WO2024116774A1 - Amorphous alloy piece manufacturing method - Google Patents

Amorphous alloy piece manufacturing method Download PDF

Info

Publication number
WO2024116774A1
WO2024116774A1 PCT/JP2023/040395 JP2023040395W WO2024116774A1 WO 2024116774 A1 WO2024116774 A1 WO 2024116774A1 JP 2023040395 W JP2023040395 W JP 2023040395W WO 2024116774 A1 WO2024116774 A1 WO 2024116774A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribbon
cutting
laser
laser irradiation
amorphous alloy
Prior art date
Application number
PCT/JP2023/040395
Other languages
French (fr)
Japanese (ja)
Inventor
改 大橋
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2024116774A1 publication Critical patent/WO2024116774A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/16Shoulder or burr prevention, e.g. fine-blanking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Definitions

  • This disclosure relates to a method for producing amorphous alloy flakes.
  • the present disclosure aims to make it possible to cut or cleave an amorphous alloy ribbon having a laser irradiated portion with stable processing quality.
  • a method for producing a ribbon of an amorphous alloy includes the steps of: an irradiation step of irradiating the ribbon with a laser so as to form a recess along a boundary of a target region in the ribbon; a cutting or breaking step of cutting or breaking the ribbon along the boundary,
  • a method for producing amorphous alloy flakes is provided, in which the cutting or cleaving process includes cutting or cleaving the ribbon by moving a cutting or cleaving processing part along a direction perpendicular to the surface of the ribbon from the closed side to the open side of the recess on the surface of the ribbon.
  • the present disclosure makes it possible to cut or cleave a ribbon of amorphous alloy having a laser irradiated portion with stable processing quality.
  • FIG. 1 is a schematic flow chart showing a method for manufacturing a laminated iron core to which the method for manufacturing amorphous alloy flakes according to the present embodiment is applied.
  • FIG. 2 is an explanatory diagram of the present manufacturing method, and is a schematic diagram showing a manufacturing apparatus and a workpiece for implementing the present manufacturing method.
  • 1 is a plan view of a portion of a workpiece on which discontinuous laser irradiated portions are formed.
  • FIG. FIG. 4 is an enlarged view of a portion Q1 in FIG. 3 .
  • FIG. 2 is a plan view illustrating an amorphous alloy piece.
  • FIG. 3B is a diagram showing a schematic cross-sectional shape of a laser irradiation portion, and is a cross-sectional view taken along line AA in FIG. 3A.
  • FIG. 6 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, and is an explanatory view of the punching direction and the like during press working. 6 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, which is an explanatory diagram showing a schematic state of a workpiece during press working.
  • FIG. 11A to 11C are explanatory diagrams of a punching method according to another embodiment.
  • 11A to 11C are explanatory diagrams of a punching method according to still another embodiment.
  • FIG. 1 is a schematic flow chart showing a method for manufacturing a laminated core 30 to which the method for manufacturing an amorphous alloy piece 80 according to this embodiment is applied.
  • FIG. 2 is an explanatory diagram of this manufacturing method, and is a schematic diagram showing a manufacturing apparatus 100 and a workpiece W for implementing this manufacturing method.
  • This manufacturing method includes a preparation step (step S1) of preparing a ribbon of an amorphous alloy (hereinafter also referred to as "amorphous metal ribbon").
  • amorphous metal ribbon includes, for example, a ribbon of a nanocrystalline alloy.
  • a nanocrystalline alloy is an alloy in which nano-order ⁇ -Fe crystals (nanocrystals) are densely dispersed in an amorphous parent phase as a crystal structure.
  • Such nanocrystalline alloys can achieve high magnetic flux density due to their high iron content, and can maintain low iron loss even in the magnetic flux density range. Therefore, amorphous metal ribbons are suitable as materials for stator cores and rotor cores of rotating electrical machines.
  • the strip-shaped amorphous metal ribbon may be prepared in a state wound around a roll 40 (see FIG. 2).
  • the strip-shaped amorphous metal ribbon winding body W0 wound from the roll 40 may be unwound (see arrow R2 in FIG. 2) and supplied to the next process as the amorphous metal ribbon workpiece W.
  • the manufacturing method then includes a laser irradiation step (step S2) (one example of an irradiation step) in which the amorphous metal ribbon is irradiated with a laser.
  • the laser used in the laser irradiation step is arbitrary, but is preferably an ultrashort pulse laser.
  • the ultrashort pulse laser has a pulse width of, for example, several femtoseconds to several picoseconds, and is advantageous in that it allows for highly accurate micromachining and reduces thermal damage to the workpiece W.
  • FIG. 2 shows a schematic diagram of a laser irradiation device 50. Note that in FIG.
  • the laser irradiation device 50 is arranged so that it acts first on the workpiece W unwound from the roll 40, but a pretreatment device may be provided upstream of the laser irradiation device 50.
  • a pretreatment device may be provided upstream of the laser irradiation device 50.
  • the amorphous metal ribbon may be subjected to a preliminary heat treatment at the time of preparation in the above-mentioned preparation step, or may be subjected to a preliminary heat treatment upstream of the laser irradiation device 50.
  • the preliminary heat treatment may be performed under heating conditions that enhance the magnetic properties.
  • the laser irradiation process forms a plurality of laser irradiation portions 70 in a manner in which the laser irradiation portions 70 are spaced apart from each other (i.e., the laser irradiation portions 70 are scattered).
  • the laser irradiation process does not form the laser irradiation portions continuously (seamlessly), but forms the plurality of laser irradiation portions 70 in a discontinuous manner in which they are separated from each other.
  • a method of forming a laser irradiation portion is also referred to as a method of forming a discontinuous type laser irradiation portion 70.
  • a method of forming a plurality of laser irradiation portions 70 continuously (seamlessly) from each other is also referred to as a method of forming a continuous type laser irradiation portion.
  • a continuous type laser irradiation portion may be formed.
  • discontinuous laser irradiation portion 70 will be described with reference to Figures 3 and 4.
  • a method for forming discontinuous laser irradiation portion 70 for forming a stator core for a rotating electric machine will be described, but it can also be applied to forming a stator core for a rotating electric machine or other laminated cores.
  • FIG. 3 is a plan view of a portion of the workpiece W in which a discontinuous laser irradiated portion 70 is formed
  • FIG. 3A is an enlarged view of portion Q1 in FIG. 3.
  • FIG. 4 is a plan view that shows a schematic diagram of an amorphous alloy piece 80.
  • discontinuous laser irradiation portion 70 is formed along the boundary of the stator core region for forming the stator core (the outline of the punched shape). Specifically, discontinuous laser irradiation portion 70 is formed along cutting target portion 320 that defines the inner peripheral edge of the stator core, cutting target portion 322 that defines the slots of the stator core, and cutting target portion 328 that defines the outer peripheral edge of the stator core.
  • the cutting target portions 320, 322, and 328 may be formed in the same manner (various parameters a, b, c, d and depth h in FIG. 3A, etc.), or may be formed in different manners according to their respective characteristics.
  • the cutting target portion 328 may be formed in such a manner that the width a, length b, gap c, and pitch d of the laser irradiated portion 70 are controlled, as shown in FIG. 3A.
  • the portion corresponding to the gap c is not irradiated with the laser, and is hereinafter referred to as the "non-irradiated portion 72."
  • the depth h (see FIG. 5) of the laser irradiated portion 70 may also be controlled.
  • the various parameters a, b, c, d, and depth h may be adapted to achieve an optimal balance between reducing the amount of heat input and improving punchability (processability) during press processing, which will be described later.
  • the depth h of the laser irradiated portion 70 is arbitrary, but since it has a non-irradiated portion 72, it may be set deep enough to exceed 70% of the thickness of the amorphous metal ribbon, but is set so as not to exceed 100%. If it is 100%, the laser irradiated portion 70 will be in the form of a through hole rather than a recess.
  • the manufacturing method then includes a press processing step (step S3) (an example of a cutting or cleaving step) in which each cutting target portion 320, 322, 328 in the amorphous metal ribbon workpiece W is cut by a press machine 60.
  • step S3 an example of a cutting or cleaving step
  • each cutting target portion 320, 322, 328 in the amorphous metal ribbon workpiece W is cut by a press machine 60.
  • each cutting target portion 320, 322, 328 may be cut simultaneously, or may be cut separately using a progressive die.
  • FIG. 2 shows a schematic of the press machine 60 downstream of the laser irradiation device 50. Note that in the case of a progressive die, multiple press machines 60 may be arranged in succession.
  • the manufacturing method includes a lamination process (step S4) in which multiple amorphous alloy pieces 80 cut by press working are laminated to form the laminated core 30.
  • the lamination process may be achieved, for example, by bonding the amorphous alloy pieces 80 together with an adhesive or the like.
  • amorphous metal ribbons have excellent magnetic properties (high magnetic flux density and low iron loss) and corrosion resistance, but are also hard and difficult to process. Therefore, when cutting (punching) an amorphous metal ribbon using a press machine 60 without a laser irradiation unit 70, the durability of the punch 91 and die 90 of the press machine 60, which will be described later with reference to FIG. 6, decreases.
  • the cutting target portions 320, 322, 328 pass through a plurality of laser irradiation portions 70.
  • the plurality of laser irradiation portions 70 are in the form of recesses, and therefore are locations that are easy to cut with the press machine 60. Therefore, according to the present manufacturing method, by forming a plurality of laser irradiation portions 70 in the cutting target portions 320, 322, 328, the processability (processability related to press processing) of the amorphous metal ribbon can be improved.
  • the proportion of the laser irradiated portion 70 in the portion to be cut 320 (the same applies to the other portions to be cut 322, 328, and so forth) be as large as possible.
  • the continuous type laser irradiated portion described above is desirable, and the proportion of the laser irradiated portion 70 in the portion to be cut 320 is 100%.
  • the laser irradiation process is performed so that multiple cutting target portions 320 are formed adjacent to one cutting target portion 320 with non-irradiated portions 72 interposed therebetween.
  • This makes it possible to reduce the amount of heat input to one cutting target portion 320. That is, according to this embodiment, by including non-irradiated portions 72 that can reduce the amount of heat input in the cutting target portion 320, it is possible to reduce the amount of heat input to one cutting target portion 320.
  • step S3 the press working process according to this embodiment will be further explained with reference to FIG. 5 onwards.
  • FIG. 5 is a schematic diagram showing the cross-sectional shape of the laser irradiation section 70, and is a cross-sectional view taken along line A-A in FIG. 3A.
  • FIG. 6 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, which is an explanatory diagram of the punching direction during press working, etc.
  • FIG. 7 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, which is an explanatory diagram of the state of the workpiece W during press working.
  • the Z direction and the Z1 side and Z2 side
  • the laser irradiation section 70 has the form of a recess (groove) with a depth h.
  • the open side of the recess of the laser irradiation section 70 (the Z2 side in the Z direction in FIG. 5) will also be referred to simply as the "open side of the laser irradiation section 70”
  • the opposite side (the Z1 side in the Z direction in FIG. 5) will also be referred to simply as the "closed side of the laser irradiation section 70.”
  • the press processing includes moving (lowering) the punch 91 of the press 60 from the closed side to the open side of the laser irradiation section 70 along the Z direction. That is, in this embodiment, the punching direction R6 is the direction from the closed side to the open side of the laser irradiation section 70 along the Z direction.
  • the punch 91 may be V-shaped having a convex portion 910 corresponding to the concave shape of the laser irradiation section 70, as shown in FIG. 5.
  • the convex portion 910 may be V-shaped with a tapered inclination, and the tip (top) may not be acute.
  • the workpiece W is positioned relative to the punch 91 so that the convex portion 910 (top) of the punch 91 overlaps the laser irradiation section 70 when viewed in the Z direction.
  • the clearance between the die 90 and the punch 91 in the press 60 may be set relatively small.
  • FIGS. 8 and 9 are explanatory diagrams of other embodiments, and explain the press working method using cross-sectional views corresponding to the cross-sectional view shown in FIG. 5.
  • the punching direction R6 is along the Z direction from the closed side to the open side of the laser irradiation unit 70.
  • the punch 91A may be in a form that overlaps the punched shape area (target area) when viewed in the Z direction, and the surface on the Z2 side may be substantially flat.
  • the workpiece W is positioned relative to the punch 91A (and the die 90A) so that the position of the edge of the die 90A (hereinafter referred to as the "edge position") coincides with a position a certain distance e away from the edge of the laser irradiation section 70. That is, when the workpiece W is positioned relative to the die 90A and punch 91A in a plane perpendicular to the Z direction, the workpiece W is positioned so that the edge position of the die 90A coincides with a position a certain distance e away from the edge of the laser irradiation section 70 of the workpiece W.
  • the position of the certain distance e from the edge of the laser irradiation section 70 is shown diagrammatically by a dashed line 900.
  • Figure 8 shows diagrammatically a state in which the position of the certain distance e from the edge of the laser irradiation section 70 is positioned to be the edge position of the die 90A.
  • the clearance between the punch 91A and the die 90A may be set to a value obtained by adding the width a of the laser irradiation section 70 and the certain distance e.
  • the clearance between the punch 91A and the die 90A may be set to be smaller than the width a of the laser irradiation section 70.
  • the fixed distance e may be a relatively small value (e.g., a value close to approximately 0).
  • each amorphous metal ribbon is pressed separately, but multiple sheets may be stacked and pressed. This allows multiple amorphous alloy pieces 80 to be produced efficiently. Even in this case, the above-mentioned effects can be obtained by performing the press process from the closed side.
  • the workpiece W is positioned relative to the press machine 60 by moving the workpiece W relative to the press machine 60, which includes the die 90 and punch 91.
  • the workpiece W may be positioned relative to the press machine 60 by moving the die 90 and punch 91.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Punching Or Piercing (AREA)

Abstract

Disclosed is an amorphous alloy piece manufacturing method including a step for preparing a ribbon of an amorphous alloy, a step for emitting a laser such that a recessed portion is formed along a boundary of a target region of the ribbon, and a cutting or cleaving step for cutting or cleaving the ribbon along the boundary, wherein the cutting or cleaving step includes cutting or cleaving the ribbon by causing a cutting or cleaving machining portion to move in a direction perpendicular to a surface of the ribbon, from a closed side of the recessed portion at the surface of the ribbon toward an open side thereof.

Description

非晶質合金片の製造方法Manufacturing method of amorphous alloy flakes
 本開示は、非晶質合金片の製造方法に関する。 This disclosure relates to a method for producing amorphous alloy flakes.
 非晶質合金の薄帯の難加工性(打抜き加工に係る難加工性)を考慮して、非晶質合金の薄帯に対して事前に連続的にレーザを照射してレーザ照射部(凹部)による連続的な輪郭線を形成し、当該連続的な輪郭線に沿って打抜き加工を行う技術が知られている。 In consideration of the difficulty of processing amorphous alloy ribbons (difficulty in processing with respect to punching), a technique is known in which a laser is continuously irradiated onto the amorphous alloy ribbon in advance to form a continuous outline of the laser irradiated areas (recesses), and then punching is performed along the continuous outline.
特開2022-40071号公報JP 2022-40071 A
 しかしながら、上記のような従来技術では、輪郭線に沿って打抜き加工を行う際の、打抜き方向によっては、レーザ照射部(凹部)に対して、安定した加工品質(例えばせん断面の品質)で打抜き加工を行うことが難しい。 However, with the conventional techniques described above, when punching along a contour line, depending on the punching direction, it is difficult to perform punching with stable processing quality (e.g., quality of the sheared surface) on the laser irradiated area (recess).
 そこで、1つの側面では、本開示は、レーザ照射部を有する非晶質合金の薄帯を、安定した加工品質で切断又は割断可能とすることを目的とする。 In one aspect, the present disclosure aims to make it possible to cut or cleave an amorphous alloy ribbon having a laser irradiated portion with stable processing quality.
 1つの側面では、非晶質合金の薄帯を準備する工程と、
 前記薄帯における対象領域の境界に沿って凹部が形成されるように、レーザを照射する照射工程と、
 前記薄帯を前記境界に沿って切断又は割断する切断又は割断工程とを含み、
 前記切断又は割断工程は、前記薄帯の表面に対して垂直な方向に沿って、前記薄帯の表面における前記凹部の閉口側から開口側に向けて、切断又は割断用の加工部を移動させることで、前記薄帯を切断又は割断することを含む、非晶質合金片の製造方法が提供される。
In one aspect, a method for producing a ribbon of an amorphous alloy includes the steps of:
an irradiation step of irradiating the ribbon with a laser so as to form a recess along a boundary of a target region in the ribbon;
a cutting or breaking step of cutting or breaking the ribbon along the boundary,
A method for producing amorphous alloy flakes is provided, in which the cutting or cleaving process includes cutting or cleaving the ribbon by moving a cutting or cleaving processing part along a direction perpendicular to the surface of the ribbon from the closed side to the open side of the recess on the surface of the ribbon.
 1つの側面では、本開示によれば、レーザ照射部を有する非晶質合金の薄帯を、安定した加工品質で切断又は割断することが可能となる。 In one aspect, the present disclosure makes it possible to cut or cleave a ribbon of amorphous alloy having a laser irradiated portion with stable processing quality.
本実施例による非晶質合金片の製造方法が適用される積層鉄心の製造方法を示す概略的なフローチャートである。1 is a schematic flow chart showing a method for manufacturing a laminated iron core to which the method for manufacturing amorphous alloy flakes according to the present embodiment is applied. 本製造方法の説明図であり、本製造方法を実現するための製造装置とワークを示す概略図である。FIG. 2 is an explanatory diagram of the present manufacturing method, and is a schematic diagram showing a manufacturing apparatus and a workpiece for implementing the present manufacturing method. 不連続型のレーザ照射部が形成されたワークの一部の平面図である。1 is a plan view of a portion of a workpiece on which discontinuous laser irradiated portions are formed. FIG. 図3のQ1部の拡大図である。FIG. 4 is an enlarged view of a portion Q1 in FIG. 3 . 非晶質合金片を概略的に示す平面図である。FIG. 2 is a plan view illustrating an amorphous alloy piece. レーザ照射部の断面形状を模式的に示す図であり、図3AのラインA-Aに沿った断面図である。FIG. 3B is a diagram showing a schematic cross-sectional shape of a laser irradiation portion, and is a cross-sectional view taken along line AA in FIG. 3A. 図5に示す断面視に対応する断面図により、プレス加工の際の打抜き方向等の説明図である。FIG. 6 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, and is an explanatory view of the punching direction and the like during press working. 図5に示す断面視に対応する断面図により、プレス加工中のワークの状態を模式的に示す説明図である。6 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, which is an explanatory diagram showing a schematic state of a workpiece during press working. FIG. 他の実施例による打抜き方法の説明図である。11A to 11C are explanatory diagrams of a punching method according to another embodiment. 更なる他の実施例による打抜き方法の説明図である。11A to 11C are explanatory diagrams of a punching method according to still another embodiment.
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。 Each embodiment will be described in detail below with reference to the attached drawings. Note that the dimensional ratios in the drawings are merely examples and are not limiting. Also, shapes in the drawings may be partially exaggerated for the sake of explanation.
 図1は、本実施例による非晶質合金片80の製造方法が適用される積層鉄心30の製造方法を示す概略的なフローチャートである。図2は、本製造方法の説明図であり、本製造方法を実現するための製造装置100とワークWを示す概略図である。 FIG. 1 is a schematic flow chart showing a method for manufacturing a laminated core 30 to which the method for manufacturing an amorphous alloy piece 80 according to this embodiment is applied. FIG. 2 is an explanatory diagram of this manufacturing method, and is a schematic diagram showing a manufacturing apparatus 100 and a workpiece W for implementing this manufacturing method.
 本製造方法は、まず、非晶質合金(アモルファス合金)の薄帯(以下、「非晶質金属薄帯」とも称する)を準備する準備工程(ステップS1)を含む。非晶質金属薄帯は、例えば、ナノ結晶合金の薄帯(リボン)を含む概念である。ナノ結晶合金は、結晶構造としてアモルファス母相中に、ナノオーダーのα-Fe結晶(ナノ結晶)が高密度に分散した合金である。このようなナノ結晶合金は、鉄の含有量が高いため高磁束密度を実現できるとともに、磁束密度域においても低鉄損を維持できる。従って、非晶質金属薄帯は、回転電機のステータコアやロータコア等の材料として好適である。 This manufacturing method includes a preparation step (step S1) of preparing a ribbon of an amorphous alloy (hereinafter also referred to as "amorphous metal ribbon"). The concept of amorphous metal ribbon includes, for example, a ribbon of a nanocrystalline alloy. A nanocrystalline alloy is an alloy in which nano-order α-Fe crystals (nanocrystals) are densely dispersed in an amorphous parent phase as a crystal structure. Such nanocrystalline alloys can achieve high magnetic flux density due to their high iron content, and can maintain low iron loss even in the magnetic flux density range. Therefore, amorphous metal ribbons are suitable as materials for stator cores and rotor cores of rotating electrical machines.
 本準備工程においては、例えば、帯状の非晶質金属薄帯は、ロール40(図2参照)に巻回された状態で準備されてもよい。この場合、ロール40から巻回された状態の帯状の非晶質金属薄帯の巻層体W0は、巻出されることで(図2の矢印R2参照)、非晶質金属薄帯のワークWとして次工程へと供給されてよい。 In this preparation process, for example, the strip-shaped amorphous metal ribbon may be prepared in a state wound around a roll 40 (see FIG. 2). In this case, the strip-shaped amorphous metal ribbon winding body W0 wound from the roll 40 may be unwound (see arrow R2 in FIG. 2) and supplied to the next process as the amorphous metal ribbon workpiece W.
 本製造方法は、ついで、非晶質金属薄帯に、レーザ照射を行うレーザ照射工程(ステップS2)(照射工程の一例)を含む。レーザ照射工程で用いるレーザは、任意であるが、好ましくは、超短パルスレーザである。超短パルスレーザは、例えば、数フェムト秒~数ピコ秒のパルス幅を有し、高精度な微細加工が可能である点や、ワークWの熱損傷を低減できる点で有利となる。図2には、レーザ照射装置50が概略的に示されている。なお、図2では、ロール40から巻出されているワークWに対して、レーザ照射装置50が一番目に作用するように配置されているが、レーザ照射装置50よりも上流側に前処理装置が設けられてもよい。例えば、非晶質金属薄帯は、上述した準備工程で準備された時点で事前の熱処理を受けていてもよいし、レーザ照射装置50の上流側で事前の熱処理を受けてもよい。この場合、事前の熱処理は、磁気特性を高める加熱条件で実行されてよい。 The manufacturing method then includes a laser irradiation step (step S2) (one example of an irradiation step) in which the amorphous metal ribbon is irradiated with a laser. The laser used in the laser irradiation step is arbitrary, but is preferably an ultrashort pulse laser. The ultrashort pulse laser has a pulse width of, for example, several femtoseconds to several picoseconds, and is advantageous in that it allows for highly accurate micromachining and reduces thermal damage to the workpiece W. FIG. 2 shows a schematic diagram of a laser irradiation device 50. Note that in FIG. 2, the laser irradiation device 50 is arranged so that it acts first on the workpiece W unwound from the roll 40, but a pretreatment device may be provided upstream of the laser irradiation device 50. For example, the amorphous metal ribbon may be subjected to a preliminary heat treatment at the time of preparation in the above-mentioned preparation step, or may be subjected to a preliminary heat treatment upstream of the laser irradiation device 50. In this case, the preliminary heat treatment may be performed under heating conditions that enhance the magnetic properties.
 ここで、ワークWの非晶質金属薄帯がレーザにより照射されると、非晶質金属薄帯に凹部が形成される。以下では、このような凹部をレーザ照射部70とも称する。本製造方法では、レーザ照射工程は、複数のレーザ照射部70を、それぞれのレーザ照射部70が互いに離間する態様(すなわちレーザ照射部70が点在する態様)で、形成する。すなわち、本製造方法では、レーザ照射工程は、レーザ照射部を連続して(シームレスに)形成するのではなく、複数のレーザ照射部70を互いに分離する非連続の態様で形成する。以下では、このようなレーザ照射部の形成方法を、不連続型のレーザ照射部70の形成方法とも称する。他方、複数のレーザ照射部70を互いに連続して(シームレスに)形成する形成方法を、連続型のレーザ照射部の形成方法とも称する。なお、変形例では、連続型のレーザ照射部が形成されてもよい。 Here, when the amorphous metal ribbon of the work W is irradiated with a laser, a recess is formed in the amorphous metal ribbon. Hereinafter, such a recess is also referred to as a laser irradiation portion 70. In this manufacturing method, the laser irradiation process forms a plurality of laser irradiation portions 70 in a manner in which the laser irradiation portions 70 are spaced apart from each other (i.e., the laser irradiation portions 70 are scattered). That is, in this manufacturing method, the laser irradiation process does not form the laser irradiation portions continuously (seamlessly), but forms the plurality of laser irradiation portions 70 in a discontinuous manner in which they are separated from each other. Hereinafter, such a method of forming a laser irradiation portion is also referred to as a method of forming a discontinuous type laser irradiation portion 70. On the other hand, a method of forming a plurality of laser irradiation portions 70 continuously (seamlessly) from each other is also referred to as a method of forming a continuous type laser irradiation portion. In a modified example, a continuous type laser irradiation portion may be formed.
 ここで、図3から図4を参照して、不連続型のレーザ照射部70の形成方法について説明する。ここでは、回転電機用のステータコアを形成するための不連続型のレーザ照射部70の形成方法について説明するが、回転電機用のステータコアや他の積層鉄心を形成するためにも適用可能である。 Here, a method for forming discontinuous laser irradiation portion 70 will be described with reference to Figures 3 and 4. Here, a method for forming discontinuous laser irradiation portion 70 for forming a stator core for a rotating electric machine will be described, but it can also be applied to forming a stator core for a rotating electric machine or other laminated cores.
 図3は、不連続型のレーザ照射部70が形成されたワークWの一部の平面図であり、図3Aは、図3のQ1部の拡大図である。図4は、非晶質合金片80を概略的に示す平面図である。 FIG. 3 is a plan view of a portion of the workpiece W in which a discontinuous laser irradiated portion 70 is formed, and FIG. 3A is an enlarged view of portion Q1 in FIG. 3. FIG. 4 is a plan view that shows a schematic diagram of an amorphous alloy piece 80.
 本製造方法では、図3に示すように、不連続型のレーザ照射部70は、ステータコアを形成するためのステータコア領域の境界(打抜き形状の輪郭線)に沿って形成される。具体的には、不連続型のレーザ照射部70は、ステータコアの内周縁を画成する切断対象部320と、ステータコアのスロットを画成する切断対象部322と、ステータコアの外周縁を画成する切断対象部328とに沿って、形成される。 In this manufacturing method, as shown in FIG. 3, discontinuous laser irradiation portion 70 is formed along the boundary of the stator core region for forming the stator core (the outline of the punched shape). Specifically, discontinuous laser irradiation portion 70 is formed along cutting target portion 320 that defines the inner peripheral edge of the stator core, cutting target portion 322 that defines the slots of the stator core, and cutting target portion 328 that defines the outer peripheral edge of the stator core.
 各切断対象部320、322、328は、同じ態様(図3Aの各種パラメータa、b、c、dや深さh等)で形成されてもよいし、それぞれの特性に応じて異なる態様で形成されてもよい。 The cutting target portions 320, 322, and 328 may be formed in the same manner (various parameters a, b, c, d and depth h in FIG. 3A, etc.), or may be formed in different manners according to their respective characteristics.
 例えば、切断対象部328は、図3Aに示すように、レーザ照射部70の幅a、長さb、隙間c、及びピッチdが制御される態様で、形成されてもよい。この場合、隙間cに対応する部分は、レーザが照射されていない部分であり、以下では、「不照射部72」と称する。レーザ照射部70の深さh(図5参照)についても制御されてよい。各種パラメータa、b、c、dや深さhは、入熱量を低減する観点と、後述するプレス加工の際の打抜き性(加工性)を向上する観点とから、最適なバランスになるように適合されてよい。 For example, the cutting target portion 328 may be formed in such a manner that the width a, length b, gap c, and pitch d of the laser irradiated portion 70 are controlled, as shown in FIG. 3A. In this case, the portion corresponding to the gap c is not irradiated with the laser, and is hereinafter referred to as the "non-irradiated portion 72." The depth h (see FIG. 5) of the laser irradiated portion 70 may also be controlled. The various parameters a, b, c, d, and depth h may be adapted to achieve an optimal balance between reducing the amount of heat input and improving punchability (processability) during press processing, which will be described later.
 また、本製造方法では、レーザ照射部70の深さhは、任意であるが、不照射部72を有することから、非晶質金属薄帯の厚みの70%を超えるほど深く設定されてもよいが、100%を超えないように設定される。なお、100%の場合、レーザ照射部70は、凹部ではなく貫通孔の形態となる。 In addition, in this manufacturing method, the depth h of the laser irradiated portion 70 is arbitrary, but since it has a non-irradiated portion 72, it may be set deep enough to exceed 70% of the thickness of the amorphous metal ribbon, but is set so as not to exceed 100%. If it is 100%, the laser irradiated portion 70 will be in the form of a through hole rather than a recess.
 本製造方法では、好ましくは、切断対象部328(他の切断対象部320、322ついても同様)に占める不照射部72の全長(=Σc)は、同切断対象部328に占めるレーザ照射部70の全長(=Σb)に対して、比(=Σc/Σb)が1/10以上であり、より好ましくは、比が1/2以上であり、もっとも好ましくは、比が1以上である。この場合、入熱量を効果的に低減しつつ、プレス加工の際の打抜き性(加工性)を比較的良好に維持できるためである。 In this manufacturing method, the ratio (=Σc) of the total length (=Σc) of the non-irradiated portion 72 in the portion to be cut 328 (similarly for the other portions to be cut 320, 322) to the total length (=Σb) of the laser-irradiated portion 70 in the portion to be cut 328 is preferably 1/10 or more, more preferably 1/2 or more, and most preferably 1 or more. In this case, the amount of heat input can be effectively reduced while maintaining relatively good punchability (processability) during press processing.
 図1に戻り、本製造方法は、ついで、非晶質金属薄帯のワークWにおける各切断対象部320、322、328を、プレス機60により切断するプレス加工工程(ステップS3)(切断又は割断工程の一例)を含む。これにより、図4に示すような非晶質合金片80が形成される。なお、各切断対象部320、322、328は、同時に切断されてもよいし、順送型で別々に切断されてもよい。図2には、レーザ照射装置50の後流側のプレス機60が模式的に示されている。なお、順送型の場合、プレス機60が複数台連続して配置されてよい。 Returning to FIG. 1, the manufacturing method then includes a press processing step (step S3) (an example of a cutting or cleaving step) in which each cutting target portion 320, 322, 328 in the amorphous metal ribbon workpiece W is cut by a press machine 60. This forms an amorphous alloy piece 80 as shown in FIG. 4. Note that each cutting target portion 320, 322, 328 may be cut simultaneously, or may be cut separately using a progressive die. FIG. 2 shows a schematic of the press machine 60 downstream of the laser irradiation device 50. Note that in the case of a progressive die, multiple press machines 60 may be arranged in succession.
 ついで、本製造方法は、プレス加工により切断された非晶質合金片80を複数枚積層して積層鉄心30を形成する積層工程(ステップS4)を含む。なお、積層工程は、例えば非晶質合金片80同士を接着剤等により接着することで実現されてもよい。 Next, the manufacturing method includes a lamination process (step S4) in which multiple amorphous alloy pieces 80 cut by press working are laminated to form the laminated core 30. Note that the lamination process may be achieved, for example, by bonding the amorphous alloy pieces 80 together with an adhesive or the like.
 ところで、一般的に知られているように、非晶質金属薄帯は、優れた磁気特性(高磁束密度や低鉄損)や耐食性等を有する反面、硬度が高い難加工性の材料でもある。従って、非晶質金属薄帯をレーザ照射部70なしでプレス機60により切断する(打ち抜く)場合、図6を参照して後述するプレス機60のパンチ91やダイ90の耐久性が低下してしまう。 As is generally known, amorphous metal ribbons have excellent magnetic properties (high magnetic flux density and low iron loss) and corrosion resistance, but are also hard and difficult to process. Therefore, when cutting (punching) an amorphous metal ribbon using a press machine 60 without a laser irradiation unit 70, the durability of the punch 91 and die 90 of the press machine 60, which will be described later with reference to FIG. 6, decreases.
 この点、本製造方法によれば、上述したように、切断対象部320、322、328は、複数のレーザ照射部70を通る。複数のレーザ照射部70は、上述したように凹部の形態であることから、プレス機60により切断し易い箇所となる。従って、本製造方法によれば、切断対象部320、322、328に複数のレーザ照射部70を形成することで非晶質金属薄帯の加工性(プレス加工に係る加工性)を高めることができる。 In this regard, according to the present manufacturing method, as described above, the cutting target portions 320, 322, 328 pass through a plurality of laser irradiation portions 70. As described above, the plurality of laser irradiation portions 70 are in the form of recesses, and therefore are locations that are easy to cut with the press machine 60. Therefore, according to the present manufacturing method, by forming a plurality of laser irradiation portions 70 in the cutting target portions 320, 322, 328, the processability (processability related to press processing) of the amorphous metal ribbon can be improved.
 ここで、プレス加工に係る加工性を高める観点のみを重視する場合、切断対象部320(他の切断対象部322、328も同様、以下同じ)に占めるレーザ照射部70の割合は、できるだけ大きい方が望ましい。すなわち、プレス加工に係る加工性を高める観点のみを重視する場合、究極的には、上述した連続型のレーザ照射部が望ましく、切断対象部320に占めるレーザ照射部70の割合は、100%である。 Here, if emphasis is placed solely on the aspect of improving the workability in press working, it is desirable that the proportion of the laser irradiated portion 70 in the portion to be cut 320 (the same applies to the other portions to be cut 322, 328, and so forth) be as large as possible. In other words, if emphasis is placed solely on the aspect of improving the workability in press working, ultimately, the continuous type laser irradiated portion described above is desirable, and the proportion of the laser irradiated portion 70 in the portion to be cut 320 is 100%.
 しかしながら、連続型のレーザ照射部の場合、入熱量が大きくなりやすく、非晶質金属薄帯において結晶化に伴う特性変化や、結晶化発熱に起因した熱暴走が問題となりやすい。 However, in the case of continuous laser irradiation, the amount of heat input tends to be large, and problems such as changes in characteristics due to crystallization in the amorphous metal ribbon and thermal runaway caused by heat generation due to crystallization can easily occur.
 この点、本実施例によれば、上述したように、1つの切断対象部320に対して、複数の切断対象部320が不照射部72を介して隣り合う態様で形成されるように、レーザ照射工程が実行される。これにより、1つの切断対象部320に係る入熱量を低減できる。すなわち、本実施例によれば、入熱量を低減できる不照射部72を切断対象部320に含ませることで、1つの切断対象部320に係る入熱量を低減できる。これにより、第2ピークp2が生じるような温度域までのワークWの温度上昇の可能性を効果的に低減できる。この結果、連続型のレーザ照射部の場合に生じる上述した不都合を低減できる。 In this regard, according to this embodiment, as described above, the laser irradiation process is performed so that multiple cutting target portions 320 are formed adjacent to one cutting target portion 320 with non-irradiated portions 72 interposed therebetween. This makes it possible to reduce the amount of heat input to one cutting target portion 320. That is, according to this embodiment, by including non-irradiated portions 72 that can reduce the amount of heat input in the cutting target portion 320, it is possible to reduce the amount of heat input to one cutting target portion 320. This effectively reduces the possibility of the temperature of the workpiece W rising to a temperature range where the second peak p2 occurs. As a result, it is possible to reduce the above-mentioned inconvenience that occurs in the case of a continuous type laser irradiation portion.
 次に、図3Aを依然として参照しつつ、図5以降を参照して、本実施例によるプレス加工工程(ステップS3)を更に説明する。 Next, while still referring to FIG. 3A, the press working process (step S3) according to this embodiment will be further explained with reference to FIG. 5 onwards.
 図5は、レーザ照射部70の断面形状を模式的に示す図であり、図3AのラインA-Aに沿った断面図である。図6は、図5に示す断面視に対応する断面図により、プレス加工の際の打抜き方向等の説明図である。図7は、図5に示す断面視に対応する断面図により、プレス加工中のワークWの状態を模式的に示す説明図である。図5から図7(後出の図8及び図9も同様)には、ワークWの表面(非晶質金属薄帯の表面)に対して垂直な方向に沿って、Z方向(及びZ1側、Z2側)が定義されている。 FIG. 5 is a schematic diagram showing the cross-sectional shape of the laser irradiation section 70, and is a cross-sectional view taken along line A-A in FIG. 3A. FIG. 6 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, which is an explanatory diagram of the punching direction during press working, etc. FIG. 7 is a cross-sectional view corresponding to the cross-sectional view shown in FIG. 5, which is an explanatory diagram of the state of the workpiece W during press working. In FIGS. 5 to 7 (as well as FIGS. 8 and 9 described below), the Z direction (and the Z1 side and Z2 side) are defined along the direction perpendicular to the surface of the workpiece W (the surface of the amorphous metal ribbon).
 本実施例では、上述しかつ図5に示すように、レーザ照射部70は、深さhの凹部(溝)の形態となる。以下では、レーザ照射部70に係る凹部の開口側(図5のZ方向でZ2側)を、単に「レーザ照射部70の開口側」とも称し、その逆側(図5のZ方向でZ1側)を、単に「レーザ照射部70の閉口側」とも称する。 In this embodiment, as described above and shown in FIG. 5, the laser irradiation section 70 has the form of a recess (groove) with a depth h. Hereinafter, the open side of the recess of the laser irradiation section 70 (the Z2 side in the Z direction in FIG. 5) will also be referred to simply as the "open side of the laser irradiation section 70," and the opposite side (the Z1 side in the Z direction in FIG. 5) will also be referred to simply as the "closed side of the laser irradiation section 70."
 本実施例では、プレス加工は、Z方向に沿って、レーザ照射部70の閉口側から開口側に向けて、プレス機60のパンチ91を移動(下降)させることを含む。すなわち、本実施例では、打抜き方向R6は、Z方向に沿って、レーザ照射部70の閉口側から開口側に向かう方向である。パンチ91は、図5に示すように、レーザ照射部70の凹部形状に応じた凸部910を有するV字状の形態であってよい。なお、凸部910は、テーパー状に傾斜するV字状の形態であってよく、先端部(頂部)は鋭角でなくてもよい。ワークWは、パンチ91の凸部910(頂部)が、Z方向に視て、レーザ照射部70に重なるように、パンチ91に対して位置付けられる。なお、プレス機60におけるダイ90とパンチ91との間のクリアランスは、比較的小さく設定されてよい。 In this embodiment, the press processing includes moving (lowering) the punch 91 of the press 60 from the closed side to the open side of the laser irradiation section 70 along the Z direction. That is, in this embodiment, the punching direction R6 is the direction from the closed side to the open side of the laser irradiation section 70 along the Z direction. The punch 91 may be V-shaped having a convex portion 910 corresponding to the concave shape of the laser irradiation section 70, as shown in FIG. 5. The convex portion 910 may be V-shaped with a tapered inclination, and the tip (top) may not be acute. The workpiece W is positioned relative to the punch 91 so that the convex portion 910 (top) of the punch 91 overlaps the laser irradiation section 70 when viewed in the Z direction. The clearance between the die 90 and the punch 91 in the press 60 may be set relatively small.
 このような打抜き方向によれば、図7に模式的に示すように、凹部の開口側が開く方向の力(R70参照)が作用し、凹部の閉口側に圧縮方向の力(R71参照)が作用する。これにより、レーザ照射部70に係る凹部の底面(頂部)を起点に破断(図7のラインL71参照)を進展させることが容易となる。すなわち、凹部の底面において応力集中を発生させることで亀裂進展性が向上する。この結果、破断面や断面形状が安定化する。 As shown diagrammatically in Figure 7, with this punching direction, a force acts in the opening direction on the open side of the recess (see R70), and a force acts in the compression direction on the closed side of the recess (see R71). This makes it easier to propagate the fracture (see line L71 in Figure 7) starting from the bottom surface (top) of the recess related to the laser irradiation section 70. In other words, by generating stress concentration at the bottom surface of the recess, crack propagation is improved. As a result, the fracture surface and cross-sectional shape are stabilized.
 図8及び図9は、それぞれ他の実施例の説明図であり、図5に示す断面視に対応する断面図により、プレス加工方法を説明する説明図である。 FIGS. 8 and 9 are explanatory diagrams of other embodiments, and explain the press working method using cross-sectional views corresponding to the cross-sectional view shown in FIG. 5.
 図8及び図9に示す他の実施例の場合も、上述した実施例と同様、打抜き方向R6は、Z方向に沿って、レーザ照射部70の閉口側から開口側に向かう方向である。なお、パンチ91Aは、Z方向に視て、打抜き形状の領域(対象領域)に重なる形態であってよく、Z2側の表面は実質的に平らであってよい。 In the case of the other embodiment shown in Figures 8 and 9, similar to the embodiment described above, the punching direction R6 is along the Z direction from the closed side to the open side of the laser irradiation unit 70. Note that the punch 91A may be in a form that overlaps the punched shape area (target area) when viewed in the Z direction, and the surface on the Z2 side may be substantially flat.
 本実施例において、ワークWは、レーザ照射部70の際(きわ)に対して一定距離eだけ離れた位置に、ダイ90Aの際(きわ)の位置(以下、「際位置」と称する)が一致するように、パンチ91A(及びダイ90A)に対して相対的に位置付けられる。すなわち、ワークWが、Z方向に垂直な面内で、ダイ90A及びパンチ91Aに対して位置付けられる際、ワークWのレーザ照射部70の際に対して一定距離eの位置にダイ90Aの際位置が一致するように、位置付けられる。図3A及び図8には、レーザ照射部70の際(きわ)に対して一定距離eの位置が、一点鎖線900で模式的に示されている。また、図8には、レーザ照射部70の際(きわ)に対して一定距離eの位置がダイ90Aの際位置となるように位置付けられた状態が模式的に示されている。この場合、パンチ91Aとダイ90Aとの間のクリアランスは、レーザ照射部70の幅aと一定距離eとを足し合わせた値に設定されてもよい。あるいは、図9に示す例のように、パンチ91Aとダイ90Aとの間のクリアランスは、レーザ照射部70の幅aよりも小さく設定されてもよい。一定距離eは、比較的小さい値(例えば略0に近い値)であってよい。 In this embodiment, the workpiece W is positioned relative to the punch 91A (and the die 90A) so that the position of the edge of the die 90A (hereinafter referred to as the "edge position") coincides with a position a certain distance e away from the edge of the laser irradiation section 70. That is, when the workpiece W is positioned relative to the die 90A and punch 91A in a plane perpendicular to the Z direction, the workpiece W is positioned so that the edge position of the die 90A coincides with a position a certain distance e away from the edge of the laser irradiation section 70 of the workpiece W. In Figures 3A and 8, the position of the certain distance e from the edge of the laser irradiation section 70 is shown diagrammatically by a dashed line 900. Also, Figure 8 shows diagrammatically a state in which the position of the certain distance e from the edge of the laser irradiation section 70 is positioned to be the edge position of the die 90A. In this case, the clearance between the punch 91A and the die 90A may be set to a value obtained by adding the width a of the laser irradiation section 70 and the certain distance e. Alternatively, as shown in the example of FIG. 9, the clearance between the punch 91A and the die 90A may be set to be smaller than the width a of the laser irradiation section 70. The fixed distance e may be a relatively small value (e.g., a value close to approximately 0).
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope of the claims. It is also possible to combine all or some of the components of the above-mentioned embodiments.
 例えば、上述した実施例では、非晶質金属薄帯は、一枚一枚、別々にプレス加工を受けるが、複数枚を積層した状態でプレス加工を受けてもよい。これにより、複数枚の非晶質合金片80を効率的に製造できる。なお、この場合でも、閉口側からのプレス加工を実現することで、上述した効果を得ることができる。 For example, in the above-mentioned embodiment, each amorphous metal ribbon is pressed separately, but multiple sheets may be stacked and pressed. This allows multiple amorphous alloy pieces 80 to be produced efficiently. Even in this case, the above-mentioned effects can be obtained by performing the press process from the closed side.
 また、上述した実施例では、ダイ90及びパンチ91を含むプレス機60に対してワークWが移動することで、プレス機60に対してワークWが位置付けられているが、これに代えて又は加えて、ダイ90及びパンチ91が移動することで、プレス機60に対してワークWが位置付けられてもよい。 In addition, in the above-described embodiment, the workpiece W is positioned relative to the press machine 60 by moving the workpiece W relative to the press machine 60, which includes the die 90 and punch 91. However, instead of or in addition to this, the workpiece W may be positioned relative to the press machine 60 by moving the die 90 and punch 91.
70・・・レーザ照射部(凹部)、91、91A・・・パンチ(加工部)、910・・・凸部、W・・・ワーク(非晶質合金の薄帯) 70: Laser irradiated part (concave part), 91, 91A: punch (machined part), 910: convex part, W: work (thin strip of amorphous alloy)

Claims (3)

  1.  非晶質合金の薄帯を準備する工程と、
     前記薄帯における対象領域の境界に沿って凹部が形成されるように、レーザを照射する照射工程と、
     前記薄帯を前記境界に沿って切断又は割断する切断又は割断工程とを含み、
     前記切断又は割断工程は、前記薄帯の表面に対して垂直な方向に沿って、前記薄帯の表面における前記凹部の閉口側から開口側に向けて、切断又は割断用の加工部を移動させることで、前記薄帯を切断又は割断することを含む、非晶質合金片の製造方法。
    preparing a ribbon of an amorphous alloy;
    an irradiation step of irradiating the ribbon with a laser so as to form a recess along a boundary of a target region in the ribbon;
    a cutting or breaking step of cutting or breaking the ribbon along the boundary,
    The cutting or cleaving process includes cutting or cleaving the ribbon by moving a cutting or cleaving processing part from the closed side to the open side of the recess on the surface of the ribbon along a direction perpendicular to the surface of the ribbon.
  2.  前記可動工具は、前記薄帯の表面に対して垂直な方向に視て、前記凹部に重なる凸部を有する、請求項1に記載の非晶質合金片の製造方法。 The method for producing amorphous alloy flakes according to claim 1, wherein the movable tool has a convex portion that overlaps the concave portion when viewed in a direction perpendicular to the surface of the ribbon.
  3.  前記照射工程は、前記境界に沿って複数のレーザ照射部が不照射部を介して隣り合う態様で形成されるように、レーザを照射することを含み、前記複数のレーザ照射部は、前記凹部を形成する、請求項1又は2に記載の非晶質合金片の製造方法。 The method for producing an amorphous alloy piece according to claim 1 or 2, wherein the irradiation step includes irradiating the laser so that a plurality of laser irradiated portions are formed along the boundary in a manner in which the laser irradiated portions are adjacent to each other with non-irradiated portions interposed therebetween, and the plurality of laser irradiated portions form the recesses.
PCT/JP2023/040395 2022-11-30 2023-11-09 Amorphous alloy piece manufacturing method WO2024116774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022191165A JP2024078680A (en) 2022-11-30 2022-11-30 Manufacturing method of amorphous alloy flakes
JP2022-191165 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024116774A1 true WO2024116774A1 (en) 2024-06-06

Family

ID=91323413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040395 WO2024116774A1 (en) 2022-11-30 2023-11-09 Amorphous alloy piece manufacturing method

Country Status (2)

Country Link
JP (1) JP2024078680A (en)
WO (1) WO2024116774A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138259A (en) * 1991-11-20 1993-06-01 Toshiba Corp Piercing device
JP2004074182A (en) * 2002-08-12 2004-03-11 Itd:Kk Blanking punch with self-abrasiveness
JP2012187632A (en) * 2011-02-25 2012-10-04 Honda Motor Co Ltd Method of manufacturing element
JP2021521767A (en) * 2018-04-13 2021-08-26 アイピージー フォトニクス コーポレーション Laser-assisted machining of electric motor cores
JP2021521013A (en) * 2018-04-13 2021-08-26 アイピージー フォトニクス コーポレーション Laser-assisted machining of sheet materials
JP2022040071A (en) * 2020-08-26 2022-03-10 日立金属株式会社 Amorphous alloy piece manufacturing method and laminated core manufacturing method
JP2022127035A (en) * 2021-02-19 2022-08-31 セイコーエプソン株式会社 Amorphous metal ribbon, method for manufacturing amorphous metal ribbon, and magnetic core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138259A (en) * 1991-11-20 1993-06-01 Toshiba Corp Piercing device
JP2004074182A (en) * 2002-08-12 2004-03-11 Itd:Kk Blanking punch with self-abrasiveness
JP2012187632A (en) * 2011-02-25 2012-10-04 Honda Motor Co Ltd Method of manufacturing element
JP2021521767A (en) * 2018-04-13 2021-08-26 アイピージー フォトニクス コーポレーション Laser-assisted machining of electric motor cores
JP2021521013A (en) * 2018-04-13 2021-08-26 アイピージー フォトニクス コーポレーション Laser-assisted machining of sheet materials
JP2022040071A (en) * 2020-08-26 2022-03-10 日立金属株式会社 Amorphous alloy piece manufacturing method and laminated core manufacturing method
JP2022127035A (en) * 2021-02-19 2022-08-31 セイコーエプソン株式会社 Amorphous metal ribbon, method for manufacturing amorphous metal ribbon, and magnetic core

Also Published As

Publication number Publication date
JP2024078680A (en) 2024-06-11

Similar Documents

Publication Publication Date Title
EP3765217B1 (en) Laser assisted machining of electric motor cores
JP2007228664A (en) Layered iron core
JP2022040071A (en) Amorphous alloy piece manufacturing method and laminated core manufacturing method
WO2024116774A1 (en) Amorphous alloy piece manufacturing method
US20210162534A1 (en) Laser assisted machining of sheet material
JP2000209792A (en) Motor core
JP2024078679A (en) Manufacturing method of amorphous alloy flakes
JP5012256B2 (en) Punching press processing method and punching press die
WO2024116811A1 (en) Amorphous alloy piece manufacturing method, laminated iron core manufacturing method, and laminated iron core
JPS6158450A (en) Processing of amorphous metal core of rotary electric machine
JP2006263755A (en) Method and apparatus for manufacturing press-formed metallic component
WO2024116815A1 (en) Method for manufacturing amorphous metal alloy article
JP7210990B2 (en) Method for producing amorphous alloy flakes
JP2000271668A (en) Plate, and its manufacture
JP4592720B2 (en) Sheet material punching method
JP3724230B2 (en) Blanking press machine
JP3842146B2 (en) Manufacturing method of laminated iron core
CN113751973A (en) Hot longitudinal cutting production process for steel plate
CN216501517U (en) Steel plate hot longitudinal cutting production line
WO2023058341A1 (en) Cutting device and multi-layer material
JPH0319393A (en) Manufacture of aluminum insulating board
JP3129197B2 (en) Mold material for printed wiring boards
JPS59220229A (en) Manufacture of press product
JP2022185715A (en) Nanocrystal alloy piece manufacturing method and nanocrystal alloy piece manufacturing apparatus
JP3556405B2 (en) Hole machining method with inclined surface