JPH06132109A - Compressed powder magnetic core for high frequency - Google Patents

Compressed powder magnetic core for high frequency

Info

Publication number
JPH06132109A
JPH06132109A JP11282593A JP11282593A JPH06132109A JP H06132109 A JPH06132109 A JP H06132109A JP 11282593 A JP11282593 A JP 11282593A JP 11282593 A JP11282593 A JP 11282593A JP H06132109 A JPH06132109 A JP H06132109A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
insulating layer
frequency
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11282593A
Other languages
Japanese (ja)
Inventor
Takashi Motoda
高司 元田
Mutsumi Abe
睦 安倍
Hidetoshi Nishimoto
英敏 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11282593A priority Critical patent/JPH06132109A/en
Publication of JPH06132109A publication Critical patent/JPH06132109A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a compressed powder magnetic core for high frequency and a method of manufacturing the same which can improve insulation property and magnetic flux density to lower an iron loss value and extend the available frequency band and moreover can improve mechanical strength to avoid damages which may be given in the manufacturing steps. CONSTITUTION:Soft magnetic powder 1 is covered with a glass structured insulating layer 2 containing Cr and P as the essential elements and the soft magnetic powders 1 are joined with each other via the insulating layer 2. Moreover, a compressed powder core is impregnated, after the annealing process, with water glass and is then dried up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電源装置用チョークコ
イル等に用いられる高周波用圧粉磁心及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency powder magnetic core used for a choke coil for a power supply device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、交流用軟磁性材料として、珪素を
含有する電磁鋼板を何層にも積層したものがトランス等
に用いられており、また最近では非晶質鋼箔も注目され
ている。これらの材料は、直流磁気特性には優れている
ものの、交流用途に用いる場合、板表面を絶縁処理し、
各鋼板間を電流が流れるのを防ぐ構造を採用する必要が
ある(例えば特開平3−39484号公報参照)。
2. Description of the Related Art Conventionally, as a soft magnetic material for AC, a stack of electromagnetic steel sheets containing silicon has been used for a transformer or the like, and recently, amorphous steel foil has been attracting attention. . Although these materials have excellent direct current magnetic characteristics, when used for alternating current applications, the surface of the plate is insulated,
It is necessary to adopt a structure that prevents current from flowing between the steel sheets (see, for example, Japanese Patent Laid-Open No. 3-39484).

【0003】ところで最近では、インバーター制御方式
の普及に伴って、高周波域での磁気性能の改善が求めら
れている。しかし、上述のような珪素鋼板等を積層して
なる積層タイプの磁心は、1KHz以下では透磁率が優
れているが、それ以上の周波数帯域では、渦電流に伴う
鉄損が増大することから、高周波用磁性材料としては不
適当である。
By the way, recently, with the spread of the inverter control system, improvement of magnetic performance in a high frequency region is required. However, the laminated-type magnetic core formed by laminating silicon steel sheets as described above has excellent magnetic permeability at 1 KHz or less, but iron loss due to eddy current increases in the frequency band above 1 KHz, It is not suitable as a magnetic material for high frequencies.

【0004】一方、高周波用磁性材料としては、いわゆ
るソフトフェライトが用いられる場合もある。このソフ
トフェライトは上記珪素鋼板等と比較すると、高周波特
性に優れ、鉄損値も低いが、磁束密度が低いという欠点
がある。
On the other hand, so-called soft ferrite may be used as the high frequency magnetic material. Compared with the above-mentioned silicon steel plate and the like, this soft ferrite is excellent in high frequency characteristics and has a low iron loss value, but has a drawback that the magnetic flux density is low.

【0005】上記のような問題に対して、近年、軟磁性
粉末にエポキシ樹脂やフッ素系樹脂を混合して圧粉した
圧粉磁心が提案されている。これは、珪素鋼やセンダス
ト等の微細な粉末を有機系絶縁バインダーで被覆し、高
周波特性の改善を図ろうとしたものである(例えば特開
昭59−50138号公報参照)。
In response to the above-mentioned problems, a dust core prepared by mixing an epoxy resin or a fluorine-based resin with a soft magnetic powder and compacting the powder has been proposed in recent years. This is an attempt to improve high-frequency characteristics by coating fine powder such as silicon steel or sendust with an organic insulating binder (see, for example, JP-A-59-50138).

【0006】[0006]

【発明が解決しようとする課題】しかし、このような軟
磁性粉末を有機系バインダーで被覆したものでは、磁心
としての耐熱性や絶縁特性がバインダーを構成する樹脂
の特性に支配されるという欠点がある。
However, the soft magnetic powder coated with an organic binder has the drawback that the heat resistance and insulating properties of the magnetic core are governed by the properties of the resin constituting the binder. is there.

【0007】そこで、より絶縁性を向上できるものとし
て、水ガラス等の無機バインダーの採用も検討され、ま
た、一部実用に供されている。
Therefore, the use of an inorganic binder such as water glass has been studied as a material capable of further improving the insulating property, and is partially put to practical use.

【0008】しかし、珪酸ソーダを主成分とする水ガラ
スは、絶縁性は高いものの耐熱性に乏しいという問題が
ある。そのため、粉末成形時に軟磁性粉末内部に発生す
る歪を解放させるために必要な温度まで加熱することが
できず、保磁力の減少を図ることが困難である。このこ
とから、高周波域での鉄損値が大きくなり、磁心として
使用可能な周波数帯域に制限が生じる問題がある。
However, the water glass containing sodium silicate as a main component has a problem that it has a high insulating property but a poor heat resistance. Therefore, the powder cannot be heated to the temperature necessary for releasing the strain generated inside the soft magnetic powder during the powder molding, and it is difficult to reduce the coercive force. Therefore, there is a problem that the iron loss value in the high frequency range becomes large and the frequency band usable as the magnetic core is limited.

【0009】本発明は上記従来の問題点に鑑みてなされ
たもので、磁束密度を向上できるとともに、鉄損を小さ
くでき、かつ周波数特性に優れた高周波用圧粉磁心及び
その製造方法を提供することを目的としている。
The present invention has been made in view of the above conventional problems, and provides a high-frequency powder magnetic core which can improve magnetic flux density, reduce iron loss, and have excellent frequency characteristics, and a method for manufacturing the same. Is intended.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、軟磁
性粉末を圧粉,接合,固化してなる高周波用圧粉磁心に
おいて、上記軟磁性粉末がCr又はPを必須元素とする
ガラス状絶縁層で被覆されており、かつ上記軟磁性粉末
同士が上記絶縁層を介して接合されていることを特徴と
している。
According to a first aspect of the present invention, there is provided a high frequency powder magnetic core obtained by compacting, bonding and solidifying soft magnetic powder, wherein the soft magnetic powder contains Cr or P as an essential element. Is characterized in that the soft magnetic powders are bonded to each other via the insulating layer.

【0011】請求項2の発明は、軟磁性粉末を圧粉,接
合,固化してなる高周波用圧粉磁心の製造方法におい
て、上記軟磁性粉末と、Cr又はPを必須元素とするガ
ラス状絶縁層とを混合するとともに該混合体を乾燥させ
て水分を除去する第1工程と、該乾燥した混合体を粉末
成形プレスにて固化成形する第2工程と、該固化成形体
を焼鈍する第3工程とを備えたことを特徴としている。
According to a second aspect of the present invention, there is provided a method for producing a high-frequency powder magnetic core, which is produced by compacting, bonding and solidifying soft magnetic powder, and the soft magnetic powder and glassy insulation containing Cr or P as an essential element. A first step of mixing the layers and drying the mixture to remove water, a second step of solidifying the dried mixture with a powder molding press, and a third step of annealing the solidified body It is characterized by having a process.

【0012】ここで本発明における軟磁性粉末として
は、珪素鋼粉,センダスト粉,アモルファス粉さらには
パーマロイ粉等が採用可能であるが、高純度アトマイズ
鉄粉がより望ましい。またこの場合、磁気特性をより向
上させるには、軟磁性粉末を双ロールやボールミルで偏
平率2以上に偏平加工することにより反磁界係数を低下
させることが有効である。
Here, as the soft magnetic powder in the present invention, silicon steel powder, sendust powder, amorphous powder, and permalloy powder can be adopted, but high-purity atomized iron powder is more preferable. Further, in this case, in order to further improve the magnetic properties, it is effective to reduce the demagnetizing factor by subjecting the soft magnetic powder to a flatness of 2 or more with a twin roll or a ball mill.

【0013】ところで、上記軟磁性粉末同士をガラス絶
縁層を介して接合する場合、その構造上接合部分にポア
(空隙)が生じ易く、しかも樹脂を用いた場合に比べて
強度が低くなることから、例えばコイルの巻線作業中や
部品の組み立て作業中に何らかの外力が加わると破損し
易いという懸念がある。
By the way, when the soft magnetic powders are bonded to each other through the glass insulating layer, pores (voids) are apt to occur in the bonding portion due to their structure, and the strength is lower than that when a resin is used. For example, there is a concern that if some external force is applied during the coil winding work or the component assembly work, the coil may be easily damaged.

【0014】そこで請求項3の発明は、上記第3工程で
焼鈍処理した固化成形体を水ガラスに浸漬した後、乾燥
させたことを特徴としている。
Therefore, the invention of claim 3 is characterized in that the solidified molded body annealed in the third step is immersed in water glass and then dried.

【0015】[0015]

【作用】本発明に係る高周波用圧粉磁心及びその製造方
法によれば、軟磁性粉末をガラス状絶縁層で被覆し、該
軟磁性粉末同士を元来絶縁特性の良好なガラス状絶縁層
を介して接合したので、絶縁性及び磁束密度を向上てき
る。そして本発明では、上記ガラス状絶縁層の構成元素
としてCr,Pを必須としたので、それだけ耐熱性が向
上し、固化成形時に生じる歪を解放するのに必要な温度
でもって焼鈍を行うことができ、その結果鉄損値を小さ
くできるとともに、使用可能な周波数帯域を拡大でき
る。
According to the dust core for high frequency and the method for producing the same according to the present invention, the soft magnetic powder is coated with the glass-like insulating layer, and the soft magnetic powder is formed into a glass-like insulating layer having originally good insulating properties. Since they are bonded via the insulating layer, the insulating property and the magnetic flux density are improved. In the present invention, Cr and P are indispensable as constituent elements of the above glassy insulating layer, so that heat resistance is improved by that much, and annealing can be performed at a temperature necessary to release the strain generated during solidification molding. As a result, the iron loss value can be reduced and the usable frequency band can be expanded.

【0016】また請求項3の発明では、上記焼鈍後の固
化成形体に水ガラスを含浸したので、該水ガラスが絶縁
層間のポアに浸透して絶縁層同士をさらに強固に接合す
ることとなり、それだけ圧粉磁心自体の耐衝撃性等の機
械的強度を向上できる。従って、巻線作業や組み立て作
業を行う場合の破損の問題を回避でき、品質に対する信
頼性を向上できる。
Further, in the invention of claim 3, since the solidified molded body after the annealing is impregnated with water glass, the water glass penetrates into the pores between the insulating layers to further firmly bond the insulating layers, The mechanical strength such as impact resistance of the dust core itself can be improved accordingly. Therefore, it is possible to avoid the problem of damage when performing the winding work or the assembling work, and it is possible to improve the reliability of quality.

【0017】さらにまた、上記軟磁性粉末を偏平率2以
上の純鉄粉で構成した場合は、反磁界係数を低下させる
ことができ、磁束密度等の磁性特性をさらに向上でき
る。
Further, when the soft magnetic powder is made of pure iron powder having an oblateness of 2 or more, the demagnetizing factor can be lowered and the magnetic characteristics such as magnetic flux density can be further improved.

【0018】[0018]

【実施例】以下、本発明の実施例を添付図に基づいて説
明する。図1及び図2は本発明の一実施例による高周波
圧粉磁心及びその製造方法を説明するための図であり、
図1は絶縁処理された軟磁性粉末の模式図、図2は製造
工程を示す模式図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 are views for explaining a high-frequency dust core and a method for manufacturing the same according to an embodiment of the present invention.
FIG. 1 is a schematic diagram of soft magnetic powder subjected to insulation treatment, and FIG. 2 is a schematic diagram showing a manufacturing process.

【0019】図1において、1は本実施例の圧粉磁心を
構成する軟磁性粉末であり、該粉末1の外表面はガラス
状絶縁層2で被覆されている。そして、上記軟磁性粉末
1同士は上記絶縁層2を介して接合されている。ここで
上記軟磁性粉末1は、高純度アトマイズ鉄粉をボールミ
ル又は双ロールで偏平率(長径/短径)2以上に偏平処
理してなるものである。また、上記絶縁層2は、Cr,
Pを含有するガラス状のものであり、後述する歪取りの
焼鈍処理において硬化処理されたもである。
In FIG. 1, reference numeral 1 is a soft magnetic powder constituting the dust core of this embodiment, and the outer surface of the powder 1 is covered with a glass-like insulating layer 2. The soft magnetic powders 1 are bonded to each other via the insulating layer 2. The soft magnetic powder 1 is obtained by flattening high-purity atomized iron powder with a ball mill or twin rolls to a flatness (major axis / minor axis) of 2 or more. The insulating layer 2 is made of Cr,
It was a glass-like material containing P, and was hardened in the annealing treatment for strain relief described later.

【0020】次に、図2に沿って圧粉磁心の一製造方法
を説明する。まず、1リットル当たり、重クロム酸マグ
ネシュウム(120g)、リン酸(75g)、尿素(5
g)、グリセリン(18g)を含む混合液からなる絶縁
処理液4を作成し、この処理液4を60メッシュアンダ
ーの純鉄粉3(100g)に対して5〜100ml添
加,混合する。そしてこの混合体5を150℃〜300
℃で約5〜25分間乾燥させる(図2(a),(b)、
第1工程)。
Next, a method of manufacturing a dust core will be described with reference to FIG. First, per liter, magnesium dichromate (120 g), phosphoric acid (75 g), urea (5
g) and an insulating treatment liquid 4 made of a mixed liquid containing glycerin (18 g), and 5 to 100 ml of the treatment liquid 4 is added to and mixed with 60 mesh underpure pure iron powder 3 (100 g). Then, the mixture 5 is heated to 150 ° C to 300
Dry at 5 ° C for about 5 to 25 minutes (Figs. 2 (a), (b),
First step).

【0021】ここで上記絶縁層形成用処理液4の濃度
は、混合体5の流動性,乾燥処理方法に応じて変化させ
ることが可能である。しかし粉末表面の錆発生によって
特性劣化を招くことがあるので、錆が発生しないよう注
意する必要がある。また必要に応じて上記被膜処理を2
回以上繰り返すこともでき、このようにすれば絶縁性を
改善できる効果があり、高周波磁性材料としてより特性
の向上が期待できる。
The concentration of the insulating layer forming treatment liquid 4 can be changed according to the fluidity of the mixture 5 and the drying treatment method. However, it is necessary to take care not to generate rust, because the characteristics may be deteriorated due to the generation of rust on the powder surface. If necessary, the above coating treatment
It can be repeated more than once, and in this way, there is an effect that the insulating property can be improved, and further improvement in characteristics as a high frequency magnetic material can be expected.

【0022】なお、上記軟磁性粉末としては、上記純鉄
粉の他に、珪素鋼粉,センダスト粉,アモルファス粉,
パーマロイ粉等が採用可能である。
As the soft magnetic powder, in addition to the pure iron powder, silicon steel powder, sendust powder, amorphous powder,
Permalloy powder or the like can be used.

【0023】そして、上記水分が除去された混合粉に必
要に応じてステアリン酸Ca,ステアリン酸Zn等の潤
滑剤を0.5〜1.0wt%程度添加し、この潤滑剤が添
加された混合粉を通常の粉末成形プレス6により所定の
磁心形状に固化成形する(図2(c)、第2工程)。
If necessary, a lubricant such as Ca stearate or Zn stearate is added to the mixed powder from which the water content has been removed in an amount of 0.5 to 1.0 wt%, and the mixture containing the lubricant is added. The powder is solidified and molded into a predetermined magnetic core shape by a normal powder molding press 6 (FIG. 2C, second step).

【0024】この固化成形において、プレス6の成形圧
力は3〜6トン/cm2 が適当である。3トン/cm2 以下
の圧力では、成形体が脆くハンドリングが困難となり、
また6トン/cm2 以上では、形成された絶縁被膜の破壊
を招き高周波特性の劣化の原因となるとともに、金型寿
命の低下を招くからである。
In this solidification molding, the molding pressure of the press 6 is suitably 3 to 6 ton / cm 2 . At a pressure of 3 ton / cm 2 or less, the molded body becomes brittle and handling becomes difficult.
On the other hand, if it is 6 tons / cm 2 or more, the formed insulating coating is destroyed, which causes deterioration of high-frequency characteristics and shortens the die life.

【0025】次いで、上記固化成形体を、400℃〜6
00℃で約1時間加熱して脱脂,焼鈍する(第3工
程)。なおこの焼鈍処理はAr,N等の不活性ガス雰囲
気で処理するとより望ましい。その結果、純鉄粉中に生
じていた歪が解放されると同時に絶縁層が硬化処理され
てガラス状となり、所定形状の圧粉磁心が得られる。
Then, the above-mentioned solidified molded body is heated to 400 ° C. to 6 ° C.
Degreasing and annealing are performed by heating at 00 ° C. for about 1 hour (third step). It is more desirable to perform this annealing treatment in an atmosphere of an inert gas such as Ar or N. As a result, the strain generated in the pure iron powder is released, and at the same time, the insulating layer is hardened to be glass-like, and a dust core having a predetermined shape can be obtained.

【0026】このようにして、本実施例で得られた高周
波用圧粉磁心は、その組織状態として、軟磁性粉末1そ
れぞれが、ガラス状絶縁層2で分離されているので、絶
縁性及び磁束密度を向上することができる。
In this way, the soft magnetic powder 1 is separated by the glass-like insulating layer 2 in the texture state of the high-frequency powder magnetic core obtained in this example, so that the insulating property and magnetic flux are The density can be improved.

【0027】そして、上記絶縁層2の構成元素としてC
r,Pを必須としたので、該絶縁層2の耐熱性を従来の
水ガラスの場合に比べて向上でき、そのため粉末成形時
に軟磁性粉末内部に発生する歪を解放させるために必要
な温度まで加熱できるようになった。その結果、水ガラ
ス等の無機バインダーを用いた場合のように、保磁力の
減少を図ることが困難であるという問題も解消でき、高
周波域での鉄損値が小さくなり、使用可能な周波数帯域
を拡大できる。
C is used as a constituent element of the insulating layer 2.
Since r and P are indispensable, the heat resistance of the insulating layer 2 can be improved as compared with the case of conventional water glass, and therefore, up to the temperature necessary for releasing the strain generated inside the soft magnetic powder during powder molding. You can now heat. As a result, it is possible to solve the problem that it is difficult to reduce the coercive force as in the case of using an inorganic binder such as water glass, the iron loss value in the high frequency range becomes small, and the usable frequency band is reduced. Can be expanded.

【0028】また、上記粉末を有機系絶縁バインダーで
被覆していないので、材料の耐熱性や絶縁特性が構成す
る樹脂の特性に支配されるという問題も解消できる。
Further, since the above powder is not coated with the organic insulating binder, it is possible to solve the problem that the heat resistance and insulating characteristics of the material are governed by the characteristics of the constituting resin.

【0029】さらに高周波電流は金属導体の表面に集中
し易いが、本実施例では軟磁性粉末を60メッシュアン
ダーと微粉化したので、鉄損値の向上だけでなく、周波
数特性を改善できる。さらにまた本実施例では軟磁性粉
末を双ロールやボールミルで偏平率2以上に偏平加工し
たので、反磁界係数を低下させる効果があり、磁束密度
をさらに向上できる。
Further, the high-frequency current tends to concentrate on the surface of the metal conductor, but in this embodiment, the soft magnetic powder is finely pulverized to 60 mesh under, so that not only the iron loss value but also the frequency characteristic can be improved. Furthermore, in this embodiment, since the soft magnetic powder is flattened with a twin roll or a ball mill to have an oblateness of 2 or more, there is an effect of lowering the demagnetizing factor and the magnetic flux density can be further improved.

【0030】図3は、本発明の実験結果を説明するため
の各種試料における交流初透磁率の周波数依存性を示す
図である。
FIG. 3 is a diagram showing the frequency dependence of the AC initial magnetic permeability in various samples for explaining the experimental results of the present invention.

【0031】図中、特性曲線(1)は、上記実施例にお
ける被膜処理後、4.5トン/cm2で粉末成形し、この
後500℃で焼鈍固化した第1実施例試料の特性を、特
性曲線(2)は、上記実施例における被膜処理後、イミ
ド樹脂を重量当たり1%添加,混合した粉末を400℃
で焼鈍固化した第2実施例試料の特性を、特性曲線
(3)は、上記実施例における被膜処理後、エポキシ樹
脂粉末を1%添加,混合した粉末を200℃で焼鈍固化
した第3実施例試料の特性をそれぞれ示す。
In the figure, the characteristic curve (1) shows the characteristics of the sample of the first example which was powder-molded at 4.5 ton / cm 2 after the coating treatment in the above-mentioned example and then annealed and solidified at 500 ° C. The characteristic curve (2) is 400 ° C. of the powder obtained by adding and mixing 1% by weight of the imide resin after the film treatment in the above example.
The characteristic curve (3) of the second embodiment sample annealed and solidified in Example 3 is that the powder obtained by adding 1% of the epoxy resin powder after the coating treatment in the above embodiment and mixing is annealed and solidified at 200 ° C. The characteristics of each sample are shown below.

【0032】また、特性曲線(4)は、上記実施例と同
じ鉄粉に絶縁性被膜処理を施すことなくイミド樹脂のみ
を添加した第1比較例試料の特性を、特性曲線(5)
は、同じ鉄粉に絶縁性被膜処理を施すことなくエポキシ
樹脂のみを添加した第2比較例試料の特性をそれぞれ示
す。
The characteristic curve (4) is the characteristic curve of the first comparative sample in which only the imide resin was added to the same iron powder as that used in the above-mentioned example without the insulating coating treatment.
Shows the characteristics of the second comparative example sample in which only the epoxy resin was added to the same iron powder without the insulating film treatment.

【0033】図において、被膜処理を施していない第
1,第2比較試料(4),(5)では、1KHz前後の
周波数帯域では透磁率が優れているが、それ以上になる
と、渦電流に伴う鉄損の増大により高周波材料としては
不適当であることがわかる。
In the figure, the first and second comparative samples (4) and (5) not subjected to the coating treatment have excellent magnetic permeability in the frequency band around 1 KHz. It can be seen that it is unsuitable as a high frequency material due to the increase in iron loss.

【0034】これに対して、本実施例による絶縁被膜処
理を施した第1,第2実施例試料(1),(2)では、
周波数が高くなっても安定した透磁率を示し、高周波磁
性材料として優れた特性を保持していることがわかる。
On the other hand, in the samples (1) and (2) of the first and second embodiments, which have been subjected to the insulating film treatment according to the present embodiment,
It can be seen that stable magnetic permeability is exhibited even when the frequency becomes high, and excellent characteristics are maintained as a high frequency magnetic material.

【0035】また、第3実施例試料(3)では粉末の結
合,固化のためにエポキシ樹脂を加えているので、上記
(1),(2)と比較して周波数特性は劣るもののより
低温で固化できるメリットがある。
Further, in the third embodiment sample (3), since the epoxy resin is added for binding and solidifying the powder, the frequency characteristics are inferior to those of the above (1) and (2), but at a lower temperature. There is an advantage that it can be solidified.

【0036】次に、請求項3の発明の一実施例による高
周波用圧粉磁心の製造方法について説明する。本実施例
方法は、上述した第1工程〜第3工程と略同様の方法に
て圧粉磁心を製造する。そして、この第3工程で得られ
た圧粉磁心をガラス水溶液中に浸漬した後、大気中にて
300℃以下の温度で乾燥させる。これにより水ガラス
が圧粉磁心の絶縁層間に生じたポア内に浸透し、該絶縁
層同士をさらに強固に接合することとなる。
Next, a method of manufacturing a high frequency powder magnetic core according to an embodiment of the present invention will be described. In the method of this example, a dust core is manufactured by a method substantially similar to the above-described first to third steps. Then, the powder magnetic core obtained in the third step is immersed in a glass aqueous solution, and then dried in the atmosphere at a temperature of 300 ° C. or lower. As a result, the water glass permeates into the pores formed between the insulating layers of the dust core, and the insulating layers are further firmly joined together.

【0037】ここで、上記ガラス水溶液は水ガラス:水
=1:1〜8の割合にするのが望ましい。この水量が多
すぎると接合強度の向上があまり得られなくなるからで
ある。またガラス水溶液の含浸効果を向上させるには、
例えば市販の荏原コージライトの#62等の界面活性剤
を添加するのが好ましい。さらに上記浸漬時間は圧粉磁
心のサイズ,形状等によって異なるが、特に限定する必
要はない。例えば、5t×36φ×24φ(成形密度8
0%以上)の圧粉磁心を用いて浸漬時間を1分〜60分
の範囲で変化させたところ、何れも圧環強度は変わらな
かったが、より確実にするには水ガラス溶液を真空脱気
することが良い。
Here, it is desirable that the glass aqueous solution has a ratio of water glass: water = 1: 1 to 8. This is because if the amount of water is too large, the joint strength cannot be improved so much. To improve the impregnation effect of the glass aqueous solution,
For example, it is preferable to add a surfactant such as commercially available Ebara cordierite # 62. Furthermore, the immersion time differs depending on the size, shape, etc. of the dust core, but is not particularly limited. For example, 5t × 36φ × 24φ (molding density 8
(0% or more), when the immersion time was changed in the range of 1 minute to 60 minutes using a dust core, the radial crushing strength did not change in any case, but in order to be more certain, the water glass solution was vacuum degassed. Good to do.

【0038】また、上記乾燥温度を高くするほど乾燥時
間を短縮できるが、急激な乾燥を行うと圧粉磁心の曲が
り,ふくれ等の問題が生じ易くなることから、できるだ
け避けた方が良い。さらに乾燥温度が300℃を越える
と酸化し易くなり、その結果磁性特性が劣化することか
ら、これ以下にするのが望ましい。
Although the drying time can be shortened as the drying temperature is raised, problems such as bending and swelling of the dust core are likely to occur if the drying is performed rapidly. Further, if the drying temperature exceeds 300 ° C., oxidation is likely to occur, and as a result, the magnetic properties deteriorate, so it is desirable to set the temperature below this.

【0039】[0039]

【表1】 [Table 1]

【表2】 [Table 2]

【0040】表1は、本実施例の実験結果を説明するた
めの各試料No. 1〜No. 17における圧壊強度及び交流
初透磁率を示す。
Table 1 shows the crush strength and the AC initial permeability of each of the samples No. 1 to No. 17 for explaining the experimental results of this example.

【0041】表中、試料No. 1は水ガラスを含浸してい
ない場合、試料No. 2,No. 12,No. 13は乾燥温度
をそれぞれ80℃,250℃,300℃に変化させた場
合、試料No. 3〜No. 7は焼鈍温度を400℃〜600
℃に変化させた場合、試料No. 8,No. 9は水ガラス濃
度を1:4,1:8に変化させた場合を示す。また試料
No. 10,No. 11は浸漬時間を15分,60分とした
場合、試料No. 14は磁性粉末に3%珪素鋼粉,センダ
スト粉を採用した場合、さらに試料No. 17は潤滑剤に
ステアリン酸Znを用いた場合を示す。
In the table, Sample No. 1 is not impregnated with water glass, and Samples No. 2, No. 12 and No. 13 are when the drying temperature is changed to 80 ° C., 250 ° C. and 300 ° C., respectively. , Sample Nos. 3 to 7 have annealing temperatures of 400 ° C to 600 ° C.
When the temperature was changed to ° C, Samples No. 8 and No. 9 show the cases where the water glass concentration was changed to 1: 4 and 1: 8. Also sample
No. 10 and No. 11 are dipping times of 15 minutes and 60 minutes, Sample No. 14 is 3% silicon steel powder and Sendust powder as magnetic powder, and Sample No. 17 is lubricant. The case where Zn stearate is used is shown.

【0042】表1において、水ガラスを含浸していない
試料No. 1の場合は圧壊強度が0.8Kg/cm2となってい
る。これに対して水ガラスを含浸した各試料No. 2〜N
o. 17の場合は何れも圧壊強度が1.3〜6.0Kg/cm
2と向上していることがわかる。ところで上記各試料No.
2〜No. 17において、焼鈍温度を400℃にすると
圧壊強度は1.3Kg/cm2と比較的低く、温度を上げるほ
ど強度も高くなっている。しかし600℃にすると透磁
率の低下が認められることから、焼鈍温度は425〜5
00℃の範囲が好ましい。また、水ガラス濃度を薄くす
るほど圧壊強度は低くなっており、さらに乾燥温度を3
00℃にすると透磁率が若干低下している。一方、浸漬
時間,磁性粉末,活性剤等を変えても圧壊強度への影響
はほとんど見られない。
In Table 1, in the case of Sample No. 1 which is not impregnated with water glass, the crushing strength is 0.8 kg / cm 2 . On the other hand, each sample No. 2 to N impregnated with water glass
In the case of o.17, the crushing strength is 1.3 to 6.0 Kg / cm.
You can see that it has improved to 2 . By the way, each sample No.
In Nos. 2 to 17, when the annealing temperature is 400 ° C., the crush strength is relatively low at 1.3 kg / cm 2, and the strength increases as the temperature increases. However, when the temperature is set to 600 ° C., a decrease in magnetic permeability is recognized, so the annealing temperature is 425 to 5
The range of 00 ° C is preferred. Moreover, the crushing strength becomes lower as the concentration of water glass becomes thinner, and the drying temperature is set to 3
When it is set to 00 ° C, the magnetic permeability is slightly lowered. On the other hand, even if the immersion time, magnetic powder, activator, etc. are changed, there is almost no effect on the crush strength.

【0043】このように焼鈍処理後の圧粉磁心に水ガラ
スを含浸させ、これを乾燥させることにより機械的強度
を大幅に向上でき、巻き線,取り扱い時の損傷を回避で
き、品質に対する信頼性を向上できる。
Thus, by impregnating the powder magnetic core after the annealing treatment with water glass and drying it, the mechanical strength can be greatly improved, the winding and the damage during handling can be avoided, and the reliability of the quality can be improved. Can be improved.

【0044】[0044]

【発明の効果】以上のように本発明に係る高周波用圧粉
磁心及びその製造方法によれば、軟磁性粉末をCr又は
Pを必須元素とするガラス状絶縁層で被覆し、該軟磁性
粉末同士をガラス状絶縁層を介して接合したので、絶縁
性及び磁束密度を向上でき、鉄損を小さくできるととも
に使用可能の周波数帯域を拡大できる効果がある。また
請求項3の発明によれば、焼鈍処理した圧粉磁心に水ガ
ラスを含浸させたので、磁性特性を劣化させることなく
ガラス絶縁層間の接合強度を向上でき、取り扱い時の損
傷を回避できる効果がある。
As described above, according to the high-frequency dust core and the method for producing the same according to the present invention, the soft magnetic powder is coated with the glass-like insulating layer containing Cr or P as an essential element, and the soft magnetic powder is coated. Since they are bonded to each other via the glass-like insulating layer, the insulating property and the magnetic flux density can be improved, the iron loss can be reduced, and the usable frequency band can be expanded. Further, according to the invention of claim 3, since the annealed powder magnetic core is impregnated with water glass, the bonding strength between the glass insulating layers can be improved without deteriorating the magnetic properties, and the damage during handling can be avoided. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の一実施例による絶縁処理され
た軟磁性粉末の模式図である。
FIG. 1 is a schematic view of an insulating-treated soft magnetic powder according to an embodiment of the invention of claim 1.

【図2】請求項2の発明の一実施例による圧粉磁心の製
造方法の模式図である。
FIG. 2 is a schematic view of a method of manufacturing a dust core according to an embodiment of the invention of claim 2.

【図3】本発明の効果を説明するための実験結果を示す
交流初透磁率−周波数特性図である。
FIG. 3 is an AC initial permeability-frequency characteristic diagram showing experimental results for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 軟磁性粉末 2 ガラス状絶縁層 1 soft magnetic powder 2 glassy insulating layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性粉末を圧粉,接合,固化してなる
高周波用圧粉磁心において、上記軟磁性粉末がCr又は
Pを必須元素とするガラス状絶縁層で被覆されており、
かつ上記軟磁性粉末同士が上記絶縁層を介して接合され
ていることを特徴とする高周波用圧粉磁心。
1. A high frequency powder magnetic core obtained by compacting, bonding and solidifying soft magnetic powder, wherein the soft magnetic powder is covered with a glass-like insulating layer containing Cr or P as an essential element.
Further, the soft magnetic powders are bonded to each other via the insulating layer, so that a high-frequency powder magnetic core.
【請求項2】 軟磁性粉末を圧粉,接合,固化してなる
高周波用圧粉磁心の製造方法において、上記軟磁性粉末
と、Cr又はPを必須元素とするガラス状絶縁層とを混
合するとともに該混合体を乾燥させて水分を除去する第
1工程と、該乾燥した混合体を粉末成形プレスにて固化
成形する第2工程と、該固化成形体を焼鈍する第3工程
とを備えたことを特徴とする高周波圧粉磁心の製造方
法。
2. A method for producing a high-frequency powder magnetic core, which is obtained by compacting, bonding, and solidifying soft magnetic powder, wherein the soft magnetic powder is mixed with a glass-like insulating layer containing Cr or P as an essential element. In addition, a first step of drying the mixture to remove water, a second step of solidifying and molding the dried mixture with a powder molding press, and a third step of annealing the solidified body A method of manufacturing a high-frequency dust core, comprising:
【請求項3】 請求項2において、上記第3工程で焼鈍
処理した固化成形体を水ガラスに浸漬した後、乾燥させ
たことを特徴とする高周波圧粉磁心の製造方法。
3. The method for producing a high-frequency powder magnetic core according to claim 2, wherein the solidified compact that has been annealed in the third step is immersed in water glass and then dried.
JP11282593A 1992-09-03 1993-05-14 Compressed powder magnetic core for high frequency Withdrawn JPH06132109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11282593A JPH06132109A (en) 1992-09-03 1993-05-14 Compressed powder magnetic core for high frequency

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-235714 1992-09-03
JP23571492 1992-09-03
JP11282593A JPH06132109A (en) 1992-09-03 1993-05-14 Compressed powder magnetic core for high frequency

Publications (1)

Publication Number Publication Date
JPH06132109A true JPH06132109A (en) 1994-05-13

Family

ID=26451899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11282593A Withdrawn JPH06132109A (en) 1992-09-03 1993-05-14 Compressed powder magnetic core for high frequency

Country Status (1)

Country Link
JP (1) JPH06132109A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419877B1 (en) 2001-01-26 2002-07-16 Höganäs Ab Compressed soft magnetic materials
JP2003522298A (en) * 2000-02-11 2003-07-22 ホガナス アクチボラゲット Iron powder and method for producing the same
US7029769B2 (en) 2002-03-20 2006-04-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Insulation film, powder for magnetic core and powder magnetic core and processes for producing the same
JP2012060194A (en) * 2010-07-27 2012-03-22 Kobe Steel Ltd Multi-phase transformer and transformation system
JP2012124513A (en) * 1995-07-18 2012-06-28 Vishay Dale Electronics Inc High current thin inductor manufacturing method
JP2012253317A (en) * 2011-05-09 2012-12-20 Kobe Steel Ltd Manufacturing method of dust core, and dust core manufactured by the method
US9263181B2 (en) 2010-07-27 2016-02-16 Kobe Steel, Ltd. Multi-phase transformer and transformation system
JP2016127042A (en) * 2014-12-26 2016-07-11 株式会社豊田中央研究所 Coating treatment liquid, dust core, and powder for magnetic core and production method thereof
JP2017017366A (en) * 2016-10-27 2017-01-19 太陽誘電株式会社 Electronic component
US20170178775A1 (en) * 2014-07-16 2017-06-22 Hitachi Metals, Ltd. Method for manufacturing magnetic core, magnetic core, and coil component using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124513A (en) * 1995-07-18 2012-06-28 Vishay Dale Electronics Inc High current thin inductor manufacturing method
JP2013084988A (en) * 1995-07-18 2013-05-09 Vishay Dale Electronics Inc Method of manufacturing high-current thin inductor
JP2003522298A (en) * 2000-02-11 2003-07-22 ホガナス アクチボラゲット Iron powder and method for producing the same
US6419877B1 (en) 2001-01-26 2002-07-16 Höganäs Ab Compressed soft magnetic materials
US7029769B2 (en) 2002-03-20 2006-04-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Insulation film, powder for magnetic core and powder magnetic core and processes for producing the same
JP2012060194A (en) * 2010-07-27 2012-03-22 Kobe Steel Ltd Multi-phase transformer and transformation system
US9263181B2 (en) 2010-07-27 2016-02-16 Kobe Steel, Ltd. Multi-phase transformer and transformation system
JP2012253317A (en) * 2011-05-09 2012-12-20 Kobe Steel Ltd Manufacturing method of dust core, and dust core manufactured by the method
US20170178775A1 (en) * 2014-07-16 2017-06-22 Hitachi Metals, Ltd. Method for manufacturing magnetic core, magnetic core, and coil component using same
US10573441B2 (en) * 2014-07-16 2020-02-25 Hitachi Metals, Ltd. Method for manufacturing magnetic core
JP2016127042A (en) * 2014-12-26 2016-07-11 株式会社豊田中央研究所 Coating treatment liquid, dust core, and powder for magnetic core and production method thereof
JP2017017366A (en) * 2016-10-27 2017-01-19 太陽誘電株式会社 Electronic component

Similar Documents

Publication Publication Date Title
JP2710152B2 (en) High frequency dust core and manufacturing method thereof
JP5412425B2 (en) Composite magnetic material and method for producing the same
EP1808242B1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
WO2005073989A1 (en) Dust core and method for producing same
EP0926688B1 (en) Magnetic composite article and manufacturing method using Fe-Al-Si powder
JPH06132109A (en) Compressed powder magnetic core for high frequency
US5138393A (en) Magnetic core
JP4115612B2 (en) Composite magnetic material and method for producing the same
US6723179B2 (en) Soft magnetism alloy powder, treating method thereof, soft magnetism alloy formed body, and production method thereof
JP2007221869A (en) Laminate
US5242760A (en) Magnetic ribbon and magnetic core
US5993729A (en) Treatment of iron powder compacts, especially for magnetic applications
JPH09180924A (en) Dust core and manufacture thereof
CN113744948A (en) Amorphous magnetic powder core precursor particle, amorphous magnetic powder core, preparation method of amorphous magnetic powder core and inductance device
JP2000232014A (en) Manufacture of composite magnetic material
JP4367709B2 (en) Laminated oxide film coated iron powder
JPH11238614A (en) Soft magnetic material and manufacture thereof and electrical equipment using the same
JPH06236808A (en) Composite magnetic material and its manufacture
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JPH06204021A (en) Composite magnetic material and its manufacture
JP2009259979A (en) Dust core, manufacturing method of dust core, choke coil, and its manufacturing method
JPH10208923A (en) Composite magnetic material and production thereof
JP2004221453A (en) Method of manufacturing dust core and dust core
JP3388247B2 (en) Wound core and method of manufacturing the same
JPH01294804A (en) Ferromagnetic powder for dust core and dust core

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801