、同様にしてトロイダル状の積層体を作製した。   The comparative example 4 produced the toroidal laminated body similarly using the acrylic resin varnish instead of the polyamic acid varnish.

得られた積層体について磁気特性の評価および形状(目視)について調べた。磁気特性は、鉄損値を交流BHアナライザ−(岩通電子製)を用いて、周波数f=1kHz、最大
磁束密度Bm=1.0T(磁束sin波)の条件で求めた。
The obtained laminate was examined for evaluation of magnetic properties and shape (visual observation). The magnetic characteristics were obtained by using an AC BH analyzer (manufactured by Iwatatsu Electronics Co., Ltd.) for the iron loss value under the conditions of frequency f = 1 kHz and maximum magnetic flux density Bm = 1.0 T (magnetic flux sin wave).

結果を表2に示す。   The results are shown in Table 2.

Figure 0004522688
Figure 0004522688

表2に示されるように、熱可塑性ポリイミドを付与した積層体では、400℃においても形状寸法はほとんど変形がなく、磁気特性の歪み取り効果(15%程度低減)が得られた。一方、比較例にみるアクリル樹脂の積層体では、300℃で外形寸法および高さの寸法が約0.7%変形した。400℃では、端面より炭化物が発生し、磁気特性は大幅(22%程度)劣化し
、寸法は3%以上(高さ)変形した。
As shown in Table 2, the laminate to which the thermoplastic polyimide was applied had almost no deformation even at 400 ° C., and the effect of removing distortion of the magnetic properties (reduction of about 15%) was obtained. On the other hand, in the laminate of acrylic resin as seen in the comparative example, the outer dimensions and height dimensions were deformed by about 0.7% at 300 ° C. At 400 ℃, carbides were generated from the end face, the magnetic properties deteriorated significantly (about 22%), and the dimensions were deformed by more than 3% (height).

Claims (10)

ケイ素鋼板の片面または両面の少なくとも一部分に耐熱性樹脂および/または耐熱性樹脂の前駆体が付与されてなり、
ケイ素鋼板中に含まれるケイ素量が0.5〜7.5重量%の範囲にあり、
(i)耐熱性樹脂が、ポリイミド、ポリエーテルエーテルケトン、ポリエ−テルサルホン、液晶ポリマーからなる群から選ばれる少なくとも1種の熱可塑性樹脂であり、
(ii)耐熱性樹脂および/またはその前駆体の厚さが全厚さの1/2以下であり、
(iii)180℃≦Ta≦1000℃、かつ、1000≦Ta×t≦260000(℃・分) を満たす条件で熱処理をされてなることを特徴とする磁性基材;
(Taは熱処理温度(℃)、tは熱処理時間(分)である)。
A heat resistant resin and / or a precursor of a heat resistant resin is applied to at least a part of one side or both sides of a silicon steel plate,
The amount of silicon contained in the silicon steel sheet is in the range of 0.5 to 7.5% by weight,
( i) the heat resistant resin is at least one thermoplastic resin selected from the group consisting of polyimide, polyetheretherketone, polyethersulfone, and liquid crystal polymer;
(ii) the thickness of the heat resistant resin and / or its precursor is 1/2 or less of the total thickness,
(iii) 180 ° C. ≦ Ta ≦ 1000 ° C., and a magnetic base material that is heat-treated under the conditions satisfying 1000 ≦ Ta × t ≦ 260000 (° C./min);
(Ta is a heat treatment temperature (° C.), and t is a heat treatment time (minute)).
請求項1に記載の磁性基材を2枚以上積層してなることを特徴とする磁性基材の積層体。   A laminate of magnetic substrates, comprising two or more magnetic substrates according to claim 1 laminated. 請求項1に記載の磁性基材または磁性基材の積層体を打ち抜き、これらが積層一体化されてなることを特徴とする積層体。   A laminate comprising the magnetic substrate according to claim 1 or a laminate of magnetic substrates, which is formed by stacking and integrating them. 請求項1に記載の磁性基材または磁性基材の積層体を打ち抜き、かしめにより積層一体化されてなることを特徴とする積層体。   A laminate comprising the magnetic substrate according to claim 1 or a laminate of the magnetic substrate, wherein the laminate is integrated by stamping. ケイ素含量が0.5〜7.5重量%のケイ素鋼板の片面または両面の少なくとも一部分に、ポリイミド、ポリエーテルエーテルケトン、ポリエ−テルサルホン、液晶ポリマーからなる群から選ばれる少なくとも1種の熱可塑性樹脂からなる耐熱性樹脂および/または耐熱性樹脂の前駆体を厚さが全厚さの1/2以下で付与したのち、
ついで、 180℃≦Ta≦1000℃、かつ、1000≦Ta×t≦260000(℃・分) を満たす条件で熱処理することを特徴とする磁性基材の製造方法;(Taは熱処理温度(℃)、tは熱処理時間(分)である)。
Heat resistance comprising at least one thermoplastic resin selected from the group consisting of polyimide, polyetheretherketone, polyethersulfone and liquid crystal polymer on at least a part of one or both sides of a silicon steel sheet having a silicon content of 0.5 to 7.5% by weight After the resin and / or heat-resistant resin precursor is applied at a thickness of 1/2 or less of the total thickness,
Next, a method for producing a magnetic base material, characterized in that heat treatment is performed under conditions satisfying 180 ° C. ≦ Ta ≦ 1000 ° C. and 1000 ≦ Ta × t ≦ 260000 (° C./min); (Ta is a heat treatment temperature (° C.)) , T is the heat treatment time (minutes).
加熱処理を、270〜400℃の範囲で行うことを特徴とする請求項5に記載の製造方法。   The manufacturing method according to claim 5, wherein the heat treatment is performed in a range of 270 to 400 ° C. 加圧下において、熱処理を行うことを特徴とする請求項5または6に記載の磁性基材の製造方法。   The method for producing a magnetic substrate according to claim 5 or 6, wherein heat treatment is performed under pressure. 加圧処理を、0.01〜500MPaの圧力下で行うことを特徴する請求項7に記載の製造方法。   The manufacturing method according to claim 7, wherein the pressurizing treatment is performed under a pressure of 0.01 to 500 MPa. 耐熱性樹脂および/または耐熱性樹脂の前駆体が付与されたケイ素鋼板を積層したのち、打ち抜き、熱処理することを特徴とする請求項5〜8のいずれかに記載の磁性基材の製造方法。   The method for producing a magnetic base material according to any one of claims 5 to 8, wherein the heat-resistant resin and / or the silicon steel plate provided with the heat-resistant resin precursor is laminated, and then punched and heat-treated. 耐熱性樹脂および/または耐熱性樹脂の前駆体付与されたケイ素鋼板を積層し、打ち抜き、かしめたのち熱処理することを特徴とする請求項5〜8のいずれかに記載の磁性基材の製造方法。   The method for producing a magnetic substrate according to any one of claims 5 to 8, wherein a heat-resistant resin and / or a silicon steel plate provided with a precursor of the heat-resistant resin is laminated, punched, caulked and then heat-treated. .
JP2003364490A 2003-10-24 2003-10-24 Magnetic substrate and laminate and method for producing the same Expired - Fee Related JP4522688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364490A JP4522688B2 (en) 2003-10-24 2003-10-24 Magnetic substrate and laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364490A JP4522688B2 (en) 2003-10-24 2003-10-24 Magnetic substrate and laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005129767A JP2005129767A (en) 2005-05-19
JP4522688B2 true JP4522688B2 (en) 2010-08-11

Family

ID=34643450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364490A Expired - Fee Related JP4522688B2 (en) 2003-10-24 2003-10-24 Magnetic substrate and laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4522688B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133026A1 (en) * 2007-04-13 2008-11-06 Hitachi Metals, Ltd. Magnetic core for antenna, method for producing magnetic core for antenna, and antenna
KR102176342B1 (en) * 2018-09-28 2020-11-09 주식회사 포스코 Method for manufacturing the electrical steel sheet product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361508A (en) * 1991-06-10 1992-12-15 Nippon Steel Corp Low noise laminated core and wound core using extra high silicon electromagnetic steel
JPH05251223A (en) * 1992-03-09 1993-09-28 Toshiba Corp Laminated magnetic material and manufacture thereof
JPH05300675A (en) * 1992-04-17 1993-11-12 Nippon Steel Corp Rotor for motor or generator
JPH08107022A (en) * 1994-09-30 1996-04-23 Nkk Corp Lamination core and wound core of low noise wherein high silicon steel plate is used
JP2001059145A (en) * 1999-06-16 2001-03-06 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its manufacture
JP2002151316A (en) * 2000-08-30 2002-05-24 Mitsui Chemicals Inc Magnetic substrate
JP2002164224A (en) * 2000-08-30 2002-06-07 Mitsui Chemicals Inc Magnetic substrate and method of manufacturing the same
JP2003031421A (en) * 2001-05-07 2003-01-31 Fukae Kosakusho:Kk Ring core and its manufacturing method
JP2003100523A (en) * 2002-08-12 2003-04-04 Nkk Corp Low-noise laminated core and wound core using high- silicon steel plate
JP2003129197A (en) * 2001-10-25 2003-05-08 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361508A (en) * 1991-06-10 1992-12-15 Nippon Steel Corp Low noise laminated core and wound core using extra high silicon electromagnetic steel
JPH05251223A (en) * 1992-03-09 1993-09-28 Toshiba Corp Laminated magnetic material and manufacture thereof
JPH05300675A (en) * 1992-04-17 1993-11-12 Nippon Steel Corp Rotor for motor or generator
JPH08107022A (en) * 1994-09-30 1996-04-23 Nkk Corp Lamination core and wound core of low noise wherein high silicon steel plate is used
JP2001059145A (en) * 1999-06-16 2001-03-06 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its manufacture
JP2002151316A (en) * 2000-08-30 2002-05-24 Mitsui Chemicals Inc Magnetic substrate
JP2002164224A (en) * 2000-08-30 2002-06-07 Mitsui Chemicals Inc Magnetic substrate and method of manufacturing the same
JP2003031421A (en) * 2001-05-07 2003-01-31 Fukae Kosakusho:Kk Ring core and its manufacturing method
JP2003129197A (en) * 2001-10-25 2003-05-08 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet
JP2003100523A (en) * 2002-08-12 2003-04-04 Nkk Corp Low-noise laminated core and wound core using high- silicon steel plate

Also Published As

Publication number Publication date
JP2005129767A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
KR100689085B1 (en) Magnetic base material, laminate from magnetic base material and method for production thereof
JP7320055B2 (en) Manufacturing method of electromagnetic steel sheet product
KR20120017015A (en) Laminated core having a soft magnetic material and method for joining core sheets in a bonded manner to form a soft-magnetic laminated core
JP2008213410A (en) Laminated sheet and manufacturing method of laminate
JP6086098B2 (en) Laminated electrical steel sheet and manufacturing method thereof
EP2006086B1 (en) Process for production of soft magnetic metal strip laminate
JP4371234B2 (en) Flexible metal foil polyimide laminate
WO2018116881A1 (en) Method for producing electromagnetic steel sheet with adhesive insulating coating film and method for producing stacked electromagnetic steel sheet
CN111527169A (en) Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing electrical steel sheet product
CN113165332A (en) Electrical steel sheet and method for manufacturing the same
JP5093572B2 (en) LAMINATED CORE AND MANUFACTURING METHOD THEREOF
KR102109279B1 (en) A manufacturing method of stacked core for transformer with excellent no-load loss
JP2007221869A (en) Laminate
KR100756329B1 (en) Laminate of magnetic base material and method for production thereof
JP4522688B2 (en) Magnetic substrate and laminate and method for producing the same
JP2009200428A (en) Layered product, and its manufacturing method
CN113165328B (en) Laminated body of electrical steel sheet
JP2004048859A (en) Thin shape, highly efficient motor or laminate for generator, and motor or generator
JP5750275B2 (en) Insulated steel sheet and laminated iron core
JP2001338824A (en) Method of manufacturing laminated iron core
JP2008098323A (en) Magnetic appliance
JP2004119403A (en) Magnetic laminate
JP3634155B2 (en) Manufacturing method of electrical steel sheet for laminated adhesive core with excellent adhesive strength stability
JP2001307935A (en) Method of manufacturing laminated core excellent in adhesion and magnetic properties
JP2004047505A (en) Annealed core and its annealing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4522688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees