WO2024116811A1 - Amorphous alloy piece manufacturing method, laminated iron core manufacturing method, and laminated iron core - Google Patents
Amorphous alloy piece manufacturing method, laminated iron core manufacturing method, and laminated iron core Download PDFInfo
- Publication number
- WO2024116811A1 WO2024116811A1 PCT/JP2023/040839 JP2023040839W WO2024116811A1 WO 2024116811 A1 WO2024116811 A1 WO 2024116811A1 JP 2023040839 W JP2023040839 W JP 2023040839W WO 2024116811 A1 WO2024116811 A1 WO 2024116811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- ribbon
- irradiated
- amorphous alloy
- cutting
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims abstract description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title description 14
- 238000005520 cutting process Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims description 38
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 238000003475 lamination Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000002159 nanocrystal Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims 1
- 238000003754 machining Methods 0.000 abstract 1
- 239000005300 metallic glass Substances 0.000 description 26
- 230000020169 heat generation Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 238000007709 nanocrystallization Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D28/00—Shaping by press-cutting; Perforating
- B21D28/02—Punching blanks or articles with or without obtaining scrap; Notching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
Definitions
- This disclosure relates to a method for manufacturing amorphous alloy flakes, a method for manufacturing laminated iron cores, and laminated iron cores.
- the amount of heat input during laser irradiation tends to be large because the laser irradiated area (recess) forms a continuous contour line, which can easily lead to problems such as changes in characteristics associated with crystallization in the amorphous alloy ribbon and thermal runaway caused by heat generation due to crystallization.
- the present disclosure aims to reduce the amount of heat input while improving workability when cutting along the boundary of a target region in a thin strip.
- a method for producing a ribbon of an amorphous alloy includes the steps of: irradiating the ribbon with a laser so that a plurality of laser irradiated portions are formed adjacent to each other via non-irradiated portions along a boundary of a target region in the ribbon; and a cutting or cleaving step of cutting or cleaving the ribbon along the boundary.
- the present disclosure makes it possible to reduce the amount of heat input while improving workability when cutting along the boundary of a target region in a thin strip.
- FIG. 1 is a schematic flow chart showing a method for manufacturing a laminated iron core to which the method for manufacturing amorphous alloy flakes according to the present embodiment is applied.
- FIG. 2 is an explanatory diagram of the present manufacturing method, and is a schematic diagram showing a manufacturing apparatus and a workpiece for implementing the present manufacturing method.
- 1 is a plan view of a portion of a workpiece on which discontinuous laser irradiated portions are formed.
- FIG. FIG. 4 is an enlarged view of a portion Q1 in FIG. 3 .
- 1 is a graph showing an example of characteristics (heat generation curve) of an amorphous metal ribbon.
- FIG. 2 is a plan view of a laminated core in the form of a stator core.
- 7 is a schematic diagram showing a cut surface of the inner radial direction of three amorphous alloy pieces as viewed from the arrow V6 in FIG. 6.
- FIG. 1 is a schematic flow chart showing a method for manufacturing a laminated core 30 to which the method for manufacturing an amorphous alloy flake 80 according to this embodiment is applied.
- FIG. 2 is an explanatory diagram of this manufacturing method, and is a schematic diagram showing a manufacturing apparatus 100 and a workpiece W for implementing this manufacturing method.
- This manufacturing method includes a preparation step (step S1) of preparing a ribbon of an amorphous alloy (hereinafter also referred to as "amorphous metal ribbon").
- amorphous metal ribbon includes, for example, a ribbon of a nanocrystalline alloy.
- a nanocrystalline alloy is an alloy in which nano-order ⁇ -Fe crystals (nanocrystals) are densely dispersed in an amorphous parent phase as a crystal structure.
- Such nanocrystalline alloys can achieve high magnetic flux density due to their high iron content, and can maintain low iron loss even in the magnetic flux density range. Therefore, amorphous metal ribbons are suitable as materials for stator cores and rotor cores of rotating electrical machines.
- the strip-shaped amorphous metal ribbon may be prepared in a state wound around a roll 40 (see FIG. 2).
- the strip-shaped amorphous metal ribbon winding body W0 wound from the roll 40 may be unwound (see arrow R2 in FIG. 2) and supplied to the next process as the amorphous metal ribbon workpiece W.
- the manufacturing method then includes a laser irradiation step (step S2) in which the amorphous metal ribbon is irradiated with a laser.
- the laser used in the laser irradiation step is arbitrary, but is preferably an ultrashort pulse laser.
- the ultrashort pulse laser has a pulse width of, for example, several femtoseconds to several picoseconds, and is advantageous in that it allows for highly accurate micromachining and reduces thermal damage to the workpiece W.
- FIG. 2 shows a schematic diagram of a laser irradiation device 50. In FIG.
- the laser irradiation device 50 is arranged so that it acts first on the workpiece W unwound from the roll 40, but a pretreatment device may be provided upstream of the laser irradiation device 50.
- a pretreatment device may be provided upstream of the laser irradiation device 50.
- the amorphous metal ribbon may be subjected to a preliminary heat treatment at the time of preparation in the above-mentioned preparation step, or may be subjected to a preliminary heat treatment upstream of the laser irradiation device 50.
- the preliminary heat treatment may be performed under heating conditions that enhance the magnetic properties.
- the laser irradiation process forms a plurality of laser irradiated portions 70 in a manner in which the respective laser irradiated portions 70 are spaced apart from one another (i.e., the laser irradiated portions 70 are scattered).
- the laser irradiation process does not form the laser irradiated portions continuously (seamlessly), but forms the plurality of laser irradiated portions 70 in a discontinuous manner in which they are separated from one another.
- a method of forming a laser irradiated portion is also referred to as a method of forming a discontinuous type laser irradiated portion 70.
- a method of forming a plurality of laser irradiated portions continuously (seamlessly) from one another is also referred to as a method of forming a continuous type laser irradiated portion.
- discontinuous laser irradiation portion 70 will be described with reference to Figures 3 and 4.
- a method for forming discontinuous laser irradiation portion 70 for forming a stator core for a rotating electric machine will be described, but it can also be applied to forming a stator core for a rotating electric machine or other laminated iron cores.
- FIG. 3 is a plan view of a portion of the workpiece W in which a discontinuous laser irradiation portion 70 is formed
- FIG. 4 is an enlarged view of portion Q1 in FIG. 3.
- discontinuous laser irradiation portion 70 is formed along the boundary of the stator core region for forming the stator core (the outline of the punched shape). Specifically, discontinuous laser irradiation portion 70 is formed along cutting target portion 320 that defines the inner peripheral edge of the stator core, cutting target portion 322 that defines the slots of the stator core, and cutting target portion 328 that defines the outer peripheral edge of the stator core.
- the cutting target portions 320, 322, and 328 may be formed in the same manner (various parameters a, b, c, d and depth h in FIG. 4, etc.), or may be formed in different manners according to their respective characteristics.
- the cutting target portion 328 may be formed in such a manner that the width a, length b, gap c, and pitch d of the laser irradiated portion 70 are controlled, as shown in FIG. 4.
- the portion corresponding to the gap c is not irradiated with the laser, and is hereinafter referred to as the "non-irradiated portion 72."
- the depth h (see FIG. 7) of the laser irradiated portion 70 may also be controlled.
- the various parameters a, b, c, d, and depth h may be adapted to achieve an optimal balance between reducing the amount of heat input and improving punchability (processability) during press processing, which will be described later.
- the depth h of the laser irradiated portion 70 is arbitrary, but since it has a non-irradiated portion 72, it may be set deep enough to exceed 70% of the thickness of the amorphous metal ribbon, for example, it may be 100%. When it is 100%, the laser irradiated portion 70 is in the form of a through hole rather than a recess.
- the amount of heat input can be effectively reduced while maintaining relatively good punchability (processability) during press processing. This effect will be described in detail later.
- the manufacturing method then includes a press processing step (step S3) (an example of a cutting or breaking step) in which each cutting target portion 320, 322, 328 in the amorphous metal ribbon workpiece W is cut by a press machine 60.
- step S3 an example of a cutting or breaking step
- each cutting target portion 320, 322, 328 may be cut simultaneously, or may be cut separately using a progressive die.
- FIG. 2 shows a schematic of the press machine 60 downstream of the laser irradiation device 50. Note that in the progressive type, multiple press machines 60 may be arranged in succession.
- the manufacturing method includes a lamination process (step S4) in which multiple amorphous alloy pieces 80 cut by press working are laminated to form the laminated core 30.
- the lamination process may be achieved, for example, by bonding the amorphous alloy pieces 80 together with an adhesive or the like.
- amorphous metal ribbons have excellent magnetic properties (high magnetic flux density and low iron loss) and corrosion resistance, but are also difficult to process. Therefore, when cutting (punching) amorphous metal ribbons using a press machine 60 without a laser irradiation unit 70, the durability of the punch and die of the press machine 60 decreases.
- the cutting target portions 320, 322, 328 pass through a plurality of laser irradiation portions 70.
- the plurality of laser irradiation portions 70 are in the form of recesses, and therefore are locations that are easy to cut with the press machine 60. Therefore, according to the present manufacturing method, by forming a plurality of laser irradiation portions 70 in the cutting target portions 320, 322, 328, the processability (processability related to press processing) of the amorphous metal ribbon can be improved.
- the proportion of the laser irradiated portion 70 in the portion to be cut 320 (the same applies to the other portions to be cut 322, 328, and so forth) be as large as possible.
- the continuous type laser irradiated portion described above is desirable, and the proportion of the laser irradiated portion 70 in the portion to be cut 320 is 100%.
- Figure 5 is a graph showing an example of the characteristics (heat generation curve) of an amorphous metal ribbon, with the horizontal axis representing temperature and the vertical axis representing heat generation. Note that the vertical axis indicates that the heat generation increases as the heat generation curve moves downward.
- Figure 5 shows the characteristics of an Fe-B-Si-P-C-based amorphous alloy, but the characteristics of amorphous alloys of other systems are essentially the same.
- the heat generation curve for the amorphous metal ribbon has two major peaks p1 and p2, and the first peak p1 is a peak associated with nanocrystallization.
- the second peak p2 represents the heat generation due to crystallization associated with the precipitation of Fe-B and the like.
- a change in characteristics occurs in the amorphous metal ribbon due to crystallization, which may impair the excellent magnetic characteristics (high magnetic flux density and low iron loss) as described above. There is also a risk of thermal runaway.
- the laser irradiation process is performed so that multiple cutting target portions 320 are formed adjacent to one cutting target portion 320 via non-irradiated portions 72, so the amount of heat input to one cutting target portion 320 can be reduced. That is, according to this embodiment, by including non-irradiated portions 72 that can reduce the amount of heat input in the cutting target portion 320, the amount of heat input to one cutting target portion 320 can be reduced. This effectively reduces the possibility of the temperature of the workpiece W rising to a temperature range where the second peak p2 occurs. As a result, the above-mentioned inconveniences that occur in the case of a continuous laser irradiation portion can be reduced.
- Figure 6 is a plan view of the laminated core 30 in the form of a stator core
- Figure 7 is a schematic diagram showing a portion (the radially inner cut surface of three amorphous alloy pieces 80, which corresponds to the cut surface to be cut 320) from the view of arrow V6 in Figure 6.
- the laminated core 30 of this embodiment is formed from a laminated core manufactured by the manufacturing method described above. Therefore, as shown in FIG. 7, each amorphous alloy piece 80 forming the laminated core 30 has, at the inner periphery, cut surfaces 700 relating to the laser irradiated portion 70 and cut surfaces 720 relating to the non-irradiated portion 72, which are alternately arranged along the circumferential direction. This is also true for the outer periphery (see the portion to be cut 328) which is not shown in FIG. 7.
- the laser irradiated portion 70 is a portion irradiated with a laser, and therefore is more likely to suffer from degradation of magnetic properties due to thermal denaturation than the non-irradiated portion 72.
- the laminated core has a laser irradiated portion around its entire circumference, and therefore degradation of magnetic properties due to thermal denaturation can be significant.
- the laminated core 30 only has the laser irradiated portion 70 locally, so the inconvenience that occurs with a continuous laser irradiated portion (i.e., deterioration of magnetic properties due to thermal denaturation) can be reduced. That is, according to this embodiment, by including the non-irradiated portion 72 in the portion to be cut 320, it is possible to reduce the amount of heat input related to the laser irradiation while minimizing the effect of the laser irradiated portion 70 on the magnetic properties.
- the amorphous alloy pieces 80 may be rotated so that the circumferential positions of the laser irradiated portions 70 are dispersed within the laminated core 30. In this case, the rotation may be performed for one or more amorphous alloy pieces 80. This allows the laser irradiated portions 70 to be dispersed, thereby reducing the possibility of localized deterioration of magnetic properties in the circumferential direction.
- each amorphous metal ribbon is irradiated with laser separately in the laser irradiation process, but multiple sheets may be stacked and irradiated with laser in the laser irradiation process.
- This allows multiple amorphous alloy pieces 80 to be produced efficiently. Even in this case, it is possible to appropriately reduce the amount of heat input as described above by setting non-irradiated areas 72.
- the laser irradiation process is performed so that all of the parts to be cut 320, 322, 328 have discontinuous laser irradiation parts 70, but some of the parts to be cut 320, 322, 328 may be laser irradiated in other ways (for example, such that a continuous laser irradiation part is formed). Alternatively, some of the parts to be cut 320, 322, 328 may be cut by a method other than laser irradiation.
- the amorphous metal ribbon is cut by a press at the cutting target portion 320 (the same applies to the cutting target portions 322 and 328, and the same applies below), but it may be cut or broken by other methods.
- the amorphous metal ribbon may be cut by mechanical processing such as a cutter at the cutting target portion 320.
- the amorphous metal ribbon may be cut by laser irradiation at the cutting target portion 320. That is, after the above-mentioned laser irradiation process, a further laser irradiation process may be performed to change part or all of the non-irradiated portion 72 into a laser irradiated portion similar to the laser irradiated portion 70.
- the second laser irradiation may be performed on the non-irradiated portion 72 of the laser irradiated portion 70 and the non-irradiated portion 72, and the third laser irradiation may be performed on the entire circumference of the cutting target portion 320.
- the amount of heat input per laser irradiation can be reduced, and the possibility of the above-mentioned thermal runaway can be reduced.
- the laser irradiation in the laser irradiation process may be performed on the amorphous metal ribbon before nanocrystallization, or on a ribbon that has not been nanocrystallized.
- the laser irradiation in the laser irradiation process may be realized in a heat input state in which nanocrystallization occurs in the laser irradiation section 70 (i.e., a heat input state in which the first peak described above with reference to FIG. 5 occurs but the second peak does not occur).
- nanocrystallization causes localized embrittlement in the laser irradiation section 70, thereby improving the processability in the punching process.
- the heat treatment for nanocrystallization of the amorphous alloy piece 80 may be performed after the pressing process and before the lamination process.
- 70 Laser irradiated area
- 72 Non-irradiated area
- 30 Laminated core
- 320, 322, 328 Area to be cut
- 80 Amorphous alloy piece
- W Workpiece (amorphous metal strip)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Disclosed is an amorphous alloy piece manufacturing method including: a step for preparing a ribbon of an amorphous alloy; a step for radiating a laser such that a plurality of laser irradiated portions are formed in an adjacent manner with non-irradiated portions interposed therebetween, along a boundary of a target region of the ribbon; and a cutting or cleaving step for cutting or cleaving the ribbon along the boundary. This makes it possible to improve machining characteristics when cutting the ribbon along the boundary of the target region, while reducing an amount of input heat.
Description
本開示は、非晶質合金片の製造方法、積層鉄心の製造方法及び積層鉄心に関する。
This disclosure relates to a method for manufacturing amorphous alloy flakes, a method for manufacturing laminated iron cores, and laminated iron cores.
非晶質合金の薄帯の難加工性(打抜き加工に係る難加工性)を考慮して、非晶質合金の薄帯に対して事前に連続的にレーザを照射してレーザ照射部(凹部)による連続的な輪郭線を形成し、当該連続的な輪郭線に沿って打抜き加工を行う技術が知られている。
In consideration of the difficulty of processing amorphous alloy ribbons (difficulty in processing with respect to punching), a technique is known in which a laser is continuously irradiated onto the amorphous alloy ribbon in advance to form a continuous outline of the laser irradiated areas (recesses), and then punching is performed along the continuous outline.
しかしながら、上記のような従来技術では、レーザ照射部(凹部)が連続的な輪郭線を形成することに起因して、レーザ照射時の入熱量が大きくなりやすく、非晶質合金の薄帯において結晶化に伴う特性変化や、結晶化発熱に起因した熱暴走が問題となりやすい。
However, in the conventional techniques described above, the amount of heat input during laser irradiation tends to be large because the laser irradiated area (recess) forms a continuous contour line, which can easily lead to problems such as changes in characteristics associated with crystallization in the amorphous alloy ribbon and thermal runaway caused by heat generation due to crystallization.
そこで、1つの側面では、本開示は、入熱量を低減しつつ、薄帯における対象領域の境界に沿って切断する際の加工性を高めること等を目的とする。
In one aspect, the present disclosure aims to reduce the amount of heat input while improving workability when cutting along the boundary of a target region in a thin strip.
1つの側面では、非晶質合金の薄帯を準備する工程と、
前記薄帯における対象領域の境界に沿って複数のレーザ照射部が不照射部を介して隣り合う態様で形成されるように、レーザを照射する工程と、
前記薄帯を前記境界に沿って切断又は割断する切断又は割断工程とを含む、非晶質合金片の製造方法が提供される。 In one aspect, a method for producing a ribbon of an amorphous alloy includes the steps of:
irradiating the ribbon with a laser so that a plurality of laser irradiated portions are formed adjacent to each other via non-irradiated portions along a boundary of a target region in the ribbon;
and a cutting or cleaving step of cutting or cleaving the ribbon along the boundary.
前記薄帯における対象領域の境界に沿って複数のレーザ照射部が不照射部を介して隣り合う態様で形成されるように、レーザを照射する工程と、
前記薄帯を前記境界に沿って切断又は割断する切断又は割断工程とを含む、非晶質合金片の製造方法が提供される。 In one aspect, a method for producing a ribbon of an amorphous alloy includes the steps of:
irradiating the ribbon with a laser so that a plurality of laser irradiated portions are formed adjacent to each other via non-irradiated portions along a boundary of a target region in the ribbon;
and a cutting or cleaving step of cutting or cleaving the ribbon along the boundary.
1つの側面では、本開示によれば、入熱量を低減しつつ、薄帯における対象領域の境界に沿って切断する際の加工性を高めること等が可能となる。
In one aspect, the present disclosure makes it possible to reduce the amount of heat input while improving workability when cutting along the boundary of a target region in a thin strip.
以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。
Each embodiment will be described in detail below with reference to the attached drawings. Note that the dimensional ratios in the drawings are merely examples and are not limiting. Also, shapes in the drawings may be partially exaggerated for the sake of explanation.
図1は、本実施例による非晶質合金片80の製造方法が適用される積層鉄心30の製造方法を示す概略的なフローチャートである。図2は、本製造方法の説明図であり、本製造方法を実現するための製造装置100とワークWを示す概略図である。
FIG. 1 is a schematic flow chart showing a method for manufacturing a laminated core 30 to which the method for manufacturing an amorphous alloy flake 80 according to this embodiment is applied. FIG. 2 is an explanatory diagram of this manufacturing method, and is a schematic diagram showing a manufacturing apparatus 100 and a workpiece W for implementing this manufacturing method.
本製造方法は、まず、非晶質合金(アモルファス合金)の薄帯(以下、「非晶質金属薄帯」とも称する)を準備する準備工程(ステップS1)を含む。非晶質金属薄帯は、例えば、ナノ結晶合金の薄帯(リボン)を含む概念である。ナノ結晶合金は、結晶構造としてアモルファス母相中に、ナノオーダーのα-Fe結晶(ナノ結晶)が高密度に分散した合金である。このようなナノ結晶合金は、鉄の含有量が高いため高磁束密度を実現できるとともに、磁束密度域においても低鉄損を維持できる。従って、非晶質金属薄帯は、回転電機のステータコアやロータコア等の材料として好適である。
This manufacturing method includes a preparation step (step S1) of preparing a ribbon of an amorphous alloy (hereinafter also referred to as "amorphous metal ribbon"). The concept of amorphous metal ribbon includes, for example, a ribbon of a nanocrystalline alloy. A nanocrystalline alloy is an alloy in which nano-order α-Fe crystals (nanocrystals) are densely dispersed in an amorphous parent phase as a crystal structure. Such nanocrystalline alloys can achieve high magnetic flux density due to their high iron content, and can maintain low iron loss even in the magnetic flux density range. Therefore, amorphous metal ribbons are suitable as materials for stator cores and rotor cores of rotating electrical machines.
本準備工程においては、例えば、帯状の非晶質金属薄帯は、ロール40(図2参照)に巻回された状態で準備されてもよい。この場合、ロール40から巻回された状態の帯状の非晶質金属薄帯の巻層体W0は、巻出されることで(図2の矢印R2参照)、非晶質金属薄帯のワークWとして次工程へと供給されてよい。
In this preparation process, for example, the strip-shaped amorphous metal ribbon may be prepared in a state wound around a roll 40 (see FIG. 2). In this case, the strip-shaped amorphous metal ribbon winding body W0 wound from the roll 40 may be unwound (see arrow R2 in FIG. 2) and supplied to the next process as the amorphous metal ribbon workpiece W.
本製造方法は、ついで、非晶質金属薄帯に、レーザ照射を行うレーザ照射工程(ステップS2)を含む。レーザ照射工程で用いるレーザは、任意であるが、好ましくは、超短パルスレーザである。超短パルスレーザは、例えば、数フェムト秒~数ピコ秒のパルス幅を有し、高精度な微細加工が可能である点や、ワークWの熱損傷を低減できる点で有利となる。図2には、レーザ照射装置50が概略的に示されている。なお、図2では、ロール40から巻出されているワークWに対して、レーザ照射装置50が一番目に作用するように配置されているが、レーザ照射装置50よりも上流側に前処理装置が設けられてもよい。例えば、非晶質金属薄帯は、上述した準備工程で準備された時点で事前の熱処理を受けていてもよいし、レーザ照射装置50の上流側で事前の熱処理を受けてもよい。この場合、事前の熱処理は、磁気特性を高める加熱条件で実行されてよい。
The manufacturing method then includes a laser irradiation step (step S2) in which the amorphous metal ribbon is irradiated with a laser. The laser used in the laser irradiation step is arbitrary, but is preferably an ultrashort pulse laser. The ultrashort pulse laser has a pulse width of, for example, several femtoseconds to several picoseconds, and is advantageous in that it allows for highly accurate micromachining and reduces thermal damage to the workpiece W. FIG. 2 shows a schematic diagram of a laser irradiation device 50. In FIG. 2, the laser irradiation device 50 is arranged so that it acts first on the workpiece W unwound from the roll 40, but a pretreatment device may be provided upstream of the laser irradiation device 50. For example, the amorphous metal ribbon may be subjected to a preliminary heat treatment at the time of preparation in the above-mentioned preparation step, or may be subjected to a preliminary heat treatment upstream of the laser irradiation device 50. In this case, the preliminary heat treatment may be performed under heating conditions that enhance the magnetic properties.
ここで、ワークWの非晶質金属薄帯がレーザにより照射されると、非晶質金属薄帯に凹部が形成される。以下では、このような凹部をレーザ照射部70とも称する。本製造方法では、レーザ照射工程は、複数のレーザ照射部70を、それぞれのレーザ照射部70が互いに離間する態様(すなわちレーザ照射部70が点在する態様)で、形成する。すなわち、本製造方法では、レーザ照射工程は、レーザ照射部を連続して(シームレスに)形成するのではなく、複数のレーザ照射部70を互いに分離する非連続の態様で形成する。以下では、このようなレーザ照射部の形成方法を、不連続型のレーザ照射部70の形成方法とも称する。他方、複数のレーザ照射部を互いに連続して(シームレスに)形成する形成方法を、連続型のレーザ照射部の形成方法とも称する。
Here, when the amorphous metal ribbon of the workpiece W is irradiated with a laser, a recess is formed in the amorphous metal ribbon. Hereinafter, such a recess is also referred to as a laser irradiated portion 70. In this manufacturing method, the laser irradiation process forms a plurality of laser irradiated portions 70 in a manner in which the respective laser irradiated portions 70 are spaced apart from one another (i.e., the laser irradiated portions 70 are scattered). That is, in this manufacturing method, the laser irradiation process does not form the laser irradiated portions continuously (seamlessly), but forms the plurality of laser irradiated portions 70 in a discontinuous manner in which they are separated from one another. Hereinafter, such a method of forming a laser irradiated portion is also referred to as a method of forming a discontinuous type laser irradiated portion 70. On the other hand, a method of forming a plurality of laser irradiated portions continuously (seamlessly) from one another is also referred to as a method of forming a continuous type laser irradiated portion.
ここで、図3及び図4を参照して、不連続型のレーザ照射部70の形成方法について説明する。ここでは、回転電機用のステータコアを形成するための不連続型のレーザ照射部70の形成方法について説明するが、回転電機用のステータコアや他の積層鉄心を形成するためにも適用可能である。
Here, a method for forming discontinuous laser irradiation portion 70 will be described with reference to Figures 3 and 4. Here, a method for forming discontinuous laser irradiation portion 70 for forming a stator core for a rotating electric machine will be described, but it can also be applied to forming a stator core for a rotating electric machine or other laminated iron cores.
図3は、不連続型のレーザ照射部70が形成されたワークWの一部の平面図であり、図4は、図3のQ1部の拡大図である。
FIG. 3 is a plan view of a portion of the workpiece W in which a discontinuous laser irradiation portion 70 is formed, and FIG. 4 is an enlarged view of portion Q1 in FIG. 3.
本製造方法では、図3に示すように、不連続型のレーザ照射部70は、ステータコアを形成するためのステータコア領域の境界(打抜き形状の輪郭線)に沿って形成される。具体的には、不連続型のレーザ照射部70は、ステータコアの内周縁を画成する切断対象部320と、ステータコアのスロットを画成する切断対象部322と、ステータコアの外周縁を画成する切断対象部328とに沿って、形成される。
In this manufacturing method, as shown in FIG. 3, discontinuous laser irradiation portion 70 is formed along the boundary of the stator core region for forming the stator core (the outline of the punched shape). Specifically, discontinuous laser irradiation portion 70 is formed along cutting target portion 320 that defines the inner peripheral edge of the stator core, cutting target portion 322 that defines the slots of the stator core, and cutting target portion 328 that defines the outer peripheral edge of the stator core.
各切断対象部320、322、328は、同じ態様(図4の各種パラメータa、b、c、dや深さh等)で形成されてもよいし、それぞれの特性に応じて異なる態様で形成されてもよい。
The cutting target portions 320, 322, and 328 may be formed in the same manner (various parameters a, b, c, d and depth h in FIG. 4, etc.), or may be formed in different manners according to their respective characteristics.
例えば、切断対象部328は、図4に示すように、レーザ照射部70の幅a、長さb、隙間c、及びピッチdが制御される態様で、形成されてもよい。この場合、隙間cに対応する部分は、レーザが照射されていない部分であり、以下では、「不照射部72」と称する。レーザ照射部70の深さh(図7参照)についても制御されてよい。各種パラメータa、b、c、dや深さhは、入熱量を低減する観点と、後述するプレス加工の際の打抜き性(加工性)を向上する観点とから、最適なバランスになるように適合されてよい。
For example, the cutting target portion 328 may be formed in such a manner that the width a, length b, gap c, and pitch d of the laser irradiated portion 70 are controlled, as shown in FIG. 4. In this case, the portion corresponding to the gap c is not irradiated with the laser, and is hereinafter referred to as the "non-irradiated portion 72." The depth h (see FIG. 7) of the laser irradiated portion 70 may also be controlled. The various parameters a, b, c, d, and depth h may be adapted to achieve an optimal balance between reducing the amount of heat input and improving punchability (processability) during press processing, which will be described later.
また、本製造方法では、レーザ照射部70の深さhは、任意であるが、不照射部72を有することから、非晶質金属薄帯の厚みの70%を超えるほど深く設定されてもよく、例えば100%であってもよい。なお、100%の場合、レーザ照射部70は、凹部ではなく貫通孔の形態となる。
In addition, in this manufacturing method, the depth h of the laser irradiated portion 70 is arbitrary, but since it has a non-irradiated portion 72, it may be set deep enough to exceed 70% of the thickness of the amorphous metal ribbon, for example, it may be 100%. When it is 100%, the laser irradiated portion 70 is in the form of a through hole rather than a recess.
本製造方法では、好ましくは、切断対象部328(他の切断対象部320、322ついても同様)に占める不照射部72の全長(=Σc)は、同切断対象部328に占めるレーザ照射部70の全長(=Σb)に対して、比(=Σc/Σb)が1/10以上であり、より好ましくは、比が1/2以上であり、もっとも好ましくは、比が1以上である。この場合、入熱量を効果的に低減しつつ、プレス加工の際の打抜き性(加工性)を比較的良好に維持できるためである。この効果について後に詳説する。
In this manufacturing method, the ratio (=Σc) of the total length (=Σc) of the non-irradiated portion 72 in the portion to be cut 328 (similarly for the other portions to be cut 320, 322) to the total length (=Σb) of the laser-irradiated portion 70 in the portion to be cut 328 is preferably 1/10 or more, more preferably 1/2 or more, and most preferably 1 or more. In this case, the amount of heat input can be effectively reduced while maintaining relatively good punchability (processability) during press processing. This effect will be described in detail later.
図1に戻り、本製造方法は、ついで、非晶質金属薄帯のワークWにおける各切断対象部320、322、328を、プレス機60により切断するプレス加工工程(ステップS3)(切断又は割断工程の一例)を含む。なお、各切断対象部320、322、328は、同時に切断されてもよいし、順送型で別々に切断されてもよい。図2には、レーザ照射装置50の後流側のプレス機60が模式的に示されている。なお、順送式の場合、プレス機60が複数台連続して配置されてよい。
Returning to FIG. 1, the manufacturing method then includes a press processing step (step S3) (an example of a cutting or breaking step) in which each cutting target portion 320, 322, 328 in the amorphous metal ribbon workpiece W is cut by a press machine 60. Note that each cutting target portion 320, 322, 328 may be cut simultaneously, or may be cut separately using a progressive die. FIG. 2 shows a schematic of the press machine 60 downstream of the laser irradiation device 50. Note that in the progressive type, multiple press machines 60 may be arranged in succession.
ついで、本製造方法は、プレス加工により切断された非晶質合金片80を複数枚積層して積層鉄心30を形成する積層工程(ステップS4)を含む。なお、積層工程は、例えば非晶質合金片80同士を接着剤等により接着することで実現されてもよい。
Next, the manufacturing method includes a lamination process (step S4) in which multiple amorphous alloy pieces 80 cut by press working are laminated to form the laminated core 30. Note that the lamination process may be achieved, for example, by bonding the amorphous alloy pieces 80 together with an adhesive or the like.
ところで、一般的に知られているように、非晶質金属薄帯は、優れた磁気特性(高磁束密度や低鉄損)や耐食性等を有する反面、難加工性の材料でもある。従って、非晶質金属薄帯をレーザ照射部70なしでプレス機60により切断する(打ち抜く)場合、プレス機60のパンチやダイスの耐久性が低下してしまう。
As is generally known, amorphous metal ribbons have excellent magnetic properties (high magnetic flux density and low iron loss) and corrosion resistance, but are also difficult to process. Therefore, when cutting (punching) amorphous metal ribbons using a press machine 60 without a laser irradiation unit 70, the durability of the punch and die of the press machine 60 decreases.
この点、本製造方法によれば、上述したように、切断対象部320、322、328は、複数のレーザ照射部70を通る。複数のレーザ照射部70は、上述したように凹部の形態であることから、プレス機60により切断し易い箇所となる。従って、本製造方法によれば、切断対象部320、322、328に複数のレーザ照射部70を形成することで非晶質金属薄帯の加工性(プレス加工に係る加工性)を高めることができる。
In this regard, according to the present manufacturing method, as described above, the cutting target portions 320, 322, 328 pass through a plurality of laser irradiation portions 70. As described above, the plurality of laser irradiation portions 70 are in the form of recesses, and therefore are locations that are easy to cut with the press machine 60. Therefore, according to the present manufacturing method, by forming a plurality of laser irradiation portions 70 in the cutting target portions 320, 322, 328, the processability (processability related to press processing) of the amorphous metal ribbon can be improved.
ここで、プレス加工に係る加工性を高める観点のみを重視する場合、切断対象部320(他の切断対象部322、328も同様、以下同じ)に占めるレーザ照射部70の割合は、できるだけ大きい方が望ましい。すなわち、プレス加工に係る加工性を高める観点のみを重視する場合、究極的には、上述した連続型のレーザ照射部が望ましく、切断対象部320に占めるレーザ照射部70の割合は、100%である。
Here, if emphasis is placed solely on the aspect of improving the workability in press working, it is desirable that the proportion of the laser irradiated portion 70 in the portion to be cut 320 (the same applies to the other portions to be cut 322, 328, and so forth) be as large as possible. In other words, if emphasis is placed solely on the aspect of improving the workability in press working, ultimately, the continuous type laser irradiated portion described above is desirable, and the proportion of the laser irradiated portion 70 in the portion to be cut 320 is 100%.
しかしながら、連続型のレーザ照射部の場合、“発明が解決しようとする課題”の欄で上述したように、入熱量が大きくなりやすく、非晶質金属薄帯において結晶化に伴う特性変化や、結晶化発熱に起因した熱暴走が問題となりやすい。
However, in the case of a continuous laser irradiation section, as mentioned above in the section "Problems to be solved by the invention," the amount of heat input tends to be large, and problems can easily arise in the characteristics of the amorphous metal ribbon as it crystallizes, as well as thermal runaway caused by heat generated by crystallization.
図5は、非晶質金属薄帯の特性(発熱カーブ)の一例を示すグラフであり、横軸は温度を表し、縦軸は発熱を表す。なお、縦軸は、発熱カーブが下側に振れるほど発熱が大きいことを表す。図5では、Fe-B-Si-P-Cu-C系の非晶質合金に係る特性が示されるが、他の系の非晶質合金も実質的に同様である。
Figure 5 is a graph showing an example of the characteristics (heat generation curve) of an amorphous metal ribbon, with the horizontal axis representing temperature and the vertical axis representing heat generation. Note that the vertical axis indicates that the heat generation increases as the heat generation curve moves downward. Figure 5 shows the characteristics of an Fe-B-Si-P-C-based amorphous alloy, but the characteristics of amorphous alloys of other systems are essentially the same.
図5に示すように、非晶質金属薄帯に係る発熱カーブは、大きく2つのピークp1、p2を有し、第1ピークp1は、ナノ結晶化に係るピークである。なお、上述したレーザ照射工程(ステップS2)前の事前の熱処理は、このようなナノ結晶化を実現するために実行されてよい。第2ピークp2は、Fe-Bなどの析出に伴う結晶化発熱を表す。このような第2ピークp2が生じると、非晶質金属薄帯において結晶化に伴う特性変化が生じ、上述したような優れた磁気特性(高磁束密度や低鉄損)を損なうおそれがある。また、熱暴走を引き起こすおそれもある。
As shown in FIG. 5, the heat generation curve for the amorphous metal ribbon has two major peaks p1 and p2, and the first peak p1 is a peak associated with nanocrystallization. Note that a preliminary heat treatment before the above-mentioned laser irradiation process (step S2) may be performed to achieve such nanocrystallization. The second peak p2 represents the heat generation due to crystallization associated with the precipitation of Fe-B and the like. When such a second peak p2 occurs, a change in characteristics occurs in the amorphous metal ribbon due to crystallization, which may impair the excellent magnetic characteristics (high magnetic flux density and low iron loss) as described above. There is also a risk of thermal runaway.
これに対して、本実施例によれば、上述したように、1つの切断対象部320に対して、複数の切断対象部320が不照射部72を介して隣り合う態様で形成されるように、レーザ照射工程が実行されるので、1つの切断対象部320に係る入熱量を低減できる。すなわち、本実施例によれば、入熱量を低減できる不照射部72を切断対象部320に含ませることで、1つの切断対象部320に係る入熱量を低減できる。これにより、第2ピークp2が生じるような温度域までのワークWの温度上昇の可能性を効果的に低減できる。この結果、連続型のレーザ照射部の場合に生じる上述した不都合を低減できる。
In contrast, according to this embodiment, as described above, the laser irradiation process is performed so that multiple cutting target portions 320 are formed adjacent to one cutting target portion 320 via non-irradiated portions 72, so the amount of heat input to one cutting target portion 320 can be reduced. That is, according to this embodiment, by including non-irradiated portions 72 that can reduce the amount of heat input in the cutting target portion 320, the amount of heat input to one cutting target portion 320 can be reduced. This effectively reduces the possibility of the temperature of the workpiece W rising to a temperature range where the second peak p2 occurs. As a result, the above-mentioned inconveniences that occur in the case of a continuous laser irradiation portion can be reduced.
次に、図6及び図7を参照して、本実施例の積層鉄心30について説明する。図6は、ステータコアの形態である積層鉄心30の平面図であり、図7は、図6の矢印V6のビューにより、一部(3枚分の非晶質合金片80の径方向内側の切断面であって、切断対象部320に係る切断面)を模式的に示す図である。
Next, the laminated core 30 of this embodiment will be described with reference to Figures 6 and 7. Figure 6 is a plan view of the laminated core 30 in the form of a stator core, and Figure 7 is a schematic diagram showing a portion (the radially inner cut surface of three amorphous alloy pieces 80, which corresponds to the cut surface to be cut 320) from the view of arrow V6 in Figure 6.
本実施例の積層鉄心30は、上述した製造方法により製造された積層鉄心により形成される。従って、図7に示すように、積層鉄心30を形成する一枚一枚の非晶質合金片80は、内周部において、周方向に沿って交互にレーザ照射部70に係る切断面700と不照射部72に係る切断面720とを有する。これは、図7には示されない外周部(切断対象部328参照)においても同様である。
The laminated core 30 of this embodiment is formed from a laminated core manufactured by the manufacturing method described above. Therefore, as shown in FIG. 7, each amorphous alloy piece 80 forming the laminated core 30 has, at the inner periphery, cut surfaces 700 relating to the laser irradiated portion 70 and cut surfaces 720 relating to the non-irradiated portion 72, which are alternately arranged along the circumferential direction. This is also true for the outer periphery (see the portion to be cut 328) which is not shown in FIG. 7.
ところで、レーザ照射部70は、上述したようにレーザが照射された部位であることから不照射部72に比べて、熱変性に起因した磁気特性の低下が現れやすい傾向がある。この点、上述した連続型のレーザ照射部の場合、積層鉄心は、全周にわたってレーザ照射部を有するので、熱変性に起因した磁気特性の低下が有意となりうる。
As described above, the laser irradiated portion 70 is a portion irradiated with a laser, and therefore is more likely to suffer from degradation of magnetic properties due to thermal denaturation than the non-irradiated portion 72. In this regard, in the case of the continuous type laser irradiated portion described above, the laminated core has a laser irradiated portion around its entire circumference, and therefore degradation of magnetic properties due to thermal denaturation can be significant.
これに対して、本実施例によれば、上述したように積層鉄心30は、レーザ照射部70を局所的に有するだけであるので、連続型のレーザ照射部の場合の不都合(すなわち熱変性に起因した磁気特性の低下)の低減を図ることができる。すなわち、本実施例によれば、不照射部72を切断対象部320に含ませることで、レーザ照射に係る入熱量を低減しつつ、レーザ照射部70による磁気特性に対する影響の最小化を図ることができる。
In contrast, according to this embodiment, as described above, the laminated core 30 only has the laser irradiated portion 70 locally, so the inconvenience that occurs with a continuous laser irradiated portion (i.e., deterioration of magnetic properties due to thermal denaturation) can be reduced. That is, according to this embodiment, by including the non-irradiated portion 72 in the portion to be cut 320, it is possible to reduce the amount of heat input related to the laser irradiation while minimizing the effect of the laser irradiated portion 70 on the magnetic properties.
なお、本実施例において、非晶質合金片80は、レーザ照射部70の周方向位置が積層鉄心30内で分散されるように、転積されてもよい。この場合、転積は、1枚又は複数枚の非晶質合金片80ごとに実行されてもよい。これにより、レーザ照射部70が分散して配置されるので、周方向で局所的な磁気特性の低下が生じる可能性を低減できる。
In this embodiment, the amorphous alloy pieces 80 may be rotated so that the circumferential positions of the laser irradiated portions 70 are dispersed within the laminated core 30. In this case, the rotation may be performed for one or more amorphous alloy pieces 80. This allows the laser irradiated portions 70 to be dispersed, thereby reducing the possibility of localized deterioration of magnetic properties in the circumferential direction.
以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope of the claims. It is also possible to combine all or some of the components of the above-mentioned embodiments.
例えば、上述した実施例では、非晶質金属薄帯は、一枚一枚、別々にレーザ照射工程によるレーザ照射を受けるが、複数枚を積層した状態でレーザ照射工程によるレーザ照射を受けてもよい。これにより、複数枚の非晶質合金片80を効率的に製造できる。なお、この場合でも、不照射部72を設定することで、上述した入熱量の低減を適切に図ることが可能である。
For example, in the above-mentioned embodiment, each amorphous metal ribbon is irradiated with laser separately in the laser irradiation process, but multiple sheets may be stacked and irradiated with laser in the laser irradiation process. This allows multiple amorphous alloy pieces 80 to be produced efficiently. Even in this case, it is possible to appropriately reduce the amount of heat input as described above by setting non-irradiated areas 72.
また、上述した実施例では、切断対象部320、322、328のすべてが、不連続型のレーザ照射部70を有するように、レーザ照射工程によるレーザ照射が実現されるが、切断対象部320、322、328の一部は、他の態様(例えば連続型のレーザ照射部が形成されるような態様)でレーザ照射が実現されてもよい。あるいは、切断対象部320、322、328の一部は、レーザ照射以外の他の方法で切断されてもよい。
In addition, in the above-described embodiment, the laser irradiation process is performed so that all of the parts to be cut 320, 322, 328 have discontinuous laser irradiation parts 70, but some of the parts to be cut 320, 322, 328 may be laser irradiated in other ways (for example, such that a continuous laser irradiation part is formed). Alternatively, some of the parts to be cut 320, 322, 328 may be cut by a method other than laser irradiation.
また、上述した実施例では、非晶質金属薄帯は、切断対象部320(切断対象部322、328も同様、以下同じ)がプレス機により切断されるが、他の方法で切断又は割断されてもよい。例えば、非晶質金属薄帯は、切断対象部320がカッターのような機械加工により切断されてもよい。あるいは、非晶質金属薄帯は、切断対象部320がレーザ照射により切断されてもよい。すなわち、上述したレーザ照射工程の後に、更なるレーザ照射工程を実行することで、不照射部72の一部又は全部をレーザ照射部70と同様のレーザ照射部へと変化させてもよい。この場合、例えば、2回目のレーザ照射は、レーザ照射部70及び不照射部72のうちの、不照射部72に対して実行されてよく、3回目のレーザ照射は、切断対象部320に対して全周にわたって実行されてもよい。このようにして、レーザ照射を複数回に分けて実行することで、1回のレーザ照射あたりの入熱量の低減を図ることができ、上述した熱暴走の可能性を低減できる。
In the above embodiment, the amorphous metal ribbon is cut by a press at the cutting target portion 320 (the same applies to the cutting target portions 322 and 328, and the same applies below), but it may be cut or broken by other methods. For example, the amorphous metal ribbon may be cut by mechanical processing such as a cutter at the cutting target portion 320. Alternatively, the amorphous metal ribbon may be cut by laser irradiation at the cutting target portion 320. That is, after the above-mentioned laser irradiation process, a further laser irradiation process may be performed to change part or all of the non-irradiated portion 72 into a laser irradiated portion similar to the laser irradiated portion 70. In this case, for example, the second laser irradiation may be performed on the non-irradiated portion 72 of the laser irradiated portion 70 and the non-irradiated portion 72, and the third laser irradiation may be performed on the entire circumference of the cutting target portion 320. In this way, by performing the laser irradiation in multiple steps, the amount of heat input per laser irradiation can be reduced, and the possibility of the above-mentioned thermal runaway can be reduced.
また、上述した実施例において、レーザ照射工程によるレーザ照射は、ナノ結晶化される前の非晶質金属薄帯、又は、ナノ結晶化されない薄帯に対して実行されてもよい。この場合、レーザ照射工程によるレーザ照射は、レーザ照射部70においてナノ結晶化が生じるような入熱態様(すなわち、図5を参照して上述した第1ピークが生じるが第2ピークが生じないような入熱態様)で実現されてもよい。この場合、ナノ結晶化によりレーザ照射部70での局所的な脆化が生じるため、打抜き加工に係る加工性を高めることができる。なお、この場合、非晶質合金片80に対するナノ結晶化のための熱処理が、プレス加工工程後かつ積層工程前に実行されてもよい。
In addition, in the above-mentioned embodiment, the laser irradiation in the laser irradiation process may be performed on the amorphous metal ribbon before nanocrystallization, or on a ribbon that has not been nanocrystallized. In this case, the laser irradiation in the laser irradiation process may be realized in a heat input state in which nanocrystallization occurs in the laser irradiation section 70 (i.e., a heat input state in which the first peak described above with reference to FIG. 5 occurs but the second peak does not occur). In this case, nanocrystallization causes localized embrittlement in the laser irradiation section 70, thereby improving the processability in the punching process. In this case, the heat treatment for nanocrystallization of the amorphous alloy piece 80 may be performed after the pressing process and before the lamination process.
70・・・レーザ照射部、72・・・不照射部、30・・・積層鉄心、320、322、328・・・切断対象部、80・・・非晶質合金片、W・・・ワーク(非晶質金属薄帯)
70: Laser irradiated area, 72: Non-irradiated area, 30: Laminated core, 320, 322, 328: Area to be cut, 80: Amorphous alloy piece, W: Workpiece (amorphous metal strip)
Claims (8)
- 非晶質合金の薄帯を準備する工程と、
前記薄帯における対象領域の境界に沿って複数のレーザ照射部が不照射部を介して隣り合う態様で形成されるように、レーザを照射する工程と、
前記薄帯を前記境界に沿って切断又は割断する切断又は割断工程とを含む、非晶質合金片の製造方法。 preparing a ribbon of an amorphous alloy;
irradiating the ribbon with a laser so that a plurality of laser irradiated portions are formed adjacent to each other via non-irradiated portions along a boundary of a target region in the ribbon;
A cutting or cleaving step of cutting or cleaving the ribbon along the boundary. - 前記境界に占める前記不照射部の全長は、前記境界に占める前記レーザ照射部の全長の1/10以上である、請求項1に記載の非晶質合金片の製造方法。 The method for manufacturing an amorphous alloy piece according to claim 1, wherein the total length of the non-irradiated portion of the boundary is 1/10 or more of the total length of the laser-irradiated portion of the boundary.
- 前記境界に占める前記不照射部の全長は、前記境界に占める前記レーザ照射部の全長以上である、請求項1に記載の非晶質合金片の製造方法。 The method for manufacturing an amorphous alloy piece according to claim 1, wherein the total length of the non-irradiated portion of the boundary is equal to or greater than the total length of the laser-irradiated portion of the boundary.
- 前記切断又は割断工程は、一枚の前記薄帯ごとに、又は、複数枚の前記薄帯ごとに、実行される、請求項1に記載の非晶質合金片の製造方法。 The method for producing amorphous alloy flakes according to claim 1, wherein the cutting or splitting process is performed for each thin ribbon or for multiple thin ribbons.
- 非晶質合金の薄帯を準備する工程と、
前記薄帯における対象領域の境界に沿って複数のレーザ照射部が不照射部を介して隣り合う態様で形成されるように、レーザを照射する工程と、
前記薄帯を前記境界に沿って切断又は割断する切断又は割断工程と、
前記切断又は割断工程の前又は後に、前記薄帯における前記対象領域の部分である非晶質合金片の積層体を形成する積層工程とを含む、積層鉄心の製造方法。 preparing a ribbon of an amorphous alloy;
irradiating the ribbon with a laser so that a plurality of laser irradiated portions are formed adjacent to each other via non-irradiated portions along a boundary of a target region in the ribbon;
a cutting or breaking step of cutting or breaking the ribbon along the boundary;
A method for manufacturing a laminated core, comprising: a lamination step, before or after the cutting or cleaving step, of forming a laminate of amorphous alloy flakes that are part of the target region in the ribbon. - 前記非晶質金属合金は、アモルファス母相中にナノ結晶が分散した合金を含む、請求項1又は5に記載の非晶質金属合金物の製造方法。 The method for producing an amorphous metal alloy according to claim 1 or 5, wherein the amorphous metal alloy includes an alloy in which nanocrystals are dispersed in an amorphous matrix.
- 前記切断又は割断工程は、超短パルスレーザを用いて実行される、請求項1又は5に記載の非晶質金属合金物の製造方法。 The method for producing an amorphous metal alloy article according to claim 1 or 5, wherein the cutting or fracture process is performed using an ultrashort pulse laser.
- 非晶質合金片を積層して形成される積層体の形態であり、
前記非晶質合金片は、外周部又は内周部が、周方向に沿って交互にレーザ照射部と不照射部とを有し、
前記外周部又は前記内周部において、前記不照射部の全長は前記レーザ照射部の全長の1/10以上である、積層鉄心。 The amorphous alloy flakes are laminated together to form a laminate.
The amorphous alloy piece has an outer circumferential portion or an inner circumferential portion having laser irradiated portions and non-irradiated portions alternately along a circumferential direction,
A laminated core, wherein in the outer circumferential portion or the inner circumferential portion, the total length of the non-irradiated portion is 1/10 or more of the total length of the laser irradiated portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-191338 | 2022-11-30 | ||
JP2022191338 | 2022-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024116811A1 true WO2024116811A1 (en) | 2024-06-06 |
Family
ID=91323401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/040839 WO2024116811A1 (en) | 2022-11-30 | 2023-11-14 | Amorphous alloy piece manufacturing method, laminated iron core manufacturing method, and laminated iron core |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024116811A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05138259A (en) * | 1991-11-20 | 1993-06-01 | Toshiba Corp | Piercing device |
JP2008213410A (en) * | 2007-03-07 | 2008-09-18 | Hitachi Metals Ltd | Laminated sheet and manufacturing method of laminate |
JP2021521013A (en) * | 2018-04-13 | 2021-08-26 | アイピージー フォトニクス コーポレーション | Laser-assisted machining of sheet materials |
JP2021521767A (en) * | 2018-04-13 | 2021-08-26 | アイピージー フォトニクス コーポレーション | Laser-assisted machining of electric motor cores |
JP2022040071A (en) * | 2020-08-26 | 2022-03-10 | 日立金属株式会社 | Amorphous alloy piece manufacturing method and laminated core manufacturing method |
-
2023
- 2023-11-14 WO PCT/JP2023/040839 patent/WO2024116811A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05138259A (en) * | 1991-11-20 | 1993-06-01 | Toshiba Corp | Piercing device |
JP2008213410A (en) * | 2007-03-07 | 2008-09-18 | Hitachi Metals Ltd | Laminated sheet and manufacturing method of laminate |
JP2021521013A (en) * | 2018-04-13 | 2021-08-26 | アイピージー フォトニクス コーポレーション | Laser-assisted machining of sheet materials |
JP2021521767A (en) * | 2018-04-13 | 2021-08-26 | アイピージー フォトニクス コーポレーション | Laser-assisted machining of electric motor cores |
JP2022040071A (en) * | 2020-08-26 | 2022-03-10 | 日立金属株式会社 | Amorphous alloy piece manufacturing method and laminated core manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3238847B1 (en) | Punch processing method for laminated iron core and method for manufacturing laminated iron core | |
EP3765217B1 (en) | Laser assisted machining of electric motor cores | |
JP2011067027A (en) | Steel plate pair, laminated steel plate, and method of manufacturing core of rotary electric machine | |
JP6894182B2 (en) | Laminated iron core and its manufacturing method and welding machine | |
WO2018155206A1 (en) | Laminated member, method for manufacturing same, laminated body, and motor | |
JP2019063845A (en) | Rotor core manufacturing method | |
US20110016701A1 (en) | Production method for large rotor/stator laminations | |
WO2024116811A1 (en) | Amorphous alloy piece manufacturing method, laminated iron core manufacturing method, and laminated iron core | |
JP2022040071A (en) | Amorphous alloy piece manufacturing method and laminated core manufacturing method | |
JPH0576259B2 (en) | ||
WO2024116774A1 (en) | Amorphous alloy piece manufacturing method | |
CN111540595A (en) | Method for manufacturing alloy thin strip | |
JPS6158450A (en) | Processing of amorphous metal core of rotary electric machine | |
JP2024078679A (en) | Amorphous alloy piece manufacturing method | |
JP4816444B2 (en) | SOFT MAGNETIC MAGNETIC MEMBER, SOFT MAGNETIC MAGNETIC MEMBER LAMINATE AND METHOD FOR PRODUCING THEM | |
WO2024116815A1 (en) | Method for manufacturing amorphous metal alloy article | |
JP3842146B2 (en) | Manufacturing method of laminated iron core | |
JP2020092139A (en) | Stator core, motor, and manufacturing method of stator core | |
JP2020192583A (en) | Method for manufacturing laminate member, laminate member, laminate and motor | |
JP7255452B2 (en) | Alloy thin strip and manufacturing method thereof | |
WO2022172938A1 (en) | Core block for motor, and method for producing core block for motor | |
WO2023238472A1 (en) | Laminated iron core production method, laminated iron core, and rotating electrical machine using laminated iron core | |
JP2022185715A (en) | Nanocrystal alloy piece manufacturing method and nanocrystal alloy piece manufacturing apparatus | |
JP3544114B2 (en) | Manufacturing method of stepping motor | |
EP4414111A1 (en) | Cutting device and multi-layer material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23897463 Country of ref document: EP Kind code of ref document: A1 |