WO2023243697A1 - Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same - Google Patents

Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same Download PDF

Info

Publication number
WO2023243697A1
WO2023243697A1 PCT/JP2023/022331 JP2023022331W WO2023243697A1 WO 2023243697 A1 WO2023243697 A1 WO 2023243697A1 JP 2023022331 W JP2023022331 W JP 2023022331W WO 2023243697 A1 WO2023243697 A1 WO 2023243697A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic alloy
multilayer
alloy ribbon
resin
Prior art date
Application number
PCT/JP2023/022331
Other languages
French (fr)
Japanese (ja)
Inventor
仲男 森次
政己 井上
尚哉 江良
伸 野口
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2023243697A1 publication Critical patent/WO2023243697A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present disclosure relates to a multilayer soft magnetic alloy ribbon and a method for manufacturing the same, and a laminated core and a method for manufacturing the same.
  • a soft magnetic alloy ribbon made of soft magnetic alloy materials such as Fe-based amorphous alloys and Fe-based nanocrystalline alloys is manufactured by rapidly cooling and solidifying a molten alloy.
  • a typical manufacturing method is to discharge a molten alloy onto a rotating cooling roll, rapidly cool it, and solidify it to obtain a ribbon-shaped soft magnetic alloy ribbon.
  • Fe-based amorphous alloy ribbons and Fe-based nanocrystalline alloy ribbons obtained by this method are only thin, with a thickness of about 10 to 50 ⁇ m.
  • These soft magnetic alloy ribbons (Fe-based amorphous alloy ribbons, Fe-based nanocrystalline alloy ribbons, etc.) have excellent magnetic properties (e.g., low iron loss, high saturation magnetic flux density), and can be used in various cores. It is used as a material.
  • JP 2021-002553 discloses a soft magnetic amorphous alloy ribbon, and a resin layer disposed on at least one of a pair of opposing main surfaces of the soft magnetic amorphous alloy ribbon, and the resin layer A magnetic material using a polyamide-imide resin having a coefficient of linear expansion of 40 ppm/° C. or less is disclosed.
  • heat treatment may be performed at a temperature of 300 degrees or higher.
  • Multilayer soft magnetic alloy ribbons are often joined together via a resin layer, but heat-resistant resins have been used in consideration of the heat treatment described above.
  • heat-resistant resins have been used in consideration of the heat treatment described above.
  • a polyamide-imide resin disclosed in JP-A-2021-002553 it is stated that it is preferable to have a glass transition temperature of 250° C. or higher.
  • polyamide-imide resin it is necessary to maintain the heat-pressed state for several minutes, and when laminating and joining multilayer soft magnetic alloy ribbons, a batch-type joining method is required. Therefore, there was a problem in terms of productivity.
  • Soft magnetic alloy ribbons are laminated or wound and used for transformers, motor cores, and the like. These products are required to be low priced. Therefore, the multilayer soft magnetic alloy ribbon is also required to be low in cost. In addition, multilayer soft magnetic alloy ribbons are often processed to form cores, and during processing, in order to prevent the soft magnetic alloy ribbons from peeling off, the soft magnetic alloy ribbons are is required to have high peel strength.
  • An object of the present disclosure is to provide a multilayer soft magnetic alloy ribbon that is low-cost and has high peel strength.
  • a multilayer soft magnetic alloy ribbon in which a plurality of soft magnetic alloy ribbons having a thickness of 10 to 50 ⁇ m are laminated, A resin layer is arranged between the soft magnetic alloy ribbons, The resin layer is a multilayer soft magnetic alloy ribbon containing a resin having a melting point Tm of 80° C. or higher and 170° C. or lower and a thermal decomposition initiation temperature of 360° C. or higher.
  • the peel strength of the soft magnetic alloy ribbon at one end in the lamination direction of the soft magnetic alloy ribbon is 0.01 N/mm or more, the multilayer soft magnetic alloy thin ribbon according to ⁇ 1>. band.
  • ⁇ 3> The multilayer soft magnetic alloy ribbon according to ⁇ 1> or ⁇ 2>, wherein the soft magnetic alloy ribbon contains an amorphous alloy or a nanocrystalline alloy.
  • ⁇ 4> The multilayer soft magnetic alloy ribbon according to any one of ⁇ 1> to ⁇ 3>, wherein a peak of OH antisymmetric stretching is detected when the resin is subjected to Raman spectroscopy.
  • ⁇ 5> The multilayer soft magnetic alloy ribbon according to any one of ⁇ 1> to ⁇ 4>, wherein the resin contains a polymer containing an olefin as a constituent unit.
  • a step of preparing a plurality of soft magnetic alloy ribbons forming a resin layer on at least one surface of the soft magnetic alloy ribbon, and stacking the plurality of soft magnetic alloy ribbons so that the resin layer is disposed between the soft magnetic alloy ribbons; Pressing and heating the laminated soft magnetic alloy ribbons,
  • the method for producing a multilayer soft magnetic alloy ribbon wherein the resin layer includes a resin having a melting point Tm of 80°C or more and 170°C or less and a thermal decomposition initiation temperature of 360°C or more.
  • a relatively inexpensive resin can be used and costs can be reduced. Further, according to the present disclosure, it is possible to provide a multilayer soft magnetic alloy ribbon with high peel strength. Further, according to the present disclosure, a method for manufacturing the multilayer soft magnetic alloy ribbon can be provided. Further, according to the present disclosure, a laminated core using the multilayer soft magnetic alloy ribbon can be provided.
  • FIG. 2 is a plan view of a multilayer core piece according to an embodiment of the present disclosure.
  • FIG. 1 is a perspective view of a laminated core according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing core loss before and after heat treatment according to an embodiment of the present disclosure. 3 is a diagram showing the results of Raman spectroscopic analysis of the resin peeled off from the Fe-based amorphous alloy foil strip of Sample 5 of Example 1.
  • FIG. FIG. 3 is a diagram showing the results of Raman spectroscopic analysis of the resin peeled off from the resin layer of the Fe-based amorphous alloy ribbon after heat-treating Sample 5 of Example 1 at 330° C.
  • a multilayer soft magnetic alloy ribbon is a multilayer soft magnetic alloy ribbon in which a plurality of soft magnetic alloy ribbons having a thickness of 10 to 50 ⁇ m are laminated, and the soft magnetic alloy ribbon has a thickness of 10 to 50 ⁇ m.
  • a resin layer is disposed, and the resin layer includes a resin having a melting point Tm of 80°C or more and 170°C or less and a thermal decomposition start temperature of 360°C or more.
  • the number of laminated soft magnetic alloy ribbons can be determined depending on the purpose. When winding a multilayer soft magnetic alloy ribbon, if the number of laminated layers is too large, winding may become difficult. Therefore, the number of laminated layers is preferably 25 layers or less, more preferably 20 layers or less, even more preferably 15 layers or less, and particularly preferably 10 layers or less. Further, the number of laminated layers is two or more layers, preferably three or more layers, more preferably four or more layers, and even more preferably five or more layers.
  • the resin layer includes a resin (hereinafter also referred to as "specific resin") having a melting point Tm of 80° C. or higher and 170° C. or lower and a thermal decomposition initiation temperature of 360° C. or higher.
  • the resin layer may contain components other than the specific resin. Examples of other components include dimethylaminoethanol, isopropyl alcohol, and carboxylic acid amide.
  • the resin layer may contain other resins than the specific resin, but from the viewpoint of obtaining a function as an adhesive layer, it is preferable not to contain other resins. That is, it is preferable that the resin contained in the resin layer is only the specific resin.
  • the melting point of the specific resin is measured using a simultaneous differential thermogravimetric measurement device. Specifically, the measurement is performed in the presence of an inert gas, and the temperature corresponding to the endothermic peak of the obtained DTA curve is defined as the melting point.
  • the thermal decomposition start temperature of a specific resin is measured using a simultaneous differential thermogravimetric measurement device. Specifically, the measurement is performed in the presence of an inert gas, and the temperature corresponding to the point at which the obtained TG curve loses linearity and turns downward, and the DTA curve loses linearity or turns from rising to falling is determined. This is the starting temperature of thermal decomposition.
  • the specific resin has a melting point Tm of 80° C. or more and 170° C. or less, and the heat treatment temperature of the soft magnetic alloy ribbon (for example, 300° C. to 350° C.) exceeds the melting point Tm of the specific resin.
  • the thermal decomposition start temperature of the specific resin is 360°C or higher, the resin will not disappear even if it is heat-treated at, for example, 350°C. Therefore, when the temperature returns to room temperature after heat treatment, the resin layer containing the specific resin functions as an adhesive layer and enables bonding between the soft magnetic alloy ribbons.
  • the specific resin has a 5% weight loss temperature of around 400°C or higher than 400°C.
  • the specific resin has a glass transition temperature Tg of 0° C. or lower.
  • the number of specific resins contained in the resin layer may be only one, or two or more.
  • the specific resin contains a polymer containing an olefin as a structural unit.
  • olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, isopentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1- Examples include hexadecene, 1-octadecene, 1-eicosene, and the like.
  • the specific resin include polyethylene resin and polypropylene resin. Polymers consisting of olefin as a constituent unit, typified by polyethylene resin and polypropylene resin, are called polyolefins.
  • polyolefin is made of carbon (C) and hydrogen (H), even if it is burned, it becomes water (H 2 O) and carbon dioxide gas (CO 2 ), making it an environmentally friendly resin. Furthermore, progress is being made in the development of bioplastics manufactured from raw materials such as sugarcane. By using bioethylene and biopolypropylene, a more environmentally friendly multilayer soft magnetic alloy ribbon can be obtained.
  • Raman spectroscopy is performed using a Raman spectrometer.
  • the peel strength of the soft magnetic alloy ribbon at one end in the lamination direction of the soft magnetic alloy ribbon is 0.01 N/mm or more. More preferably, it is 0.03 N/mm or more.
  • this peel strength of 0.01 N/mm or more it is possible to suppress peeling of the soft magnetic alloy ribbon from the multilayer soft magnetic alloy ribbon.
  • a multilayer soft magnetic alloy ribbon is punched, it is possible to prevent the soft magnetic alloy ribbon from peeling off at the ends of the punched pieces.
  • a peel strength of 0.03 N/mm or more the effect of suppressing peeling of the soft magnetic alloy ribbon can be further enhanced.
  • This peel strength is determined by, for example, preparing a multilayer soft magnetic alloy ribbon with a width of 30 mm, performing a peel test on the outermost soft magnetic alloy ribbon, and measuring the force (N) when peeled off.
  • the value of this force is set to X (N)
  • it is written as X (N/30 mm).
  • the value obtained by dividing this force value X (N) by the width of the soft magnetic alloy ribbon of 30 mm is defined as the peel strength X/30 (N/mm).
  • the width can be determined by conducting a similar test and dividing by the width.
  • the thickness of the resin layer is determined by stacking the desired number (Y sheets) of soft magnetic alloy ribbons without a resin layer, and stacking the same number (Y sheets) of soft magnetic alloy ribbons with a resin layer. It is calculated from the difference in the thickness of the multilayer soft magnetic alloy ribbon. Specifically, the value obtained by dividing (thickness of the number Y of multilayer soft magnetic alloy ribbons with a resin layer) - (thickness of the number Y of multilayer soft magnetic alloy ribbons without a resin layer) by Y-1. means.
  • the soft magnetic alloy ribbon includes an amorphous alloy or a nanocrystalline alloy.
  • the soft magnetic alloy ribbon may contain an alloy other than an amorphous alloy or a nanocrystalline alloy, it is preferably made of an amorphous alloy or a nanocrystalline alloy from the viewpoint of exhibiting good soft magnetic properties.
  • the amorphous alloy ribbon made of an amorphous alloy is preferably an Fe-based amorphous alloy ribbon.
  • the nanocrystalline alloy ribbon made of a nanocrystalline alloy is preferably a Fe-based nanocrystalline alloy ribbon.
  • the soft magnetic alloy ribbon may be an amorphous alloy ribbon or a nanocrystalline alloy ribbon.
  • the thickness of the soft magnetic alloy ribbon is 10 to 50 ⁇ m, preferably 14 to 35 ⁇ m.
  • the thickness of the soft magnetic alloy ribbon is measured using a micrometer.
  • a method for manufacturing a multilayer soft magnetic alloy ribbon according to an embodiment of the present disclosure includes the steps of preparing a plurality of soft magnetic alloy ribbons, forming a resin layer on at least one surface of the soft magnetic alloy ribbon, and forming a resin layer on at least one surface of the soft magnetic alloy ribbon.
  • the method includes the steps of stacking a plurality of soft magnetic alloy ribbons so as to be arranged between the magnetic alloy ribbons, and pressing and heating the laminated soft magnetic alloy ribbons.
  • a plurality of soft magnetic alloy ribbons are prepared. Preferred embodiments of the soft magnetic alloy ribbon are as described above.
  • a resin layer is formed on at least one surface of each soft magnetic alloy ribbon.
  • the soft magnetic alloy ribbon has a flat plate shape and has two opposing main surfaces.
  • the resin layer may be formed only on one main surface, or the resin layer may be formed on both main surfaces. Note that forming the resin layer only on one main surface is advantageous in improving the space factor.
  • the soft magnetic alloy thin ribbon can be unwound from the wound body and a resin layer can be formed on one or both surfaces of the soft magnetic alloy thin ribbon.
  • the resin layer can be formed using a gravure coater.
  • a plurality of soft magnetic alloy ribbons are laminated so that the resin layer is disposed between the soft magnetic alloy ribbons.
  • a plurality of soft magnetic alloy ribbons each having a resin layer formed thereon are stacked one on top of the other.
  • a soft magnetic alloy ribbon with a resin layer formed on one side is laminated in the following order: alloy ribbon, resin layer, alloy ribbon, resin layer, and a multilayer body with a resin layer formed on the top surface.
  • a multilayer soft magnetic alloy ribbon can be constructed by laminating a soft magnetic alloy ribbon on which no resin layer is formed. Then, the laminated soft magnetic alloy ribbons are pressurized and heated. Thereby, a multilayer soft magnetic alloy ribbon in which a plurality of soft magnetic alloy ribbons are joined to each other via a resin layer can be obtained.
  • the soft magnetic alloy ribbons on which the resin layer is formed can be laminated and joined while being conveyed.
  • the process can be performed continuously while conveying the soft magnetic alloy ribbon.
  • the resin layer contains a specific resin
  • by applying pressure and heating a bonded multilayer soft magnetic alloy ribbon can be obtained.
  • a bonded multilayer soft magnetic alloy ribbon can also be obtained by sandwiching it between heated plates. At this time, it is preferable that the temperature of the roll and the temperature of the heated plate be greater than or equal to the melting point Tm of the resin and less than or equal to 350°C.
  • a wound body of the multilayer soft magnetic alloy ribbon can also be obtained by winding the multilayer soft magnetic alloy ribbon around a roll.
  • the multilayer soft magnetic alloy ribbon can be manufactured on an integrated line called roll-to-roll, which is excellent in mass productivity.
  • a preferred embodiment of the number of laminated soft magnetic alloy ribbons in the multilayer soft magnetic alloy ribbon is as described above.
  • the multilayer soft magnetic alloy ribbon of the present disclosure can be processed into individual pieces of a predetermined shape by cutting, punching, or the like. Then, the individual pieces can be further laminated to form a laminated core.
  • a laminated core according to an embodiment of the present disclosure is a laminated core including a laminated body of soft magnetic alloy ribbons, the soft magnetic alloy ribbons having a thickness of 10 to 50 ⁇ m, and between the soft magnetic alloy ribbons.
  • a resin layer is arranged, and the resin layer contains a specific resin. Preferred embodiments of the soft magnetic alloy ribbon and the specific resin are as described above.
  • the laminated core is used as the core of various transformers and coils, and can also be used as a motor core.
  • the laminated core may be a combination of a plurality of different magnetic materials. Examples of the magnetic material include an amorphous alloy, a nanocrystalline alloy ribbon, and an electromagnetic steel sheet.
  • a method for manufacturing a laminated core according to an embodiment of the present disclosure includes a step of processing a multilayer soft magnetic alloy ribbon according to an embodiment of the present disclosure to produce a multilayer core piece, a step of laminating the multilayer core pieces, including.
  • the method for processing the multilayer soft magnetic alloy ribbon is not particularly limited, but cutting or punching is preferable.
  • Example 1 As the soft magnetic alloy ribbon, an Fe-based amorphous alloy ribbon (HB1M manufactured by Proterial Co., Ltd. (former Hitachi Metals, Ltd.)) was used. Five coiled bodies of Fe-based amorphous alloy ribbons each having a width of 30 mm and a thickness of 25 ⁇ m were prepared. An aqueous dispersion of polyethylene resin was applied to one surface of the Fe-based amorphous alloy ribbon unwound from the four wound bodies using a gravure coater to a thickness of 1 to 1.5 ⁇ m to form a resin layer. Formed. This polyethylene resin had a melting point Tm of about 100°C and a thermal decomposition initiation temperature of about 400°C.
  • the melting point is the temperature at the endothermic peak of the DTA curve when measured under an inert gas using a simultaneous differential thermogravimetric measurement device
  • the thermal decomposition start temperature is the temperature at which the TG curve loses its linearity and turns downward. This is the temperature at which the DTA curve loses its linearity or changes from rising to falling.
  • the Fe amorphous alloy ribbon on which the resin layer was formed was wound up into four wound bodies.
  • each Fe-based amorphous alloy ribbon is unwound from the wound body of the four Fe-based amorphous alloy ribbons on which the resin layer has been formed, and while being conveyed, the alloy ribbon, the resin layer, the alloy ribbon, and the resin are unwound.
  • the Fe-based amorphous alloy ribbons unwound from the rotating body were laminated to form a multilayer soft magnetic alloy ribbon consisting of five layers of Fe-based amorphous alloy ribbons.
  • the five-layer Fe-based amorphous alloy ribbon is produced in a transported state.
  • the above five-layer Fe-based amorphous alloy thin strip is passed between a pair of rolls whose roll temperature is set at 80°C to 200°C, and pressure and heating are applied to form the five-layered Fe-based amorphous alloy thin strip.
  • a multilayer soft magnetic alloy ribbon in which the strips are joined to each other was fabricated.
  • This multilayer soft magnetic alloy ribbon was wound onto a roll.
  • the conveying speed of the Fe-based amorphous alloy ribbon when passing between the pair of rolls was 3.5 m/min.
  • Table 1 shows the relationship between roll temperature, peel strength, and resin layer thickness in Example 1.
  • the resin layer thickness is measured by measuring the thickness of a multilayer soft magnetic alloy ribbon consisting of five layers of Fe-based amorphous alloy ribbon. Further, five layers of Fe-based amorphous alloy ribbons without a resin layer are laminated, and the thickness thereof is measured. The difference in thickness was divided by 4. Note that the thickness was measured using a micrometer, and the measurements were taken at 10 locations and the average value was taken as the average value.
  • the peel strength was measured by manually turning over the outermost Fe-based amorphous alloy ribbon of the multilayer soft magnetic alloy ribbon. Next, punch a hole in the rolled part using a hand punch. Next, hook the sensor part of the autograph and the attached hook into the hole.
  • the read value was defined as the peel strength in units of N/30 mm, and the value obtained by dividing the read value by the width of 30 mm was defined as the peel strength in units of N/mm.
  • Table 1 shows the peel strength values in N/30 mm and N/mm.
  • FIG. 5 shows the results of Raman spectroscopy of the resin peeled off from between the layers of the Fe-based amorphous alloy foil strip in the multilayer soft magnetic foil strip obtained by further heat-treating Sample 5 at 330°C.
  • the peak existing around 3640 cm ⁇ 1 is a peak indicating OH antisymmetric stretching, and when the resin of the present disclosure was subjected to Raman spectroscopy, a peak indicating OH antisymmetric stretching was detected.
  • Example 2 A laminated core for a motor was produced using the sample of Example 1.
  • the multilayer soft magnetic alloy ribbon (5-layer Fe-based amorphous alloy ribbon) of Sample 5 of Example 1
  • a multilayer core piece 1 having the shape shown in FIG. 1 was produced by punching.
  • This multilayer core piece 1 consists of five layers of Fe-based amorphous alloy ribbons.
  • This multilayer core piece 1 was punched using a punch processed into the shape of a core piece and a die having a hole into which the punch could be inserted.
  • This multilayer core piece 1 is also a laminate of soft magnetic alloy ribbons.
  • a laminated core 2 as shown in FIG. 2 was produced by stacking 360 of these multilayer core pieces 1.
  • This laminated core 2 has 1800 Fe-based amorphous alloy ribbons laminated.
  • Each multilayer core piece 1 was bonded using a one-component thermosetting acrylic adhesive having a viscosity of 50 mPa ⁇ s. Bonding was performed at 170° C. for 2 hours.
  • Six laminated cores 2 were produced and combined to produce a cylindrical laminated core for a motor with an outer diameter of 50 mm and an inner diameter of 26 mm. This can be used as a stator for a motor.
  • the multilayer soft magnetic alloy ribbon of the present disclosure can be punched into multilayer core pieces, and after punching, even if the multilayer core pieces are laminated to produce a laminated core, no shape defects will occur, and it can be used as a laminated core. It turned out to be. Moreover, no peeling of the soft magnetic alloy ribbon occurred after punching.
  • the multilayer soft magnetic alloy ribbon of the present disclosure is formed into a multilayer core piece using a processing method such as cutting or punching, and the multilayer core pieces are stacked to produce a laminated core. It can be used for various purposes such as choke coils. Note that the laminated core can be fixed to the housing by known means such as adhesion or potting.
  • an Fe-based amorphous alloy ribbon (HB1M manufactured by Proterial Co., Ltd. (former Hitachi Metals, Ltd.)) was used as the soft magnetic alloy ribbon.
  • a wound body in which a Fe-based amorphous alloy ribbon having a width of 50 mm and a thickness of 25 ⁇ m was wound into a coil was prepared.
  • a resin layer was formed by applying an aqueous dispersion of polyethylene resin to a thickness of 1 to 1.5 ⁇ m using a gravure coater on one surface of the Fe-based amorphous alloy ribbon unwound from the roll.
  • Experimental example 1 Thirty ring-shaped samples on which no resin layer was formed were stacked. A ring-shaped core sample was produced without bonding the stacked samples.
  • Experimental example 2 Thirty ring-shaped samples each having a resin layer formed thereon were laminated. Then, it was heated to 150° C. under a pressure of 0.1 MPa to produce a ring-shaped core sample to which each Fe-based amorphous alloy ribbon was joined.
  • Experimental example 3 The ring-shaped core sample of Experimental Example 2 was heat-treated at 330° C. in a nitrogen atmosphere. Note that after the heat treatment, the Fe-based amorphous alloy ribbons were in a joined state, and the shape before the heat treatment was maintained.
  • Core loss at 1 kHz and 1 T was measured using the core samples of Experimental Examples 1, 2, and 3.
  • the measuring device used was Iwatsu SY-8232, and the primary and secondary windings were 30 turns.
  • the results are shown in Table 2 and FIG.
  • the core sample (Experimental Example 2) in which multilayer soft magnetic alloy ribbons were bonded had worsened core loss. This is thought to be caused by the stress caused by the formation and bonding of the resin layer.
  • core loss could be almost recovered by performing stress-relaxing heat treatment. It can be seen that according to the resin of the present disclosure, heat treatment for stress relaxation is possible.

Abstract

The present invention provides a multilayer soft magnetic alloy thin strip which is obtained by staking a plurality of soft magnetic alloy thin strips having a thickness of 10 µm to 50 µm upon each other, wherein: a resin layer is arranged between the soft magnetic alloy thin strips; and the resin layer contains a resin that has a melting point Tm of 80°C to 170°C and a thermal decomposition initiation temperature of 360°C or more.

Description

多層軟磁性合金薄帯およびその製造方法、ならびに積層コアおよびその製造方法Multilayer soft magnetic alloy ribbon and its manufacturing method, and laminated core and its manufacturing method
 本開示は、多層軟磁性合金薄帯およびその製造方法、ならびに積層コアおよびその製造方法に関する。 The present disclosure relates to a multilayer soft magnetic alloy ribbon and a method for manufacturing the same, and a laminated core and a method for manufacturing the same.
 Fe基アモルファス合金やFe基ナノ結晶合金に代表される軟磁性合金材料からなる軟磁性合金薄帯は、合金溶湯を急速冷却して凝固させて製造される。その代表的な製造方法は、回転する冷却ロール上に、合金溶湯を吐出し、急速冷却して凝固させ、薄帯状の軟磁性合金薄帯を得るものである。この方法により得られるFe基アモルファス合金薄帯やFe基ナノ結晶合金薄帯は、厚さが10~50μm程度と、薄いものしか得られていない。これらの軟磁性合金薄帯(Fe基アモルファス合金薄帯やFe基ナノ結晶合金薄帯など)は、優れた磁気特性(例えば、低鉄損、高飽和磁束密度)を備えており、各種のコア材として利用されている。 A soft magnetic alloy ribbon made of soft magnetic alloy materials such as Fe-based amorphous alloys and Fe-based nanocrystalline alloys is manufactured by rapidly cooling and solidifying a molten alloy. A typical manufacturing method is to discharge a molten alloy onto a rotating cooling roll, rapidly cool it, and solidify it to obtain a ribbon-shaped soft magnetic alloy ribbon. Fe-based amorphous alloy ribbons and Fe-based nanocrystalline alloy ribbons obtained by this method are only thin, with a thickness of about 10 to 50 μm. These soft magnetic alloy ribbons (Fe-based amorphous alloy ribbons, Fe-based nanocrystalline alloy ribbons, etc.) have excellent magnetic properties (e.g., low iron loss, high saturation magnetic flux density), and can be used in various cores. It is used as a material.
 軟磁性合金薄帯からコアを作製する場合、巻回して周回状のコアを作製する方法と、切り出しや打ち抜きなどにより個片を作製し、それを積層して積層コアを作製する方法と、がある。コアの形状の自由度から、積層コアの需要が高まっている。 When making a core from a soft magnetic alloy ribbon, there are two methods: one is to wind it to make a circumferential core, and the other is to make individual pieces by cutting or punching, and then stack them to make a laminated core. be. Demand for laminated cores is increasing due to the flexibility in core shapes.
 積層コアを作製する場合、薄い(10~50μm程度)軟磁性合金薄帯を用いて加工すると、軟磁性合金薄帯が薄いことによる取り扱い性の悪さや、1枚1枚を個片に作製する作業及び積層する作業の工数に課題があり、複数の軟磁性合金薄帯を積層した多層軟磁性合金薄帯を作製しておき、その多層軟磁性合金薄帯を用いて、コアを作製する方法も用いられている。 When manufacturing a laminated core, if a thin (approximately 10 to 50 μm) soft magnetic alloy ribbon is used for processing, the thinness of the soft magnetic alloy ribbon results in poor handling and the need to manufacture each piece into individual pieces. There is a problem with the number of steps involved in the work and lamination work, so a method is to prepare a multilayer soft magnetic alloy ribbon by laminating multiple soft magnetic alloy ribbons, and then use the multilayer soft magnetic alloy ribbon to manufacture a core. is also used.
 例えば、特開2021-002553には、軟磁性アモルファス合金リボンと、前記軟磁性アモルファス合金リボンの対向する一対の主面の少なくとも一方の主面に配置された樹脂層と、を備え、前記樹脂層に用いる樹脂として線膨張係数が40ppm/℃以下のポリアミドイミド樹脂を用いた磁性材が開示されている。 For example, JP 2021-002553 discloses a soft magnetic amorphous alloy ribbon, and a resin layer disposed on at least one of a pair of opposing main surfaces of the soft magnetic amorphous alloy ribbon, and the resin layer A magnetic material using a polyamide-imide resin having a coefficient of linear expansion of 40 ppm/° C. or less is disclosed.
 軟磁性合金薄帯は、積層したり、加工したりしたとき、応力が加わり、磁気特性が劣化する傾向がある。その劣化した磁気特性を回復させる方法として、熱処理を行う方法がある。例えば、300度以上の温度で熱処理することがある。 When soft magnetic alloy ribbons are laminated or processed, stress is applied to them and their magnetic properties tend to deteriorate. As a method of restoring the deteriorated magnetic properties, there is a method of performing heat treatment. For example, heat treatment may be performed at a temperature of 300 degrees or higher.
 多層軟磁性合金薄帯は樹脂層を介して接合されることが多いが、上記したような熱処理を考慮して、耐熱性の樹脂が用いられていた。例えば、特開2021-002553に開示されているポリアミドイミド樹脂の場合、250℃以上のガラス転移温度を備えることが好ましいと記載されている。また、ポリアミドイミド樹脂の場合、加熱圧着状態を数分間維持する必要があり、多層軟磁性合金薄帯を積層して、接合する際、バッチ式の接合方法となる。このため、生産性において、課題があった。 Multilayer soft magnetic alloy ribbons are often joined together via a resin layer, but heat-resistant resins have been used in consideration of the heat treatment described above. For example, in the case of a polyamide-imide resin disclosed in JP-A-2021-002553, it is stated that it is preferable to have a glass transition temperature of 250° C. or higher. In addition, in the case of polyamide-imide resin, it is necessary to maintain the heat-pressed state for several minutes, and when laminating and joining multilayer soft magnetic alloy ribbons, a batch-type joining method is required. Therefore, there was a problem in terms of productivity.
 軟磁性合金薄帯は、積層または巻回されてトランスやモータのコアなどに用いられる。これらの製品には、低価格であることが求められる。そのため、多層軟磁性合金薄帯にも低コストであることが求められる。また、多層軟磁性合金薄帯は加工されてコアを構成することが多く、加工する際に、多層軟磁性合金薄帯の軟磁性合金薄帯が剥がれることが無いように、軟磁性合金薄帯の剥離強度が高いことが求められる。
 本開示は、低コストに対応し、軟磁性合金薄帯の剥離強度が高い多層軟磁性合金薄帯を提供することを目的とする。
Soft magnetic alloy ribbons are laminated or wound and used for transformers, motor cores, and the like. These products are required to be low priced. Therefore, the multilayer soft magnetic alloy ribbon is also required to be low in cost. In addition, multilayer soft magnetic alloy ribbons are often processed to form cores, and during processing, in order to prevent the soft magnetic alloy ribbons from peeling off, the soft magnetic alloy ribbons are is required to have high peel strength.
An object of the present disclosure is to provide a multilayer soft magnetic alloy ribbon that is low-cost and has high peel strength.
<1>
 厚さ10~50μmの複数の軟磁性合金薄帯が積層されている多層軟磁性合金薄帯であって、
 前記軟磁性合金薄帯間には樹脂層が配置され、
 前記樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂を含む、多層軟磁性合金薄帯。
<2>
 前記多層軟磁性合金薄帯において、前記軟磁性合金薄帯の積層方向の一端の軟磁性合金薄帯の剥離強度が0.01N/mm以上である、<1>に記載の多層軟磁性合金薄帯。
<3>
 前記軟磁性合金薄帯がアモルファス合金またはナノ結晶合金を含む、<1>または<2>に記載の多層軟磁性合金薄帯。
<4>
 前記樹脂をラマン分光分析したとき、OH逆対称伸縮のピークが検出される、<1>~<3>のいずれか1つに記載の多層軟磁性合金薄帯。
<5>
 前記樹脂は、オレフィンを構成単位として含むポリマーを含有する、<1>~<4>のいずれか1つに記載の多層軟磁性合金薄帯。
<6>
 複数の軟磁性合金薄帯を用意する工程と、
 前記軟磁性合金薄帯の少なくとも一面に樹脂層を形成し、前記樹脂層が前記軟磁性合金薄帯間に配置されるように、前記複数の軟磁性合金薄帯を積層する工程と、
 積層された軟磁性合金薄帯を加圧および加熱する工程と、を含み、
 前記樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂を含む、多層軟磁性合金薄帯の製造方法。
<7>
 前記積層された軟磁性合金薄帯を加圧および加熱する工程では、
 前記積層された軟磁性合金薄帯を、加熱された一対のロール間に通過させる、<6>に記載の多層軟磁性合金薄帯の製造方法。
<8>
 前記加熱された一対のロールの温度が前記融点Tm以上350℃以下である、<7>に記載の多層軟磁性合金薄帯の製造方法。
<9>
 軟磁性合金薄帯の積層体を備える積層コアであって、
 前記軟磁性合金薄帯は、厚さ10~50μmであり、前記軟磁性合金薄帯間には樹脂層が配置され、前記樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂を含む、積層コア。
<10>
 前記軟磁性合金薄帯がアモルファス合金またはナノ結晶合金を含む、<9>に記載の積層コア。
<11>
 前記樹脂をラマン分光分析したとき、OH逆対称伸縮のピークが検出される、<9>または<10>に記載の積層コア。
<12>
 前記樹脂は、オレフィンを構成単位として含むポリマーを含有する、<9>~<11>のいずれか1つに記載の積層コア。
<13>
 <1>~<4>のいずれか1つに記載の多層軟磁性合金薄帯を加工して、多層コア片を作製する工程と、
 前記多層コア片を積層する工程と、を含む、積層コアの製造方法。
<14>
 前記多層軟磁性合金薄帯の加工は、切断または打ち抜きである<13>に記載の積層コアの製造方法。
<1>
A multilayer soft magnetic alloy ribbon in which a plurality of soft magnetic alloy ribbons having a thickness of 10 to 50 μm are laminated,
A resin layer is arranged between the soft magnetic alloy ribbons,
The resin layer is a multilayer soft magnetic alloy ribbon containing a resin having a melting point Tm of 80° C. or higher and 170° C. or lower and a thermal decomposition initiation temperature of 360° C. or higher.
<2>
In the multilayer soft magnetic alloy ribbon, the peel strength of the soft magnetic alloy ribbon at one end in the lamination direction of the soft magnetic alloy ribbon is 0.01 N/mm or more, the multilayer soft magnetic alloy thin ribbon according to <1>. band.
<3>
The multilayer soft magnetic alloy ribbon according to <1> or <2>, wherein the soft magnetic alloy ribbon contains an amorphous alloy or a nanocrystalline alloy.
<4>
The multilayer soft magnetic alloy ribbon according to any one of <1> to <3>, wherein a peak of OH antisymmetric stretching is detected when the resin is subjected to Raman spectroscopy.
<5>
The multilayer soft magnetic alloy ribbon according to any one of <1> to <4>, wherein the resin contains a polymer containing an olefin as a constituent unit.
<6>
A step of preparing a plurality of soft magnetic alloy ribbons;
forming a resin layer on at least one surface of the soft magnetic alloy ribbon, and stacking the plurality of soft magnetic alloy ribbons so that the resin layer is disposed between the soft magnetic alloy ribbons;
Pressing and heating the laminated soft magnetic alloy ribbons,
The method for producing a multilayer soft magnetic alloy ribbon, wherein the resin layer includes a resin having a melting point Tm of 80°C or more and 170°C or less and a thermal decomposition initiation temperature of 360°C or more.
<7>
In the step of pressurizing and heating the laminated soft magnetic alloy ribbons,
The method for producing a multilayer soft magnetic alloy ribbon according to <6>, wherein the laminated soft magnetic alloy ribbon is passed between a pair of heated rolls.
<8>
The method for producing a multilayer soft magnetic alloy ribbon according to <7>, wherein the temperature of the heated pair of rolls is equal to or higher than the melting point Tm and equal to or lower than 350°C.
<9>
A laminated core comprising a laminated body of soft magnetic alloy ribbons,
The soft magnetic alloy ribbon has a thickness of 10 to 50 μm, and a resin layer is disposed between the soft magnetic alloy ribbons, and the resin layer has a melting point Tm of 80°C or more and 170°C or less, and a thermal decomposition start temperature. A laminated core containing a resin whose temperature is 360°C or higher.
<10>
The laminated core according to <9>, wherein the soft magnetic alloy ribbon contains an amorphous alloy or a nanocrystalline alloy.
<11>
The laminated core according to <9> or <10>, wherein a peak of OH antisymmetric stretching is detected when the resin is subjected to Raman spectroscopy.
<12>
The laminated core according to any one of <9> to <11>, wherein the resin contains a polymer containing an olefin as a constituent unit.
<13>
Processing the multilayer soft magnetic alloy ribbon according to any one of <1> to <4> to produce a multilayer core piece;
A method for manufacturing a laminated core, comprising the step of laminating the multilayer core pieces.
<14>
The method for manufacturing a laminated core according to <13>, wherein the processing of the multilayer soft magnetic alloy ribbon is cutting or punching.
 本開示によれば、比較的安価な樹脂を用いることができ、低コストに対応することができる。また、本開示によれば、軟磁性合金薄帯の剥離強度が高い多層軟磁性合金薄帯を提供することができる。また、本開示によれば、その多層軟磁性合金薄帯の製造方法を提供することができる。また、本開示によれば、その多層軟磁性合金薄帯を用いた積層コアを提供することができる。 According to the present disclosure, a relatively inexpensive resin can be used and costs can be reduced. Further, according to the present disclosure, it is possible to provide a multilayer soft magnetic alloy ribbon with high peel strength. Further, according to the present disclosure, a method for manufacturing the multilayer soft magnetic alloy ribbon can be provided. Further, according to the present disclosure, a laminated core using the multilayer soft magnetic alloy ribbon can be provided.
本開示の一実施形態の多層コア片の平面図である。FIG. 2 is a plan view of a multilayer core piece according to an embodiment of the present disclosure. 本開示の一実施形態の積層コアの斜視図である。FIG. 1 is a perspective view of a laminated core according to an embodiment of the present disclosure. 本開示の一実施形態の熱処理前後のコアロスを示す図である。FIG. 3 is a diagram showing core loss before and after heat treatment according to an embodiment of the present disclosure. 実施例1の試料5のFe基アモルファス合金箔帯から剥がし取った樹脂のラマン分光分析結果を示す図である。3 is a diagram showing the results of Raman spectroscopic analysis of the resin peeled off from the Fe-based amorphous alloy foil strip of Sample 5 of Example 1. FIG. 実施例1の試料5を330℃で熱処理後、Fe基アモルファス合金薄帯の樹脂層から剥がし取った樹脂のラマン分光分析結果を示す図である。FIG. 3 is a diagram showing the results of Raman spectroscopic analysis of the resin peeled off from the resin layer of the Fe-based amorphous alloy ribbon after heat-treating Sample 5 of Example 1 at 330° C.
〔多層軟磁性合金薄帯〕
 本開示の一実施形態の多層軟磁性合金薄帯は、厚さ10~50μmの複数の軟磁性合金薄帯が積層されている多層軟磁性合金薄帯であって、軟磁性合金薄帯間には樹脂層が配置され、樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂を含む。
[Multilayer soft magnetic alloy ribbon]
A multilayer soft magnetic alloy ribbon according to an embodiment of the present disclosure is a multilayer soft magnetic alloy ribbon in which a plurality of soft magnetic alloy ribbons having a thickness of 10 to 50 μm are laminated, and the soft magnetic alloy ribbon has a thickness of 10 to 50 μm. A resin layer is disposed, and the resin layer includes a resin having a melting point Tm of 80°C or more and 170°C or less and a thermal decomposition start temperature of 360°C or more.
 本開示の一実施形態の多層軟磁性合金薄帯において、軟磁性合金薄帯は2層以上積層されている。軟磁性合金薄帯の積層数は目的に応じて決めることができる。多層軟磁性合金薄帯を巻き取る場合、積層数が多すぎると巻取りが困難となる場合がある。そのため、積層数は、25層以下が好ましく、20層以下がより好ましく、15層以下がさらに好ましく、10層以下が特に好ましい。また、積層数は2層以上であり、3層以上が好ましく、4層以上がより好ましく、5層以上がさらに好ましい。 In the multilayer soft magnetic alloy ribbon according to an embodiment of the present disclosure, two or more layers of the soft magnetic alloy ribbon are laminated. The number of laminated soft magnetic alloy ribbons can be determined depending on the purpose. When winding a multilayer soft magnetic alloy ribbon, if the number of laminated layers is too large, winding may become difficult. Therefore, the number of laminated layers is preferably 25 layers or less, more preferably 20 layers or less, even more preferably 15 layers or less, and particularly preferably 10 layers or less. Further, the number of laminated layers is two or more layers, preferably three or more layers, more preferably four or more layers, and even more preferably five or more layers.
 軟磁性合金薄帯間には樹脂層が配置されている。
 樹脂層は、接着層として機能し、隣り合う軟磁性合金薄帯を接合することができる。
A resin layer is arranged between the soft magnetic alloy ribbons.
The resin layer functions as an adhesive layer and can join adjacent soft magnetic alloy ribbons.
 樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂(以下、「特定樹脂」ともいう)を含む。樹脂層は、特定樹脂以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、ジメチルアミノエタノール、イソプロピルアルコール、及びカルボン酸アミドなどが挙げられる。樹脂層は、特定樹脂以外のその他の樹脂を含んでいてもよいが、接着層としての機能を得る観点から、その他の樹脂を含まないことが好ましい。すなわち、樹脂層に含まれる樹脂は、特定樹脂のみであることが好ましい。 The resin layer includes a resin (hereinafter also referred to as "specific resin") having a melting point Tm of 80° C. or higher and 170° C. or lower and a thermal decomposition initiation temperature of 360° C. or higher. The resin layer may contain components other than the specific resin. Examples of other components include dimethylaminoethanol, isopropyl alcohol, and carboxylic acid amide. The resin layer may contain other resins than the specific resin, but from the viewpoint of obtaining a function as an adhesive layer, it is preferable not to contain other resins. That is, it is preferable that the resin contained in the resin layer is only the specific resin.
 特定樹脂の融点は、示差熱熱重量同時測定装置を用いて測定される。具体的には、不活性ガスの存在下で測定を行い、得られるDTA曲線の吸熱ピークに対応する温度を融点とする。 The melting point of the specific resin is measured using a simultaneous differential thermogravimetric measurement device. Specifically, the measurement is performed in the presence of an inert gas, and the temperature corresponding to the endothermic peak of the obtained DTA curve is defined as the melting point.
 特定樹脂の熱分解開始温度は、示差熱熱重量同時測定装置を用いて測定される。具体的には、不活性ガスの存在下で測定を行い、得られるTG曲線が直線性を失い下降へ転じ、且つDTA曲線が直線性を失い又は上昇から下降へ転じた時点に対応する温度を熱分解開始温度とする。 The thermal decomposition start temperature of a specific resin is measured using a simultaneous differential thermogravimetric measurement device. Specifically, the measurement is performed in the presence of an inert gas, and the temperature corresponding to the point at which the obtained TG curve loses linearity and turns downward, and the DTA curve loses linearity or turns from rising to falling is determined. This is the starting temperature of thermal decomposition.
 特定樹脂は、融点Tmが80℃以上170℃以下であり、軟磁性合金薄帯の熱処理温度(例えば、300℃~350℃)は、特定樹脂の融点Tmを超える。しかしながら、特定樹脂の熱分解開始温度が360℃以上であるため、例えば、350℃で熱処理したとしても、樹脂が消失することはない。そのため、熱処理後、常温に戻れば、特定樹脂を含む樹脂層は接着層として機能し、軟磁性合金薄帯間の接合を可能とする。また、特定樹脂は、5%重量減少温度が400℃付近、又は400℃以上であることが好ましい。また、特定樹脂は、ガラス転移温度Tgが0℃以下であることが好ましい。 The specific resin has a melting point Tm of 80° C. or more and 170° C. or less, and the heat treatment temperature of the soft magnetic alloy ribbon (for example, 300° C. to 350° C.) exceeds the melting point Tm of the specific resin. However, since the thermal decomposition start temperature of the specific resin is 360°C or higher, the resin will not disappear even if it is heat-treated at, for example, 350°C. Therefore, when the temperature returns to room temperature after heat treatment, the resin layer containing the specific resin functions as an adhesive layer and enables bonding between the soft magnetic alloy ribbons. Further, it is preferable that the specific resin has a 5% weight loss temperature of around 400°C or higher than 400°C. Moreover, it is preferable that the specific resin has a glass transition temperature Tg of 0° C. or lower.
 特定樹脂の5%重量減少温度は、示差熱熱重量同時測定装置を用いて測定される。具体的には、30℃から800℃まで昇温速度10℃/分で加熱し、5%の重量減少が確認される際の温度を、5%重量減少温度とする。 The 5% weight loss temperature of the specific resin is measured using a simultaneous differential thermogravimetric measurement device. Specifically, the temperature is heated from 30° C. to 800° C. at a temperature increase rate of 10° C./min, and the temperature at which a 5% weight loss is confirmed is defined as the 5% weight loss temperature.
 特定樹脂のガラス転移温度は、示差熱熱重量同時測定装置を用いて測定される。 The glass transition temperature of a specific resin is measured using a simultaneous differential thermogravimetric measurement device.
 特定樹脂は、熱処理が可能な樹脂である。しかも、耐熱性のある樹脂ではなく、低コスト化が可能な樹脂を用いることができる。 The specific resin is a resin that can be heat treated. Moreover, instead of a heat-resistant resin, a resin that can be used at a low cost can be used.
 樹脂層に含まれる特定樹脂は、1種のみであってもよく、2種以上であってもよい。 The number of specific resins contained in the resin layer may be only one, or two or more.
 特定樹脂は、オレフィンを構成単位として含むポリマーを含有することが好ましい。オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、イソペンテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。特定樹脂としては、例えば、ポリエチレン樹脂、及びポリプロピレン樹脂が挙げられる。これらポリエチレン樹脂、ポリプロピレン樹脂を代表とする構成単位としてオレフィンからなるポリマーをポリオレフィンと称す。 It is preferable that the specific resin contains a polymer containing an olefin as a structural unit. Examples of olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, isopentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1- Examples include hexadecene, 1-octadecene, 1-eicosene, and the like. Examples of the specific resin include polyethylene resin and polypropylene resin. Polymers consisting of olefin as a constituent unit, typified by polyethylene resin and polypropylene resin, are called polyolefins.
 ポリオレフィンは、炭素(C)と水素(H)からできているので、燃やされたとしても水(HO)と炭酸ガス(CO)になり、環境に配慮した樹脂である。また、サトウキビなどを原料として製造されるバイオプラスチックの開発も進んでいる。バイオエチレン、バイオポリプロピレンを用いることにより、より環境にやさしい多層軟磁性合金薄帯とすることができる。 Since polyolefin is made of carbon (C) and hydrogen (H), even if it is burned, it becomes water (H 2 O) and carbon dioxide gas (CO 2 ), making it an environmentally friendly resin. Furthermore, progress is being made in the development of bioplastics manufactured from raw materials such as sugarcane. By using bioethylene and biopolypropylene, a more environmentally friendly multilayer soft magnetic alloy ribbon can be obtained.
 また、特定樹脂をラマン分光分析したとき、OH逆対称伸縮のピークが検出されることが好ましい。ラマン分光分析は、ラマン分光分析装置を用いて行われる。 Furthermore, when the specific resin is subjected to Raman spectroscopy, it is preferable that a peak of OH antisymmetric stretching is detected. Raman spectroscopy is performed using a Raman spectrometer.
 本開示における多層軟磁性合金薄帯において、軟磁性合金薄帯の積層方向の一端の軟磁性合金薄帯の剥離強度が0.01N/mm以上であることが好ましい。より好ましくは、0.03N/mm以上である。この剥離強度が0.01N/mm以上であることにより、多層軟磁性合金薄帯から軟磁性合金薄帯が剥がれることを抑制することができる。例えば、多層軟磁性合金薄帯を打ち抜き加工した際、打ち抜き後の個片の端部で軟磁性合金薄帯が剥がれることを抑制することができる。また、剥離強度が0.03N/mm以上であることにより、軟磁性合金薄帯が剥がれることの抑制効果をより高めることができる。 In the multilayer soft magnetic alloy ribbon according to the present disclosure, it is preferable that the peel strength of the soft magnetic alloy ribbon at one end in the lamination direction of the soft magnetic alloy ribbon is 0.01 N/mm or more. More preferably, it is 0.03 N/mm or more. By having this peel strength of 0.01 N/mm or more, it is possible to suppress peeling of the soft magnetic alloy ribbon from the multilayer soft magnetic alloy ribbon. For example, when a multilayer soft magnetic alloy ribbon is punched, it is possible to prevent the soft magnetic alloy ribbon from peeling off at the ends of the punched pieces. Further, by having a peel strength of 0.03 N/mm or more, the effect of suppressing peeling of the soft magnetic alloy ribbon can be further enhanced.
 この剥離強度は、例えば幅が30mmの多層軟磁性合金薄帯を用意し、最表面の軟磁性合金薄帯の剥離試験を行い、剥離したときの力(N)を測定する。この力の値をX(N)としたとき、X(N/30mm)と記す。この力の値X(N)を軟磁性合金薄帯の幅30mmで除した値を剥離強度X/30(N/mm)とする。尚、幅が30mm以外の多層軟磁性合金薄帯の場合、同様の試験を行い、幅で除すことで求めることができる。 This peel strength is determined by, for example, preparing a multilayer soft magnetic alloy ribbon with a width of 30 mm, performing a peel test on the outermost soft magnetic alloy ribbon, and measuring the force (N) when peeled off. When the value of this force is set to X (N), it is written as X (N/30 mm). The value obtained by dividing this force value X (N) by the width of the soft magnetic alloy ribbon of 30 mm is defined as the peel strength X/30 (N/mm). In the case of a multilayer soft magnetic alloy ribbon having a width other than 30 mm, the width can be determined by conducting a similar test and dividing by the width.
 樹脂層は、厚さが2μm以下であることが好ましく、1μm以下であることがより好ましく、0.9μm以下であることがさらに好ましく、0.8μm以下であることが特に好ましい。樹脂層を薄くすることにより、多層軟磁性合金薄帯を用いて構成した積層コアの占積率を高くすることができる。また、樹脂層は、特定樹脂を含むため、薄くても剥離強度が高い樹脂層を構成できる。例えば、厚さが1μm以下であり、剥離強度が0.01N/mm以上の樹脂層とすることができる。また、樹脂層の厚さは、好ましくは0.2μm以上であり、より好ましくは0.3μm以上であり、さらに好ましくは0.4μm以上である。
 ここで樹脂層の厚さは、樹脂層の無い軟磁性合金薄帯を所望の枚数(Y枚)重ねた状態と、樹脂層を有し、軟磁性合金薄帯を同じ枚数(Y枚)積み重ねた状態と、の多層軟磁性合金薄帯の厚さの差から算出する。具体的には、(樹脂層を有する枚数Yの多層軟磁性合金薄帯の厚さ)-(樹脂層の無い枚数Yの多層軟磁性合金薄帯の厚さ)をY-1で除した値をいう。
The resin layer preferably has a thickness of 2 μm or less, more preferably 1 μm or less, even more preferably 0.9 μm or less, and particularly preferably 0.8 μm or less. By making the resin layer thinner, the space factor of the laminated core constructed using multilayer soft magnetic alloy ribbons can be increased. Moreover, since the resin layer contains a specific resin, it is possible to configure a resin layer with high peel strength even if it is thin. For example, the resin layer may have a thickness of 1 μm or less and a peel strength of 0.01 N/mm or more. Further, the thickness of the resin layer is preferably 0.2 μm or more, more preferably 0.3 μm or more, and still more preferably 0.4 μm or more.
Here, the thickness of the resin layer is determined by stacking the desired number (Y sheets) of soft magnetic alloy ribbons without a resin layer, and stacking the same number (Y sheets) of soft magnetic alloy ribbons with a resin layer. It is calculated from the difference in the thickness of the multilayer soft magnetic alloy ribbon. Specifically, the value obtained by dividing (thickness of the number Y of multilayer soft magnetic alloy ribbons with a resin layer) - (thickness of the number Y of multilayer soft magnetic alloy ribbons without a resin layer) by Y-1. means.
 軟磁性合金薄帯は、アモルファス合金またはナノ結晶合金を含むことが好ましい。軟磁性合金薄帯は、アモルファス合金またはナノ結晶合金以外の合金を含んでいてもよいが、良好な軟磁気特性を発現させる観点から、アモルファス合金またはナノ結晶合金からなることが好ましい。アモルファス合金からなるアモルファス合金薄帯としては、Fe基アモルファス合金薄帯であることが好ましい。また、ナノ結晶合金からなるナノ結晶合金薄帯としては、Fe基ナノ結晶合金薄帯であることが好ましい。
 軟磁性合金薄帯は、アモルファス合金薄帯であってもよいし、ナノ結晶合金薄帯であってもよい。
Preferably, the soft magnetic alloy ribbon includes an amorphous alloy or a nanocrystalline alloy. Although the soft magnetic alloy ribbon may contain an alloy other than an amorphous alloy or a nanocrystalline alloy, it is preferably made of an amorphous alloy or a nanocrystalline alloy from the viewpoint of exhibiting good soft magnetic properties. The amorphous alloy ribbon made of an amorphous alloy is preferably an Fe-based amorphous alloy ribbon. Furthermore, the nanocrystalline alloy ribbon made of a nanocrystalline alloy is preferably a Fe-based nanocrystalline alloy ribbon.
The soft magnetic alloy ribbon may be an amorphous alloy ribbon or a nanocrystalline alloy ribbon.
 軟磁性合金薄帯の厚さは、10~50μmであり、14~35μmであることが好ましい。
 軟磁性合金薄帯の厚さは、マイクロメータを用いて測定される。
The thickness of the soft magnetic alloy ribbon is 10 to 50 μm, preferably 14 to 35 μm.
The thickness of the soft magnetic alloy ribbon is measured using a micrometer.
〔多層軟磁性合金薄帯の製造方法〕
 本開示の一実施形態の多層軟磁性合金薄帯の製造方法を説明する。
 本開示の一実施形態の多層軟磁性合金薄帯の製造方法は、複数の軟磁性合金薄帯を用意する工程と、軟磁性合金薄帯の少なくとも一面に樹脂層を形成し、樹脂層が軟磁性合金薄帯間に配置されるように、複数の軟磁性合金薄帯を積層する工程と、積層された軟磁性合金薄帯を加圧および加熱する工程と、を含む。
[Method for producing multilayer soft magnetic alloy ribbon]
A method for manufacturing a multilayer soft magnetic alloy ribbon according to an embodiment of the present disclosure will be described.
A method for manufacturing a multilayer soft magnetic alloy ribbon according to an embodiment of the present disclosure includes the steps of preparing a plurality of soft magnetic alloy ribbons, forming a resin layer on at least one surface of the soft magnetic alloy ribbon, and forming a resin layer on at least one surface of the soft magnetic alloy ribbon. The method includes the steps of stacking a plurality of soft magnetic alloy ribbons so as to be arranged between the magnetic alloy ribbons, and pressing and heating the laminated soft magnetic alloy ribbons.
 まず、複数の軟磁性合金薄帯を用意する。軟磁性合金薄帯の好ましい態様は上記のとおりである。ここでは、軟磁性合金薄帯がコイル状に巻かれた巻回体を用意することが好ましい。
 そして、それぞれの軟磁性合金薄帯の少なくとも一面に樹脂層を形成する。軟磁性合金薄帯は平板状であって、対向する2つの主面を有する。その一方の主面のみに樹脂層を形成することでも良いし、その両方の主面に樹脂層を形成することでも良い。なお、一方の主面のみに樹脂層を形成することが、占積率を向上させる上で有利である。
 軟磁性合金薄帯がコイル状に巻かれた巻回体の場合、その巻回体から軟磁性合金薄帯を巻き出し、その一面または両面に樹脂層を形成することができる。例えば、グラビアコーターを用いて樹脂層を形成することができる。
First, a plurality of soft magnetic alloy ribbons are prepared. Preferred embodiments of the soft magnetic alloy ribbon are as described above. Here, it is preferable to prepare a wound body in which a soft magnetic alloy ribbon is wound into a coil shape.
Then, a resin layer is formed on at least one surface of each soft magnetic alloy ribbon. The soft magnetic alloy ribbon has a flat plate shape and has two opposing main surfaces. The resin layer may be formed only on one main surface, or the resin layer may be formed on both main surfaces. Note that forming the resin layer only on one main surface is advantageous in improving the space factor.
In the case of a wound body in which the soft magnetic alloy thin ribbon is wound into a coil, the soft magnetic alloy thin ribbon can be unwound from the wound body and a resin layer can be formed on one or both surfaces of the soft magnetic alloy thin ribbon. For example, the resin layer can be formed using a gravure coater.
 樹脂層は、特定樹脂を含む。特定樹脂の好ましい態様は、上記のとおりである。特定樹脂として、例えば、ポリエチレン樹脂、ポリプロピレン樹脂を用いることができる。
 樹脂層は、特定樹脂を含む水性分散体を用いて形成されることが好ましい。例えば、このポリオレフィンの粒状体を水等の分散媒に混ぜてなる水性分散体を用いて、樹脂層を形成することができる。
The resin layer contains a specific resin. Preferred embodiments of the specific resin are as described above. As the specific resin, for example, polyethylene resin or polypropylene resin can be used.
The resin layer is preferably formed using an aqueous dispersion containing a specific resin. For example, the resin layer can be formed using an aqueous dispersion obtained by mixing the polyolefin particles in a dispersion medium such as water.
 樹脂層を、特定樹脂を含む水性分散体を用いて形成することにより、油分の処理が不要となり、取り扱いが簡便となるほか、生産性が向上し、製造コストを削減できる。 By forming the resin layer using an aqueous dispersion containing a specific resin, there is no need to treat oil, making handling easier, improving productivity, and reducing manufacturing costs.
 次に、樹脂層が軟磁性合金薄帯間に配置されるように、複数の軟磁性合金薄帯を積層する。
 樹脂層が形成された軟磁性合金薄帯を複数枚重ねて積層させる。
 例えば、一面に樹脂層が形成された軟磁性合金薄帯を合金薄帯、樹脂層、合金薄帯、樹脂層の順となるように積層し、最上面に樹脂層が形成された多層体の上に、樹脂層の形成されていない軟磁性合金薄帯を積層して、多層軟磁性合金薄帯を構成することができる。
 そして、積層された軟磁性合金薄帯を加圧および加熱する。これにより、複数の軟磁性合金薄帯が樹脂層を介して互いに接合されている多層軟磁性合金薄帯を得ることができる。
Next, a plurality of soft magnetic alloy ribbons are laminated so that the resin layer is disposed between the soft magnetic alloy ribbons.
A plurality of soft magnetic alloy ribbons each having a resin layer formed thereon are stacked one on top of the other.
For example, a soft magnetic alloy ribbon with a resin layer formed on one side is laminated in the following order: alloy ribbon, resin layer, alloy ribbon, resin layer, and a multilayer body with a resin layer formed on the top surface. A multilayer soft magnetic alloy ribbon can be constructed by laminating a soft magnetic alloy ribbon on which no resin layer is formed.
Then, the laminated soft magnetic alloy ribbons are pressurized and heated. Thereby, a multilayer soft magnetic alloy ribbon in which a plurality of soft magnetic alloy ribbons are joined to each other via a resin layer can be obtained.
 例えば、複数の軟磁性合金薄帯の巻回体を用意し、その巻回体から軟磁性合金薄帯を巻き出し、搬送させながら樹脂層を形成することができる。
 また、樹脂層が形成された軟磁性合金薄帯を搬送させながら積層して、接合させることができる。
 つまり、軟磁性合金薄帯を搬送させながら、工程を連続して行うことができる。
 樹脂層が特定樹脂を含むため、短時間の加圧および加熱で軟磁性合金薄帯の接合が可能であり、樹脂層を介して多層に積み重ねられた軟磁性合金薄帯を連続して搬送しながら、加圧および加熱を行い、接合した多層軟磁性合金薄帯を得ることができる。
 例えば、積層された軟磁性合金薄帯を加圧および加熱する工程では、積層された軟磁性合金薄帯を加熱した一対のロールの間に通過させることにより、接合した多層軟磁性合金薄帯とすることができる。
 また、加熱した板で挟むことで、接合した多層軟磁性合金薄帯とすることもできる。
 このとき、ロールの温度や加熱した板の温度は、樹脂の融点Tm以上350℃以下とすることが好ましい。
For example, it is possible to prepare a plurality of wound bodies of soft magnetic alloy thin ribbons, unwind the soft magnetic alloy thin ribbons from the wound body, and form the resin layer while transporting the soft magnetic alloy thin ribbons.
Further, the soft magnetic alloy ribbons on which the resin layer is formed can be laminated and joined while being conveyed.
In other words, the process can be performed continuously while conveying the soft magnetic alloy ribbon.
Because the resin layer contains a specific resin, it is possible to join soft magnetic alloy ribbons by applying pressure and heating in a short time, and the soft magnetic alloy ribbons stacked in multiple layers can be continuously conveyed through the resin layer. However, by applying pressure and heating, a bonded multilayer soft magnetic alloy ribbon can be obtained.
For example, in the process of pressurizing and heating laminated soft magnetic alloy ribbons, by passing the laminated soft magnetic alloy ribbons between a pair of heated rolls, the bonded multilayer soft magnetic alloy ribbons and can do.
Furthermore, a bonded multilayer soft magnetic alloy ribbon can also be obtained by sandwiching it between heated plates.
At this time, it is preferable that the temperature of the roll and the temperature of the heated plate be greater than or equal to the melting point Tm of the resin and less than or equal to 350°C.
 また、多層軟磁性合金薄帯をロールに巻き取って、多層軟磁性合金薄帯の巻回体を得ることもできる。
 また、本開示によれば、ロール・ツー・ロールと呼ばれる一貫ラインにて多層軟磁性合金薄帯を製造することもでき、量産性に優れる。
Furthermore, a wound body of the multilayer soft magnetic alloy ribbon can also be obtained by winding the multilayer soft magnetic alloy ribbon around a roll.
Further, according to the present disclosure, the multilayer soft magnetic alloy ribbon can be manufactured on an integrated line called roll-to-roll, which is excellent in mass productivity.
 多層軟磁性合金薄帯における軟磁性合金薄帯の積層数の好ましい態様は、上記のとおりである。 A preferred embodiment of the number of laminated soft magnetic alloy ribbons in the multilayer soft magnetic alloy ribbon is as described above.
〔積層コア〕
 本開示の多層軟磁性合金薄帯は、切断、打ち抜きなどにより、所定形状の個片に加工することができる。そして、その個片をさらに積層して、積層コアを構成することができる。
[Laminated core]
The multilayer soft magnetic alloy ribbon of the present disclosure can be processed into individual pieces of a predetermined shape by cutting, punching, or the like. Then, the individual pieces can be further laminated to form a laminated core.
 本開示の一実施形態の積層コアは、軟磁性合金薄帯の積層体を備える積層コアであって、軟磁性合金薄帯は、厚さ10~50μmであり、軟磁性合金薄帯間には樹脂層が配置され、樹脂層は、特定樹脂を含む。軟磁性合金薄帯及び特定樹脂の好ましい態様は、上記のとおりである。 A laminated core according to an embodiment of the present disclosure is a laminated core including a laminated body of soft magnetic alloy ribbons, the soft magnetic alloy ribbons having a thickness of 10 to 50 μm, and between the soft magnetic alloy ribbons. A resin layer is arranged, and the resin layer contains a specific resin. Preferred embodiments of the soft magnetic alloy ribbon and the specific resin are as described above.
 積層コアは、各種のトランスやコイルのコアとして用いられ、またモータコアとして用いることができる。なお、積層コアは、複数の異なる磁性体の組合せとしても良い。磁性体としては、例えば、アモルファス合金、ナノ結晶合金薄帯、電磁鋼板などである。 The laminated core is used as the core of various transformers and coils, and can also be used as a motor core. Note that the laminated core may be a combination of a plurality of different magnetic materials. Examples of the magnetic material include an amorphous alloy, a nanocrystalline alloy ribbon, and an electromagnetic steel sheet.
 軟磁性合金薄帯は、応力により磁気特性が劣化する場合がある。特に加工された後に、磁気特性の劣化を生じることがある。本開示の多層軟磁性合金薄帯は、熱処理が可能であり、加工などの応力による磁気特性の劣化を回復させるための熱処理を行うことができる。 The magnetic properties of soft magnetic alloy ribbons may deteriorate due to stress. Especially after processing, deterioration of magnetic properties may occur. The multilayer soft magnetic alloy ribbon of the present disclosure can be heat treated, and heat treatment can be performed to recover the deterioration of magnetic properties caused by stress such as processing.
〔積層コアの製造方法〕
 本開示の一実施形態の積層コアの製造方法は、本開示の一実施形態の多層軟磁性合金薄帯を加工して、多層コア片を作製する工程と、多層コア片を積層する工程と、を含む。
[Method for manufacturing laminated core]
A method for manufacturing a laminated core according to an embodiment of the present disclosure includes a step of processing a multilayer soft magnetic alloy ribbon according to an embodiment of the present disclosure to produce a multilayer core piece, a step of laminating the multilayer core pieces, including.
 多層軟磁性合金薄帯の加工方法は特に限定されないが、切断または打ち抜きであることが好ましい。 The method for processing the multilayer soft magnetic alloy ribbon is not particularly limited, but cutting or punching is preferable.
 以下、本開示の実施例を表すが、本開示は以下の実施例には限定されない。 Examples of the present disclosure will be described below, but the present disclosure is not limited to the following examples.
〔実施例1〕
 軟磁性合金薄帯として、Fe基アモルファス合金薄帯(株式会社プロテリアル(旧日立金属株式会社)製HB1M)を用いた。幅30mm、厚さ25μmのFe基アモルファス合金薄帯がコイル状に巻かれた巻回体を5個用意した。そのうち、4個の巻回体から巻き出したFe基アモルファス合金薄帯の一面に、ポリエチレン樹脂の水性分散体をグラビアコーターで厚さ1~1.5μmとなるように塗布して、樹脂層を形成した。このポリエチレン樹脂は、融点Tmが約100℃、熱分解開始温度が約400℃であった。なお、融点は示差熱熱重量同時測定装置で不活性ガス下の測定に於いて、DTA曲線の吸熱ピーク時の温度とし、熱分解開始温度は、TG曲線が直線性を失い下降へ転じ、且つDTA曲線が直線性を失い又は上昇から下降へ転じた温度とする。
[Example 1]
As the soft magnetic alloy ribbon, an Fe-based amorphous alloy ribbon (HB1M manufactured by Proterial Co., Ltd. (former Hitachi Metals, Ltd.)) was used. Five coiled bodies of Fe-based amorphous alloy ribbons each having a width of 30 mm and a thickness of 25 μm were prepared. An aqueous dispersion of polyethylene resin was applied to one surface of the Fe-based amorphous alloy ribbon unwound from the four wound bodies using a gravure coater to a thickness of 1 to 1.5 μm to form a resin layer. Formed. This polyethylene resin had a melting point Tm of about 100°C and a thermal decomposition initiation temperature of about 400°C. In addition, the melting point is the temperature at the endothermic peak of the DTA curve when measured under an inert gas using a simultaneous differential thermogravimetric measurement device, and the thermal decomposition start temperature is the temperature at which the TG curve loses its linearity and turns downward. This is the temperature at which the DTA curve loses its linearity or changes from rising to falling.
 本実施例では、樹脂層を形成したFeアモルファス合金薄帯を巻き取り、4個の巻回体とした。次いで、樹脂層が形成された4つのFe基アモルファス合金薄帯の巻回体から、それぞれのFe基アモルファス合金薄帯を巻き出し、搬送させながら、合金薄帯、樹脂層、合金薄帯、樹脂層、合金薄帯、樹脂層、合金薄帯、樹脂層の順になるように積層し、上部の樹脂層の上に、樹脂層を形成していないFe基アモルファス合金薄帯(5個目の巻回体から巻き出したFe基アモルファス合金薄帯)を積層して、5層のFe基アモルファス合金薄帯からなる多層軟磁性合金薄帯を形成した。ここで、5層のFe基アモルファス合金薄帯は搬送された状態で作製される。そして、ロール温度を80℃~200℃に設定した一対のロールの間に、上記の5層のFe基アモルファス合金薄帯を通し、加圧および加熱を行って、5層のFe基アモルファス合金薄帯が互いに接合した多層軟磁性合金薄帯を作製した。この多層軟磁性合金薄帯をロールに巻き取った。一対のロールの間を通すときのFe基アモルファス合金薄帯の搬送速度は3.5m/分とした。 In this example, the Fe amorphous alloy ribbon on which the resin layer was formed was wound up into four wound bodies. Next, each Fe-based amorphous alloy ribbon is unwound from the wound body of the four Fe-based amorphous alloy ribbons on which the resin layer has been formed, and while being conveyed, the alloy ribbon, the resin layer, the alloy ribbon, and the resin are unwound. layer, alloy ribbon, resin layer, alloy ribbon, and resin layer in this order, and on top of the upper resin layer, a Fe-based amorphous alloy ribbon (the fifth roll) with no resin layer formed. The Fe-based amorphous alloy ribbons unwound from the rotating body were laminated to form a multilayer soft magnetic alloy ribbon consisting of five layers of Fe-based amorphous alloy ribbons. Here, the five-layer Fe-based amorphous alloy ribbon is produced in a transported state. Then, the above five-layer Fe-based amorphous alloy thin strip is passed between a pair of rolls whose roll temperature is set at 80°C to 200°C, and pressure and heating are applied to form the five-layered Fe-based amorphous alloy thin strip. A multilayer soft magnetic alloy ribbon in which the strips are joined to each other was fabricated. This multilayer soft magnetic alloy ribbon was wound onto a roll. The conveying speed of the Fe-based amorphous alloy ribbon when passing between the pair of rolls was 3.5 m/min.
 実施例1において、ロール温度と剥離強度および樹脂層厚さとの関係を表1に示す。
 樹脂層厚さは、5層のFe基アモルファス合金薄帯からなる多層軟磁性合金薄帯の厚さを測定する。また、樹脂層を形成していないFe基アモルファス合金薄帯を5層に積層し、その厚さを測定する。その厚さの差を、4で割った値とした。なお、厚さはマイクロメータを用いて測定し、それぞれ10カ所測定し平均値とした。
 剥離強度は、多層軟磁性合金薄帯の最表面のFe基アモルファス合金薄帯を手動で少し捲る。次いで、捲った部分にハンドパンチで穴を開ける。次いで、オートグラフのセンサー部や取付けたフックを穴に引っ掛ける。そして、定速でセンサーを移動させ剥離したときの力(N)を読み取る。読み取った値を単位N/30mmで示す剥離強度とし、読み取った値を幅30mmで除した値を単位N/mmで示す剥離強度とした。この剥離強度のN/30mmとN/mmの値を表1に示す。
Table 1 shows the relationship between roll temperature, peel strength, and resin layer thickness in Example 1.
The resin layer thickness is measured by measuring the thickness of a multilayer soft magnetic alloy ribbon consisting of five layers of Fe-based amorphous alloy ribbon. Further, five layers of Fe-based amorphous alloy ribbons without a resin layer are laminated, and the thickness thereof is measured. The difference in thickness was divided by 4. Note that the thickness was measured using a micrometer, and the measurements were taken at 10 locations and the average value was taken as the average value.
The peel strength was measured by manually turning over the outermost Fe-based amorphous alloy ribbon of the multilayer soft magnetic alloy ribbon. Next, punch a hole in the rolled part using a hand punch. Next, hook the sensor part of the autograph and the attached hook into the hole. Then, the force (N) when the sensor is moved at a constant speed and peeled off is read. The read value was defined as the peel strength in units of N/30 mm, and the value obtained by dividing the read value by the width of 30 mm was defined as the peel strength in units of N/mm. Table 1 shows the peel strength values in N/30 mm and N/mm.
 ロール温度を高くすると、剥離強度が高くなることが分かる。必要な剥離強度に合わせてロール温度を設定することができる。特に、ロール温度が100℃のとき、剥離強度が0.01N/mm以上となり、十分な剥離強度が得られた。更に、ロール温度が120℃以上では、0.03N/mm以上の剥離強度が得られており、更に十分な剥離強度が得られた。
 また、樹脂層厚さはいずれも1.0μm以下であり、十分に薄い樹脂層とすることができ、占積率を高くする効果が期待できる。特に、試料2~5は樹脂層厚さが0.75μmと薄く、剥離強度も十分な値が得られ、樹脂層が薄く、剥離強度が高い多層軟磁性合金薄帯を得ることができた。
It can be seen that the peel strength increases as the roll temperature increases. The roll temperature can be set according to the required peel strength. In particular, when the roll temperature was 100° C., the peel strength was 0.01 N/mm or more, and sufficient peel strength was obtained. Further, when the roll temperature was 120° C. or higher, a peel strength of 0.03 N/mm or higher was obtained, and even more sufficient peel strength was obtained.
In addition, the resin layer thickness is 1.0 μm or less in each case, and the resin layer can be made sufficiently thin, and the effect of increasing the space factor can be expected. In particular, Samples 2 to 5 had a thin resin layer thickness of 0.75 μm and a sufficient peel strength, making it possible to obtain a multilayer soft magnetic alloy ribbon with a thin resin layer and high peel strength.
 試料5の多層軟磁性合金薄帯において、Fe基アモルファス合金薄帯の層間から剥がし取った樹脂のラマン分光分析を行った。その結果を図4に示す。また、図5に、試料5をさらに330℃で熱処理した多層軟磁性箔帯において、Fe基アモルファス合金箔帯の層間から剥がし取った樹脂のラマン分光分析結果を示す。
 図4および図5において、3640cm-1付近に存在するピークはOH逆対称伸縮を示すピークであり、本開示の樹脂をラマン分光分析したとき、OH逆対称伸縮を示すピークが検出された。
In the multilayer soft magnetic alloy ribbon of sample 5, Raman spectroscopic analysis of the resin peeled off from between the layers of the Fe-based amorphous alloy ribbon was conducted. The results are shown in FIG. Further, FIG. 5 shows the results of Raman spectroscopy of the resin peeled off from between the layers of the Fe-based amorphous alloy foil strip in the multilayer soft magnetic foil strip obtained by further heat-treating Sample 5 at 330°C.
In FIGS. 4 and 5, the peak existing around 3640 cm −1 is a peak indicating OH antisymmetric stretching, and when the resin of the present disclosure was subjected to Raman spectroscopy, a peak indicating OH antisymmetric stretching was detected.
〔実施例2〕
 実施例1の試料を用いて、モータ用積層コアを作製した。
 実施例1の試料5の多層軟磁性合金薄帯(5層のFe基アモルファス合金薄帯)を用いて、図1に示す形状の多層コア片1を打ち抜きにより作製した。この多層コア片1は、5層のFe基アモルファス合金薄帯からなる。この多層コア片1は、コア片形状に加工したパンチと、パンチ挿入可能な穴を有するダイと、を用いて、打ち抜いた。この多層コア片1は、軟磁性合金薄帯の積層体でもある。
[Example 2]
A laminated core for a motor was produced using the sample of Example 1.
Using the multilayer soft magnetic alloy ribbon (5-layer Fe-based amorphous alloy ribbon) of Sample 5 of Example 1, a multilayer core piece 1 having the shape shown in FIG. 1 was produced by punching. This multilayer core piece 1 consists of five layers of Fe-based amorphous alloy ribbons. This multilayer core piece 1 was punched using a punch processed into the shape of a core piece and a die having a hole into which the punch could be inserted. This multilayer core piece 1 is also a laminate of soft magnetic alloy ribbons.
 この多層コア片1を360個積み重ねて、図2に積層コア2を作製した。この積層コア2は、Fe基アモルファス合金薄帯が1800枚積層されている。各多層コア片1間は、粘度が50mPa・sの1液性熱硬化型アクリル系接着剤を用いて接合した。接合は170℃、2時間の条件で行った。
 この積層コア2を6個作製し、組み合わせることにより、外径が50mm、内径が26mmの円筒形のモータ用積層コアを作製した。これは、モータのステータとして用いることができる。
A laminated core 2 as shown in FIG. 2 was produced by stacking 360 of these multilayer core pieces 1. This laminated core 2 has 1800 Fe-based amorphous alloy ribbons laminated. Each multilayer core piece 1 was bonded using a one-component thermosetting acrylic adhesive having a viscosity of 50 mPa·s. Bonding was performed at 170° C. for 2 hours.
Six laminated cores 2 were produced and combined to produce a cylindrical laminated core for a motor with an outer diameter of 50 mm and an inner diameter of 26 mm. This can be used as a stator for a motor.
 本開示の多層軟磁性合金薄帯は、多層コア片の打ち抜きが可能であり、打ち抜き後、多層コア片を積層して積層コアを作製しても形状の不具合も生じなく、積層コアとして使用可能であることが分かった。また、打ち抜き後に、軟磁性合金薄帯の剥離も生じなかった。
 本開示の多層軟磁性合金薄帯は、切断、打ち抜きなどの加工方法を用いて、多層コア片に形成し、その多層コア片を積み重ねて積層コアを作製し、上記したモータの他、トランスやチョークコイルなど、種々の用途に用いることができる。なお、積層コアは、ハウジングに接着したり、ポッティングしたりなど、公知の手段で固定することができる。
The multilayer soft magnetic alloy ribbon of the present disclosure can be punched into multilayer core pieces, and after punching, even if the multilayer core pieces are laminated to produce a laminated core, no shape defects will occur, and it can be used as a laminated core. It turned out to be. Moreover, no peeling of the soft magnetic alloy ribbon occurred after punching.
The multilayer soft magnetic alloy ribbon of the present disclosure is formed into a multilayer core piece using a processing method such as cutting or punching, and the multilayer core pieces are stacked to produce a laminated core. It can be used for various purposes such as choke coils. Note that the laminated core can be fixed to the housing by known means such as adhesion or potting.
〔本開示の樹脂の熱処理性の確認〕
 軟磁性合金薄帯として、Fe基アモルファス合金薄帯(株式会社プロテリアル(旧日立金属株式会社)製HB1M)を用いた。幅50mm、厚さ25μmのFe基アモルファス合金薄帯がコイル状に巻かれた巻回体を用意した。その巻回体から巻き出したFe基アモルファス合金薄帯の一面に、ポリエチレン樹脂の水性分散体をグラビアコーターで厚さ1~1.5μmとなるように塗布して、樹脂層を形成した。樹脂層を乾燥させた後、外径43mm、内径25mmのリング状に打ち抜いた。
 また、同じFe基アモルファス合金薄帯に樹脂層を形成しないで、外径43mm、内径25mmのリング状に打ち抜いた。
[Confirmation of heat treatability of the resin of the present disclosure]
As the soft magnetic alloy ribbon, an Fe-based amorphous alloy ribbon (HB1M manufactured by Proterial Co., Ltd. (former Hitachi Metals, Ltd.)) was used. A wound body in which a Fe-based amorphous alloy ribbon having a width of 50 mm and a thickness of 25 μm was wound into a coil was prepared. A resin layer was formed by applying an aqueous dispersion of polyethylene resin to a thickness of 1 to 1.5 μm using a gravure coater on one surface of the Fe-based amorphous alloy ribbon unwound from the roll. After drying the resin layer, it was punched out into a ring shape with an outer diameter of 43 mm and an inner diameter of 25 mm.
Further, the same Fe-based amorphous alloy ribbon was punched out into a ring shape with an outer diameter of 43 mm and an inner diameter of 25 mm without forming a resin layer.
 実験例1
 樹脂層を形成していないリング状の試料を30枚積層した。積層した試料間の接合は行わないで、リング状のコア試料を作製した。
 実験例2
 樹脂層を形成したリング状の試料を30枚積層した。そして、0.1MPaの加圧状態で150℃に加熱して、各Fe基アモルファス合金薄帯が接合されたリング状のコア試料を作製した。
 実験例3
 実験例2のリング状のコア試料を330℃で、窒素雰囲気中で熱処理した。なお、熱処理後、Fe基アモルファス合金薄帯間は接合された状態であり、熱処理前の形状が維持されていた。
Experimental example 1
Thirty ring-shaped samples on which no resin layer was formed were stacked. A ring-shaped core sample was produced without bonding the stacked samples.
Experimental example 2
Thirty ring-shaped samples each having a resin layer formed thereon were laminated. Then, it was heated to 150° C. under a pressure of 0.1 MPa to produce a ring-shaped core sample to which each Fe-based amorphous alloy ribbon was joined.
Experimental example 3
The ring-shaped core sample of Experimental Example 2 was heat-treated at 330° C. in a nitrogen atmosphere. Note that after the heat treatment, the Fe-based amorphous alloy ribbons were in a joined state, and the shape before the heat treatment was maintained.
 実験例1,2,3のコア試料を用いて、1kHz,1Tでのコアロスを測定した。測定器は岩通SY-8232を用い、1次巻き線、2次巻き線は30ターンとした。その結果を表2および図3に示す。表2および図3に示すように、多層軟磁性合金薄帯を接合したコア試料(実験例2)ではコアロスが悪化していた。これは、樹脂層の形成や接合による応力が影響したものと考える。しかしながら、実験例3で示すように、応力緩和の熱処理を行うことにより、コアロスをほぼ回復させることができた。
 本開示の樹脂によれば、応力緩和の熱処理が可能であることが分かる。
Core loss at 1 kHz and 1 T was measured using the core samples of Experimental Examples 1, 2, and 3. The measuring device used was Iwatsu SY-8232, and the primary and secondary windings were 30 turns. The results are shown in Table 2 and FIG. As shown in Table 2 and FIG. 3, the core sample (Experimental Example 2) in which multilayer soft magnetic alloy ribbons were bonded had worsened core loss. This is thought to be caused by the stress caused by the formation and bonding of the resin layer. However, as shown in Experimental Example 3, core loss could be almost recovered by performing stress-relaxing heat treatment.
It can be seen that according to the resin of the present disclosure, heat treatment for stress relaxation is possible.
 なお、2022年6月17日に出願された日本国特許出願2022-097745号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 Note that the disclosure of Japanese Patent Application No. 2022-097745 filed on June 17, 2022 is incorporated herein by reference in its entirety. In addition, all documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard were specifically and individually indicated to be incorporated by reference. , incorporated herein by reference.

Claims (14)

  1.  厚さ10~50μmの複数の軟磁性合金薄帯が積層されている多層軟磁性合金薄帯であって、
     前記軟磁性合金薄帯間には樹脂層が配置され、
     前記樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂を含む、多層軟磁性合金薄帯。
    A multilayer soft magnetic alloy ribbon in which a plurality of soft magnetic alloy ribbons having a thickness of 10 to 50 μm are laminated,
    A resin layer is arranged between the soft magnetic alloy ribbons,
    The resin layer is a multilayer soft magnetic alloy ribbon containing a resin having a melting point Tm of 80° C. or higher and 170° C. or lower and a thermal decomposition initiation temperature of 360° C. or higher.
  2.  前記多層軟磁性合金薄帯において、前記軟磁性合金薄帯の積層方向の一端の軟磁性合金薄帯の剥離強度が0.01N/mm以上である、請求項1に記載の多層軟磁性合金薄帯。 The multilayer soft magnetic alloy thin strip according to claim 1, wherein in the multilayer soft magnetic alloy thin ribbon, the peel strength of the soft magnetic alloy thin strip at one end in the lamination direction of the soft magnetic alloy thin ribbon is 0.01 N/mm or more. band.
  3.  前記軟磁性合金薄帯がアモルファス合金またはナノ結晶合金を含む、請求項1または2に記載の多層軟磁性合金薄帯。 The multilayer soft magnetic alloy ribbon according to claim 1 or 2, wherein the soft magnetic alloy ribbon contains an amorphous alloy or a nanocrystalline alloy.
  4.  前記樹脂をラマン分光分析したとき、OH逆対称伸縮のピークが検出される、請求項1または2に記載の多層軟磁性合金薄帯。 The multilayer soft magnetic alloy ribbon according to claim 1 or 2, wherein a peak of OH antisymmetric stretching is detected when the resin is subjected to Raman spectroscopy.
  5.  前記樹脂は、オレフィンを構成単位として含むポリマーを含有する、請求項1または2に記載の多層軟磁性合金薄帯。 The multilayer soft magnetic alloy ribbon according to claim 1 or 2, wherein the resin contains a polymer containing an olefin as a constituent unit.
  6.  複数の軟磁性合金薄帯を用意する工程と、
     前記軟磁性合金薄帯の少なくとも一面に樹脂層を形成し、前記樹脂層が前記軟磁性合金薄帯間に配置されるように、前記複数の軟磁性合金薄帯を積層する工程と、
     積層された軟磁性合金薄帯を加圧および加熱する工程と、を含み、
     前記樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂を含む、多層軟磁性合金薄帯の製造方法。
    A step of preparing a plurality of soft magnetic alloy ribbons;
    forming a resin layer on at least one surface of the soft magnetic alloy ribbon, and stacking the plurality of soft magnetic alloy ribbons so that the resin layer is disposed between the soft magnetic alloy ribbons;
    Pressing and heating the laminated soft magnetic alloy ribbons,
    The method for producing a multilayer soft magnetic alloy ribbon, wherein the resin layer includes a resin having a melting point Tm of 80°C or more and 170°C or less and a thermal decomposition initiation temperature of 360°C or more.
  7.  前記積層された軟磁性合金薄帯を加圧および加熱する工程では、
     前記積層された軟磁性合金薄帯を、加熱された一対のロール間に通過させる、請求項6に記載の多層軟磁性合金薄帯の製造方法。
    In the step of pressurizing and heating the laminated soft magnetic alloy ribbons,
    7. The method for producing a multilayer soft magnetic alloy ribbon according to claim 6, wherein the laminated soft magnetic alloy ribbon is passed between a pair of heated rolls.
  8.  前記加熱された一対のロールの温度が前記融点Tm以上350℃以下である、請求項7に記載の多層軟磁性合金薄帯の製造方法。 The method for manufacturing a multilayer soft magnetic alloy ribbon according to claim 7, wherein the temperature of the pair of heated rolls is higher than or equal to the melting point Tm and lower than 350°C.
  9.  軟磁性合金薄帯の積層体を備える積層コアであって、
     前記軟磁性合金薄帯は、厚さ10~50μmであり、前記軟磁性合金薄帯間には樹脂層が配置され、前記樹脂層は、融点Tmが80℃以上170℃以下、熱分解開始温度が360℃以上である樹脂を含む、積層コア。
    A laminated core comprising a laminated body of soft magnetic alloy ribbons,
    The soft magnetic alloy ribbon has a thickness of 10 to 50 μm, and a resin layer is disposed between the soft magnetic alloy ribbons, and the resin layer has a melting point Tm of 80°C or more and 170°C or less, and a thermal decomposition start temperature. A laminated core containing a resin whose temperature is 360°C or higher.
  10.  前記軟磁性合金薄帯がアモルファス合金またはナノ結晶合金を含む、請求項9に記載の積層コア。 The laminated core according to claim 9, wherein the soft magnetic alloy ribbon includes an amorphous alloy or a nanocrystalline alloy.
  11.  前記樹脂をラマン分光分析したとき、OH逆対称伸縮のピークが検出される、請求項9または10に記載の積層コア。 The laminated core according to claim 9 or 10, wherein a peak of OH antisymmetric expansion and contraction is detected when the resin is subjected to Raman spectroscopy.
  12.  前記樹脂は、オレフィンを構成単位として含むポリマーを含有する、請求項9または10に記載の積層コア。 The laminated core according to claim 9 or 10, wherein the resin contains a polymer containing an olefin as a constituent unit.
  13.  請求項1に記載の多層軟磁性合金薄帯を加工して、多層コア片を作製する工程と、
     前記多層コア片を積層する工程と、を含む、積層コアの製造方法。
    Processing the multilayer soft magnetic alloy ribbon according to claim 1 to produce a multilayer core piece;
    A method for manufacturing a laminated core, comprising the step of laminating the multilayer core pieces.
  14.  前記多層軟磁性合金薄帯の加工は、切断または打ち抜きである請求項13に記載の積層コアの製造方法。 The method for manufacturing a laminated core according to claim 13, wherein the processing of the multilayer soft magnetic alloy ribbon is cutting or punching.
PCT/JP2023/022331 2022-06-17 2023-06-15 Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same WO2023243697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022097745 2022-06-17
JP2022-097745 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243697A1 true WO2023243697A1 (en) 2023-12-21

Family

ID=89191421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022331 WO2023243697A1 (en) 2022-06-17 2023-06-15 Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same

Country Status (1)

Country Link
WO (1) WO2023243697A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281314A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd Soft magnetic alloy ribbon laminate and its manufacturing method
JP2008213410A (en) * 2007-03-07 2008-09-18 Hitachi Metals Ltd Laminated sheet and manufacturing method of laminate
WO2019087932A1 (en) * 2017-10-31 2019-05-09 日立金属株式会社 Magnetic material, laminated magnetic material, laminated packet, and laminated core using magnetic material, and magnetic material producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281314A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd Soft magnetic alloy ribbon laminate and its manufacturing method
JP2008213410A (en) * 2007-03-07 2008-09-18 Hitachi Metals Ltd Laminated sheet and manufacturing method of laminate
WO2019087932A1 (en) * 2017-10-31 2019-05-09 日立金属株式会社 Magnetic material, laminated magnetic material, laminated packet, and laminated core using magnetic material, and magnetic material producing method

Similar Documents

Publication Publication Date Title
JP7409376B2 (en) Method for manufacturing alloy ribbon laminate and apparatus for manufacturing alloy ribbon laminate
US7075402B1 (en) Method for treating a brittle thin metal strip and magnetic parts made from a nanocrystalline alloy strip
JP5163490B2 (en) Soft magnetic metal ribbon laminate and method for producing the same
JP2023052730A (en) Laminate of soft magnetic alloy ribbon
WO2019087932A1 (en) Magnetic material, laminated magnetic material, laminated packet, and laminated core using magnetic material, and magnetic material producing method
TW201939533A (en) Magnetic core and method for manufacturing same, and coil component
EP0214305A1 (en) Process for the production of a laminate of thinamorphous alloy strip and a core made of thin amorphous alloy strip
EP0288768B1 (en) Method of forming a laminate and the product thereof
WO2023243697A1 (en) Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
JP5177641B2 (en) Laminated body and antenna
JP2009253104A (en) Laminated body, and antenna
JPH0554423B2 (en)
JP2009200428A (en) Layered product, and its manufacturing method
JP2018049921A (en) Layered magnetic core and method of producing the same
JP2005297393A (en) Low iron loss multiple-layered electromagnetic steel sheet, and method and apparatus for manufacturing the same
WO2024024958A1 (en) Sheet-shaped magnetic member
JP2008159926A (en) Soft magnetic member, laminated body of soft magnetic members, and manufacturing method for those materials
WO2024043283A1 (en) Sheet-like magnetic member
JPS61189930A (en) Laminated core material
JPS63115313A (en) Manufacture of core using amorphous magnetic alloy thin strip laminated plate
JPS6174314A (en) Manufacture of transformer core
JP2023152053A (en) Magnetic sheet, multilayer magnetic sheet, and manufacturing method of magnetic sheet
JP2021002553A (en) Magnetic material, laminated magnetic material and laminated core, and manufacturing method of magnetic material and manufacturing method of laminated magnetic material
JP4183463B2 (en) Amorphous alloy ribbon laminate and method for producing the same
JP2023144882A (en) Magnetic sheet, rolled magnetic sheet, and multilayer magnetic sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823987

Country of ref document: EP

Kind code of ref document: A1