JP2007221869A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2007221869A
JP2007221869A JP2006037495A JP2006037495A JP2007221869A JP 2007221869 A JP2007221869 A JP 2007221869A JP 2006037495 A JP2006037495 A JP 2006037495A JP 2006037495 A JP2006037495 A JP 2006037495A JP 2007221869 A JP2007221869 A JP 2007221869A
Authority
JP
Japan
Prior art keywords
flux density
soft magnetic
laminate
less
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006037495A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Hiromitsu Itabashi
弘光 板橋
Yuichi Ogawa
雄一 小川
Katsuto Yoshizawa
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006037495A priority Critical patent/JP2007221869A/en
Publication of JP2007221869A publication Critical patent/JP2007221869A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate, employing a soft magnetic alloy thin band principally comprising Fe and exhibiting high saturation flux density, high initial relative permeability, and low coercive force. <P>SOLUTION: In the laminate, obtained by bonding a plurality of sheets of soft magnetic alloy thin band principally comprising Fe and having a thickness of 50 μm or smaller, the density is 6.2 g/cm<SP>3</SP>or higher, the saturation flux density is 1.42T or higher, and the coercive force is 10 A/m or smaller. Flux density B<SB>8000</SB>in application magnetic field 8000 A/m can be made 1.4T or higher. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は軟磁性合金薄帯を積層して構成される積層体に関するものであり、特に車載用、電子部品用などの回転機用磁心として活用可能なものである。   The present invention relates to a laminate formed by laminating soft magnetic alloy ribbons, and can be used particularly as a magnetic core for a rotating machine for in-vehicle use and electronic parts.

トランスやモータ、発電機等に用いられる磁心には、安価でかつ優れた磁気特性を得るために、電磁鋼板を積層した積層磁心が多く用いられている。この積層磁心は電磁鋼板をロータ形状などに打ち抜き加工し、その後所望の厚さまで積層し、溶接やかしめ加工などにより一体化して作られている。現在、モータは小形化、高速化、高効率化が進み、高周波でより鉄損の小さい材料が要求される、溶接やかしめ加工した電磁鋼板の溶接部やかしめ部近傍では歪などによる磁性劣化が生じるため、鉄損が増大したり、透磁率が低下したりするという問題がある。また電磁鋼板では、板厚0.5mmや0.35mm程度のものが通常使われるが、モータが高速化するに伴い渦電流損失が増加するという問題点がある。この問題点を解決する手段として、近年0.1mm程度のさらに薄い電磁鋼板も製造されているが、薄くなればなるほど薄板化のための冷間圧延工程が複雑となり製造価格が高くなり、安価なトランスやモータが製造できないという問題がある。   For magnetic cores used in transformers, motors, generators, etc., a laminated magnetic core in which electromagnetic steel sheets are laminated is often used in order to obtain inexpensive and excellent magnetic properties. This laminated magnetic core is made by punching a magnetic steel sheet into a rotor shape or the like, then laminating it to a desired thickness, and integrating it by welding or caulking. Currently, motors are becoming smaller, faster, and more efficient, requiring materials with lower iron loss at high frequencies. Magnetic deterioration due to strain or the like occurs near the welded or caulked parts of welded and caulked electrical steel sheets. As a result, there is a problem that iron loss increases or magnetic permeability decreases. Further, electromagnetic steel sheets having a thickness of about 0.5 mm or 0.35 mm are usually used, but there is a problem that eddy current loss increases as the motor speed increases. As a means for solving this problem, a thinner magnetic steel sheet of about 0.1 mm has been manufactured in recent years. However, the thinner the sheet, the more complicated the cold rolling process for thinning, and the higher the manufacturing price, and the lower the cost. There is a problem that transformers and motors cannot be manufactured.

渦電流損失は磁性薄帯の板厚にほぼ比例するため、板厚が薄いほど、渦電流損を小さくできることが知られている。エネルギー・環境問題に対して高効率化が求められているモータでは、特に低鉄損、高透磁率化が可能な材質が必要である。そのため、特許文献1、特許文献2に記載されるような、軟磁性合金薄帯を複数枚積層し、薄帯同士を樹脂で結着させた磁性積層板が検討され始めてきた。
特開平2004−48859号公報((0034)〜(0035)、図2) 特公表2003/060175号公報(第5頁、図1)
Since eddy current loss is substantially proportional to the thickness of the magnetic ribbon, it is known that the eddy current loss can be reduced as the plate thickness decreases. A motor that is required to have high efficiency in response to energy / environmental problems particularly needs a material that can achieve low iron loss and high magnetic permeability. Therefore, as described in Patent Literature 1 and Patent Literature 2, magnetic laminated plates in which a plurality of soft magnetic alloy ribbons are laminated and the ribbons are bonded with resin have begun to be studied.
Japanese Unexamined Patent Publication No. 2004-48859 ((0034) to (0035), FIG. 2) Publication No. 2003/060175 (5th page, FIG. 1)

これらの軟磁性合金薄帯を複数枚接合した積層体は、高回転モータ用として要望される低渦電流損、高比透磁率で、低保磁力かつ高飽和磁束密度とするために、アモルファス材料を用いることが好ましいが、従来のCo基アモルファス材料では、飽和磁束密度が1T以下でありコアの大きさが大きくなるという問題点がある、また高価なCoを主材料とするため高コストとなる。またコスト的に電磁鋼板に近い材料として、従来Fe基アモルファス材料として、飽和磁束密度が1.56T程度の材料が、生産されており低損失電力用トランス材料として利用されているが、この材料の積層体の磁束密度は1.4T以下であり、電磁鋼板による積層体と比較して、必ずしも十分な磁気特性が得られていないという問題点がある。したがって本発明の目的は、Feを主体とする軟磁性合金薄帯を用いた積層体であっても、高飽和磁束密度、高比透磁率、低保磁力、低渦電流損を特徴とする積層体を提供することにある。   A laminate made by joining a plurality of these soft magnetic alloy ribbons is an amorphous material in order to achieve low eddy current loss, high relative permeability, low coercive force and high saturation magnetic flux density, which are required for high rotation motors. However, the conventional Co-based amorphous material has a problem that the saturation magnetic flux density is 1T or less and the size of the core becomes large, and the cost is high because expensive Co is the main material. . In addition, as a material close to the electromagnetic steel sheet in terms of cost, a material having a saturation magnetic flux density of about 1.56 T has been produced as a conventional Fe-based amorphous material and is used as a transformer material for low-loss power. The magnetic flux density of the laminated body is 1.4 T or less, and there is a problem that sufficient magnetic properties are not necessarily obtained as compared with the laminated body made of electromagnetic steel sheets. Accordingly, an object of the present invention is to provide a laminate having a high saturation magnetic flux density, a high relative permeability, a low coercive force, and a low eddy current loss even in a laminate using a soft magnetic alloy ribbon mainly composed of Fe. To provide a body.

本発明の積層体は、Feを主体とする厚さ50μm以下の軟磁性合金薄帯を複数枚接合した積層体であって、密度が6.2g/cm以上であり、飽和磁束密度が1.42T以上であり、保磁力が10A/m以下であることを特徴とする。また、密度が6.5g/cm以上、飽和磁束密度が1.5T以上とすることも可能である。 The laminate of the present invention is a laminate obtained by joining a plurality of soft magnetic alloy ribbons having a thickness of 50 μm or less mainly composed of Fe, and has a density of 6.2 g / cm 3 or more and a saturation magnetic flux density of 1 .42T or more, and the coercive force is 10 A / m or less. Further, the density can be 6.5 g / cm 3 or more, and the saturation magnetic flux density can be 1.5 T or more.

本発明にて適用する非晶質の軟磁性合金薄帯は、B8000が高く熱安定性に優れ、かつ脆化を抑制したものであり、本発明の積層体は印加磁界8000A/mにおける磁束密度B8000が1.4T以上であることを特徴とする。 The soft magnetic alloy ribbon of amorphous applying in the present invention has excellent high thermal stability B 8000, and is obtained by suppressing embrittlement, the laminate of the present invention the magnetic flux in the applied magnetic field 8000 A / m The density B 8000 is 1.4T or more.

また、軟磁性合金薄帯は、磁束密度が1.6T以上、周波数400Hzでの鉄損が10W/kg以下、さらには8W/kg以下の特性を有するため、積層体での鉄損も15W/kg以下、さらには10W/kg以下とすることができる。   The soft magnetic alloy ribbon has the characteristics that the magnetic flux density is 1.6T or more and the iron loss at a frequency of 400Hz is 10W / kg or less, and further 8W / kg or less. Hereinafter, it can be further set to 10 W / kg or less.

軟磁性合金薄帯として、組成がFeaSibBcCdで表され、原子%でFe量aが80≦a≦83%、Si量bが0<b≦5%、B量cが12≦c≦18%、C量dが0≦d≦3%であり、アニール後の飽和磁束密度が1.60T以上の非晶質合金を用いることが好ましい。これにより高い特性を有する積層体を得ることが可能である。 As a soft magnetic alloy ribbon, the composition is expressed as Fe a Si b B c C d , Fe amount a is 80 ≦ a ≦ 83% in atomic%, Si amount b is 0 <b ≦ 5%, and B amount c is It is preferable to use an amorphous alloy in which 12 ≦ c ≦ 18%, the C content d is 0 ≦ d ≦ 3%, and the saturation magnetic flux density after annealing is 1.60 T or more. Thereby, it is possible to obtain a laminate having high characteristics.

また、前記軟磁性合金薄帯が熱硬化性樹脂または熱可塑性樹脂で接合されていることを特徴とする。   Further, the soft magnetic alloy ribbon is bonded with a thermosetting resin or a thermoplastic resin.

また、前記軟磁性合金薄帯が無機系バインダで接合されていることを特徴とする。   Further, the soft magnetic alloy ribbon is bonded with an inorganic binder.

Fe量の30%以下をCo,Niの1種または2種で置換したものでも本発明の積層体を安価に作成可能である。   Even when 30% or less of the amount of Fe is replaced with one or two of Co and Ni, the laminate of the present invention can be produced at low cost.

組成を限定する理由を以下に示す。以下、単に%と記載のものは原子%を表す。
Fe量aは80%より少ないと鉄心材料として十分な飽和磁束密度が得られずまた83%を超えると熱安定性が低下し、安定した非晶質合金薄帯が製造できなくなるためである。高飽和磁束密度を得るためにはaは81%以上82.5%以下が好ましい。さらにFe量の30%以下をCo,Niの1種または2種で置換してもよく、高飽和磁束密度を得るためには置換量をCoは25%以下、Niは10%以下とするのが好ましい。
Si量bは非晶質形成能に寄与する元素で飽和磁束密度を向上させるためには5%以下とする必要があり、高飽和磁束化するためには3%以下であることが好ましい。
B量cは非晶質形成能に最も寄与し、12%未満では熱安定性が低下してしまい、18%より多いと添加しても非晶質形成能などの改善効果が見られない。高飽和磁束密度な非晶質の熱安定性を保つには14%以上であることが好ましく、かつ17%以下とすることが好ましい。
Cは角形性および飽和磁束密度の向上に効果があり、3%より多くすると脆化と熱安定性が低下する。C量dは0.01%未満ではほとんど効果がないため、0.01%以上とすることが好ましい。0.05%〜2.8%がさらに好ましく、0.08%〜2.5%がさらに好ましい。
またCr,Mo,Zr,Hf,Nbの1種以上の元素を0.01〜5%含んでもよく、不可避な不純物としてMn,S,P,Sn,Cu,Al,Tiから少なくとも1種以上の元素を0.50%以下含有してもよい。
The reason for limiting the composition is shown below. Hereinafter, what is simply described as% represents atomic%.
This is because if the Fe content a is less than 80%, sufficient saturation magnetic flux density as an iron core material cannot be obtained, and if it exceeds 83%, the thermal stability is lowered and a stable amorphous alloy ribbon cannot be produced. In order to obtain a high saturation magnetic flux density, a is preferably 81% or more and 82.5% or less. Furthermore, 30% or less of the amount of Fe may be replaced with one or two of Co and Ni. In order to obtain a high saturation magnetic flux density, the replacement amount should be 25% or less for Co and 10% or less for Ni. Is preferred.
The Si amount b is an element that contributes to the amorphous forming ability, and needs to be 5% or less in order to improve the saturation magnetic flux density, and is preferably 3% or less in order to increase the saturation magnetic flux.
The B amount c contributes most to the amorphous forming ability, and if it is less than 12%, the thermal stability is lowered, and if it is more than 18%, no improvement effect such as the amorphous forming ability is observed even if added. In order to maintain the thermal stability of an amorphous material having a high saturation magnetic flux density, it is preferably 14% or more, and preferably 17% or less.
C is effective in improving the squareness and saturation magnetic flux density, and if it exceeds 3%, embrittlement and thermal stability decrease. If the C content d is less than 0.01%, there is almost no effect, so 0.01% or more is preferable. 0.05% to 2.8% is more preferable, and 0.08% to 2.5% is more preferable.
In addition, it may contain 0.01 to 5% of one or more elements of Cr, Mo, Zr, Hf, Nb, and at least one element from Mn, S, P, Sn, Cu, Al, Ti as an inevitable impurity. You may contain 0.50% or less.

これらの磁心において、鋳造時ロールにCO2、He、またはArガスを吹き付けるか、もしくはCOガスを吹き付け燃焼還元させ、溶湯噴出口周辺の酸素濃度を10%以下の雰囲気にして作製し、非晶質合金薄帯のロール面の表面粗さRaを0.6μm以下にしたFe基非晶質合金薄帯を用いた積層磁心は励磁による騒音が低下するという特徴もある。 In these magnetic cores, CO 2 , He, or Ar gas is blown onto the roll during casting, or CO gas is blown and burned to reduce the oxygen concentration around the molten metal outlet to 10% or less. A laminated magnetic core using a Fe-based amorphous alloy ribbon whose surface roughness Ra of the roll surface of the alloy ribbon is 0.6 μm or less has a feature that noise due to excitation is reduced.

磁心の低磁界の実効磁束密度を向上させ、励磁電流を低減させるには、温度、時間を制御してアニールをすることが有効である。アニール温度、時間は250℃以上500℃以下で0.5h以上で行うことが好ましい。さらに好ましいアニール温度は280℃から380℃である。アルゴン、窒素雰囲気または真空中で熱処理することが好ましいが、場合によっては大気中でも構わない。   In order to improve the effective magnetic flux density of the low magnetic field of the magnetic core and reduce the excitation current, it is effective to perform annealing by controlling the temperature and time. The annealing temperature and time are preferably 250 ° C. or more and 500 ° C. or less and 0.5 h or more. A more preferable annealing temperature is 280 ° C to 380 ° C. Heat treatment is preferably performed in an argon, nitrogen atmosphere or vacuum, but in some cases, it may be in the air.

積層体とするには、軟磁性合金薄帯の少なくとも一面にエポキシ系やアクリル系、シリコン系などの熱硬化性樹脂または熱可塑性樹脂を塗布し、その後、複数枚の軟磁性合金薄帯を積層する。塗布の方法は、軟磁性合金薄帯を溶剤で希釈した樹脂中に浸漬する方法や、スプレーによる吹き付け方法、ドクターブレード用いた塗布方法など、公知の手法を採用できる。また樹脂として、PEEKやフッ素系樹脂、イミド系樹脂などの耐熱性樹脂を使用することは、積層後280℃以上で応力緩和のアニールを行うことが出来るので好ましい。接着用バインダとしては、融点の低い非鉛系のガラスなどの無機系材料を使用することも可能である。   To make a laminate, apply a thermosetting resin or thermoplastic resin such as epoxy, acrylic or silicon to at least one surface of the soft magnetic alloy ribbon, and then laminate multiple soft magnetic alloy ribbons To do. As a coating method, a known method such as a method of immersing a soft magnetic alloy ribbon in a resin diluted with a solvent, a spraying method using a spray, or a coating method using a doctor blade can be employed. In addition, it is preferable to use a heat-resistant resin such as PEEK, fluorine resin, or imide resin as the resin because stress relaxation annealing can be performed at 280 ° C. or higher after lamination. As the bonding binder, an inorganic material such as a non-lead glass having a low melting point can be used.

樹脂による軟磁性合金薄帯の接合と、磁気特性最適化のための焼鈍処理は同時に処理することが生産性を高める上で好ましい。例えば熱硬化性樹脂を使用した場合、積層した軟磁性合金薄帯を熱処理し、焼鈍すると共に樹脂を硬化させて軟磁性合金薄帯同士を積層させる。その際、積層体の両面から圧を加えることが好ましい。ヒートプレートなどで熱圧着させる手法も採用できる。このように処理することで、熱処理による軟磁性合金薄帯の反りを防ぐことができる。   It is preferable to increase the productivity by simultaneously bonding the soft magnetic alloy ribbon with the resin and annealing for optimizing the magnetic properties. For example, when a thermosetting resin is used, the laminated soft magnetic alloy ribbons are heat-treated and annealed and the resin is cured to laminate the soft magnetic alloy ribbons. At that time, it is preferable to apply pressure from both sides of the laminate. A technique of thermocompression bonding with a heat plate or the like can also be adopted. By treating in this way, warping of the soft magnetic alloy ribbon due to heat treatment can be prevented.

上述の如く、所定の組成である軟磁性合金薄帯を使用したことで、高回転モータ用として要望される低渦電流損、高比透磁率で、低保磁力かつ高飽和磁束密度のヨークを提供できた。   As described above, by using a soft magnetic alloy ribbon having a predetermined composition, a yoke having a low eddy current loss, a high relative permeability, a low coercive force and a high saturation magnetic flux density, which are required for a high-rotation motor, can be obtained. I was able to provide it.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。
(実施例1)
表1に示す組成の母合金200gを作製し、高周波溶解した溶湯を25-30m/sで回転するCuロールに噴出し、非晶質の軟磁性合金薄帯を作製した。なおCuロールの噴出口後方10cmの位置にCO2ガス吹き付け口をロール表面と45°になるように設置し、CO2ガスの噴出圧を調整し、噴出口ロール付近のガス圧力が0.1MPaとなるようにして鋳造をおこなった。噴出口近傍(溶湯とロールが接触する場所から3cm以内)での酸素濃度は8.5%であった。この非晶質合金薄帯は、幅5mm、厚さ23-25μmであった。
磁気特性を調べるため、この軟磁性合金薄帯を、アルゴン雰囲気中で300-400℃の温度で、保持1時間の熱処理を施し、その後炉内で放冷した。得られた軟磁性合金薄帯の磁気特性を表1に示す。BSは単板試料を振動型試料型磁力計(VSM)で5kOeの磁場をかけて測定をおこなった。また、サンプルNo.1〜3,22については、B800,B8000,保持力および最大透磁率を測定した。
また、図1に、1kHzと400Hzでの、無方向性電磁鋼板、スーパーコア(JFEスチール社製:JNHF)、および本発明で用いた軟磁性合金薄帯(単板)の磁束密度と鉄損の関係を示す。本発明に用いた軟磁性合金薄帯は、従来の材質に比べて鉄損が小さく、400Hz、磁束密度1.6Tでの鉄損は5W/kgであった。
また、図2に、無方向性電磁鋼、スーパーコア(JFEスチール社製:JNHF)、および本発明で用いた軟磁性合金薄帯(単板)のBH特性を示す。本発明で用いた軟磁性合金薄帯は従来材よりも低磁界で高い磁束密度が得られていることが解る。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
Example 1
200 g of a mother alloy having the composition shown in Table 1 was prepared, and the molten metal melted at high frequency was sprayed onto a Cu roll rotating at 25-30 m / s to prepare an amorphous soft magnetic alloy ribbon. In addition, the CO 2 gas blowing port is installed at a position 10cm behind the Cu roll jet outlet so that it is 45 ° from the roll surface, the CO 2 gas jet pressure is adjusted, and the gas pressure near the jet roll is 0.1MPa. Casting was carried out in this way. The oxygen concentration in the vicinity of the jet port (within 3 cm from the place where the molten metal and the roll contacted) was 8.5%. This amorphous alloy ribbon was 5 mm wide and 23-25 μm thick.
In order to investigate the magnetic properties, this soft magnetic alloy ribbon was subjected to a heat treatment for 1 hour at a temperature of 300 to 400 ° C. in an argon atmosphere, and then allowed to cool in a furnace. Table 1 shows the magnetic properties of the obtained soft magnetic alloy ribbon. B S was measured using a vibrating sample magnetometer (VSM) with a magnetic field of 5 kOe. Sample No. For 1~3,22, B 800, B 8000, the holding force and to measure the maximum permeability.
FIG. 1 also shows the magnetic flux density and iron loss of a non-oriented electrical steel sheet, a super core (manufactured by JFE Steel: JNHF), and the soft magnetic alloy ribbon (single plate) used in the present invention at 1 kHz and 400 Hz. The relationship is shown. The soft magnetic alloy ribbon used in the present invention had a smaller iron loss than the conventional material, and the iron loss at 400 Hz and the magnetic flux density of 1.6 T was 5 W / kg.
FIG. 2 shows the BH characteristics of non-oriented electrical steel, super core (manufactured by JFE Steel: JNHF), and soft magnetic alloy ribbon (single plate) used in the present invention. It can be seen that the soft magnetic alloy ribbon used in the present invention has a lower magnetic field and a higher magnetic flux density than the conventional material.

Figure 2007221869
Figure 2007221869

これらの軟磁性合金薄帯を用いて、積層体を製造した。サンプルNo.2の軟磁性合金薄帯(幅80mm、長さ300mm、平均厚さ25μmのリボン状薄帯)を複数枚積層し、一体化した。本実施例では、アセトンで10〜50%に希釈した1液性のエポキシ樹脂を用い、この樹脂中に軟磁性合金薄帯を浸漬した後、乾燥機中80℃で3分乾燥した。その後、この軟磁性合金薄帯を5枚積層し、窒素雰囲気中で、1MPaの圧力、120℃で熱プレスしながら熱硬化させた。アセトンでの希釈率によって樹脂層の厚さを変え、積層体の占積率を82〜94%になるようにした。
その後、この積層体に回転機用ロータおよびステータの形状になるよう打ち抜き加工を施した。この積層体をさらに重ねて固着し、軟磁性合金薄帯の枚数が計800枚の回転機用ロータ、回転機用ステータを製造した。
この回転機用ロータ、回転機用ステータの磁気特性を測定したところ、占積率を88%以上とすることで、密度が6.5g/cm以上、飽和磁束密度が1.45T以上、保磁力が10A/m以下で、かつ印加磁界8000A/mにおける磁束密度B8000が1.4T以上の特性値が測定された。また、占積率94%の積層体の鉄損を測定したところ、5.2W/kgであった。
A laminate was produced using these soft magnetic alloy ribbons. Sample No. A plurality of soft magnetic alloy ribbons 2 (width 80 mm, length 300 mm, ribbon-like ribbon having an average thickness of 25 μm) were laminated and integrated. In this example, a one-component epoxy resin diluted to 10 to 50% with acetone was used. After immersing the soft magnetic alloy ribbon in this resin, it was dried in a dryer at 80 ° C. for 3 minutes. Thereafter, five sheets of this soft magnetic alloy ribbon were laminated and thermally cured while being hot-pressed at 120 ° C. under a pressure of 1 MPa in a nitrogen atmosphere. The thickness of the resin layer was changed depending on the dilution rate with acetone so that the space factor of the laminate was 82 to 94%.
Thereafter, this laminate was punched into the shape of a rotor and a stator for a rotating machine. This laminated body was further stacked and fixed to manufacture a rotor for a rotating machine and a stator for a rotating machine with a total of 800 soft magnetic alloy ribbons.
When the magnetic characteristics of the rotor for a rotating machine and the stator for the rotating machine were measured, the density was set to 88% or more, the density was 6.5 g / cm 3 or more, and the saturation magnetic flux density was 1.45 T or more. A characteristic value with a magnetic force of 10 A / m or less and a magnetic flux density B 8000 of 1.4 T or more at an applied magnetic field of 8000 A / m was measured. Moreover, it was 5.2 W / kg when the iron loss of the laminated body with a space factor of 94% was measured.

Figure 2007221869
Figure 2007221869

(実施例2)
サンプルNo.2の軟磁性合金薄帯(幅80mm、長さ300mm、平均厚さ25μmのリボン状薄帯)を複数枚積層し、一体化した。本発明では、PEEK(VICTREX社製:ポリエーテルエーテルケトン)の粉体状の樹脂を用い、スプレー塗装により均一に塗布した。その後、この軟磁性合金薄帯を5枚積層し、窒素雰囲気中で、1MPaの圧力、370℃×0.5hで熱プレスしながら熱圧着させた。その後磁気特性を改善するための焼鈍熱処理として、330℃で1h保持した。スプレー塗装によるPEEK樹脂の厚さを変えることにより、積層体の占積率を82〜94%になるようにした。
その後、この積層体に回転機用ロータおよびステータの形状になるよう打ち抜き加工を施した。この積層体をさらに重ねて固着し、軟磁性合金薄帯の枚数が計800枚の回転機用ロータ、回転機用ステータを製造した。
この回転機用ロータ、回転機用ステータの磁気特性を測定したところ、占積率を88%以上とすることで、密度が6.5g/cm以上、飽和磁束密度が1.45T以上、保磁力が5A/m以下で、かつ印加磁界8000A/mにおける磁束密度B8000が1.4T以上の特性値が測定された。また、占積率94%の積層体の鉄損を測定したところ、3.3W/kgであった。
(Example 2)
Sample No. A plurality of soft magnetic alloy ribbons 2 (width 80 mm, length 300 mm, ribbon-like ribbon having an average thickness of 25 μm) were laminated and integrated. In the present invention, a powdered resin of PEEK (manufactured by VICTREX: polyetheretherketone) was used and uniformly applied by spray coating. Thereafter, five sheets of this soft magnetic alloy ribbon were laminated and thermocompression bonded in a nitrogen atmosphere while hot pressing at a pressure of 1 MPa and 370 ° C. × 0.5 h. Thereafter, it was held at 330 ° C. for 1 h as an annealing heat treatment for improving the magnetic properties. By changing the thickness of the PEEK resin by spray coating, the space factor of the laminate was adjusted to 82 to 94%.
Thereafter, this laminate was punched into the shape of a rotor and a stator for a rotating machine. This laminated body was further stacked and fixed to manufacture a rotor for a rotating machine and a stator for a rotating machine with a total of 800 soft magnetic alloy ribbons.
When the magnetic characteristics of the rotor for a rotating machine and the stator for the rotating machine were measured, the density was set to 88% or more, the density was 6.5 g / cm 3 or more, and the saturation magnetic flux density was 1.45 T or more. A characteristic value with a magnetic force of 5 A / m or less and a magnetic flux density B 8000 of 1.4 T or more at an applied magnetic field of 8000 A / m was measured. Further, the iron loss of the laminate having a space factor of 94% was measured and found to be 3.3 W / kg.

Figure 2007221869
Figure 2007221869

(比較例1)
表1のサンプルNo.21,22に示す組成の非晶質の軟磁性合金薄帯を実施例1と同様に作製し、磁気特性を測定した。Cを4%添加すると保磁力が増加していることから軟磁性合金薄帯の鉄損が大きくなることが予想され、また、非晶質合金薄帯が脆くなり、磁心を製造する際に問題が生じることが懸念される。またMnを0.7at%添加するとBSが低下するとともに角形性の低下、および保磁力の増加が見られ、鉄損がすることが懸念される。
(Comparative Example 1)
Sample No. in Table 1 Amorphous soft magnetic alloy ribbons having the compositions shown in 21 and 22 were produced in the same manner as in Example 1, and the magnetic properties were measured. When 4% of C is added, the coercive force increases, so the iron loss of the soft magnetic alloy ribbon is expected to increase, and the amorphous alloy ribbon becomes brittle, which is a problem when manufacturing a magnetic core. It is feared that this will occur. Moreover, when 0.7 at% of Mn is added, B S is lowered, the squareness is lowered, the coercive force is increased, and there is a concern about iron loss.

磁束密度と鉄損の関係を示す図である。It is a figure which shows the relationship between magnetic flux density and an iron loss. 磁束密度と磁化力の関係を示す図である。It is a figure which shows the relationship between magnetic flux density and magnetizing force.

Claims (7)

Feを主体とする厚さ50μm以下の軟磁性合金薄帯を複数枚接合した積層体であって、密度が6.2g/cm以上であり、飽和磁束密度が1.42T以上であり、保磁力が10A/m以下であることを特徴とする積層体。 A laminated body in which a plurality of soft magnetic alloy ribbons having a thickness of 50 μm or less mainly composed of Fe are joined, the density is 6.2 g / cm 3 or more, the saturation magnetic flux density is 1.42 T or more, A laminate having a magnetic force of 10 A / m or less. 印加磁界8000A/mにおける磁束密度B8000が1.4T以上であることを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, wherein a magnetic flux density B 8000 at an applied magnetic field of 8000 A / m is 1.4 T or more. 磁束密度1.6T、周波数400Hzでの鉄損が15W/kg以下であることを特徴とする請求項1乃至請求項2に記載の積層体。 The laminate according to claim 1 or 2, wherein an iron loss at a magnetic flux density of 1.6 T and a frequency of 400 Hz is 15 W / kg or less. 前記軟磁性合金薄帯が熱硬化性樹脂または熱可塑性樹脂で接合されていることを特徴とする請求項1乃至請求項3に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the soft magnetic alloy ribbon is bonded with a thermosetting resin or a thermoplastic resin. 前記軟磁性合金薄帯が無機系バインダで接合されていることを特徴とする請求項1乃至請求項4に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the soft magnetic alloy ribbon is bonded with an inorganic binder. 前記軟磁性合金薄帯は、組成がFeaSibBcCdで表され、原子%でFe量aが80≦a≦83%、Si量bが0<b≦5%、B量cが12≦c≦18%、C量dが0≦d≦3%であり、飽和磁束密度が1.60T以上の非晶質合金であることを特徴とする請求項1乃至請求項5に記載の積層体。 The soft magnetic alloy ribbon has a composition expressed as Fe a Si b B c C d , and in atomic%, Fe amount a is 80 ≦ a ≦ 83%, Si amount b is 0 <b ≦ 5%, B amount c 6 is an amorphous alloy having a saturation magnetic flux density of 1.60 T or more, wherein 12 ≦ c ≦ 18%, C content d is 0 ≦ d ≦ 3%. Laminated body. Fe量の30%以下をCo,Niの1種または2種で置換したことを特徴とする請求項1乃至請求項6に記載の積層体。
The laminate according to any one of claims 1 to 6, wherein 30% or less of the amount of Fe is substituted with one or two of Co and Ni.
JP2006037495A 2006-02-15 2006-02-15 Laminate Pending JP2007221869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037495A JP2007221869A (en) 2006-02-15 2006-02-15 Laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037495A JP2007221869A (en) 2006-02-15 2006-02-15 Laminate

Publications (1)

Publication Number Publication Date
JP2007221869A true JP2007221869A (en) 2007-08-30

Family

ID=38498512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037495A Pending JP2007221869A (en) 2006-02-15 2006-02-15 Laminate

Country Status (1)

Country Link
JP (1) JP2007221869A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002395A (en) * 2015-05-04 2017-01-05 カーペンター テクノロジー コーポレーションCarpenter Technology Corporation Ultra-low cobalt iron-cobalt magnetic alloys
WO2017033873A1 (en) * 2015-08-21 2017-03-02 吉川工業株式会社 Stator core and motor equipped with same
JP2018123424A (en) * 2017-01-31 2018-08-09 新日鐵住金株式会社 Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
KR20210021094A (en) * 2018-07-13 2021-02-24 지멘스 악티엔게젤샤프트 Method for manufacturing material layer and material layer structure for dynamoelectric rotating machine
JP6938743B1 (en) * 2020-09-30 2021-09-22 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP2022058197A (en) * 2020-09-30 2022-04-11 Tdk株式会社 Soft magnetic alloy and magnetic component
JP2022058198A (en) * 2020-09-30 2022-04-11 Tdk株式会社 Soft magnetic alloy and magnetic component
WO2022202085A1 (en) * 2021-03-24 2022-09-29 Jfeスチール株式会社 Battery-driven motor and motor-driven system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139653A (en) * 1980-03-06 1981-10-31 Allied Chem Amorphous alloy , production thereof and core using same
JPS6163004A (en) * 1984-09-05 1986-04-01 Kawasaki Steel Corp Laminated directional silicon steel plate
JPS61244003A (en) * 1985-04-20 1986-10-30 Taniguchi Yoshiharu Ferromagnetic material
JPH01278002A (en) * 1988-04-28 1989-11-08 Mitsui Petrochem Ind Ltd Magnetic core and manufacture thereof
JPH05140703A (en) * 1991-07-30 1993-06-08 Nippon Steel Corp Amorphous alloy thin strip f0r iron core of transformer having high magnetic flux density
JPH05222493A (en) * 1992-02-13 1993-08-31 Nippon Steel Corp Ferrous high permeability amorphous alloy
JPH06220592A (en) * 1993-01-28 1994-08-09 Nippon Steel Corp Amorphous alloy with low iron loss and high magnetic flux density
WO1996031574A1 (en) * 1995-04-04 1996-10-10 Hitachi Chemical Company, Ltd. Adhesive, adhesive film and adhesive-backed metal foil
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core
JPH09268354A (en) * 1996-01-31 1997-10-14 Kawasaki Steel Corp Low boron amorphous alloy excellent in magnetic property and its production
JPH10256053A (en) * 1997-03-13 1998-09-25 Nkk Corp Core with less scattering in iron loss characteristic
JPH11302823A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Manufacture of iron-base amorphous alloy foil
JP2003041353A (en) * 2001-07-27 2003-02-13 Alps Electric Co Ltd Fe-BASED SOFT MAGNETIC ALLOY
JP2004048859A (en) * 2002-07-09 2004-02-12 Mitsui Chemicals Inc Thin shape, highly efficient motor or laminate for generator, and motor or generator
JP2005160231A (en) * 2003-11-26 2005-06-16 Mitsui Chemicals Inc Magnetic member of reluctance rotating machine
JP2005311319A (en) * 2004-03-25 2005-11-04 Jfe Steel Kk Laminated core having excellent adhesive strength

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139653A (en) * 1980-03-06 1981-10-31 Allied Chem Amorphous alloy , production thereof and core using same
JPS6163004A (en) * 1984-09-05 1986-04-01 Kawasaki Steel Corp Laminated directional silicon steel plate
JPS61244003A (en) * 1985-04-20 1986-10-30 Taniguchi Yoshiharu Ferromagnetic material
JPH01278002A (en) * 1988-04-28 1989-11-08 Mitsui Petrochem Ind Ltd Magnetic core and manufacture thereof
JPH05140703A (en) * 1991-07-30 1993-06-08 Nippon Steel Corp Amorphous alloy thin strip f0r iron core of transformer having high magnetic flux density
JPH05222493A (en) * 1992-02-13 1993-08-31 Nippon Steel Corp Ferrous high permeability amorphous alloy
JPH06220592A (en) * 1993-01-28 1994-08-09 Nippon Steel Corp Amorphous alloy with low iron loss and high magnetic flux density
WO1996031574A1 (en) * 1995-04-04 1996-10-10 Hitachi Chemical Company, Ltd. Adhesive, adhesive film and adhesive-backed metal foil
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core
JPH09268354A (en) * 1996-01-31 1997-10-14 Kawasaki Steel Corp Low boron amorphous alloy excellent in magnetic property and its production
JPH10256053A (en) * 1997-03-13 1998-09-25 Nkk Corp Core with less scattering in iron loss characteristic
JPH11302823A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Manufacture of iron-base amorphous alloy foil
JP2003041353A (en) * 2001-07-27 2003-02-13 Alps Electric Co Ltd Fe-BASED SOFT MAGNETIC ALLOY
JP2004048859A (en) * 2002-07-09 2004-02-12 Mitsui Chemicals Inc Thin shape, highly efficient motor or laminate for generator, and motor or generator
JP2005160231A (en) * 2003-11-26 2005-06-16 Mitsui Chemicals Inc Magnetic member of reluctance rotating machine
JP2005311319A (en) * 2004-03-25 2005-11-04 Jfe Steel Kk Laminated core having excellent adhesive strength

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002395A (en) * 2015-05-04 2017-01-05 カーペンター テクノロジー コーポレーションCarpenter Technology Corporation Ultra-low cobalt iron-cobalt magnetic alloys
WO2017033873A1 (en) * 2015-08-21 2017-03-02 吉川工業株式会社 Stator core and motor equipped with same
JP7020119B2 (en) 2017-01-31 2022-02-16 日本製鉄株式会社 Fe-based amorphous alloy and Fe-based amorphous alloy thin band with excellent soft magnetic properties
JP2018123424A (en) * 2017-01-31 2018-08-09 新日鐵住金株式会社 Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
KR102395755B1 (en) * 2018-07-13 2022-05-10 지멘스 악티엔게젤샤프트 Method for manufacturing material layer and material layer structure for dynamoelectric rotating machine
KR20210021094A (en) * 2018-07-13 2021-02-24 지멘스 악티엔게젤샤프트 Method for manufacturing material layer and material layer structure for dynamoelectric rotating machine
US11451121B2 (en) 2018-07-13 2022-09-20 Siemens Aktiengesellschaft Method for producing a material layer and a material layer structure for a dynamoelectric rotary machine
JP6938743B1 (en) * 2020-09-30 2021-09-22 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP2022058197A (en) * 2020-09-30 2022-04-11 Tdk株式会社 Soft magnetic alloy and magnetic component
JP2022058198A (en) * 2020-09-30 2022-04-11 Tdk株式会社 Soft magnetic alloy and magnetic component
JP2022057577A (en) * 2020-09-30 2022-04-11 Tdk株式会社 Soft magnetic alloy and magnetic component
JP7230967B2 (en) 2020-09-30 2023-03-01 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP7230968B2 (en) 2020-09-30 2023-03-01 Tdk株式会社 Soft magnetic alloys and magnetic parts
WO2022202085A1 (en) * 2021-03-24 2022-09-29 Jfeスチール株式会社 Battery-driven motor and motor-driven system
JPWO2022202085A1 (en) * 2021-03-24 2022-09-29

Similar Documents

Publication Publication Date Title
JP2007221869A (en) Laminate
CN101939804B (en) Nd-based sintered magnet and manufacturing method thereof
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
US7544417B2 (en) Soft magnetic material and dust core comprising insulating coating and heat-resistant composite coating
TWI626320B (en) Fe-based amorphous soft magnetic bulk alloy method for fabricating the same and applications thereof
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP2003518903A (en) Bulk amorphous metal magnetic member for electric motor
EP1540793A1 (en) Method of constructing a unitary amorphous metal component for an electric machine
WO2006104148A1 (en) Magnetic core and applied product making use of the same
JPH0777167B2 (en) Magnetic core parts
JPS63302504A (en) Magnetic core and manufacture thereof
JP2008131696A (en) Composite magnetic material and rotor
WO2015022904A1 (en) Iron-based amorphous transformer core, production method therefor, and transformer
JP2007281314A (en) Soft magnetic alloy ribbon laminate and its manufacturing method
JP2006060432A (en) Radio wave transmitting and receiving antenna
JP2005303006A (en) Method of manufacturing dust core and dust core
JP6523458B2 (en) High silicon steel sheet excellent in magnetic property and method for producing the same
JPH11238614A (en) Soft magnetic material and manufacture thereof and electrical equipment using the same
JP2008235525A (en) Reactor core and reactor
JP5131747B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP2941534B2 (en) Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly
JP4851640B2 (en) Amorphous core for accelerator and accelerator using the same
WO2005024858A1 (en) Soft magnetic material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121026