JPS63115313A - Manufacture of core using amorphous magnetic alloy thin strip laminated plate - Google Patents

Manufacture of core using amorphous magnetic alloy thin strip laminated plate

Info

Publication number
JPS63115313A
JPS63115313A JP26059186A JP26059186A JPS63115313A JP S63115313 A JPS63115313 A JP S63115313A JP 26059186 A JP26059186 A JP 26059186A JP 26059186 A JP26059186 A JP 26059186A JP S63115313 A JPS63115313 A JP S63115313A
Authority
JP
Japan
Prior art keywords
core
bonding agent
temperature
alloy thin
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26059186A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26059186A priority Critical patent/JPS63115313A/en
Publication of JPS63115313A publication Critical patent/JPS63115313A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To reliably obtain ultra-low iron loss and high permeability of the title core by a method wherein the core is made thicker by laminating and adhering an amorphous alloy thin strip using a bonding agent having low heat-resisting temperature, and after the above-mentioned thick plate has been formed into a core, it is annealed in a magnetic field. CONSTITUTION:A plurality of amorphous magnetic alloy thin strips are adhered using a bonding agent having the heat-resisting temperature of 300 deg.C or below, and the obtained laminated plate is formed into a wound core type or a stacked type core. Then, an annaling treatment is performed thereon at the temperature range between the heatresisting temperature or above of said bonding agent and the crystallizing temperature or below of the amorphous magnetic alloy thin strip. Pertaining to the bonding agent, a bonding agent of low heat-resisting property which will easily be decomposed by heat or evaporated in the annealing process ordinarily performed in the temperature range of 300-400 deg.C is used. As a result, even when a distortion is generated inside the core on which a winding work is finished, stress is alleviated in a ribbon in association with the vanishment of the bonding agent, and then the formation of magnetic induction anisotropy makes progress. As a result, no distortion remains in the core finally, and excellent magnetic characteristics can be secured.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性に優れた非晶質磁性合金薄帯を複
数枚貼り合わせた積層板を使用したコアの有利な製造方
法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to an advantageous method for manufacturing a core using a laminated plate made by laminating a plurality of amorphous magnetic alloy ribbons with excellent magnetic properties. be.

(従来の技術) 非晶質合金薄帯、殊にFe −B −St系非晶質合金
は、軟磁性に優れ、比較的高い飽和磁束密度と極めて低
い鉄損とを併せて有することがら、電カドランス等の鉄
心材料として実用化されつつある。
(Prior Art) Amorphous alloy ribbons, especially Fe-B-St-based amorphous alloys, have excellent soft magnetism, and also have relatively high saturation magnetic flux density and extremely low core loss. It is being put into practical use as an iron core material for electric quadrants and other devices.

このような非晶質磁性合金薄帯(以下単にリボンという
)は、通常、接着することなく単板のままで巻きコアや
積みコアを作り変圧器に組み立てるのを常としているが
、一般的に云えば、リボン厚は従来使用してきたけい素
鋼板などに比較してかなり薄いため、積層加工に要する
工数が多くなる欠点があった。
Such amorphous magnetic alloy ribbons (hereinafter simply referred to as ribbons) are normally used as a single plate without gluing to make wound cores or stacked cores and assemble them into transformers. In other words, since the ribbon thickness is considerably thinner than conventionally used silicon steel plates, it has the disadvantage that the number of man-hours required for lamination processing increases.

かかる欠点を除くために、リボン厚を大きくする等の工
夫も行われているが、鉄損の劣化を招くことが報告され
ている。
Efforts have been made to eliminate this drawback, such as increasing the thickness of the ribbon, but it has been reported that this leads to deterioration of iron loss.

この点、複数枚のリボンを貼り合わせることができれば
積層工数の著しい削減が可能なことがら、たとえば、特
開昭58−175654号公報などにおいては、リボン
に耐熱性接着剤を塗布した後、貼り合わせ、乾燥固化さ
せた後、せん断して積層したり、あるいは巻回してコア
を製作する方法が提案されている。
In this regard, if multiple ribbons can be pasted together, the number of lamination steps can be significantly reduced. Methods have been proposed in which the cores are produced by combining, drying and solidifying, then shearing and stacking, or winding.

(発明が解決しようとする問題点) しかしながら上記の如き従来技術では、接着剤がリボン
全面に均一に塗布され、しかも充分に固化しているため
、多数回の巻回しのような成形を行う場合には、接着層
による拘束のために不均一な応力がリボンに加わって磁
気特性の劣化を招くところに問題を残していた。
(Problems to be Solved by the Invention) However, in the prior art as described above, the adhesive is applied uniformly to the entire surface of the ribbon and is sufficiently solidified, so that when forming the ribbon by winding it many times, However, there remained a problem in that non-uniform stress was applied to the ribbon due to the restraint by the adhesive layer, leading to deterioration of magnetic properties.

また一般にリボンを磁性材料として使用する場合、超急
冷時に導入された内部歪を開放し、磁区を揃えるために
、キューリー点以下の温度での磁場中焼鈍が不可欠とさ
れ、この点積層板も同様であるが、耐熱性接着剤による
接着の場合には、耐熱性接着剤が単に高価であるという
だけでなく、焼鈍後にも接着強度が維持される結果、リ
ボンと接着剤の熱膨張係数の違いから、冷却過程にリボ
ン側に歪が入り、鉄損が劣化する傾向にあった。
In addition, when ribbons are generally used as magnetic materials, annealing in a magnetic field at a temperature below the Curie point is essential in order to release the internal strain introduced during ultra-quenching and align the magnetic domains. However, in the case of bonding with a heat-resistant adhesive, not only is the heat-resistant adhesive expensive, but also the adhesive strength is maintained even after annealing, resulting in the difference in the coefficient of thermal expansion between the ribbon and the adhesive. As a result, distortion was introduced to the ribbon side during the cooling process, which tended to deteriorate iron loss.

この発明は、上記の問題を有利に解決するもので、巻き
加工、積み加工等のコア成形時における工数を減少させ
るとともに、鉄心組立後において磁気特性の劣化を招く
ことなしに磁場中焼鈍を行うことができるコアの有利な
製造方法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems by reducing the number of man-hours during core forming such as winding and stacking, and also performs annealing in a magnetic field after assembling the core without causing deterioration of magnetic properties. The purpose is to propose an advantageous manufacturing method for cores that can be manufactured by:

(問題点を解決するための手段) まず、この発明の解明経緯について説明する。(Means for solving problems) First, the background to the elucidation of this invention will be explained.

さてこの発明は従来技術における問題点を再−検討する
中から生まれた。すなわち非晶質合金薄帯をコアに成形
する際の加工工数を低減するためには、成形加工に先立
って積層接着によって厚板化を図ることが、容易でしか
も工業的にも有利な手段である。またコアに成形した後
、本来の性能を発揮させるためには磁場中焼鈍が不可欠
である。
This invention was born from a re-examination of problems in the prior art. In other words, in order to reduce the number of processing steps when forming an amorphous alloy ribbon into a core, it is an easy and industrially advantageous method to make the plate thicker by laminating and adhering it prior to forming. be. Furthermore, after forming into a core, annealing in a magnetic field is essential in order to demonstrate its original performance.

従来は、かかる焼鈍に耐え得るような耐熱性接着剤が主
に問題とされてきたために、焼鈍後にリボンに歪が残留
し、磁気特性劣化の原因となっていたのである。
Conventionally, the main problem has been the use of heat-resistant adhesives that can withstand such annealing, which has resulted in distortion remaining in the ribbon after annealing, causing deterioration of magnetic properties.

そこで発明者らは、発想を変え、コアに成形組立てた後
ではリボン間の接着は必要がなく、むしろ磁気特性にと
っては有害との考えに立って研究を進めた。すなわち巻
き加工、積み加工等の工数が問題となる工程では接着し
ておくが、その後コアとして一体化した後では接着を止
める方法を指向した。
Therefore, the inventors changed their thinking and proceeded with their research based on the idea that adhesion between the ribbons was not necessary after being molded and assembled into a core, and that it was actually harmful to the magnetic properties. In other words, we aimed for a method in which the materials are bonded in processes where the number of man-hours is an issue, such as winding and stacking, but the bonding is stopped after the core is integrated.

これは耐熱温度の低い接着剤でリボンを接着するという
、極めて単純な手法で実現でき、しかもかくして得られ
たコアは、従来材に比べて格段にすぐれた磁気特性を呈
したのである。
This was achieved using an extremely simple method of gluing the ribbons together using an adhesive with a low heat resistance, and the core thus obtained exhibited significantly superior magnetic properties compared to conventional materials.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、非晶質磁性合金薄帯を耐熱温度が
300℃以下の接着剤により複数枚接合して得た積層板
を、巻きコアまたは積みコアに成形したのち、該接着剤
の耐熱温度以上、該非晶質磁性合金薄帯の結晶化温度未
満の温度範囲において焼鈍処理を施すことから成る、非
晶質磁性合金薄帯積層板を使用したコアの製造方法であ
る。
That is, this invention involves forming a laminate obtained by bonding a plurality of amorphous magnetic alloy ribbons with an adhesive with a heat resistance temperature of 300°C or less into a wound core or stacked core, The above is a method for manufacturing a core using an amorphous magnetic alloy ribbon laminate, which comprises annealing the amorphous magnetic alloy ribbon in a temperature range below the crystallization temperature thereof.

この発明において、接着剤としては、リボンの磁気特性
向上のために通常300〜400℃の温度範囲で行われ
る焼鈍工程において容易に熱分解したり揮化するような
耐熱性の低い接着剤を用いる必要があるが、かかる接着
剤としては、フェノール樹脂系、ポリ酢酸ビニル系、エ
ポキシ樹脂系、酢酸ビニル共重合体系およびアクリル樹
脂系などの有機樹脂がとりわけ有利に適合する。
In this invention, the adhesive used is an adhesive with low heat resistance that easily thermally decomposes or volatilizes during the annealing process, which is usually carried out at a temperature range of 300 to 400 degrees Celsius, in order to improve the magnetic properties of the ribbon. As such adhesives, organic resins such as phenolic resins, polyvinyl acetate systems, epoxy resins, vinyl acetate copolymer systems, and acrylic resins are particularly advantageously suitable.

この点、前掲した特開昭58−175654号公報で提
案されているポリ (フェニレン)オキシド、ポリ(P
−キシリレン)、芳香族ポリスルボン、芳香族ポリアミ
ドイミド、ポリエステルイミドおよび芳香族ポリイミド
樹脂などの耐熱性有機樹脂は、350℃前後の焼鈍でも
リボン層間に残存、リボンに歪を残留させる原因となる
ので好ましくない。
In this regard, poly(phenylene) oxide, poly(P
-xylylene), aromatic polysulfone, aromatic polyamideimide, polyesterimide, and aromatic polyimide resins are preferred because they remain between the ribbon layers even when annealed at around 350°C, causing residual distortion in the ribbon. do not have.

以下この発明を具体的に説明する。This invention will be explained in detail below.

リボンの作成に当っては、単ロール法や双ロール法など
の従来公知の液体急冷法いずれもが使用できる。
In producing the ribbon, any conventionally known liquid quenching method such as a single roll method or a twin roll method can be used.

一般的なリボン厚みは20ないし40μmが好適である
。このリボンの片面に接着剤を塗布し、他のリボンを積
層して、軽く圧下する。塗布量は0.1〜3μmはどで
充分であり、不必要に厚くすることはない。最終的には
接着剤は熱分解させ、消失してしまうので、厚すぎるこ
との害は直接的には現れないけれども、コスト的に不利
になるばかりでなく、占積率を低下させるきらいにある
ので好ましくない。乾燥同化後の塗布量としては厚み2
μm以下好ましくは1μm以下程度とするのが望ましい
。また接着剤による接合は一般的には出来るだけ均一の
接着剤を塗布して、貼りつけるものではあるが、この発
明における接合は部分的な薄帯面での接着でもかまわな
い。すなわち、せん断、巻き加工や積み加工の段階では
く離しない程度の接着強度があれば充分である。このよ
うに接着剤の使用を限定するのは、コスト低減のために
極めて有効だからである。
A typical ribbon thickness of 20 to 40 μm is preferred. Apply adhesive to one side of this ribbon, stack the other ribbon, and press down lightly. A coating amount of 0.1 to 3 .mu.m is sufficient and will not be unnecessarily thick. Eventually, the adhesive will thermally decompose and disappear, so although the harm of being too thick does not appear directly, it is not only disadvantageous in terms of cost, but also tends to reduce the space factor. So I don't like it. The coating amount after dry assimilation is 2 thickness.
It is desirable that the thickness be less than μm, preferably about 1 μm or less. Furthermore, although bonding using an adhesive is generally performed by applying an adhesive as uniformly as possible and pasting, the bonding in the present invention may be performed by bonding only a partial surface of the ribbon. In other words, it is sufficient that the adhesive strength is strong enough to prevent separation during shearing, winding, and stacking. Limiting the use of adhesives in this way is extremely effective in reducing costs.

この発明に従う積層板の製造に当っては、1枚のリボン
の片面に接着剤を塗布してから、他のリボンを重ね合わ
せた後に圧着する処理を繰り返し行うことを基本とする
が、場合によっては接着剤の塗布を複数のリボンに対し
て同時に行い、加圧接着を1回で済ませることもできる
In manufacturing a laminate according to the present invention, the process of repeatedly applying adhesive to one side of one ribbon, stacking other ribbons, and pressing them together is basically repeated. It is also possible to apply adhesive to multiple ribbons at the same time, and pressure bonding can be completed in one time.

圧着法としては、加圧プレスや圧着ロールを用いて軽圧
下を加える方法が好適である。
As the crimping method, a method of applying light pressure using a pressure press or a crimping roll is suitable.

その後の乾燥は、必らずしも高温で行う必要はなく、室
温から300℃以下の範囲でよい。室温乾燥の場合、接
着剤の種類によっては、長時間を要するものもあるが、
最終的な固化はコイルに巻き取った後に行うのでとくに
問題になることはない。
The subsequent drying does not necessarily need to be carried out at a high temperature, and may be carried out at a temperature ranging from room temperature to 300°C or less. Depending on the type of adhesive, it may take a long time to dry at room temperature.
Final solidification is performed after winding into a coil, so there is no particular problem.

ついで焼鈍処理を行うわけであるが、耐熱性のない接着
剤の場合、巻き加工後のコア内に歪を生じさせたとして
も、300℃ないし400’Cでの磁場焼鈍プロセスに
おいて、接着剤が消失するとともに、リボン内で応力緩
和、次いで磁気誘導異方性の形成が進行するので、最終
的に、コア内には歪は残存せず、かくして優れた磁気特
性すなわち超低鉄損と高透磁率とを確保することができ
るのである。
Then, annealing is performed, but in the case of adhesives that are not heat resistant, even if distortion is caused in the core after winding, the adhesive will be As it disappears, stress relaxation and then the formation of magnetically induced anisotropy proceed within the ribbon, so that finally, no strain remains within the core, thus achieving excellent magnetic properties, i.e., ultra-low core loss and high permeability. Therefore, it is possible to secure the magnetic property.

(実施例) 実施例I 幅:1cm、厚み:25μmのFe7aB+ zsiq
c1組成のリボンの片面に、乾燥固化後の平均厚みが0
.3μmになるようにポリ酢酸ビニル系樹脂を主成分と
する接着剤を塗布し、80°Cで1分間風乾させたのち
、他のリボンを重ね合わせてから、ロールにて圧着した
。ついでそのままで室温下に2時間はど放置し積層板と
した。この積層板は切断機で切ってもはく離することは
なかった。
(Example) Example I Width: 1 cm, thickness: 25 μm Fe7aB+ zsiq
One side of the ribbon with c1 composition has an average thickness of 0 after drying and solidification.
.. An adhesive mainly composed of polyvinyl acetate resin was applied to the ribbon to a thickness of 3 μm, air-dried at 80° C. for 1 minute, and then another ribbon was layered on top of the other ribbon, which was then crimped with a roll. Then, it was left as it was at room temperature for 2 hours to form a laminate. This laminate did not peel off even when cut with a cutting machine.

その後この積層板を直径5cmのトロイダルコアに成形
し、リボン長手方向に沿って200eの磁場中で380
℃、1時間の焼鈍を施し、そのまま冷却した。
Thereafter, this laminate was formed into a toroidal core with a diameter of 5 cm, and the laminate was formed into a toroidal core with a diameter of 5 cm.
C. for 1 hour and then cooled.

かくして得られた非晶質合金トロイダルコアの鉄損はW
ll/Soは0.10W/kgであった。
The iron loss of the amorphous alloy toroidal core thus obtained is W
ll/So was 0.10W/kg.

これに対し従来法に従い、接着剤として耐熱性有機樹脂
であるポリイミドアミドを用いた場合の非晶質合金トロ
イダルコアの鉄損WI3150は0.19W/kgであ
った。
On the other hand, when polyimide amide, which is a heat-resistant organic resin, was used as an adhesive according to the conventional method, the core loss WI3150 of the amorphous alloy toroidal core was 0.19 W/kg.

実施例2 幅:1cm、厚み:24μmのFe7eB+oSi+z
組成のリボンの片面に、乾燥固化後の眉間の平均厚みが
0.1 μmになるようにフェノール系樹脂を主成分と
する接着剤を点状に塗布し、約90℃で1分間風乾させ
た後、5枚を同時に重ね合わせてからロールにて圧着し
て積層板とした。
Example 2 Width: 1 cm, thickness: 24 μm Fe7eB+oSi+z
An adhesive mainly composed of phenolic resin was applied in dots on one side of the ribbon of the composition so that the average thickness between the eyebrows after drying and solidification was 0.1 μm, and the adhesive was air-dried at about 90°C for 1 minute. Thereafter, the five sheets were stacked together and pressed together with a roll to form a laminate.

その後この積層板を直径6印のトロイダルコアに成形し
、真空中で400°C11時間の焼鈍を施し、冷却した
Thereafter, this laminate was formed into a toroidal core having a diameter of 6 marks, annealed at 400° C. for 11 hours in a vacuum, and cooled.

かくして得られた非晶質合金トロイダルコアの鉄損−+
37.。は0.12匈/kgであった。
Iron loss of the amorphous alloy toroidal core thus obtained −+
37. . was 0.12 匈/kg.

(発明の効果) かくしてこの発明によれば、非晶質磁性合金薄帯の磁気
特性を劣化させることなしに複数枚の薄帯の接着を行な
い、巻き工数ないし積み工数を大幅に低減させることが
でき、しかもコア成形後の焼鈍においても磁気特性が劣
化することがなく、電力用変圧器や高周波トランスのよ
うな使途に供して好適である。
(Effects of the Invention) Thus, according to the present invention, multiple ribbons can be bonded together without deteriorating the magnetic properties of the amorphous magnetic alloy ribbon, and the number of man-hours required for winding and stacking can be significantly reduced. Furthermore, the magnetic properties do not deteriorate even during annealing after core forming, making it suitable for use in power transformers and high frequency transformers.

Claims (1)

【特許請求の範囲】 1、非晶質磁性合金薄帯を耐熱温度が300℃以下の接
着剤により複数枚接合して得た積層板を、巻きコアまた
は積みコアに成形したのち、該接着剤の耐熱温度以上、
該非晶質磁性合金薄帯の結晶化温度未満の温度範囲にお
いて焼鈍処理を施すことを特徴とする、非晶質磁性合金
薄帯積層板を使用したコアの製造方法。 2、焼鈍処理を、磁場印加の下に行う特許請求の範囲第
1項記載の方法。
[Claims] 1. A laminate obtained by bonding a plurality of amorphous magnetic alloy ribbons with an adhesive with a heat resistance temperature of 300°C or less is formed into a wound core or stacked core, and then the adhesive over the heat-resistant temperature of
A method for producing a core using an amorphous magnetic alloy ribbon laminate, the method comprising performing an annealing treatment in a temperature range below the crystallization temperature of the amorphous magnetic alloy ribbon. 2. The method according to claim 1, wherein the annealing treatment is performed under the application of a magnetic field.
JP26059186A 1986-11-04 1986-11-04 Manufacture of core using amorphous magnetic alloy thin strip laminated plate Pending JPS63115313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26059186A JPS63115313A (en) 1986-11-04 1986-11-04 Manufacture of core using amorphous magnetic alloy thin strip laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26059186A JPS63115313A (en) 1986-11-04 1986-11-04 Manufacture of core using amorphous magnetic alloy thin strip laminated plate

Publications (1)

Publication Number Publication Date
JPS63115313A true JPS63115313A (en) 1988-05-19

Family

ID=17350074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26059186A Pending JPS63115313A (en) 1986-11-04 1986-11-04 Manufacture of core using amorphous magnetic alloy thin strip laminated plate

Country Status (1)

Country Link
JP (1) JPS63115313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034532A1 (en) 2007-07-24 2009-02-05 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its production and residual current circuit breaker
DE102006019613B4 (en) * 2006-04-25 2014-01-30 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its preparation and its use in a residual current circuit breaker
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
CN109559883A (en) * 2018-12-26 2019-04-02 江西大有科技有限公司 The preparation method of high and low temperature stability soft magnetic alloy core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875824A (en) * 1981-10-30 1983-05-07 Matsushita Electric Works Ltd Manufacture of core for transformer
JPS61164213A (en) * 1985-01-17 1986-07-24 Takaoka Ind Ltd Manufacture of amorphous transformer core
JPS63110712A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Manufacture of amorphous magnetic alloy laminated iron core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875824A (en) * 1981-10-30 1983-05-07 Matsushita Electric Works Ltd Manufacture of core for transformer
JPS61164213A (en) * 1985-01-17 1986-07-24 Takaoka Ind Ltd Manufacture of amorphous transformer core
JPS63110712A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Manufacture of amorphous magnetic alloy laminated iron core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
DE102006019613B4 (en) * 2006-04-25 2014-01-30 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its preparation and its use in a residual current circuit breaker
DE102007034532A1 (en) 2007-07-24 2009-02-05 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its production and residual current circuit breaker
US8344830B2 (en) 2007-07-24 2013-01-01 Vaccumschmelze Gmbh & Co. Kg Magnet core; method for its production and residual current device
CN109559883A (en) * 2018-12-26 2019-04-02 江西大有科技有限公司 The preparation method of high and low temperature stability soft magnetic alloy core

Similar Documents

Publication Publication Date Title
US7629870B2 (en) Process for the treatment of a thin brittle metal strip and magnetic components produced from a strip made of a nanocrystalline alloy
US4608297A (en) Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
JPH0845723A (en) Nano-crystalline alloy thin band of excellent insulating property and nano-crystalline alloy magnetic core as well as insulating film forming method of nano-crystalline alloy thin band
JPS58175654A (en) Manufacture of laminated bonded amorphous alloy band and iron core
JPS63302504A (en) Magnetic core and manufacture thereof
EP0214305A1 (en) Process for the production of a laminate of thinamorphous alloy strip and a core made of thin amorphous alloy strip
JPS63115313A (en) Manufacture of core using amorphous magnetic alloy thin strip laminated plate
JPH0554423B2 (en)
JPH06132109A (en) Compressed powder magnetic core for high frequency
JP2718948B2 (en) Manufacturing method of iron-based amorphous alloy ribbon
WO2023243697A1 (en) Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
JPH02121309A (en) Manufacture of fe-si-al magnetic core and magnetic head using same
JP2004048859A (en) Thin shape, highly efficient motor or laminate for generator, and motor or generator
JPS6174314A (en) Manufacture of transformer core
JP2584141B2 (en) Manufacturing method of wound iron core for transformer
JP3388247B2 (en) Wound core and method of manufacturing the same
JPS6025210A (en) Insulation treatment of induction apparatus core
JP2584157B2 (en) Manufacturing method of amorphous iron core
JPH0243703A (en) Laminated magnetic core and manufacture thereof
JPS63110712A (en) Manufacture of amorphous magnetic alloy laminated iron core
JPS6065502A (en) Electromagnetic iron core
JP2004047505A (en) Annealed core and its annealing method
JPH04336408A (en) Manufacture of soft magnetic composite winding core
JP2021002553A (en) Magnetic material, laminated magnetic material and laminated core, and manufacturing method of magnetic material and manufacturing method of laminated magnetic material
JPH0244131B2 (en) AMORUFUASUHENATSUKITETSUSHINNOSEISAKUHOHO