JPH0554423B2 - - Google Patents

Info

Publication number
JPH0554423B2
JPH0554423B2 JP61188545A JP18854586A JPH0554423B2 JP H0554423 B2 JPH0554423 B2 JP H0554423B2 JP 61188545 A JP61188545 A JP 61188545A JP 18854586 A JP18854586 A JP 18854586A JP H0554423 B2 JPH0554423 B2 JP H0554423B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
adhesive
ribbon
heat
alloy ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61188545A
Other languages
Japanese (ja)
Other versions
JPS6345043A (en
Inventor
Nobuyuki Morito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61188545A priority Critical patent/JPS6345043A/en
Publication of JPS6345043A publication Critical patent/JPS6345043A/en
Publication of JPH0554423B2 publication Critical patent/JPH0554423B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、電力用変圧器やモーターなどの鉄
心として使用するのに適合した積層非晶質合金薄
帯およびそれを製造する方法に関するものであ
る。 <従来の技術> Fe−B−Si系、Co−Fe−Si系などの溶融合金
を単ロール法や双ロール法により、105〜106℃/
秒程度の冷却速度で急速凝固させると、無秩序な
原子配列を有する板厚20〜50μm程度の非晶質合
金薄帯(以下リボンと称す。)が得られる。この
ような非晶質合金薄帯は軟磁性に優れ、殊にFe
−B−Si系では比較的高い飽和磁束密度と極めて
低い鉄損を有することから、トランスやモーター
の鉄心材料として現在使用されている珪素鋼板の
有力な代替材料として注目されている。 このような非晶質合金薄帯は、通常単板のまま
で、巻コアや積みコアを作り、変圧器を組み上げ
るが、一般的に云えば、リボン厚は従来使用して
きた珪素鋼板などに比較して薄いため、積層加工
に要する工数の多くなる欠点があつた。 この欠点を除くのに、リボン厚を厚くする等の
工夫も行われているが、鉄損の劣化することが報
告されている。複数枚のリボンを貼り合わせるこ
とができれば積層工数の削減の他、渦流損が特に
増大しないので、鉄損の面でも有利になる利点が
ある。 近年この目的のために、リボンを接着すること
が試みられはじめ、例えば特開昭56−36336号や
特開昭58−175654号に提案されているように、リ
ボンに接着剤を均一に塗布した後、貼り合わせ、
乾燥して、固化接着させた後、せん断して積層し
たり、あるいは巻廻してコアを製作するのが一般
的である。 <発明が解決しようとする問題点> 従来の方法により、高耐熱性接着剤をリボン表
面に均一に塗布して、積層リボンを作成した場合
には、巻廻の如き成形を行うときに、接着層によ
る拘束のために不均一な応力がリボンに加わつて
磁気特性を劣化させる不利があるばかりでなく、
高耐熱性接着剤の種類あるいは焼鈍条件によつて
は、巻廻成形等の変形を加えない場合でも、鉄損
の劣化することが見出された。 従つて、この発明は、リボンに及ぼす不均一応
力の懸念のない、すなわち接着による鉄損劣化の
ない積層非晶質合金薄帯及び積層接着の有利な方
法を与えることを目的とする。 <問題点を解決するための手段> 発明者は、接着による特性劣化のない非晶質合
金薄帯積層板およびその有利な製造方法につい
て、鋭意研究を重ねた結果、接着剤を点状に介在
させる塗布方法によつて特性劣化の少ない非晶質
合金薄帯積層板がえられるとの知見をえ、この知
見にもとづいてこの発見をなすに至つた。 この発明はつぎのとおりである。すなわち、 耐熱性高分子化合物(ボロシロキサン樹脂を
除く。)を主成分とする耐熱性接着剤を複数枚
の非晶質合金薄帯間に点状に介在させ、その耐
熱性接着剤の塗布面積率を1〜10%、かつ層間
の平均塗布量を0.5〜3g/m2として、相互に
接着したことを特徴とする非晶質合金薄帯積層
板。 複数枚の非晶質合金薄帯を接着して積層板を
製造するに際し、1枚またはそれより多数の非
晶質合金薄帯の表面に耐熱性高分子化合物(ボ
ロシロキサン樹脂を除く。)を主成分とする接
着剤を点状に塗布し、しかも該接着剤の塗布面
積率を1〜10%、かつ層間の平均塗布量を0.5
〜3g/m2とした後、他の非晶質合金薄帯を重
ね合わせ、次いで加圧することにより、相互に
接着させることを特徴とする非晶質合金薄帯積
層板の製造方法。 複数の金属箔を積層接着させる場合、一般的に
は接着剤を金属表面全体に極力均一に塗布した
後、重ね合わせ、加圧プレスや圧着ロールで軽く
加圧して接着させることが行われている。 接着によつてリボンに不均一な応力が発生する
場合、その原因は接着剤層と金属リボンとの熱膨
張係数の違い、あるいは接着剤層の厚みの不均一
等が考えられる。したがつて鉄損劣化の原因とな
るリボンでの不均一応力の発生を抑えるには、前
記の違いを解消するものも一方法である。しかし
本発明の目的とする非晶質合金薄帯と高耐熱性樹
脂の組み合わせの場合、高分子化合物の熱膨張係
数の方が格段に大きく、熱膨張係数を同一にする
自由度はない。 本発明は従来技術における以上のような問題点
を解消すべく、接着部を点状とし、接合点の周囲
に無接合の部分を隣接させることで、接合部で発
生した不均一な応力を緩和させることを指向した
ものである。 さらに非晶質磁性合金薄帯の磁気特性を十分に
発揮させるには、300ないし350℃での磁場中焼鈍
が必須とされているので、使用する接着剤は耐熱
性のものでなければならない。 なお、本発明者は先に、非晶質合金薄帯積層板
とその製造方法として300〜450℃の高温の磁場中
焼鈍に耐えうるボロシロキサン樹脂を主成分とす
る接着剤を使用する場合について特許出願をして
いるが、本発明は、先願発明でのボロシロキサン
樹脂ほどは耐熱性を要求されない、比較的よく適
用される300〜350℃の焼鈍温度条件での、先願発
明でのボロシロキサン樹脂を除いた耐熱性高分子
化合物を主成分とする接着剤を使用しての積層板
とその効果的な製造方法とを提供するものであ
る。 面積率1〜10%、また平均塗布量を0.5〜3
g/m2となるように点状に塗布した後、予備乾燥
して、他の非晶質合金薄帯を重ねわせ、圧着する
ことにより、相互に接着させる。さらにこのリボ
ン表面に再度接着剤を点状に塗布し、以降の工程
を繰り返すことによつて、積層非晶質合金薄帯を
製造する。 ここで、接着剤の点状塗布を複数のリボンに対
して同時に行い、加圧接着を一回で済ませること
も可能である。 また点状接着における接着剤の好適な塗布形態
例は、第1図a〜dに示したとおりである。 実験データに基づいて、本発明を説明する。 板厚28μm、板巾5cmのFe78B10Si12組成の非晶
質合金薄帯の片面にポリエステルイミド樹脂を点
状に分散して塗布し、面積率を約5%、平均塗布
量を0.05−3g/m2とした。風乾後、他のリボン
を重ね合わせ、さらに接着剤を一層目とほぼ同量
塗布して、3枚目のリボンを重ね、圧着ロール間
で圧下して貼り合わせた。次いで250℃で5分間
加熱し接着した。以上の工程で作製した積層リボ
ンを200A/mの磁場下で350℃2時間の焼鈍を行
ない、そのまま冷却した。 平均塗布量の違いによる鉄損の変化を第2図に
示す。図から明らかなように、接着剤0.5〜3
g/m2の塗布により鉄損の改善されることが判
る。層間の平均塗布量を0.5〜3g/m2に限定す
るのは、0.5g/m2未満で充分な接着強度を確保
できないためであり、3g/m2超になると非磁性
物質の存在による占積率の低下に伴う磁気特性の
劣化を無視できなくなるためである。 つぎに本発明の要旨とする点状塗布の有利性に
関して代表的な実験データを示す。前述と同様な
実験を行い、接着剤の塗布面積率を変えた結果に
ついて第1表に示した。
<Industrial Application Field> The present invention relates to a laminated amorphous alloy ribbon suitable for use as an iron core for power transformers, motors, etc., and a method for manufacturing the same. <Conventional technology> Molten alloys such as Fe-B-Si and Co-Fe-Si are heated at 10 5 to 10 6 °C/
When rapidly solidified at a cooling rate of about seconds, an amorphous alloy ribbon (hereinafter referred to as ribbon) with a thickness of about 20 to 50 μm and having a disordered atomic arrangement is obtained. Such amorphous alloy ribbon has excellent soft magnetic properties, especially Fe
The -B-Si system has a relatively high saturation magnetic flux density and extremely low iron loss, so it is attracting attention as a promising alternative material to the silicon steel sheets currently used as core materials for transformers and motors. Such amorphous alloy ribbon is usually left as a single plate to make wound cores or stacked cores to assemble transformers, but generally speaking, the ribbon thickness is compared to conventionally used silicon steel sheets. Because it is thin and thin, it has the disadvantage of requiring a large number of man-hours for lamination processing. Efforts have been made to eliminate this drawback, such as increasing the thickness of the ribbon, but it has been reported that iron loss deteriorates. If a plurality of ribbons can be bonded together, the number of lamination steps can be reduced, and eddy current loss does not particularly increase, which is advantageous in terms of iron loss. In recent years, attempts have been made to glue ribbons together for this purpose; for example, as proposed in JP-A-56-36336 and JP-A-58-175654, adhesives are evenly applied to the ribbon. After that, pasting
After drying, solidifying and adhering, the core is generally manufactured by shearing and laminating or winding. <Problems to be Solved by the Invention> When a laminated ribbon is created by applying a highly heat-resistant adhesive uniformly to the surface of the ribbon using the conventional method, when forming the ribbon by winding it, the adhesive is removed. Not only is there a disadvantage that non-uniform stress is applied to the ribbon due to the restraint by the layers, deteriorating the magnetic properties, but also
It has been found that depending on the type of highly heat-resistant adhesive or annealing conditions, core loss may deteriorate even when no deformation such as winding is applied. Therefore, it is an object of the present invention to provide a laminated amorphous alloy ribbon and an advantageous method for laminating the ribbons without worrying about non-uniform stress exerted on the ribbon, that is, without deteriorating core loss due to adhesion. <Means for Solving the Problems> As a result of extensive research into an amorphous alloy ribbon laminate that does not cause property deterioration due to adhesion and an advantageous method for producing the same, the inventors discovered that adhesive is interposed in dots. This discovery was made based on the knowledge that an amorphous alloy ribbon laminate with less deterioration of properties could be obtained by a coating method using a coating method. The invention is as follows. In other words, a heat-resistant adhesive whose main component is a heat-resistant polymer compound (excluding borosiloxane resin) is interposed between multiple amorphous alloy ribbons in a dotted manner, and the area where the heat-resistant adhesive is applied is 1. An amorphous alloy ribbon laminate, which is bonded to each other at a coating rate of 1 to 10% and an average interlayer coating amount of 0.5 to 3 g/m 2 . When manufacturing a laminate by bonding multiple amorphous alloy ribbons, a heat-resistant polymer compound (excluding borosiloxane resin) is applied to the surface of one or more amorphous alloy ribbons. Adhesive as the main component is applied in dots, and the applied area ratio of the adhesive is 1 to 10%, and the average amount applied between layers is 0.5.
A method for manufacturing an amorphous alloy ribbon laminate, characterized in that after the concentration of the amorphous alloy ribbon is reduced to 3 g/m 2 , another amorphous alloy ribbon is stacked on top of the other amorphous alloy ribbon, and then pressure is applied to adhere the laminated plate to each other. When laminating and adhering multiple metal foils, the general method is to apply adhesive as evenly as possible to the entire metal surface, stack them, and apply light pressure with a pressure press or pressure roll to bond them. . If non-uniform stress is generated in the ribbon due to adhesion, the cause may be a difference in thermal expansion coefficient between the adhesive layer and the metal ribbon, or non-uniform thickness of the adhesive layer. Therefore, one way to suppress the generation of non-uniform stress in the ribbon, which causes iron loss deterioration, is to eliminate the above-mentioned differences. However, in the case of the combination of an amorphous alloy ribbon and a highly heat-resistant resin, which is the object of the present invention, the thermal expansion coefficient of the polymer compound is much larger, and there is no degree of freedom in making the thermal expansion coefficients the same. In order to solve the above-mentioned problems in the conventional technology, the present invention makes the bonded part dotted and arranges an unbonded part around the bonded point to alleviate the uneven stress generated at the bonded part. It is aimed at Furthermore, in order to fully demonstrate the magnetic properties of the amorphous magnetic alloy ribbon, annealing in a magnetic field at 300 to 350°C is essential, so the adhesive used must be heat resistant. In addition, the present inventor has previously described an amorphous alloy ribbon laminate and its manufacturing method using an adhesive mainly composed of borosiloxane resin that can withstand high-temperature annealing in a magnetic field of 300 to 450°C. Although a patent application has been filed, the present invention does not require as much heat resistance as the borosiloxane resin of the earlier invention, and is annealing under the relatively commonly applied annealing temperature condition of 300 to 350°C. The present invention provides a laminate using an adhesive whose main component is a heat-resistant polymer compound excluding borosiloxane resin, and an effective method for manufacturing the same. Area ratio 1-10%, average coating amount 0.5-3
After applying it in dots so as to give a weight of g/m 2 , it is pre-dried, and another amorphous alloy ribbon is layered on top of the other amorphous alloy ribbon and bonded to each other by pressure bonding. Further, adhesive is applied again in dots on the surface of this ribbon, and the subsequent steps are repeated to produce a laminated amorphous alloy ribbon. Here, it is also possible to perform dot-like application of the adhesive to a plurality of ribbons at the same time and perform pressure bonding only once. Further, examples of suitable application forms of the adhesive in point bonding are as shown in FIGS. 1a to 1d. The invention will be explained based on experimental data. Polyesterimide resin was dispersed and applied in dots on one side of an amorphous alloy ribbon of Fe 78 B 10 Si 12 composition with a plate thickness of 28 μm and a plate width of 5 cm, with an area ratio of approximately 5% and an average coating amount of 0.05. -3g/ m2 . After air-drying, other ribbons were stacked on top of each other, adhesive was applied in approximately the same amount as the first layer, a third ribbon was stacked on top of the other ribbons, and the ribbons were pressed down between pressure rolls and bonded together. Then, the adhesive was bonded by heating at 250°C for 5 minutes. The laminated ribbon produced through the above steps was annealed at 350° C. for 2 hours under a magnetic field of 200 A/m, and then cooled as it was. Figure 2 shows changes in iron loss due to differences in average coating amount. As is clear from the figure, adhesive 0.5-3
It can be seen that the iron loss is improved by coating at g/m 2 . The reason why the average coating amount between layers is limited to 0.5 to 3 g/m 2 is because sufficient adhesive strength cannot be secured with less than 0.5 g/m 2 , and if it exceeds 3 g/m 2 , the amount of coating is limited to 0.5 to 3 g/m 2 . This is because the deterioration of the magnetic properties due to the decrease in the product moment cannot be ignored. Next, typical experimental data regarding the advantages of dotted coating, which is the gist of the present invention, will be shown. Experiments similar to those described above were conducted, and Table 1 shows the results of varying the adhesive application area ratio.

【表】 ここでは磁場焼鈍条件を350℃、2時間とした。 第1表に示すように、塗布面積率1〜10%ほど
で、鉄損は改善されるが、面積率の増大ととも
に、鉄損も増加し、全面接着(面積率100%)に
なると、鉄損は無接合のものに比較してかえつて
劣化することが判る。本発明において接着剤の塗
布面積率を1〜10%に限定するのは、1%未満で
は充分な接着強度を確保できないからであり、一
方10%超になると接着部分で発生した不均一な応
力を緩和することが不充分になり、鉄損が劣化す
るためである。 本発明に好適に使用できる接着剤は、ポリアミ
ドイミド、ポリエステルイミド、ポリイミド、フ
エノキシ、フエニルメチルシリコーン樹脂等の耐
熱性高分子化合物の1種または2種以上の混合物
を主成分とするものである。 本発明に提案する点状塗布によつて、全面塗布
に比較して使用する接着剤の量は激減するから、
これに伴うコスト低減も無視することはできな
い。 <実施例> 実施例 1 巾5cm、板厚25μmのFe78B10Si12非晶質磁性合
金薄帯に、面積率5%、層間の平均塗布量が0.8
g/m2となるようにポリイミド樹脂系接着剤を点
状に塗布し、100℃で1分間風乾させた後、5枚
をロールにて圧着した。次いで250℃で3分間連
続加熱を行い、積層非晶質合金薄帯を作成した。
この積層リボンに20Oeの磁場下で、350℃、2時
間の焼鈍を施し、そのまま冷却した。1.3Tでの
鉄損W13/50は0.11W/Kgであつた。接着層の剥離
は皆無であり、焼鈍後でも積層リボンとして取り
扱えた。 実施例 2 面積率を10%、平均塗布量を1.5g/m2とする
他は、実施例1と同様に処理した。1.3Tでの鉄
損W13/50は0.12W/Kgであつた。 比較例 1 接着剤の塗布による薄帯の貼り合わせなしに、
実施例1と同様に処理した。磁場焼鈍後のW13/50
は0.14W/Kgであつた。積層が無いので、薄く、
取扱いに不便であつた。 比較例 2 リボン層間の塗布量を1.4g/m2とし、全面に
均一に塗布した他は、実施例1と同様に処理し
た。350℃での磁場焼鈍後の鉄損W13/50は0.19W/
Kgであつた。 比較例 3 ホルマール樹脂を接着剤として、他は実施例1
と同様に処理した。350℃での磁場焼鈍により、
接着強度は失われ、積層リボンとして取扱うこと
は不可能になつた。 <発明の効果> 本発明によれば、接着による鉄損劣化のない非
晶質合金薄帯積層板をうることができ、また積層
接着の有利な方法が提供される。
[Table] Here, the magnetic field annealing conditions were 350°C for 2 hours. As shown in Table 1, the iron loss is improved at a coating area ratio of 1 to 10%, but as the area ratio increases, the iron loss also increases, and when the area ratio is 100%, the iron loss increases. It can be seen that the loss is actually worse compared to the one without bonding. In the present invention, the adhesive application area ratio is limited to 1 to 10% because if it is less than 1%, sufficient adhesive strength cannot be ensured, whereas if it exceeds 10%, uneven stress occurs in the bonded area. This is because the iron loss is insufficiently alleviated and the iron loss deteriorates. Adhesives that can be suitably used in the present invention are those whose main component is one or a mixture of two or more heat-resistant polymer compounds such as polyamideimide, polyesterimide, polyimide, phenoxy, and phenylmethyl silicone resin. . The dot application proposed in the present invention drastically reduces the amount of adhesive used compared to full surface application.
The associated cost reduction cannot be ignored either. <Example> Example 1 An Fe 78 B 10 Si 12 amorphous magnetic alloy ribbon with a width of 5 cm and a plate thickness of 25 μm was coated with an area ratio of 5% and an average coating amount between layers of 0.8.
A polyimide resin adhesive was applied in dots so that the adhesive was g/m 2 , air-dried at 100° C. for 1 minute, and then 5 sheets were pressed together using a roll. Next, continuous heating was performed at 250° C. for 3 minutes to produce a laminated amorphous alloy ribbon.
This laminated ribbon was annealed at 350° C. for 2 hours in a magnetic field of 20 Oe, and then cooled. Iron loss W 13/50 at 1.3T was 0.11W/Kg. There was no peeling of the adhesive layer, and it could be handled as a laminated ribbon even after annealing. Example 2 The same process as in Example 1 was carried out except that the area ratio was 10% and the average coating amount was 1.5 g/m 2 . Iron loss W 13/50 at 1.3T was 0.12W/Kg. Comparative Example 1 Without bonding thin strips by applying adhesive,
It was treated in the same manner as in Example 1. W 13/50 after magnetic field annealing
was 0.14W/Kg. Since there is no lamination, it is thin,
It was inconvenient to handle. Comparative Example 2 The treatment was carried out in the same manner as in Example 1, except that the coating amount between the ribbon layers was 1.4 g/m 2 and the coating was applied uniformly over the entire surface. Iron loss W 13/50 after magnetic field annealing at 350℃ is 0.19W/
It was Kg. Comparative example 3 Formal resin was used as adhesive, other conditions were as in Example 1
processed in the same way. By magnetic field annealing at 350℃,
Adhesive strength was lost and it became impossible to handle it as a laminated ribbon. <Effects of the Invention> According to the present invention, an amorphous alloy ribbon laminate without core loss deterioration due to adhesion can be obtained, and an advantageous method of lamination adhesion is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の点状接着の好適な塗布形態
例を示す説明図、第2図は総布面積率5%での目
付量と鉄損との関係を示すグラフである。 1……耐熱性接着剤、2……非晶質合金薄帯。
FIG. 1 is an explanatory diagram showing a preferred application form of dotted adhesive of the present invention, and FIG. 2 is a graph showing the relationship between the basis weight and iron loss at a total cloth area ratio of 5%. 1... Heat-resistant adhesive, 2... Amorphous alloy ribbon.

Claims (1)

【特許請求の範囲】 1 耐熱性高分子化合物(ボロシロキサン樹脂を
除く。)を主成分とする耐熱性接着剤を複数枚の
非晶質合金薄帯間に点状に介在させ、その耐熱性
接着剤の塗布面積率を1〜10%、かつ層間の平均
塗布量を0.5〜3g/m2として、相互に接着した
ことを特徴とする非晶質合金薄帯積層板。 2 複数枚の非晶質合金薄帯を接着して積層板を
製造するに際し、1枚またはそれより多数の非晶
質合金薄帯の表面に耐熱性高分子化合物(ボロシ
ロキサン樹脂を除く。)を主成分とする接着剤を
点状に塗布し、しかも該接着剤の塗布面積率を1
〜10%、かつ層間の平均塗布量を0.5〜3g/m2
とした後、他の非晶質合金薄帯を重ね合わせ、次
いで加圧することにより、相互に接着させること
を特徴とする非晶質合金薄帯積層板の製造方法。
[Scope of Claims] 1 A heat-resistant adhesive mainly composed of a heat-resistant polymer compound (excluding borosiloxane resin) is interposed between a plurality of amorphous alloy ribbons in a dotted manner, and the heat-resistant adhesive is Amorphous alloy ribbon laminates are bonded to each other with an adhesive coating area ratio of 1 to 10% and an average coating amount between layers of 0.5 to 3 g/ m2 . 2. When manufacturing a laminate by bonding multiple amorphous alloy ribbons, a heat-resistant polymer compound (excluding borosiloxane resin) is applied to the surface of one or more amorphous alloy ribbons. An adhesive whose main component is
~10%, and the average coating amount between layers is 0.5~3g/ m2
1. A method for producing an amorphous alloy ribbon laminate, which comprises the steps of: stacking another amorphous alloy ribbon on top of the other amorphous alloy ribbons; and then applying pressure to adhere them to each other.
JP61188545A 1986-08-13 1986-08-13 Amorphous alloy thin-band laminated board and manufacture thereof Granted JPS6345043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188545A JPS6345043A (en) 1986-08-13 1986-08-13 Amorphous alloy thin-band laminated board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188545A JPS6345043A (en) 1986-08-13 1986-08-13 Amorphous alloy thin-band laminated board and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6345043A JPS6345043A (en) 1988-02-26
JPH0554423B2 true JPH0554423B2 (en) 1993-08-12

Family

ID=16225576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188545A Granted JPS6345043A (en) 1986-08-13 1986-08-13 Amorphous alloy thin-band laminated board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6345043A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826805B2 (en) * 1989-11-01 1996-03-21 株式会社ユニシアジェックス Air-fuel ratio learning controller for internal combustion engine
EP1473377B1 (en) 2002-01-16 2009-04-22 Nakagawa Special Steel Co., Ltd. Magnetic base material, laminate from magnetic base material and method for production thereof
JP4574153B2 (en) * 2003-09-30 2010-11-04 中川特殊鋼株式会社 Method for producing magnetic substrate
JP4193063B2 (en) 2004-03-22 2008-12-10 セイコーエプソン株式会社 Lamp device and projector equipped with the same
JP4692305B2 (en) * 2006-01-31 2011-06-01 株式会社デンソー Manufacturing method of laminated core
SI1833145T1 (en) * 2006-03-10 2012-08-31 Kienle & Spiess Gmbh Method, tool and device for producing a stack of laminations and stack of laminations
JP2007311652A (en) * 2006-05-19 2007-11-29 Denso Corp Amorphous laminated wood, manufacturing method therefor, and manufacturing method for iron core of rotating electric machine
JP7564424B2 (en) * 2020-06-17 2024-10-09 日本製鉄株式会社 Electromagnetic steel sheets and laminated cores

Also Published As

Publication number Publication date
JPS6345043A (en) 1988-02-26

Similar Documents

Publication Publication Date Title
WO1986005314A1 (en) Laminate of thinamorphous alloy strip, core made of thin amorphous alloy strip, and process for their production
JP2023052730A (en) Laminate of soft magnetic alloy ribbon
JPS58175654A (en) Manufacture of laminated bonded amorphous alloy band and iron core
JPH0554423B2 (en)
JPS6411392B2 (en)
JPH0152811B2 (en)
JPS6048887B2 (en) Laminated magnetic material
JPH0243704A (en) Laminated magnetic core and manufacture thereof
JP2021075752A (en) Production method of alloy ribbon
JPS63115313A (en) Manufacture of core using amorphous magnetic alloy thin strip laminated plate
JPS6171612A (en) Manufacture of laminated core
JPH06306520A (en) Soft aluminum foil and its production
JP2584141B2 (en) Manufacturing method of wound iron core for transformer
JPS6174314A (en) Manufacture of transformer core
JPS63220984A (en) Amorphous alloy sheet band laminated plate
JPS61208811A (en) Amorphous alloy bonding laminate with good magnetic property
JPH0152810B2 (en)
JPH0430725B2 (en)
JP2024120132A (en) Laminated magnetic body, motor, and method for manufacturing laminated magnetic body
JPH0243703A (en) Laminated magnetic core and manufacture thereof
JPH0788563B2 (en) Manufacturing method of high aluminum content ferritic stainless steel
CA1275236C (en) Amorphous alloy thin sheet laminate and a core using said amorphous alloy thin sheet laminate, and processes for producing the same
JPH0561031B2 (en)
JP2021002553A (en) Magnetic material, laminated magnetic material and laminated core, and manufacturing method of magnetic material and manufacturing method of laminated magnetic material
JPH0438122B2 (en)