JP2008213410A - Laminated sheet and manufacturing method of laminate - Google Patents

Laminated sheet and manufacturing method of laminate Download PDF

Info

Publication number
JP2008213410A
JP2008213410A JP2007057370A JP2007057370A JP2008213410A JP 2008213410 A JP2008213410 A JP 2008213410A JP 2007057370 A JP2007057370 A JP 2007057370A JP 2007057370 A JP2007057370 A JP 2007057370A JP 2008213410 A JP2008213410 A JP 2008213410A
Authority
JP
Japan
Prior art keywords
laminate
thickness
soft magnetic
laminated
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007057370A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Hiromitsu Itabashi
弘光 板橋
Yuichi Nishi
雄一 西
Yoshitsugu Furui
義継 古井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007057370A priority Critical patent/JP2008213410A/en
Publication of JP2008213410A publication Critical patent/JP2008213410A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated sheet which improves a difficult workability of amorphous and nanocrystal metal thin strips, and is easy to carry out a punching process and excellent in handling ability, and a manufacturing method of a laminate. <P>SOLUTION: In the manufacturing method of the laminate, a thermosetting resin is coated on a soft magnetic metal thin strip of 8-35 μm in thickness so as to be ≥0.5 μm and ≤2.5 μm in thickness to form a composite thin strip, and the composite thin strips are laminated so as to be ≥50 μm and ≤250 μm in the total thickness to form the laminated sheet, after the laminated sheet is subjected to the punching process to obtain a laminated block, the laminated blocks are overlapped to form the laminate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、情報機器、自動車、家電/民生機器、産業機械などの分野で需要が拡大している、回転機やリアクトル、磁性アンテナ等の高効率化や高利得化に有用な軟磁性金属薄帯を用いた積層板および積層体の製造方法に関するものである。   The present invention is a soft magnetic metal thin film that is useful for increasing the efficiency and gain of rotating machines, reactors, magnetic antennas, etc., where demand is expanding in the fields of information equipment, automobiles, home appliances / consumer equipment, industrial machinery, and the like. The present invention relates to a laminate using a band and a method for producing a laminate.

近年、情報機器、自動車、家電/民生機器、産業機械分野などで、回転機の需要が拡大している、それに伴い回転機の性能向上が求められている。回転機性能向上の課題として、制御性の向上、低騒音化、低振動化、保守性向上、高効率化などのさまざまな課題があるが、エネルギー危機や地球環境保全の観点から、特に回転機の高効率化が最重要課題のひとつとして挙げられる。近年、制御技術の進歩により、誘導電動機や永久磁石型のシンクロナスモータが、広く用いられるようになった。誘導電動機は、構造がシンプルでブラシレス化により保守性にも優れるが、回転子による2次銅損が損失の大きな比率を占め、また力率が悪いため効率においては問題がある。一方で、回転子に、永久磁石を用いる永久磁石型のシンクロナスモータは、回転子側の損失が比較的少なく、効率においては優れるという特徴がある。近年、希土類焼結磁石を回転子に用いた永久磁石型のシンクロナスモータが広く利用されている。しかしながら、希土類永久磁石を回転子に用いるなどのため誘導モータに対し製作コストが高く、温度上昇に対し減磁による出力低下が発生するため高温下や高速下での運転には課題がある。最近、200℃以上での運転にも耐えられる、希土類永久磁石が開発され、10,000回転/分以上の高速で回転する永久磁石型のシンクロナスモータも検討されているが、この耐熱性希土類磁石には最大10重量%以上におよぶ希少元素であるDyを使用するため、将来の資源枯渇の懸念がある。一方、自動車や新エネルギー分野においては、近い将来の化石燃料枯渇が懸念されており、風力発電や太陽光発電などの新エネルギーの技術開発が盛んに行われている。また自動車分野では省エネルギーの観点からは一部または全部の動力を電気エネルギーから得るHEVや電気自動車が徐々に普及しつつあり、このような背景から低損失のリアクトルや高効率な、モータや発電機が望まれている。   In recent years, the demand for rotating machines has increased in the fields of information equipment, automobiles, home appliances / consumer equipment, industrial machinery, and the like, and accordingly, improved performance of rotating machines has been demanded. There are various issues to improve the performance of rotating machines, such as improved controllability, lower noise, lower vibration, improved maintainability, and higher efficiency. High efficiency is one of the most important issues. In recent years, induction motors and permanent magnet type synchronous motors have been widely used due to advances in control technology. The induction motor has a simple structure and is excellent in maintainability due to brushlessness, but there is a problem in efficiency because the secondary copper loss due to the rotor accounts for a large loss ratio and the power factor is poor. On the other hand, a permanent magnet type synchronous motor that uses a permanent magnet for the rotor is characterized by relatively low loss on the rotor side and excellent efficiency. In recent years, a permanent magnet type synchronous motor using a rare earth sintered magnet as a rotor has been widely used. However, since a rare earth permanent magnet is used for the rotor, the manufacturing cost of the induction motor is high, and the output decreases due to demagnetization with respect to the temperature rise, so there is a problem in operation at high temperatures and high speeds. Recently, a rare earth permanent magnet that can withstand operation at 200 ° C. or higher has been developed, and a permanent magnet type synchronous motor that rotates at a high speed of 10,000 revolutions / minute or more has been studied. Since the magnet uses Dy, which is a rare element of up to 10% by weight or more, there is a concern about future resource depletion. On the other hand, in the field of automobiles and new energy, there is a concern about fossil fuel depletion in the near future, and technological development of new energy such as wind power generation and solar power generation is actively performed. In the automotive field, HEVs and electric vehicles that obtain part or all of their motive power from electric energy are gradually spreading from the viewpoint of energy saving. From this background, low-loss reactors and high-efficiency motors and generators are used. Is desired.

さらに自動車分野においては、快適性、安全性の要求から、電子化が加速しており、統合制御化が進展し、キーレスエントリシステムやタイヤ空気圧センサー、VSCなどが普及しつつあり、磁性アンテナなどの磁性部品が使用されている。   Furthermore, in the automobile field, computerization is accelerating due to demands for comfort and safety, integrated control is progressing, keyless entry systems, tire pressure sensors, VSC, etc. are becoming widespread. Magnetic parts are used.

これら磁性部品の高効率化、高利得化には、制御回路や磁性材料の高性能化が必要である。なかでも回転機やリアクトル、アンテナなどのコア材料として軟磁性材料が多用されており、その高性能化が求められている。例えば、モータや発電機コアとして大量に使用される電磁鋼板においては損失を低減するために、薄板電磁鋼板が開発されており、従来の350〜500μmの板厚を270〜150μmとした材料が一部で採用されている。   In order to increase the efficiency and gain of these magnetic components, it is necessary to improve the performance of control circuits and magnetic materials. In particular, soft magnetic materials are frequently used as core materials for rotating machines, reactors, antennas, etc., and higher performance is required. For example, in order to reduce loss in electrical steel sheets used in large quantities as motors and generator cores, thin electromagnetic steel sheets have been developed, and a conventional material having a thickness of 350 to 500 μm and a thickness of 270 to 150 μm is one. Adopted in the department.

また、材料のSi含有量を特殊なプロセスを用いて増加させ電気抵抗を大きくした低損失材料として、Fe−6.5%Si材料も開発されている。   Further, an Fe-6.5% Si material has been developed as a low loss material in which the Si content of the material is increased using a special process to increase the electric resistance.

アモルファス材料およびナノ結晶材料は、低損失で高電気抵抗、高磁束密度、良励磁特性を有することを特徴とした優れた軟磁性属材料として知られており、電力用トランスやノイズ対策用部品として利用されている。しかしながら、これらの磁性材料は、通常、溶融した金属を単ロール法などの溶湯急冷法により製造されるために、得られる基材の形態は、35μm以下の薄帯状であり、またこれらの金属薄帯は機械硬度(Hv>800)が高く延性を持たないため機械加工が著しく困難であるという欠点を有する。したがって従来、こららの金属薄帯基材は、電力用トランスコアやノイズカット部品などにトロイダル状に積層した巻き磁心として応用されてきた。近年ではこれら金属薄帯を積層し、回転機やリアクトル、アンテナなどの磁性部材として活用することが検討されており、例えば特許文献1や非特許文献1には、アモルファス薄帯やナノ結晶薄帯を、耐熱性樹脂を用いて積層ブロックとし、300℃以上の高温で熱処理し、軟磁性コア材料とすることが既に開示されている。また非特許文献1では、積層ブロックを放電加工してモータコアとする技術も開示されている。一方、回転機やリアクトルその他に磁気回路構成部材として、最も一般的に利用される電磁鋼板やパーマロイなどの軟磁性板材は、加工効率や加工精度に優れるプレス金型での打抜き加工が常用されている。一方、従来加工性に劣る、アモルファス材料やナノ結晶材料は、35μm以下の薄帯を350℃以上で歪み取り、あるいは結晶化熱処理後、1枚ずつエッチング加工や打抜き加工などにより所定の形状に加工した後、積層してワニスなどの樹脂を含浸熱硬化させることによりコア材料とするか、特許文献1などで開示されている耐熱樹脂などを用いた積層ブロックを放電加工やレーザ加工で所定形状に加工する方法がとられている。しかし、これらの加工方法は加工効率が著しく低く工業生産上問題があるばかりでなく、熱処理後のアモルファス薄帯やナノ結晶薄帯は著しく脆いため、上記放電加工などの手段を用いても、チッピングや割れの発生が避けられず、加工歩留まりが悪いという問題点もある。   Amorphous materials and nanocrystalline materials are known as excellent soft magnetic materials characterized by low loss, high electrical resistance, high magnetic flux density, and good excitation characteristics, as power transformers and noise countermeasure components. It's being used. However, since these magnetic materials are usually produced by melting a molten metal by a molten metal quenching method such as a single roll method, the resulting base material has a thin strip of 35 μm or less, and these metal thin films The band has the disadvantage that it is extremely difficult to machine because of its high mechanical hardness (Hv> 800) and no ductility. Therefore, conventionally, these metal ribbon base materials have been applied as wound magnetic cores laminated in a toroidal shape on power transformer cores, noise cut parts, and the like. In recent years, it has been studied to laminate these metal ribbons and use them as magnetic members such as rotating machines, reactors, and antennas. For example, Patent Document 1 and Non-Patent Document 1 disclose amorphous ribbons and nanocrystal ribbons. Has already been disclosed to form a laminated block using a heat-resistant resin and heat-treat at a high temperature of 300 ° C. or higher to obtain a soft magnetic core material. Non-Patent Document 1 also discloses a technique for forming a motor core by electric discharge machining of a laminated block. On the other hand, the most commonly used soft magnetic plate materials such as magnetic steel plates and permalloy as magnetic circuit components for rotating machines, reactors, etc., are usually punched with a press die with excellent processing efficiency and processing accuracy. Yes. On the other hand, amorphous materials and nanocrystalline materials that are inferior to conventional workability are processed into a predetermined shape by etching or punching one by one after stripping a thin strip of 35 μm or less at 350 ° C. or higher, or after crystallization heat treatment After that, a core material is formed by laminating and thermosetting impregnating a resin such as varnish, or a laminated block using a heat-resistant resin disclosed in Patent Document 1 is formed into a predetermined shape by electric discharge machining or laser machining. The method of processing is taken. However, these processing methods are not only low in processing efficiency but have problems in industrial production, and amorphous strips and nanocrystalline strips after heat treatment are extremely brittle. There is also a problem that the generation of cracks is inevitable and the processing yield is poor.

特開2002−164224号公報JP 2002-164224 A Y.Enomoto et.al.“Evaluation of Experimental Permanent Magnet Brushless Moter Utilizing New Magnetic Material for Stator Core Teeth”INTERMAG2005,TG-11(2005.4)Y. Enomoto et.al. “Evaluation of Experimental Permanent Magnet Brushless Moter Utilizing New Magnetic Material for Stator Core Teeth” INTERMAG2005, TG-11 (2005.4)

本発明はかかる、アモルファスおよびナノ結晶金属薄帯の難加工性を改善し、打抜き加工が容易でハンドリング性に優れた磁性コア用アモルファスおよびナノ結晶材による積層板および積層体の製造方法を提供することを目的とする。   The present invention provides a method for producing a laminate and a laminate using an amorphous and nanocrystalline material for a magnetic core, which improves the difficulty of such amorphous and nanocrystalline metal ribbons, is easy to punch, and has excellent handling properties. For the purpose.

本発明者らは、薄帯間に適切な柔らかい層を設けること、打抜き加工を行う積層板の厚さを適切なものにすること、また、アモルファス材やナノ結晶材の加工性が300℃以下の熱処理で改善されることにより加工性が改善されることを見出し本発明に至った。   The present inventors provide an appropriate soft layer between the ribbons, make the thickness of the laminated plate to be punched appropriate, and the workability of the amorphous material or nanocrystal material is 300 ° C. or less. It has been found that the workability is improved by improving the heat treatment, and the present invention has been achieved.

つまり本発明は、厚さが8〜35μmの軟磁性金属薄帯を複数枚積層した積層板であって、金属薄帯間の熱硬化性樹脂の各厚さが0.5μm以上2.5μm以下、積層板の総厚さが50μm以上250μm以下であることを特徴とする打抜き加工用の積層板である。   That is, the present invention is a laminated plate in which a plurality of soft magnetic metal ribbons having a thickness of 8 to 35 μm are laminated, and each thickness of the thermosetting resin between the metal ribbons is 0.5 μm or more and 2.5 μm or less. A laminate for punching, characterized in that the total thickness of the laminate is from 50 μm to 250 μm.

また、本発明は積層体の製造方法として、厚さが8〜35μmの軟磁性金属薄帯に熱硬化性樹脂を厚さが0.5μm以上2.5μm以下となるように塗布して複合薄帯とし、前記複合薄帯を総厚さが50μm以上250μm以下になるように積層して積層板とし、前記積層板を打抜き加工して積層ブロックを得た後、前記積層ブロックを重ねて積層体とすることを特徴とするものである。また、打抜き加工の前に積層板に300℃以下の熱処理を施すことで、積層板の打抜き加工が行いやすくなる。   In addition, the present invention provides a method for producing a laminate by applying a thermosetting resin to a soft magnetic metal ribbon having a thickness of 8 to 35 μm so as to have a thickness of 0.5 to 2.5 μm. The composite thin ribbon is laminated to have a total thickness of 50 μm or more and 250 μm or less to form a laminated plate, and the laminated plate is punched to obtain a laminated block, and then the laminated block is stacked to obtain a laminated body It is characterized by that. In addition, by performing heat treatment at 300 ° C. or lower on the laminated plate before the punching process, it becomes easier to perform the punching process of the laminated plate.

本発明の積層板、積層体における軟磁性金属薄帯間の樹脂の厚さは、0.5μm以上2.5μm以下とする。樹脂厚さが0.5μm未満では、樹脂と金属薄帯間の結合強度が弱く、打抜き加工の際にはがれが発生しやすい。また、軟磁性金属薄帯間の層間絶縁が低下し、回転機や発電機として使用した場合には、損失の低下をもたらす。またアンテナなどのコアとして使用した場合には利得の低下をもたらすので好ましくない。一方、樹脂層が厚すぎると、磁性材料の体積比が減少して磁気特性が低下するばかりでなく、打抜き加工の際に破断面に段差が生じるなどの精度上の問題があり好ましくない。さらに好ましい樹脂の厚さの範囲は、0.7μm以上2.0μm以下である。   The thickness of the resin between the soft magnetic metal ribbons in the laminate and laminate of the present invention is 0.5 μm or more and 2.5 μm or less. When the resin thickness is less than 0.5 μm, the bond strength between the resin and the metal ribbon is weak, and peeling is likely to occur during punching. Further, the interlayer insulation between the soft magnetic metal ribbons is lowered, and when used as a rotating machine or a generator, the loss is reduced. Further, when it is used as a core of an antenna or the like, the gain is lowered, which is not preferable. On the other hand, if the resin layer is too thick, not only the volume ratio of the magnetic material is reduced and the magnetic properties are deteriorated, but also there is a problem in accuracy such as a step formed on the fractured surface during punching, which is not preferable. A more preferable range of the resin thickness is 0.7 μm or more and 2.0 μm or less.

積層体の総厚さが250μmを超えると打抜き加工性が低下し、数百ショット程度の連続打抜きで金型に1mm以上のばりが発生し、型研磨が必要となるため生産効率上好ましくない。また1ショット辺りの生産効率やハンドリング性を考慮すると積層体の総厚さは、50μm以上が好ましい。   If the total thickness of the laminate exceeds 250 μm, the punching processability is lowered, and a continuous punching of about several hundred shots generates a flash of 1 mm or more in the mold, which requires mold polishing, which is not preferable in terms of production efficiency. In consideration of production efficiency and handling properties per shot, the total thickness of the laminate is preferably 50 μm or more.

本発明の積層板、積層体に用いる樹脂は熱硬化性のエポキシ樹脂、アルキッド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、イミド変性アクリル樹脂が好ましい。熱可塑性樹脂は、回転機や発電機など高速回転で運転される場合などに、寸法変形やはがれなどにより回転機がロックされる恐れがあり好ましくない。また、樹脂の硬化温度は、300℃以下が好ましい。硬化温度が300℃超では、構造緩和等により基材の加工性が著しく低下し、打抜き加工時に基材に亀裂が発生するなどの問題点がある。また硬化温度が150℃未満では樹脂と金属薄帯の結合力が十分でなく打抜き加工時に剥がれが生じるなどの問題点がある。   The resin used for the laminate and laminate of the present invention is preferably a thermosetting epoxy resin, alkyd resin, polyimide resin, polyamideimide resin, or imide-modified acrylic resin. The thermoplastic resin is not preferable because the rotating machine may be locked due to dimensional deformation or peeling when it is operated at a high speed such as a rotating machine or a generator. The curing temperature of the resin is preferably 300 ° C. or lower. When the curing temperature exceeds 300 ° C., the workability of the base material is remarkably lowered due to structural relaxation or the like, and there is a problem that a crack occurs in the base material at the time of punching. Further, when the curing temperature is less than 150 ° C., there is a problem that the bonding force between the resin and the metal ribbon is not sufficient and peeling occurs during the punching process.

本発明により製造した軟磁性金属と樹脂による積層板を用いて積層体とすることにより、磁性コアの損失とヒステリシス損失を大幅に低減することが可能であり、回転機の高効率化、リアクトルの低損失化、アンテナの高利得化を実現できる。また、本発明の積層板は打抜き加工性に優れており、これらの高性能の積層体を容易に提供することが可能である。   By using a laminate made of soft magnetic metal and resin produced according to the present invention, it is possible to greatly reduce the loss of the magnetic core and the loss of hysteresis, and increase the efficiency of the rotating machine and the reactor. Low loss and high antenna gain can be realized. Further, the laminate of the present invention is excellent in punching workability, and it is possible to easily provide these high-performance laminates.

以下、本発明について具体的に説明する。図1に軟磁性金属薄帯の積層体1を示す。軟磁性金属薄帯の積層体は、軟磁性金属薄帯2の表面に接着剤となる熱硬化性樹脂3が設けられており、この熱硬化性樹脂3を介して、複数枚の軟磁性金属薄帯2が積層されている。   Hereinafter, the present invention will be specifically described. FIG. 1 shows a laminate 1 of soft magnetic metal ribbons. The laminated body of soft magnetic metal ribbons is provided with a thermosetting resin 3 as an adhesive on the surface of the soft magnetic metal ribbon 2, and a plurality of soft magnetic metals are interposed via the thermosetting resin 3. The ribbon 2 is laminated.

本発明の積層板を作製する場合は、軟磁性金属薄帯の原反からロ−ルコ−タなどのコ−ティング装置を用いて軟磁性金属薄帯上に樹脂の塗膜を作り、これを乾燥させて半硬化の状態の熱硬化性樹脂とする工程と、複数の樹脂付軟磁性金属薄帯を熱圧着する工程で作製することができる。熱圧着の手段として、熱プレス法や熱ロール法などがある。いずれの方法においてもプレス板、熱ロールと樹脂付軟磁性金属薄帯が接触する部分に塗布した樹脂がある場合では、その樹脂がプレス板や熱ロールに転写されて、表面の平坦性、清浄度を悪化させ、メンテナンス性の悪化に繋がるため、表面に樹脂を設けない方が好ましい。積層板をさらに積層する手段としては、積層板の表面に再度熱硬化性樹脂を付与し、同様の熱圧着により積層体とすればよい。   When the laminated sheet of the present invention is produced, a resin coating is formed on the soft magnetic metal ribbon from a soft magnetic metal ribbon using a coating device such as a roll coater. It can be produced by a process of drying to make a semi-cured thermosetting resin and a process of thermocompression bonding a plurality of soft magnetic metal ribbons with resin. Examples of thermocompression bonding include a hot press method and a hot roll method. In either method, when there is a resin applied to the part where the press plate, hot roll and soft magnetic metal ribbon with resin are in contact, the resin is transferred to the press plate or hot roll, the surface flatness, cleanness It is preferable not to provide a resin on the surface because the degree of maintenance deteriorates and the maintenance becomes worse. As a means for further laminating the laminate, a thermosetting resin may be applied again to the surface of the laminate, and a laminate may be formed by the same thermocompression bonding.

なお、熱圧着時の温度は熱可塑性樹脂の種類により異なるが、概ね、硬化物のガラス転移温度(Tg)近傍で積層接着することが好ましい。   In addition, although the temperature at the time of thermocompression bonding changes with the kind of thermoplastic resin, generally it is preferable to carry out lamination | stacking adhesion in the glass transition temperature (Tg) vicinity of hardened | cured material.

アモルファス材料からなる軟磁性金属薄帯は、通常、磁気特性を発現させるための最適熱処理が施されるが、その最適化熱処理の温度は300℃超である。アモルファス材料はその際に脆化が進行するので機械的強度が低下する。そのため、軟磁性金属薄帯を積層した後の金型打抜き等による加工を行う場合は、最適熱処理を施されたものでは、打抜く際に割れ・欠けが発生しやすい。そのため、積層工程の温度は、金属薄帯の脆化が進行せず、接着可能な温度範囲を選択する必要がある。上記したようにこの温度は150℃以上300℃以下とする。   A soft magnetic metal ribbon made of an amorphous material is usually subjected to an optimum heat treatment for expressing magnetic properties, and the temperature of the optimized heat treatment is higher than 300 ° C. In the amorphous material, since the embrittlement proceeds at that time, the mechanical strength is lowered. For this reason, when performing processing such as die punching after laminating soft magnetic metal ribbons, cracking and chipping are likely to occur when punching is performed with an optimum heat treatment. Therefore, it is necessary to select a temperature range in which the laminating process can be performed without causing embrittlement of the metal ribbon. As described above, this temperature is set to 150 ° C. or more and 300 ° C. or less.

磁気特性発現のための最適熱処理は、打抜き加工後に行うことが望ましく、その際には、軟磁性合金薄帯、積層板、積層ブロック同士の位置ずれが発生しないことが望ましい。また、回転機や発電機など高速回転で運転される場合などに、熱により寸法変形やはがれなどが発生しにくいことが望まれる。この観点から本発明に用いる樹脂は、熱圧着工程で硬化し、最適熱処理工程以降に軟化しない熱硬化性樹脂を用いることが好ましい。   The optimum heat treatment for expressing the magnetic characteristics is desirably performed after the punching process, and in this case, it is desirable that the soft magnetic alloy ribbon, the laminated plate, and the laminated block do not shift in position. In addition, it is desired that dimensional deformation or peeling is less likely to occur due to heat when operating at high speed such as a rotating machine or a generator. From this viewpoint, the resin used in the present invention is preferably a thermosetting resin that is cured in the thermocompression bonding process and does not soften after the optimal heat treatment process.

本発明の磁性基材に使用される軟磁性金属薄帯に好適な磁性材料としては、アモルファス材料やナノ結晶金属材料がある。例えば、Fe基、Co基などのアモルファス材料、Fe基、Co基などのナノ結晶金属材料などが挙げられる。ここでFe基アモルファス材料としては、Fe−Si−B系、Fe−B系、Fe−P−C系などのFe−半金族系アモルファス材料やFe−Zr系、Fe−Hf系、Fe−Ti系などのFe−還移金属系アモルファス材料が例示でき、また、Co基アモルファス材料としてはCo−Si−B系、Co−B系などのアモルファス材料が例示できる。そして、アモルファス材料を熱処理によりナノサイズに結晶化させたナノ結晶質材料においては、Fe−Si−B−Cu−Nb系、Fe−B−Cu−Nb系、Fe−Zr−B−(Cu)系、Fe−Zr−Nb−B−(Cu)系、Fe−Zr−P−(Cu)系、Fe−Zr−Nb−P−(Cu)系、Fe−Ta−C系、Fe−Al−Si−Nb−B系、Fe−Al−Si−Ni−Nb−B系、Fe-Al-Nb-B系、Co−Ta−C系、などが例示できる。   Examples of the magnetic material suitable for the soft magnetic metal ribbon used for the magnetic substrate of the present invention include an amorphous material and a nanocrystalline metal material. Examples thereof include amorphous materials such as Fe group and Co group, and nanocrystalline metal materials such as Fe group and Co group. Here, examples of the Fe-based amorphous material include Fe-Si-B-based, Fe-B-based, and Fe-PC-based Fe-semi-metallic amorphous materials, Fe-Zr-based, Fe-Hf-based, Fe-- Fe-transfer metal amorphous materials such as Ti-based materials can be exemplified, and examples of Co-based amorphous materials include amorphous materials such as Co-Si-B-based materials and Co-B-based materials. In a nanocrystalline material obtained by crystallizing an amorphous material into a nanosize by heat treatment, Fe—Si—B—Cu—Nb, Fe—B—Cu—Nb, Fe—Zr—B— (Cu) Type, Fe-Zr-Nb-B- (Cu) type, Fe-Zr-P- (Cu) type, Fe-Zr-Nb-P- (Cu) type, Fe-Ta-C type, Fe-Al- Examples thereof include Si—Nb—B, Fe—Al—Si—Ni—Nb—B, Fe—Al—Nb—B, and Co—Ta—C.

積層体の磁性基材に使用される軟磁性金属薄帯は、溶湯急冷方法などによりシ−ト状に作製されたアモルファス材料やナノ結晶材料などを使用することができる。また、磁性基材に用いられる軟磁性金属薄帯は、単一軟磁性金属薄帯を用いても良いし、複数および多種類の軟磁性金属薄帯を重ねたものを用いることもできる。   As the soft magnetic metal ribbon used for the magnetic base material of the laminated body, an amorphous material or a nanocrystalline material produced in a sheet shape by a molten metal quenching method or the like can be used. In addition, the soft magnetic metal ribbon used for the magnetic substrate may be a single soft magnetic metal ribbon or a stack of a plurality of soft magnetic metal ribbons.

軟磁性金属薄帯、積層板、積層ブロックの熱圧着温度は、軟磁性金属薄帯を構成する磁性材料により異なるが、軟磁性金属薄帯が脆化しない温度が望ましく、概ね300℃以下の温度にする必要がある。   The thermocompression bonding temperature of the soft magnetic metal ribbon, laminate, and laminate block varies depending on the magnetic material constituting the soft magnetic metal ribbon, but is preferably a temperature at which the soft magnetic metal ribbon does not become brittle, and is approximately 300 ° C. or less. It is necessary to.

積層板の加工は、エッチング、ワイヤ放電、レーザ、ウォータジェット等いくつかの方法があるが、その中で、量産性という観点では、金型打抜きによる加工が優れている。金型打抜き加工では、アモルファス材料のビッカース硬度が極めて高いため、金型材料としては、これよりも硬度の高い材料が望ましく、超硬材料などを用いることで良好な打抜きを行うことができるようになる。   There are several methods for processing the laminated plate, such as etching, wire discharge, laser, and water jet. Among them, from the viewpoint of mass productivity, processing by die punching is excellent. Since the Vickers hardness of the amorphous material is extremely high in the die punching process, a material with a higher hardness is desirable as the die material, so that good punching can be performed by using a super hard material or the like. Become.

所定の形状に加工された積層ブロックは、積層後の表面に新たに付与した熱硬化性樹脂により、所定の厚さに積層され、熱プレス法等で圧着される。さらに、必要に応じて熱処理を行い、最適な磁気特性の発現を行う。熱処理の要否の目安としては、モータの回転子等に代表される可動部か、アンテナ等の非可動部品であるかにより判定する。また、熱処理温度は、軟磁性金属薄帯を構成する磁性材料により異なるが、Fe基、Co基などのアモルファス材料では、熱処理温度が最も低く、その温度範囲は、良好な磁気特性を発現させる温度は概ね300℃超〜500℃の範囲にある。Fe基ナノ結晶材料の最適な熱処理温度は400℃〜700℃の範囲にある。熱硬化性樹脂は、軟磁性金属薄帯に付与されているため軟磁性金属薄帯の磁気特性を発現させる最適熱処理温度での熱処理で、熱分解の少ない材料を選定することが望ましい。熱処理温度が300℃超〜500℃のFe基、Co基などの非晶質材料では、耐熱性樹脂としてはエポキシ樹脂、アルキッド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、イミド変性アクリル樹脂などを用いることが好ましい。   The laminated block processed into a predetermined shape is laminated to a predetermined thickness by a thermosetting resin newly provided on the surface after lamination, and is crimped by a hot press method or the like. Furthermore, heat treatment is performed as necessary to develop optimal magnetic properties. As a measure of the necessity of heat treatment, it is determined by whether it is a movable part represented by a rotor of a motor or a non-movable part such as an antenna. Also, the heat treatment temperature varies depending on the magnetic material constituting the soft magnetic metal ribbon, but the heat treatment temperature is the lowest for amorphous materials such as Fe group and Co group, and the temperature range is a temperature at which good magnetic properties are exhibited. Is generally in the range of more than 300 ° C to 500 ° C. The optimum heat treatment temperature for the Fe-based nanocrystalline material is in the range of 400 ° C to 700 ° C. Since the thermosetting resin is imparted to the soft magnetic metal ribbon, it is desirable to select a material that is less thermally decomposed by the heat treatment at the optimum heat treatment temperature that expresses the magnetic properties of the soft magnetic metal ribbon. For amorphous materials such as Fe group and Co group whose heat treatment temperature is over 300 ° C to 500 ° C, epoxy resin, alkyd resin, polyimide resin, polyamideimide resin, imide-modified acrylic resin, etc. may be used as heat resistant resin. preferable.

以下、本発明の実施例について示す。
<実施例1〜6>
軟磁性金属薄帯に付与する樹脂の厚さに対する接着強さについて求めた。軟磁性金属薄帯として、日立金属社製、Metglas:2605SA−1(商品名)、幅約213mm,厚み約25μmのFe80Si11(at%)の組成を持つアモルファス薄帯を使用した。この薄帯に約0.1Pa・sの粘度の液状ポリイミド樹脂をバーコータにより所定の厚みに両面塗布し、150℃で乾燥して半硬化させ、積層接着可能な熱硬化性樹脂を薄帯の両面に所定の厚さに塗布した。その後、接着強さ試験および打抜き加工試験を行うために所定の形状に切断し、熱プレス法で250℃1時間の雰囲気中で接着積層を行った。接着強さ試験片は、圧縮せん断接着強さ試験により求めた。打抜きには、超硬材料からなる打抜き金型を準備し、内径25mm、外径40mmのドーナツ形状の形状に打抜いた。その結果を表1に示す。
Examples of the present invention will be described below.
<Examples 1-6>
The adhesive strength with respect to the thickness of the resin applied to the soft magnetic metal ribbon was determined. As a soft magnetic metal ribbon, an amorphous ribbon having a composition of Fe 80 Si 9 B 11 (at%) having a width of about 213 mm and a thickness of about 25 μm, manufactured by Hitachi Metals, Ltd., Metglas: 2605SA-1 (trade name) was used. . A liquid polyimide resin having a viscosity of about 0.1 Pa · s is applied to this ribbon on both sides with a bar coater to a predetermined thickness, dried at 150 ° C and semi-cured, and a thermosetting resin that can be laminated and bonded is applied to both sides of the ribbon. Was applied to a predetermined thickness. Then, in order to perform an adhesive strength test and a punching process test, it was cut into a predetermined shape and bonded and laminated in an atmosphere at 250 ° C. for 1 hour by a hot press method. The bond strength test piece was determined by a compression shear bond strength test. For punching, a punching die made of a super hard material was prepared and punched into a donut shape having an inner diameter of 25 mm and an outer diameter of 40 mm. The results are shown in Table 1.

Figure 2008213410
Figure 2008213410

樹脂厚さを0.5μmから3.0μmまで変化させたときの接着強さ及び打抜き加工性を評価した。接着強さは、比較例1の樹脂の厚みが0.4μmでは、十分な接着強さを得ることができず、打抜き加工で積層体の剥離が生じた。樹脂厚さを厚くするにつれて(実施例1〜6)、接着強さは向上していき、0.8μm以上で十分な接着強度を得ることができた。さらに樹脂厚を厚くしていくと接着強度は十分あるが、軟磁性金属薄帯に比べて軟らかい樹脂の部分の変形が大きくなり、打抜き金型のダイとパンチの隙間に噛み込むようになり、バリが発生するようになった。   The adhesive strength and the punching workability when the resin thickness was changed from 0.5 μm to 3.0 μm were evaluated. As for the adhesive strength, when the thickness of the resin of Comparative Example 1 was 0.4 μm, sufficient adhesive strength could not be obtained, and the laminate was peeled off by punching. As the resin thickness was increased (Examples 1 to 6), the adhesive strength was improved, and sufficient adhesive strength could be obtained at 0.8 μm or more. If the resin thickness is further increased, the adhesive strength is sufficient, but the deformation of the soft resin part becomes larger than that of the soft magnetic metal ribbon, and it will bite into the gap between the die and punch of the punching die, Burr is generated.

<実施例7〜9>
実施例1と同じ軟磁性金属薄帯用いて熱処理温度に対する打抜き加工性の影響を調べた。軟磁性金属薄帯及び樹脂は、実施例1と同様の材料を用い、バーコータにより1.0μmの厚みに両面塗布し、150℃で乾燥して半硬化させ、接着強さ試験および打抜き加工試験を行うために所定の形状に切断し、熱プレス法で150℃〜350℃1時間の雰囲気中で接着積層を行った。その結果を表2に示す。
<Examples 7 to 9>
Using the same soft magnetic metal ribbon as in Example 1, the influence of the punching workability on the heat treatment temperature was examined. The soft magnetic metal ribbon and resin are the same materials as in Example 1, coated on both sides to a thickness of 1.0 μm by a bar coater, dried at 150 ° C. and semi-cured, and subjected to an adhesive strength test and a punching test. In order to carry out, it cut | disconnected to the predetermined | prescribed shape, and performed adhesion | attachment lamination | stacking in the atmosphere of 150 to 350 degreeC 1 hour by the hot press method. The results are shown in Table 2.

Figure 2008213410
Figure 2008213410

接着温度を変えた時の接着強さ及び打抜き加工性を評価した。軟磁性金属薄帯同士の接着温度が半硬化の乾燥温度と同じ温度(比較例3)では積層板を得ることができなかった。接着温度が乾燥温度よりも高い温度にすると積層板を得ることができ、良好な接着強度をえられる。また、打抜き加工性も良好である(実施例7〜9)。接着温度をさらに上げると、樹脂の分解によるものと考えられる接着強さの低下と共に軟磁性金属薄帯の脆化が進行し打抜きを行った際にワレの発生が認められた。   The adhesion strength and punching workability when the adhesion temperature was changed were evaluated. A laminated plate could not be obtained at the same bonding temperature between the soft magnetic metal ribbons as the semi-curing drying temperature (Comparative Example 3). When the bonding temperature is higher than the drying temperature, a laminate can be obtained, and good bonding strength can be obtained. Moreover, punching workability is also favorable (Examples 7-9). When the bonding temperature was further increased, cracking was observed when punching was performed due to the progress of embrittlement of the soft magnetic metal ribbon along with the decrease in the bonding strength, which is considered to be due to the decomposition of the resin.

<実施例10〜12>
形成する積層板の厚さと打抜き加工性について求めた。軟磁性金属薄帯として、日立金属社製、Metglas:2714A(商品名)、幅約50mm、厚み約12μmのCo66FeNi(BSi)29(at%)の組成を持つアモルファス薄帯を使用した。この薄帯に約0.1Pa・sの粘度の液状ポリアミドイミド樹脂をバーコータにより乾燥後の樹脂厚が1.0μmになるように両面に塗布し、150℃で乾燥して樹脂を半硬化させた。その後、軟磁性金属薄帯を所定の厚さになるように積層し、熱プレス法で250℃1時間の雰囲気中で接着積層を行って本発明の積層板を得た。その後、この積層板の打抜き加工性を評価した。その結果を表3に示す。
<Examples 10 to 12>
The thickness and punching workability of the laminate to be formed were determined. As the soft magnetic metal ribbon, an amorphous ribbon having a composition of Co 66 Fe 4 Ni 1 (BSi) 29 (at%) having a width of about 50 mm and a thickness of about 12 μm manufactured by Hitachi Metals, Ltd., Metglas: 2714A (trade name) used. A liquid polyamideimide resin having a viscosity of about 0.1 Pa · s was applied to both sides of the ribbon with a bar coater so that the resin thickness after drying was 1.0 μm, and the resin was semi-cured by drying at 150 ° C. . Thereafter, soft magnetic metal ribbons were laminated so as to have a predetermined thickness, and adhesive lamination was performed in an atmosphere at 250 ° C. for 1 hour by a hot press method to obtain a laminate of the present invention. Thereafter, the punching workability of this laminate was evaluated. The results are shown in Table 3.

Figure 2008213410
Figure 2008213410

積層板の厚さに対する打抜き加工性の影響を調査した。実施例10に示すように積層板の厚さが薄い場合は、良好に打抜くことができた。軟磁性金属薄帯の積層枚数が厚くなるにつれて、打抜きに要する力が増えていく。実施例12では、打抜きにかなりの力を要するものの良好に打抜くことができたが、積層板の厚がそれ以上に厚くなると打抜くことができず、金型に欠けが生じる結果となった。   The effect of punching workability on the thickness of the laminate was investigated. As shown in Example 10, when the thickness of the laminated plate was thin, it could be punched well. As the number of laminated soft magnetic metal ribbons increases, the force required for punching increases. In Example 12, although a considerable force was required for punching, it could be punched well. However, when the thickness of the laminated plate was larger than that, punching could not be performed, resulting in chipping in the mold. .

<実施例13〜15>
磁性材料の種類を変えた場合の接着性と加工性について求めた。軟磁性金属薄帯として、前述の2605SA−1及び2714Aのアモルファス軟磁性金属薄帯に加え、日立金属製のFe−Si−B−Cu−Nb系のナノ結晶材料ファインメットFT−3(商品名)、幅約50mm,厚み約18μmの軟磁性金属薄帯を使用した。この軟磁性金属薄帯に約0.1Pa・sの粘度の液状ポリイミド樹脂をバーコータにより所定の厚みに両面塗布し、150℃で乾燥して半硬化させ、積層接着可能な熱硬化性樹脂を薄帯の両面に所定の厚さに塗布した。その後、接着強さ試験および打抜き加工試験を行うために熱プレス法で250℃1時間の雰囲気中で接着積層を行い、厚さ約100μmの積層板を得た。
<Examples 13 to 15>
The adhesiveness and workability when the type of magnetic material was changed were determined. As the soft magnetic metal ribbon, in addition to the amorphous soft magnetic metal ribbons of 2605SA-1 and 2714A described above, Fe-Si-B-Cu-Nb nanocrystal material Finemet FT-3 (trade name) manufactured by Hitachi Metals ), A soft magnetic metal ribbon having a width of about 50 mm and a thickness of about 18 μm was used. A liquid polyimide resin with a viscosity of about 0.1 Pa · s is applied to this soft magnetic metal ribbon on a double-sided surface with a bar coater, dried at 150 ° C and semi-cured, and a thermosetting resin that can be laminated is thinned. A predetermined thickness was applied to both sides of the band. Thereafter, in order to perform an adhesive strength test and a punching process test, adhesive lamination was performed in an atmosphere of 250 ° C. for 1 hour by a hot press method, and a laminated plate having a thickness of about 100 μm was obtained.

Figure 2008213410
Figure 2008213410

磁性材料の種類に対する差を調査した。実施例13〜15に示すように樹脂塗布厚は、占積率が90%以上となるように調整し積層体を作成した。その結果、接着強さ、打抜き加工性、共に良好な結果を得ることができた。   The difference with respect to the type of magnetic material was investigated. As shown in Examples 13 to 15, the resin coating thickness was adjusted so that the space factor was 90% or more to prepare a laminate. As a result, good results were obtained in both adhesive strength and punching workability.

<実施例16>
軟磁性金属薄帯に付与する樹脂の厚さと絶縁耐圧の関係について調査を行った。軟磁性金属薄帯として、日立金属社製、Metglas:2605SA−1(商品名)、幅約213mm,厚み約25μmのFe80Si11(at%)の組成を持つアモルファス薄帯を使用した。この薄帯に約0.1Pa・sの粘度の液状ポリイミド樹脂をバーコータにより所定の厚みに両面塗布し、150℃で乾燥して半硬化させ、積層接着可能な熱硬化性樹脂を薄帯の両面に所定の厚さに塗布した。その後、恒温槽中で250℃1時間の雰囲気中で樹脂の硬化を行った。その後、この1枚の樹脂付き軟磁性金属薄帯の耐電圧の測定を行った。この積層体は、回転機や発電機あるいは、アンテナなどのコアとして使用することを想定しており、外部から磁界が印加された際に発生する渦電流が発生するため、層間絶縁されていることが望ましい。そこで、絶縁耐圧測定により、被覆率の測定を行った。絶縁耐圧測定は、JIS C2110に準拠してφ25mmの円板とφ20の球からなる電極間に軟磁性金属薄帯を挟み、この電極間に所定の電圧を印加したときの絶縁の有無で判定した。また、被覆率は、1枚のシート内に任意の100点を測定し、絶縁有と総測定数の比率により求めた。その結果を図2に示す。図に示すように、樹脂厚が0.5μm以上で絶縁被覆率が80%を超えており、十分な層間絶縁性を有する結果を得た。
<Example 16>
The relationship between the thickness of the resin applied to the soft magnetic metal ribbon and the withstand voltage was investigated. As a soft magnetic metal ribbon, an amorphous ribbon having a composition of Fe 80 Si 9 B 11 (at%) having a width of about 213 mm and a thickness of about 25 μm, manufactured by Hitachi Metals, Ltd., Metglas: 2605SA-1 (trade name) was used. . A liquid polyimide resin having a viscosity of about 0.1 Pa · s is applied to this ribbon on both sides with a bar coater to a predetermined thickness, dried at 150 ° C and semi-cured, and a thermosetting resin that can be laminated and bonded is applied to both sides of the ribbon. Was applied to a predetermined thickness. Thereafter, the resin was cured in an atmosphere at 250 ° C. for 1 hour in a thermostatic bath. Thereafter, the withstand voltage of this single resin-coated soft magnetic metal ribbon was measured. This laminate is assumed to be used as a core for rotating machines, generators, antennas, etc., and eddy currents are generated when a magnetic field is applied from the outside. Is desirable. Therefore, the coverage was measured by dielectric strength measurement. Insulation withstand voltage measurement was determined by the presence or absence of insulation when a predetermined voltage was applied between electrodes formed by sandwiching a soft magnetic metal ribbon between electrodes made of a φ25 mm disc and φ20 sphere in accordance with JIS C2110. . Also, the coverage was determined by measuring the arbitrary 100 points in one sheet and the ratio of insulation and the total number of measurements. The result is shown in FIG. As shown in the figure, the resin thickness was 0.5 μm or more, and the insulation coverage exceeded 80%, and the result of sufficient interlayer insulation was obtained.

本発明の積層板を重ねた積層体の模式図である。It is a schematic diagram of the laminated body which laminated | stacked the laminated board of this invention. 樹脂厚と被覆率との関係を示す図である。It is a figure which shows the relationship between resin thickness and a coverage.

符号の説明Explanation of symbols

1 積層体
2 軟磁性金属薄帯
3 熱硬化性樹脂
1 Laminate 2 Soft magnetic metal ribbon 3 Thermosetting resin

Claims (4)

厚さが8〜35μmの軟磁性金属薄帯を複数枚積層した積層板であって、金属薄帯間の熱硬化性樹脂の各厚さが0.5μm以上2.5μm以下、積層板の総厚さが50μm以上250μm以下であることを特徴とする打抜き加工用の積層板。 A laminated board in which a plurality of soft magnetic metal ribbons having a thickness of 8 to 35 μm are laminated, and each thickness of the thermosetting resin between the metal ribbons is 0.5 μm or more and 2.5 μm or less. A laminate for punching, wherein the thickness is from 50 μm to 250 μm. 厚さが8〜35μmの軟磁性金属薄帯に熱硬化性樹脂を厚さが0.5μm以上2.5μm以下となるように塗布して複合薄帯とし、前記複合薄帯を総厚さが50μm以上250μm以下になるように積層して積層板とし、前記積層板を打抜き加工して積層ブロックを得た後、前記積層ブロックを重ねて積層体とすることを特徴とする積層体の製造方法。 A thermosetting resin is applied to a soft magnetic metal ribbon having a thickness of 8 to 35 μm so as to have a thickness of 0.5 μm or more and 2.5 μm or less to form a composite ribbon. A method for producing a laminate, wherein the laminate is laminated so as to have a thickness of 50 μm or more and 250 μm or less, the laminate plate is punched to obtain a laminate block, and then the laminate block is laminated to obtain a laminate. . 前記熱硬化性樹脂を300℃以下で加熱硬化させ、その後積層板の打抜き加工を行うことを特徴とする請求項2に記載の積層体の製造方法。 The method for producing a laminate according to claim 2, wherein the thermosetting resin is heat-cured at 300 ° C. or less, and thereafter, the laminate is punched. 前記軟磁性金属薄帯として、Fe基アモルファス合金材料、Co基アモルファス合金材料、またはFe基ナノ結晶材料を用いたことを特徴とする請求項2又は請求項3に記載の積層体の製造方法。 The method for producing a laminate according to claim 2 or 3, wherein an Fe-based amorphous alloy material, a Co-based amorphous alloy material, or an Fe-based nanocrystalline material is used as the soft magnetic metal ribbon.
JP2007057370A 2007-03-07 2007-03-07 Laminated sheet and manufacturing method of laminate Pending JP2008213410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057370A JP2008213410A (en) 2007-03-07 2007-03-07 Laminated sheet and manufacturing method of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057370A JP2008213410A (en) 2007-03-07 2007-03-07 Laminated sheet and manufacturing method of laminate

Publications (1)

Publication Number Publication Date
JP2008213410A true JP2008213410A (en) 2008-09-18

Family

ID=39834019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057370A Pending JP2008213410A (en) 2007-03-07 2007-03-07 Laminated sheet and manufacturing method of laminate

Country Status (1)

Country Link
JP (1) JP2008213410A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233764A (en) * 2010-04-28 2011-11-17 Minebea Co Ltd Method for manufacturing laminated resin composite magnet film
CN102262951A (en) * 2010-05-25 2011-11-30 宝山钢铁股份有限公司 Soft magnetic core rod for low frequency range and manufacturing method thereof
CN110601462A (en) * 2019-09-27 2019-12-20 浙江盘毂动力科技有限公司 Processing method of composite magnetic steel
CN110648838A (en) * 2019-09-27 2020-01-03 浙江盘毂动力科技有限公司 Processing method of composite magnetic steel
WO2020179399A1 (en) 2019-03-01 2020-09-10 日立金属株式会社 Amorphous metal thin strip, laminated core, and amorphous metal thin ribbon punching method
US10892089B2 (en) 2017-11-20 2021-01-12 Toyota Jidosha Kabushiki Kaisha Method for producing magnetic component using amorphous or nanocrystalline soft magnetic material
CN112223887A (en) * 2020-10-23 2021-01-15 深圳大学 Automatic lamination insulation forming method for laminated amorphous alloy strip
US20210028658A1 (en) * 2018-03-29 2021-01-28 Thyssenkrupp Steel Europe Ag Electric motor with slanted stator and/or rotor containing at least one layer of a composite material
CN112398295A (en) * 2020-10-23 2021-02-23 深圳大学 Amorphous alloy stator punch forming method
CN112388874A (en) * 2020-10-23 2021-02-23 深圳大学 Laminated amorphous strip winding integral insulation forming method
US10944301B2 (en) 2018-06-11 2021-03-09 Toyota Jidosha Kabushiki Kaisha Laminate for use in core
JP2021068865A (en) * 2019-10-28 2021-04-30 株式会社日立産機システム Laminated core applicable transformer and assembly method
US11225049B2 (en) 2017-02-24 2022-01-18 Panasonic Corporation Laminated member, laminated body, and motor
EP4032698A1 (en) 2021-01-26 2022-07-27 Hitachi Metals, Ltd. Amorphous lamination core for motor, method for manufacturing amorphous lamination core for motor, and amorphous alloy ribbon for motor
WO2023243697A1 (en) * 2022-06-17 2023-12-21 株式会社プロテリアル Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
WO2024048064A1 (en) * 2022-09-02 2024-03-07 Hilltop株式会社 Method for manufacturing layered body of iron-based amorphous alloy
WO2024116811A1 (en) * 2022-11-30 2024-06-06 株式会社アイシン Amorphous alloy piece manufacturing method, laminated iron core manufacturing method, and laminated iron core
WO2024116815A1 (en) * 2022-11-30 2024-06-06 株式会社アイシン Method for manufacturing amorphous metal alloy article

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233764A (en) * 2010-04-28 2011-11-17 Minebea Co Ltd Method for manufacturing laminated resin composite magnet film
CN102262951A (en) * 2010-05-25 2011-11-30 宝山钢铁股份有限公司 Soft magnetic core rod for low frequency range and manufacturing method thereof
US11225049B2 (en) 2017-02-24 2022-01-18 Panasonic Corporation Laminated member, laminated body, and motor
US10892089B2 (en) 2017-11-20 2021-01-12 Toyota Jidosha Kabushiki Kaisha Method for producing magnetic component using amorphous or nanocrystalline soft magnetic material
US11722018B2 (en) * 2018-03-29 2023-08-08 Thyssenkrupp Steel Europe Ag Electric motor with slanted stator and/or rotor containing at least one layer of a composite material
US20210028658A1 (en) * 2018-03-29 2021-01-28 Thyssenkrupp Steel Europe Ag Electric motor with slanted stator and/or rotor containing at least one layer of a composite material
US10944301B2 (en) 2018-06-11 2021-03-09 Toyota Jidosha Kabushiki Kaisha Laminate for use in core
US11975377B2 (en) 2019-03-01 2024-05-07 Proterial, Ltd. Amorphous metal thin strip, laminated core, and amorphous metal thin ribbon punching method
WO2020179399A1 (en) 2019-03-01 2020-09-10 日立金属株式会社 Amorphous metal thin strip, laminated core, and amorphous metal thin ribbon punching method
CN110648838A (en) * 2019-09-27 2020-01-03 浙江盘毂动力科技有限公司 Processing method of composite magnetic steel
CN110601462A (en) * 2019-09-27 2019-12-20 浙江盘毂动力科技有限公司 Processing method of composite magnetic steel
JP2021068865A (en) * 2019-10-28 2021-04-30 株式会社日立産機システム Laminated core applicable transformer and assembly method
JP7300366B2 (en) 2019-10-28 2023-06-29 株式会社日立産機システム Stacked iron core applicable transformer and assembly method
CN112223887A (en) * 2020-10-23 2021-01-15 深圳大学 Automatic lamination insulation forming method for laminated amorphous alloy strip
CN112398295A (en) * 2020-10-23 2021-02-23 深圳大学 Amorphous alloy stator punch forming method
CN112388874A (en) * 2020-10-23 2021-02-23 深圳大学 Laminated amorphous strip winding integral insulation forming method
EP4032698A1 (en) 2021-01-26 2022-07-27 Hitachi Metals, Ltd. Amorphous lamination core for motor, method for manufacturing amorphous lamination core for motor, and amorphous alloy ribbon for motor
WO2023243697A1 (en) * 2022-06-17 2023-12-21 株式会社プロテリアル Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
WO2024048064A1 (en) * 2022-09-02 2024-03-07 Hilltop株式会社 Method for manufacturing layered body of iron-based amorphous alloy
WO2024116811A1 (en) * 2022-11-30 2024-06-06 株式会社アイシン Amorphous alloy piece manufacturing method, laminated iron core manufacturing method, and laminated iron core
WO2024116815A1 (en) * 2022-11-30 2024-06-06 株式会社アイシン Method for manufacturing amorphous metal alloy article

Similar Documents

Publication Publication Date Title
JP2008213410A (en) Laminated sheet and manufacturing method of laminate
TWI733277B (en) Adhesive laminated iron core for stator and rotating electric machine
KR101102473B1 (en) Method of constructing a unitary amorphous metal component for an electrical machine
JP4471037B2 (en) Antenna core, method for manufacturing antenna core, and antenna
JP2012521649A (en) Laminated core made of soft magnetic material, and method of joining core single-layer plates by adhesive force to form soft magnetic laminated core
JPWO2003060175A1 (en) Magnetic substrate, laminate of magnetic substrate, and method for producing the same
CN102332760A (en) Stator core and processing method thereof
JP2010121150A (en) Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same
US20130162064A1 (en) Laminated core and method for manufacturing the same
JP2011109809A (en) Core, axial gap motor, and method of manufacturing same core
JPWO2017033873A1 (en) Stator core and motor including the same
KR20130136570A (en) Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
JP2007221869A (en) Laminate
Ning et al. Review on applications of low loss amorphous metals in motors
JP2019012777A (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
CN110931237B (en) Preparation method of soft magnetic powder material with high resistivity and high mechanical strength
CN110576656B (en) Laminated body for iron core
EP3247027B1 (en) Method of manufacturing a lamination stack for use in an electrical machine
CN117279778A (en) Electrical strip, use of an electrical strip and method for producing an electrical strip
JP2009194724A (en) Laminate, and antenna
JP3938338B2 (en) Thin, high efficiency, motor or generator laminate and motor or generator
CN110205462A (en) Used in high-speed motor method for producing non-oriented silicon steel
JP2000197318A (en) Magnetic core and its manufacture
CN112388874A (en) Laminated amorphous strip winding integral insulation forming method
JP4522688B2 (en) Magnetic substrate and laminate and method for producing the same