JPH11302823A - Manufacture of iron-base amorphous alloy foil - Google Patents

Manufacture of iron-base amorphous alloy foil

Info

Publication number
JPH11302823A
JPH11302823A JP10107682A JP10768298A JPH11302823A JP H11302823 A JPH11302823 A JP H11302823A JP 10107682 A JP10107682 A JP 10107682A JP 10768298 A JP10768298 A JP 10768298A JP H11302823 A JPH11302823 A JP H11302823A
Authority
JP
Japan
Prior art keywords
ribbon
temperature
alloy
oxide layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10107682A
Other languages
Japanese (ja)
Inventor
Hiroaki Sakamoto
広明 坂本
Toshio Yamada
利男 山田
Yoshiharu Inoue
宜治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10107682A priority Critical patent/JPH11302823A/en
Publication of JPH11302823A publication Critical patent/JPH11302823A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for improving iron loss by forming an extra thin oxide layer on the surface of a foil by carrying out atmosphere control according to the temperature of the foil in the course of casting. SOLUTION: An alloy which has a composition represented by Fea Sib Bc Cd [where the symbols (a), (b), (c), and (d) satisfy, by atomic%, 70<=a<=86, 1<=b<=19, 7<=c<=20, 0.02<=d<=4, and a+b+c+d+100, respectively] is melted, and the resultant molten alloy is sprayed through a slot nozzle onto a moving cooling substrate and rapidly solidified to manufacture an amorphous foil. In this method for manufacturing an amorphous foil, foil tempratures are measured at least at two spots in the longitudinal direction of the foil in the course of casting, and a region of foil where foil temperature is within the temperature range of the whole or a part of 800 to 150 deg.C is held in an atmosphere containing 1 to 30 vol.% oxygen and a region of foil having a temperature outside the above temperature range is held in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力トランス、高
周波トランスなどの鉄心に用いられるFe基非晶質合金
薄帯の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Fe-based amorphous alloy ribbon used for an iron core of a power transformer, a high-frequency transformer and the like.

【0002】[0002]

【従来の技術】合金を溶融状態から急冷することによっ
て、連続的に薄帯や線を製造する方法として、遠心急冷
法、単ロール法、双ロール法、などが知られている。こ
れらの方法は、高速回転する金属製ドラムの内周面また
は外周面に溶融金属をオリフィスなどから噴出させるこ
とによって、急速に溶融金属を凝固させて薄帯や線を製
造するものである。さらに、合金組成を適正に選ぶこと
によって、液体金属に類似した非晶質合金を得ることが
でき、磁気的性質あるいは機械的性質に優れた材料を製
造することができる。この非晶質合金は、その優れた特
性から多くの用途において工業材料として有望視されて
いる。その中でも、電力トランスや高周波トランスなど
の鉄心材料の用途としては、鉄損が低く、かつ、飽和磁
束密度および透磁率が高いこと、などの理由からFe系
非晶質合金薄帯、例えば、Fe−Si−B系、などが採
用されている。
2. Description of the Related Art Centrifugal quenching, a single roll method, a twin roll method, and the like are known as methods for continuously producing a ribbon or a wire by rapidly cooling an alloy from a molten state. In these methods, a molten metal is ejected from an orifice or the like onto the inner peripheral surface or the outer peripheral surface of a high-speed rotating metal drum, thereby rapidly solidifying the molten metal to produce a ribbon or a wire. Furthermore, by properly selecting the alloy composition, an amorphous alloy similar to a liquid metal can be obtained, and a material having excellent magnetic properties or mechanical properties can be manufactured. This amorphous alloy is regarded as a promising industrial material in many applications because of its excellent properties. Among them, iron core materials such as power transformers and high-frequency transformers are used for low iron loss and high saturation magnetic flux density and high magnetic permeability. -Si-B type is adopted.

【0003】従来、鉄心材料に使用されるFe基非晶質
薄帯の磁気特性を薄帯表面層あるいは表面皮膜に着目し
て改善する方法として、以下のものが開示されている。
薄帯面内方向に圧縮応力を与えるための厚さ20〜30
0nmの酸化皮膜層を薄帯表面に形成させるため、熱処
理を不活性ガスと酸素の混合雰囲気中で行う方法(特開
昭61-250162 号公報)、薄帯の熱処理過程で20%以下
の酸素を導入して薄帯表面に数10〜100nmの酸化
膜を付けてトロイダルコアにした時の層間の絶縁性を高
めて透磁率を改善する方法(特開平6-346219号公報)、
コロイド状アルミナ水和物を主成分とする水性処理液を
焼き付けて得たアルミナ絶縁皮膜付き鉄基非晶質合金薄
帯の焼鈍に際し、焼鈍雰囲気に酸素を導入して薄帯表面
にSiの酸化皮膜を形成させることによってBの酸化を
防ぎ、薄帯表面の結晶化を防止する方法(特開平2-4913
号公報)、鉄損を改善するために薄帯表面にイオンプレ
ーティングによって、5nm〜1000nmの炭化物、
ほう化物、けい化物、窒化物の極薄張力皮膜を付ける方
法(特開昭61-246356 号公報)、蒸着によって10nm
〜3.7μm厚のTi、Zr、Cr、Al、Siの酸化
物、もしくは、Al、Siの窒化物を非晶質材表面に形
成させて鉄損劣化を防止する方法(特開昭59-150081 号
公報)、などがある。
Conventionally, the following methods have been disclosed as methods for improving the magnetic properties of an Fe-based amorphous ribbon used for an iron core material by focusing on the ribbon surface layer or surface film.
Thickness 20 to 30 for giving compressive stress in the in-plane direction of the ribbon
In order to form a 0 nm oxide film layer on the surface of the ribbon, a heat treatment is performed in a mixed atmosphere of an inert gas and oxygen (JP-A-61-250162). A method of improving the magnetic permeability by increasing the insulating properties between layers when a toroidal core is formed by applying an oxide film of several tens to 100 nm on the surface of a thin strip by introducing the same (JP-A-6-346219);
When annealing an iron-based amorphous alloy ribbon with an alumina insulating film obtained by baking an aqueous treatment liquid containing colloidal alumina hydrate as a main component, oxygen is introduced into the annealing atmosphere to oxidize Si on the surface of the ribbon. A method for preventing oxidation of B by forming a film and preventing crystallization of the ribbon surface (Japanese Patent Laid-Open No. 4913/1990)
Publication), 5 nm to 1000 nm carbide by ion plating on the surface of the ribbon to improve iron loss,
A method of forming an ultra-thin film of a boride, a silicide, or a nitride (Japanese Patent Application Laid-Open No. 61-246356).
A method of preventing iron loss deterioration by forming an oxide of Ti, Zr, Cr, Al, Si or a nitride of Al, Si on the surface of an amorphous material with a thickness of ~ 3.7 µm No. 150081).

【0004】これらの従来技術は、全て、薄帯を鋳造し
た後、酸素雰囲気中での熱処理によって薄帯表面そのも
のを変えたり、あるいは、イオンプレ−テイ ング、蒸着
によって薄帯に別な物質を付けたりするものであり、新
たに別な工程を必要としている。
In all of these prior arts, after a ribbon is cast, the surface of the ribbon itself is changed by heat treatment in an oxygen atmosphere, or another material is attached to the ribbon by ion plating or vapor deposition. And requires a new process.

【0005】[0005]

【発明が解決しようとする課題】上述のように、従来
は、Fe基非品質薄帯の表面層改質および表面皮膜付与
を行うには、鋳造工程以外の別工程で非晶質薄帯表面に
酸化皮膜、などを付与する工程を採用していた。本発明
は、鋳造中における薄帯温度に応じた雰囲気制御を実施
することによって、別工程で酸化層を付与することな
く、薄帯表面に極薄酸化層、または、PおよびSの少な
くとも一種を含む偏析層と極薄酸化層を形成させて、F
e基非晶質合金薄帯の鉄損を改善する方法を提供するこ
とを目的とする。
As described above, conventionally, in order to modify the surface layer of a Fe-based non-quality ribbon and to provide a surface film thereon, the surface of the amorphous ribbon is processed in a separate step other than the casting step. A process of providing an oxide film, etc. The present invention implements atmosphere control according to the ribbon temperature during casting, so that an ultra-thin oxide layer or at least one of P and S is formed on the ribbon surface without providing an oxide layer in a separate step. Forming a segregation layer and an ultra-thin oxide layer containing
An object of the present invention is to provide a method for improving iron loss of an e-based amorphous alloy ribbon.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1)組成がFeaSib Bc Cd で表示される合金を
溶解し、合金溶湯を移動している冷却基板上にスロット
ノズルを通して噴出させて、該合金を急冷凝固させて非
晶質薄帯を製造する方法において、鋳造中に薄帯長手方
向に少なくとも2カ所で薄帯温度を測定し、薄帯温度が
800℃以下150℃以上の温度範囲内にある薄帯部位
の全部または一部を1vol%以上30vol%以下の
酸素を含む雰囲気中に保持し、その温度範囲以外の温度
にある薄帯部位を非酸化性雰囲気に保持することを特徴
とするFe基非晶質合金薄帯の製造方法。
The gist of the present invention is as follows. (1) An alloy whose composition is represented by FeaSib Bc Cd is melted, and a molten alloy is jetted through a slot nozzle onto a moving cooling substrate to rapidly solidify the alloy to produce an amorphous ribbon. In the method, the ribbon temperature is measured at least at two points in the longitudinal direction of the ribbon during casting, and all or a part of the ribbon portion where the ribbon temperature is within a temperature range of 800 ° C. or less and 150 ° C. or more is 1 vol% or more. A method for producing an Fe-based amorphous alloy ribbon, wherein the ribbon is held in an atmosphere containing 30 vol% or less of oxygen, and a ribbon portion at a temperature outside the temperature range is kept in a non-oxidizing atmosphere.

【0007】ただし、a、b、cおよびdは原子%で、
70≦a≦86、1≦b≦19、7≦c≦20、0.0
2≦d≦4、a+b+c+d=100である。 (2)板厚が10μm以上100μm以下の非晶質合金
薄帯の少なくとも片側の薄帯表面に厚さが5nm以上2
0nm以下の極薄酸化層を形成させることを特徴とする
上記(1)記載のFe基非晶質合金薄帯の製造方法。
Wherein a, b, c and d are atomic%,
70 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.0
2 ≦ d ≦ 4, and a + b + c + d = 100. (2) The thickness of the amorphous alloy ribbon having a thickness of 10 μm or more and 100 μm or less is at least 5 nm or more on at least one surface of the ribbon.
The method for producing an Fe-based amorphous alloy ribbon according to the above (1), wherein an ultrathin oxide layer having a thickness of 0 nm or less is formed.

【0008】(3)組成が(FeaSib Bc Cd )
100-X X で表示される合金を溶解し、合金溶湯を移動
している冷却基板上にスロットノズルを通して噴出させ
て、該合金を急冷凝固させて非晶質薄帯を製造する方法
において、鋳造中に薄帯長手方向に少くとも2ヶ所で薄
帯温度を測定し、薄帯温度が800℃以下150℃以上
の温度範囲内にある薄帯部位の全部または一部を1vo
l%以上30vol%以下の酸素を含む雰囲気中に保持
し、その温度範囲以外の温度にある薄帯部位を非酸化性
雰囲気に保持することを特徴とするFe基非品質合金薄
帯の製造方法。
(3) The composition is (FeaSib Bc Cd)
Was dissolved alloy represented by 100-X M X, and is ejected through the slot nozzle onto a cooling substrate which is moving the molten alloy, thereby rapidly solidifying the alloy in the process for producing the amorphous ribbon, During casting, the ribbon temperature is measured at least at two places in the longitudinal direction of the ribbon, and all or a part of the ribbon portion whose ribbon temperature is within a temperature range of 800 ° C. or less and 150 ° C. or more is subjected to 1 vol.
A method for producing an Fe-based non-quality alloy ribbon, comprising maintaining the ribbon in an atmosphere containing 1% or more and 30% by volume or less of oxygen and maintaining the ribbon portion at a temperature outside the temperature range in a non-oxidizing atmosphere. .

【0009】ただし、a、b、cおよびdは原子%で、
70≦a≦86、1≦b≦19、7≦c≦20、0.0
2≦d≦4、a+b+c+d=100であり、MはPま
たはSの少なくとも一種で、重量%で0.0003≦X
≦0.1である。 (4)板厚が10μm以上100μm以下の非晶質合金
薄帯の少なくとも片側の薄帯表面に極薄酸化層を有し、
さらに、該酸化層の下部にPおよびSの少なくとも一種
含む偏析層を形成させることを特徴とする上記(3)記
載のFe基非晶質合金薄帯の製造方法。
Wherein a, b, c and d are atomic%,
70 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.0
2 ≦ d ≦ 4, a + b + c + d = 100, M is at least one of P and S, and 0.0003 ≦ X by weight%.
≦ 0.1. (4) an ultrathin oxide layer on at least one side of the amorphous alloy ribbon having a thickness of 10 μm or more and 100 μm or less,
The method for producing an Fe-based amorphous alloy ribbon according to the above (3), further comprising forming a segregation layer containing at least one of P and S below the oxide layer.

【0010】[0010]

【発明の実施の形態】本発明の特徴は、薄帯表面に極薄
酸化層を形成させることによって鉄損を低減した非晶質
合金薄帯を製造するために、単ロールなどの液体急冷法
を用いてFe−Si−Bを主成分とする非晶質合金薄帯
を鋳造する際、鋳造中の薄帯温度を測定し、その温度に
応じて雰囲気中の酸素量を制御することにある。本発明
者らは、Fe−Si−B−C系およびFe−Si−B−
C(P、S)系、および不可避不純物の非晶質合金薄帯
を鋳造する際、薄帯の冷却速度、剥離温度、薄帯の厚さ
および雰囲気中の酸素濃度を変えて、それぞれの薄帯の
鉄損を調べた。その結果、鉄損の低いもの、高いものな
ど、種々の値が得られたが、何故、鉄損が変化したのか
を明確にするために鋳造した薄帯の構造を丹念に調べ、
鉄損に影響を及ぼす因子を探すことから始めた。解析手
法は、X線回折による結晶化の有無、GDS(グロ−放
電発光分光法)による表面層の各元素の濃度分布測定、
などである。数多くの薄帯を調査した結果、前記した鋳
造条件をかえることによって、非晶質表面にある酸化層
厚みが変わることが新たに判明し、さらに、その酸化層
の厚みと鉄損の間に密接な関係があることが分かった。
すなわち、Fe−Si−B−C系非晶質薄帯では板厚が
10μm以上100μm以下の薄帯表面に厚さが5nm
以上20nm以下の極薄酸化層がある場合に低鉄損薄帯
が得られ、また、Fe−Si−B−C−M系、MはPま
たはSの少なくとも一種、である非晶質合金薄帯では板
厚が10μm以上100μm以下の薄帯表面の極薄酸化
層の下部にPおよびSの少なくとも一種を含む偏析層が
ある場合に低鉄損薄帯が得られることがわかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A feature of the present invention is that a liquid quenching method such as a single roll method is used to produce an amorphous alloy ribbon having reduced iron loss by forming an extremely thin oxide layer on the surface of the ribbon. When casting an amorphous alloy ribbon containing Fe-Si-B as a main component using the method, the temperature of the ribbon during casting is measured, and the amount of oxygen in the atmosphere is controlled according to the temperature. . The present inventors have proposed Fe-Si-BC and Fe-Si-B-
When casting C (P, S) -based and amorphous alloy ribbons of unavoidable impurities, the cooling rate of the ribbon, the peeling temperature, the thickness of the ribbon, and the oxygen concentration in the atmosphere are changed to change the thickness of each ribbon. The iron loss of the obi was examined. As a result, various values, such as low and high iron loss, were obtained, but carefully examined the structure of the cast ribbon to clarify why the iron loss changed,
I started by looking for factors that affect iron loss. The analysis methods include the presence or absence of crystallization by X-ray diffraction, measurement of the concentration distribution of each element in the surface layer by GDS (glow discharge emission spectroscopy),
And so on. As a result of investigating a number of ribbons, it was newly found that changing the casting conditions described above changed the thickness of the oxide layer on the amorphous surface. It turns out that there is a relationship.
That is, the thickness of the Fe-Si-BC-based amorphous ribbon is 5 nm on the surface of the ribbon having a thickness of 10 μm or more and 100 μm or less.
When there is an ultrathin oxide layer having a thickness of not less than 20 nm and less, a low iron loss ribbon can be obtained, and an amorphous alloy thin film of Fe-Si-BCM type, wherein M is at least one of P and S, It was found that a low iron loss ribbon can be obtained when there is a segregation layer containing at least one of P and S below the ultra-thin oxide layer on the surface of the ribbon having a thickness of 10 μm or more and 100 μm or less.

【0011】以上の知見をもとに、鋳造中に最適な極薄
酸化層をいかに薄帯表面に再現性良く形成させるか、を
鋭意検討した。酸化層は鋳造後の熱処理工程においても
形成させることができるが、鋳造中に酸化層が厚くなり
過ぎてしまった場合などは、次の熱処理工程において、
もはや酸化層厚の最適化は困難となってしまう。したが
って、鋳造工程で酸化層の形成を制御することは、低鉄
損薄帯が安定して得られ、歩留りが向上する効果が期待
できる。
Based on the above findings, the present inventors have made intensive studies on how to form an optimum ultrathin oxide layer on the surface of the ribbon with good reproducibility during casting. The oxide layer can also be formed in a heat treatment step after casting, but in the case where the oxide layer has become too thick during casting, in the next heat treatment step,
It is no longer possible to optimize the oxide layer thickness. Therefore, by controlling the formation of the oxide layer in the casting step, an effect of stably obtaining a low iron loss ribbon and improving the yield can be expected.

【0012】検討の結果、合金溶湯を移動している冷却
基板上にスロットノズルを通して噴出させて、該合金を
急冷凝固させて非晶質合金薄帯を製造する方法におい
て、鋳造中に薄帯長手方向に少なくとも2カ所で薄帯温
度を測定し、薄帯温度が800℃以下150℃以上の全
部または一部の温度範囲内にある薄帯部位を1vol%
以上30vol%以下の酸素を含む雰囲気中に保持し、
その温度範囲以外の温度にある薄帯部位を非酸化性雰囲
気に保持することによって、薄帯表面の極薄酸化層が制
御された薄帯が得られることが分かった。ここで、鋳造
中に少なくとも2カ所で薄帯温度を測定する理由は、鋳
造中の各薄帯部位における薄帯温度を精度良く予測する
ためである。合金の融点は既知であるから、その他の少
なくとも2カ所で薄帯温度を測定すれば、少なくとも3
カ所の薄帯位置での温度がわかるため、薄帯の冷却曲線
を精度良く描くことが可能になる。このようにして求め
た冷却曲線から薄帯温度が800℃になっている位置が
わかる。薄帯温度が800℃超にある場合には酸化速度
が早いため、均質な極薄酸化層を形成させることが難し
くなる。薄帯部位の全部または一部が800℃以下15
0℃以上の温度範囲内にある場合に1vol%以上30
vol%以下の酸素を含む雰囲気中にその部位を保持す
ることによって、本発明の狙う極薄酸化層を薄帯表面に
形成させることができる。下限を150℃としたのは、
150℃より低い温度範囲では酸化層の成長速度が遅く
なるため、極薄酸化層厚の増加がほとんどなく、鉄損の
さらなる低減は期待できないからである。より均一な酸
化層を形成させるためには、薄帯部位の全部または一部
が600℃以下150℃以上の温度範囲内にある場合に
1vol%以上30vol%以下の酸素を含む雰囲気中
にその部位を保持し、その温度範囲以外の温度にある薄
帯部位を非酸化性雰囲気に保持することが好ましい。
As a result of the study, it has been found that, in a method of producing an amorphous alloy ribbon by casting a molten alloy through a slot nozzle onto a moving cooling substrate and rapidly solidifying the alloy, the length of the ribbon during casting is reduced. The ribbon temperature is measured at least at two locations in the direction, and 1 vol% is defined as the ribbon portion where the ribbon temperature is within 800% or less and 150 ° C or more in all or part of the temperature range.
It is kept in an atmosphere containing at least 30 vol% of oxygen,
It has been found that by maintaining the ribbon portion at a temperature outside the temperature range in a non-oxidizing atmosphere, a ribbon having a controlled ultrathin oxide layer on the ribbon surface can be obtained. Here, the reason why the ribbon temperature is measured at least at two locations during casting is to accurately predict the ribbon temperature at each ribbon portion during casting. Since the melting point of the alloy is known, if the ribbon temperature is measured at at least two other locations, it is at least 3
Since the temperatures at the three ribbon positions are known, the cooling curve of the ribbon can be accurately drawn. The position where the ribbon temperature is 800 ° C. can be found from the cooling curve thus obtained. When the ribbon temperature is higher than 800 ° C., the oxidation rate is high, and it is difficult to form a uniform ultra-thin oxide layer. The whole or part of the ribbon is 800 ℃ or less15
1 vol% or more 30 in the temperature range of 0 ° C or more
By maintaining the part in an atmosphere containing oxygen of not more than vol%, the ultrathin oxide layer targeted by the present invention can be formed on the surface of the ribbon. The lower limit was set to 150 ° C.
This is because, in a temperature range lower than 150 ° C., the growth rate of the oxide layer becomes slow, so that the thickness of the ultrathin oxide layer hardly increases, and further reduction of iron loss cannot be expected. In order to form a more uniform oxide layer, when all or a part of the ribbon portion is in a temperature range of 600 ° C. or less and 150 ° C. or more, the portion is placed in an atmosphere containing 1 vol% or more and 30 vol% or less of oxygen. And it is preferable to keep the ribbon portion at a temperature outside the temperature range in a non-oxidizing atmosphere.

【0013】酸素濃度に関しては、それが1vol%未
満では酸化層が所定の厚みまで成長できず、また、30
vol%超では酸化層の厚みが場所によって不均一にな
るために、酸素濃度を1vol%以上30vol%以下
の範囲とした。より均質な酸化層を形成させるために
は、酸素濃度を5vol%以上25vol%以下にする
ことが好ましい。ここで、雰囲気は酸素と不活性ガスと
の混合ガスが使用可能である。このような条件で、板厚
が10μm以上100μm以下の薄帯で、組成がFea
Sib Bc Cd である合金、ただし、a、b、cおよび
dは原子%で、70≦a≦86、1≦b≦19、7≦c
≦20、0.02≦d≦4、a+b+c+d=100の
薄帯の表面に厚さが5nm以上20nm以下の極薄酸化
層を形成させることができる。この厚さの極薄酸化層を
形成させることによって、磁区が細分化されて渦電流損
失が低減し、鉄損が改善される。酸化層の厚さが5nm
より薄い時には鉄損低減効果が十分でなく、それが20
nmより厚くなると鉄損低減効果は認められなくなる。
Regarding the oxygen concentration, if the oxygen concentration is less than 1 vol%, the oxide layer cannot grow to a predetermined thickness.
If the content exceeds vol%, the thickness of the oxide layer becomes uneven depending on the location. Therefore, the oxygen concentration is set in the range of 1 vol% to 30 vol%. In order to form a more uniform oxide layer, it is preferable that the oxygen concentration be 5 vol% or more and 25 vol% or less. Here, as the atmosphere, a mixed gas of oxygen and an inert gas can be used. Under these conditions, a thin ribbon having a thickness of 10 μm or more and 100 μm or less and a composition of Fea
An alloy which is Sib Bc Cd, where a, b, c and d are atomic%, 70 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c
An ultrathin oxide layer having a thickness of 5 nm or more and 20 nm or less can be formed on the surface of the ribbon satisfying ≦ 20, 0.02 ≦ d ≦ 4, and a + b + c + d = 100. By forming an ultra-thin oxide layer having this thickness, the magnetic domains are subdivided, eddy current loss is reduced, and iron loss is improved. The thickness of the oxide layer is 5 nm
When the thickness is thinner, the iron loss reduction effect is not sufficient,
When the thickness is larger than nm, the effect of reducing iron loss is not recognized.

【0014】次に組成限定理由を述べる。薄帯を鉄心に
使用する場合、鉄心の飽和磁束密度は1.5T以上の高
い値にする必要がある。そのためにはFeの含有量を7
0原子%以上にしなければならない。また、Feの含有
量が86原子%超になると非晶質の形成が困難になって
良好な薄帯特性が得られなくなる。従って、Feを70
原子%以上86原子%以下にする必要がある。Siおよ
びBは非晶質形成能および熱安定性を向上させるための
ものである。Siが1原子%未満、Bが7原子%未満で
は非晶質が安定して形成されず、一方、Siが19原子
%超、Bが20原子%超としても原料コストが高くなる
だけで、非晶質形成能および熱的安定性の向上は認めら
れない。従って、Siは1原子%以上19原子%以下、
Bは7原子%以上20原子%以下が好ましい。Cは薄帯
の鋳造性向上に効果がある元素である。Cを含有させる
ことによって、溶湯と冷却基板の濡性が向上して良好な
薄帯を形成することができる。0.02原子%未満では
この効果が得られない。また、Cを4原子%超としても
この効果の向上は認められない。従って、Cは0.02
原子%以上4原子%以下が好ましい。さらなる磁気特性
の安定化をはかるには、Feを77原子%以上83原子
%以下、Siを2原子%以上9原子%以下、Bを11原
子%以上17原子%以下にするのが好ましい。また、本
発明で用いられる上記合金は、前述の元素の外に不可避
的不純物としてTi、Al、Sn、Mn、Cr等通常の
Fe基非品質合金薄帯に含まれる元素を含んでいてもよ
い。
Next, the reasons for limiting the composition will be described. When a ribbon is used for the iron core, the saturation magnetic flux density of the iron core needs to be a high value of 1.5T or more. For this purpose, the content of Fe must be 7
Must be at least 0 atomic%. On the other hand, if the Fe content exceeds 86 atomic%, it becomes difficult to form an amorphous phase, and good ribbon properties cannot be obtained. Therefore, if Fe is 70
It must be at least 86 atomic%. Si and B are for improving the ability to form an amorphous phase and the thermal stability. If Si is less than 1 at% and B is less than 7 at%, amorphous is not formed stably. On the other hand, if Si is more than 19 at% and B is more than 20 at%, the cost of raw materials is only high, No improvement in amorphous forming ability and thermal stability is observed. Therefore, Si is not less than 1 atomic% and not more than 19 atomic%,
B is preferably at least 7 atomic% and at most 20 atomic%. C is an element effective for improving the castability of the ribbon. By containing C, the wettability between the molten metal and the cooling substrate is improved, and a good ribbon can be formed. If less than 0.02 atomic%, this effect cannot be obtained. Further, even if C exceeds 4 atomic%, this effect is not improved. Therefore, C is 0.02
It is preferably at least 4 atomic% but not more than 4 atomic%. In order to further stabilize the magnetic properties, it is preferable that the content of Fe is 77 to 83 atomic%, the content of Si is 2 to 9 atomic%, and the content of B is 11 to 17 atomic%. Further, the alloy used in the present invention may contain, as unavoidable impurities, elements contained in a normal Fe-based non-quality alloy ribbon such as Ti, Al, Sn, Mn, and Cr in addition to the above-described elements. .

【0015】薄帯厚さは、それが10μm未満の場合、
もしくは、100μm超になると安定して鋳造すること
が難しくなるため、10μm以上100μm以下が好ま
しい。さらに好ましくは、10μm以上70μm以下が
より薄帯鋳造が安定するため好ましい。薄帯幅は特に規
定しないが、20mm以上が好ましい。本発明者らは、
組成がFeaSib Bc Cd の合金、ただし、a、b、
cおよびdは原子%で、70≦a≦86、1≦b≦1
9、7≦c≦20、0.02≦d≦4、a+b+c+d
=100の非晶質合金薄帯に重量%で0.0003%以
上0.1%以下のPまたはSの少なくとも一種を含有さ
せることによって、鉄損がさらに低減することを見い出
した。Pは重量%で0.003%以上0.1%以下、S
は0.0003%以上0.01%以下が好ましい。Pま
たはSの効果は、非晶質薄帯と極薄酸化層の間に生成す
るPまたはSの偏析層に起因している。それらの偏析層
にはヒステリシス損失を低減させる効果がある。非晶質
薄帯と極薄酸化層の間にPまたはSの少なくとも一種の
偏析層がある構造の薄帯の場合には、前記極薄酸化層は
その厚さが100nm程度まで鉄損改善効果に寄与する
ことができる。100nmより厚くなっても、それ以上
の鉄損改善効果はみられない。また、非品質薄帯と極薄
酸化層の間に形成されるPまたはSの少なくとも一種の
偏析層の厚みは0.2nm以上が好ましく、より好まし
くは前記厚みが0.2nm〜15nmである。
[0015] The ribbon thickness is less than 10 µm,
Alternatively, if it exceeds 100 μm, it becomes difficult to perform stable casting, so that it is preferably 10 μm or more and 100 μm or less. More preferably, the thickness is 10 μm or more and 70 μm or less, because the strip casting is more stable. The width of the ribbon is not particularly limited, but is preferably 20 mm or more. We have:
Alloy of composition FeaSib Bc Cd, where a, b,
c and d are atomic%, 70 ≦ a ≦ 86, 1 ≦ b ≦ 1
9, 7 ≦ c ≦ 20, 0.02 ≦ d ≦ 4, a + b + c + d
It has been found that iron loss is further reduced by including at least one of P and S in an amount of 0.0003% or more and 0.1% or less by weight in an amorphous alloy ribbon having a thickness of = 100. P is 0.003% or more and 0.1% or less by weight, S
Is preferably 0.0003% or more and 0.01% or less. The effect of P or S results from the segregation layer of P or S generated between the amorphous ribbon and the ultrathin oxide layer. These segregation layers have the effect of reducing hysteresis loss. In the case of a ribbon having a structure in which at least one segregation layer of P or S is present between the amorphous ribbon and the ultrathin oxide layer, the ultrathin oxide layer has an iron loss improving effect up to a thickness of about 100 nm. Can be contributed to. Even if the thickness is more than 100 nm, no further effect of improving iron loss is observed. Further, the thickness of at least one segregation layer of P or S formed between the non-quality ribbon and the ultrathin oxide layer is preferably 0.2 nm or more, and more preferably the thickness is 0.2 nm to 15 nm.

【0016】なお、PまたはSの少くとも一種を極く微
量、例えば0.003%以下(重量%)を含むようなF
eaSib Bc Cd で表示されるFe基非品質合金薄帯
の場合には、前記偏析層が存在しないが、仮に存在して
いたとしても検出しえないものである。本願発明は所定
の合金成分を溶解し、溶湯を移動している冷却基板上に
スロットノズルを通して噴出させて、該合金を急冷凝固
させる方法、例えば、単ロール法、双ロール法によって
製造することができる。単ロール装置には、ドラムの内
壁を使う遠心急冷装置、エンドレスタイプのベルトを使
う装置、などが使用可能である。図1および図2には本
発明を実施するための装置構成を単ロール法を用いた場
合を例にして示してある。回転している冷却ロール1に
るつぼ3で溶解された合金溶湯2を噴出させ、非晶質薄
帯6を鋳造する際、薄帯温度を接触式熱電対4および5
でオンライン測温する。放射温度計を用いても良い。鋳
造中に合金の融点と測温した2点を合わせた計3カ所の
薄帯温度を用いて冷却ロールの上の薄帯温度分布を推定
する。測温点が多い方が温度分布の推定精度が向上する
が、多すぎると扱いが煩雑になる。通常は2〜4カ所程
度で測温すれば十分である。鋳造量が少なく、鋳造中に
薄帯の温度分布を求める時間がない時には、予備実験で
薄帯の温度分布を求めておけば良い。このようにして求
めた薄帯温度分布から薄帯温度が800℃になっている
位置を求め、そこに、例えば、図1の7および8で示し
た2重構造のノズルを配置する。ノズル7からはアルゴ
ン、窒素などの不活性ガスを噴出させ、ノズル8からは
1vol%以上30vol%以下の酸素を含む不活性ガ
スを噴出させる。これによって、薄帯温度が800℃以
下150℃以上の範囲にある薄帯部位を1vol%以上
30vol%以下の酸素を含む雰囲気に保持し、その温
度範囲以外の温度にある薄帯部位を非酸化性雰囲気にす
ることができる。ただし、図1の場合には、150℃よ
り低い薄帯温度範囲が大気に触れるが、この温度範囲で
は酸化速度が遅いため、非酸化性雰囲気に保持しなくて
も酸化層厚みにはほとんど影響しない。
It should be noted that at least one kind of P or S is contained in a trace amount, for example, 0.003% or less (% by weight).
In the case of the Fe-based non-quality alloy ribbon represented by eaSib Bc Cd, the segregation layer does not exist but cannot be detected even if it exists. The present invention is a method of melting a predetermined alloy component, ejecting the molten metal through a slot nozzle onto a moving cooling substrate, and rapidly cooling and solidifying the alloy, for example, a single-roll method, a twin-roll method. it can. As the single roll device, a centrifugal quenching device using the inner wall of the drum, a device using an endless type belt, and the like can be used. FIGS. 1 and 2 show an apparatus configuration for carrying out the present invention using a single roll method as an example. When the molten alloy 2 melted in the crucible 3 is jetted onto the rotating cooling roll 1 to cast the amorphous ribbon 6, the temperature of the ribbon is adjusted by contact thermocouples 4 and 5.
Online temperature measurement. A radiation thermometer may be used. The ribbon temperature distribution on the cooling roll is estimated using a total of three ribbon temperatures including the melting point of the alloy and two points measured during casting. Although the estimation accuracy of the temperature distribution is improved as the number of the temperature measuring points increases, the handling becomes complicated when the number is too large. Usually, it is sufficient to measure the temperature at about 2 to 4 places. When the casting amount is small and there is no time for obtaining the temperature distribution of the ribbon during casting, the temperature distribution of the ribbon may be obtained by a preliminary experiment. A position where the ribbon temperature is 800 ° C. is determined from the ribbon temperature distribution thus determined, and, for example, a nozzle having a double structure shown in 7 and 8 in FIG. An inert gas such as argon or nitrogen is ejected from the nozzle 7, and an inert gas containing 1 vol% or more and 30 vol% or less oxygen is ejected from the nozzle 8. In this manner, the ribbon portion having a ribbon temperature of 800 ° C. or less and 150 ° C. or more is maintained in an atmosphere containing oxygen of 1 vol% or more and 30 vol% or less, and the ribbon portion having a temperature outside the temperature range is not oxidized. The atmosphere can be made sexual. However, in the case of FIG. 1, although the ribbon temperature range lower than 150 ° C. is exposed to the atmosphere, the oxidation rate is slow in this temperature range, so that even if the temperature is not maintained in the non-oxidizing atmosphere, the oxide layer thickness is hardly affected. do not do.

【0017】より確実に800℃以下150℃以上の温
度範囲内にある薄帯部位の全部または一部を1vol%
以上30vol%以下の酸素を含む雰囲気に保持し、そ
の温度範囲以外の温度にある薄帯部位を非酸化性雰囲気
に保持するためには、例えば、図2に示した装置を使用
する。図2において、9の雰囲気制御可能な容器の中を
アルゴン、窒素などの不活性ガス雰囲気にして、図1の
場合と同様にして求めた所定温度範囲の薄帯位置にノズ
ル10を通して1vol%以上30vol%以下の酸素
を含む不活性ガスを噴出させる。このガスはノズル11
を通して、容器外へ排出される。このようにして、薄帯
温度が800℃以下150℃以上の全部または一部の温
度範囲内にある薄帯部位を1vol%以上30vol%
以下の酸素を含む不活性雰囲気にすることができる。ロ
ールに接触する部分の長さ12を変えることによって、
酸素含有雰囲気に保持する薄帯部位の温度範囲を簡便に
制御することが可能になる。より均一な酸化層を形成さ
せるために、薄帯温度が600℃以下150℃以上の温
度範囲内にある薄帯部位の全部または一部を酸素含有雰
囲気に保持する場合にも同様な方法で実施することがで
きる。
More surely, all or a part of the ribbon portion within a temperature range of 800 ° C. or less and 150 ° C. or more is 1 vol%
In order to maintain an atmosphere containing oxygen of 30 vol% or less and a ribbon portion at a temperature outside the temperature range in a non-oxidizing atmosphere, for example, the apparatus shown in FIG. 2 is used. In FIG. 2, the inside of the container 9 whose atmosphere can be controlled is set to an inert gas atmosphere such as argon or nitrogen, and 1 vol% or more is passed through the nozzle 10 to a ribbon position in a predetermined temperature range obtained in the same manner as in FIG. An inert gas containing 30 vol% or less of oxygen is jetted. This gas is supplied to the nozzle 11
Through the container. In this manner, the ribbon portion whose ribbon temperature is in the whole or part of the temperature range of 800 ° C. or lower and 150 ° C. or higher is 1 vol% or more and 30 vol% or less.
An inert atmosphere containing the following oxygen can be used. By changing the length 12 of the part that contacts the roll,
It is possible to easily control the temperature range of the ribbon portion held in the oxygen-containing atmosphere. In order to form a more uniform oxide layer, the same method is used when all or a part of the ribbon portion whose ribbon temperature is in a temperature range of 600 ° C. or less and 150 ° C. or more is kept in an oxygen-containing atmosphere. can do.

【0018】[0018]

【実施例】以下、本発明を実施例により詳細に説明す
る。 (実施例1)Fe80.5Si2.5 1619組成の合金をス
ロット幅0.4mm、長さ25mmのノズルを通じて、
周速度25m/secで回転している銅製ロール上へ噴
出し、25μm厚の非晶質合金薄帯を得る工程におい
て、図2に示した装置を用いて、酸素含有窒素ガス雰囲
気に保持される薄帯温度の上限と下限を制御した。今回
の実験では酸素含有窒素ガスに空気(20vol%酸素
+窒素)を用いた。容器9の中を窒素ガス雰囲気に保持
したため、上記温度範囲以外では薄帯は窒素雰囲気に保
持されている。比較として、従来の大気中鋳造も実施し
た。それぞれの条件で作製したAs−cast薄帯の自
由面(ロールに接触しない側)の酸化層厚みをGDS
(グロ−放電発光分光法)を用いて測定した。薄帯の磁
気特性は、薄帯を窒素雰囲気中で、360℃で1時間磁
場中焼鈍した後、SST(Single Strip
Test er)を用いて、周波数50Hz、磁束密度
1.3Tの条件で評価した。なお、焼鈍の前後で酸化層
厚みの変化はほとんどなかった。結果を表1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. (Example 1) An alloy having a composition of Fe 80.5 Si 2.5 B 16 C 19 was passed through a nozzle having a slot width of 0.4 mm and a length of 25 mm.
In the step of jetting onto a copper roll rotating at a peripheral speed of 25 m / sec to obtain an amorphous alloy ribbon having a thickness of 25 μm, the amorphous alloy ribbon is held in an oxygen-containing nitrogen gas atmosphere using the apparatus shown in FIG. The upper and lower limits of the ribbon temperature were controlled. In this experiment, air (20 vol% oxygen + nitrogen) was used as the oxygen-containing nitrogen gas. Since the inside of the container 9 was kept in a nitrogen gas atmosphere, the ribbon was kept in a nitrogen atmosphere outside the above temperature range. For comparison, conventional atmospheric casting was also performed. The thickness of the oxide layer on the free surface (the side not in contact with the roll) of the As-cast ribbon produced under each condition was determined by GDS.
(Glow discharge emission spectroscopy). The magnetic properties of the ribbon were determined by annealing the ribbon in a magnetic field at 360 ° C. for 1 hour in a nitrogen atmosphere, and then performing SST (Single Strip).
(Tester) and evaluated under the conditions of a frequency of 50 Hz and a magnetic flux density of 1.3 T. The thickness of the oxide layer hardly changed before and after annealing. Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】以上の結果から、No.1〜No.4の薄
帯温度の上限が800℃超の場合には、酸化層が不均一
厚になって、優れた鉄損は得られなくなる。また、N
o.7とNo.10の比較から、薄帯温度の下限が15
0℃より低くなっても、さらなる鉄損改善は見られない
ことがわかる。酸化層厚みと鉄損の比較から、本願発明
の酸素含有ガスに触れる薄帯の全部または一部の温度を
800℃以下150℃以上の温度範囲内に制御すること
によって、低鉄損薄帯が得られることがわかる。
From the above results, No. 1 to No. If the upper limit of the ribbon temperature of No. 4 is more than 800 ° C., the oxide layer becomes non-uniform, and excellent iron loss cannot be obtained. Also, N
o. 7 and no. From the comparison of 10, the lower limit of the ribbon temperature is 15
It can be seen that even if the temperature is lower than 0 ° C., no further improvement in iron loss is observed. From the comparison between the oxide layer thickness and iron loss, by controlling the temperature of all or a part of the ribbon in contact with the oxygen-containing gas of the present invention within a temperature range of 800 ° C. or less and 150 ° C. or more, a low iron loss ribbon is obtained. It can be seen that it can be obtained.

【0021】ここで、No.3とNo.7を比較した場
合、空気に触れる温度範囲は、No.3の方がNo.7
よりも広くなっているにも関わらず、酸化層厚みはN
o.3の方がNo.7よりも薄い結果となっている。こ
れは、一端、高温で不均一な酸化層が形成されると、そ
の後の全体的な酸化層の成長が阻害されるためと考えら
れる。 (実施例2)実施例1と同様の合金と鋳造方法を用い薄
帯を鋳造する工程において、薄帯温度が650℃以下1
80℃以上にある薄帯部位が接触する雰囲気ガスの酸素
濃度を変えて鋳造した。ただし、ロール回転数、およ
び、多重スロットノズルを用いて薄帯厚も変化させた。
薄帯の評価方法は実施例1と同様である。結果を表2に
示す。
Here, No. 3 and No. When No. 7 was compared, the temperature range in which air was exposed was No. 7; No. 3 is No. 3. 7
Oxide layer thickness is N
o. No. 3 is No. 3. The result is thinner than 7. This is presumably because once a non-uniform oxide layer is formed at a high temperature, growth of the entire oxide layer thereafter is hindered. (Embodiment 2) In the process of casting a ribbon using the same alloy and casting method as in Embodiment 1, the temperature of the ribbon is 650 ° C. or less.
The casting was carried out by changing the oxygen concentration of the atmosphere gas in contact with the ribbon portion at 80 ° C. or higher. However, the number of roll rotations and the thickness of the ribbon were also changed by using a multi-slot nozzle.
The evaluation method of the ribbon is the same as that of the first embodiment. Table 2 shows the results.

【0022】[0022]

【表2】 [Table 2]

【0023】以上の結果から、薄帯部位を1vol%以
上30vol%以下の酸素を含む雰囲気鋳造中に保持す
ることによって、5nmから20nmの極薄酸化層が形
成されて、低鉄損薄帯が得られることがわかる。 (実施例3)組成がFe80.5Si2.5 161 である母
合金、および、それに0.05wt%のP、および0.
005wt%のSを添加した母合金を用いて25μm厚
の非晶質薄帯を鋳造した。使用した装置は図1に示した
ものであり、ノズル7とノズル8の間にある隔壁を薄帯
温度が580℃の位置になるように配置した。ノズル7
および8からそれぞれ窒素ガスおよび24vol%酸素
を含む窒素ガスを噴出させることによって、580℃以
下の薄帯部位を酸素含有雰囲気に保持し、580℃以上
の薄帯部位を非酸化性雰囲気に保持した。今回の実験条
件では、24vol%酸素を含む窒素ガスに保持される
薄帯の下限温度は約200℃であった。薄帯の評価は実
施例1と同様である。図3には、PとSの両方を添加し
た薄帯をGDS(スパッタ速度50nm/sec)で各
元素の深さ方向分布を測定した結果を示した。非晶質合
金薄帯と酸化層との間にPおよびSの偏析層が存在して
いることがわかる。ただし、図3ではPの感度を5倍に
してある。鉄損の結果を表3に示す。
From the above results, by maintaining the ribbon portion in an atmosphere casting containing 1 vol% to 30 vol% oxygen, an ultrathin oxide layer of 5 nm to 20 nm is formed, and the low iron loss ribbon is formed. It can be seen that it can be obtained. (Example 3) A master alloy having a composition of Fe 80.5 Si 2.5 B 16 C 1 , and 0.05 wt% of P and 0.
An amorphous ribbon having a thickness of 25 μm was cast using a master alloy to which 005 wt% of S was added. The apparatus used was that shown in FIG. 1, and the partition wall between the nozzles 7 and 8 was arranged so that the ribbon temperature was at a position of 580 ° C. Nozzle 7
By ejecting a nitrogen gas and a nitrogen gas containing 24 vol% oxygen from Nos. 8 and 8, respectively, the ribbon portion at 580 ° C or lower was kept in an oxygen-containing atmosphere, and the ribbon portion at 580 ° C or more was kept in a non-oxidizing atmosphere. . Under the experimental conditions this time, the lower limit temperature of the ribbon held in the nitrogen gas containing 24 vol% oxygen was about 200 ° C. Evaluation of the ribbon is the same as that of the first embodiment. FIG. 3 shows the result of measuring the distribution of each element in the depth direction of the ribbon to which both P and S are added by GDS (sputtering rate: 50 nm / sec). It turns out that the segregation layer of P and S exists between the amorphous alloy ribbon and the oxide layer. However, in FIG. 3, the sensitivity of P is made five times. Table 3 shows the results of iron loss.

【0024】[0024]

【表3】 [Table 3]

【0025】以上の結果から、P、S添加成分系の非晶
質薄帯を本発明による方法で製造することによって、そ
れらの偏析層を含む極薄酸化層が形成されて、さらなる
低鉄損薄帯が得られることがわかる。
From the above results, the production of the amorphous ribbons of the P and S additive components by the method of the present invention results in the formation of an ultrathin oxide layer including their segregated layers, and further low iron loss. It can be seen that a ribbon is obtained.

【0026】[0026]

【発明の効果】本発明によれば、鋳造中における薄帯温
度に応じた雰囲気制御を実施することによって、別工程
で酸化層を付与することなく、薄帯表面に極薄酸化層、
または、該極薄酸化層の下部にPおよびSの少なくとも
一種を含む偏析層を形成させて、低鉄損のFe基非晶質
合金薄帯を製造することが可能になる。
According to the present invention, by controlling the atmosphere according to the temperature of the ribbon during casting, an ultra-thin oxide layer can be formed on the surface of the ribbon without providing an oxide layer in a separate step.
Alternatively, by forming a segregation layer containing at least one of P and S below the ultrathin oxide layer, a Fe-based amorphous alloy ribbon with low iron loss can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための装置の例を示す図。FIG. 1 is a diagram showing an example of an apparatus for implementing the present invention.

【図2】本発明を実施するための別な装置の例を示す
図。
FIG. 2 is a diagram showing an example of another apparatus for carrying out the present invention.

【図3】本発明によって製造した薄帯の深さ方向の元素
分布の例(GDSで測定)を示す図。
FIG. 3 is a view showing an example (measured by GDS) of an element distribution in a depth direction of a ribbon manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1…冷却ロール 2…合金溶湯 3…るつぼ 4…温度計(接触式熱電対など) 5…温度計(接触式熱電対など) 6…薄帯 7…非酸化性雰囲気ガス導入ノズル 8…酸素含有雰囲気ガス導入ノズル 9…容器 10…酸素含有雰囲気ガス導入ノズル 11…酸素含有雰囲気ガス排出ノズル 12…酸素含有雰囲気ガス流路ガイド DESCRIPTION OF SYMBOLS 1 ... Cooling roll 2 ... Molten alloy 3 ... Crucible 4 ... Temperature meter (contact type thermocouple etc.) 5 ... Thermometer (contact type thermocouple etc.) 6 ... Thin ribbon 7 ... Non-oxidizing atmosphere gas introduction nozzle 8 ... Oxygen containing Atmosphere gas introduction nozzle 9 ... Container 10 ... Oxygen-containing atmosphere gas introduction nozzle 11 ... Oxygen-containing atmosphere gas discharge nozzle 12 ... Oxygen-containing atmosphere gas flow path guide

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年5月22日[Submission date] May 22, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Correction target item name] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【発明が解決しようとする課題】上述のように、従来
は、Fe基非晶質薄帯の表面層改質および表面皮膜付与
を行うには、鋳造工程以外の別工程で非晶質薄帯表面に
酸化皮膜、などを付与する工程を採用していた。本発明
は、鋳造中における薄帯温度に応じた雰囲気制御を実施
することによって、別工程で酸化層を付与することな
く、薄帯表面に極薄酸化層、または、PおよびSの少な
くとも一種を含む偏析層と極薄酸化層を形成させて、F
e基非晶質合金薄帯の鉄損を改善する方法を提供するこ
とを目的とする。
As described above, conventionally, in order to modify the surface layer of an Fe-based amorphous ribbon and to provide a surface film, the amorphous ribbon must be formed in a separate step other than the casting step. A process of providing an oxide film or the like on the surface has been employed. The present invention implements atmosphere control according to the ribbon temperature during casting, so that an ultra-thin oxide layer or at least one of P and S is formed on the ribbon surface without providing an oxide layer in a separate step. Forming a segregation layer and an ultra-thin oxide layer containing
An object of the present invention is to provide a method for improving iron loss of an e-based amorphous alloy ribbon.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】(3)組成が(FeaSib Bc Cd )
100-X X で表示される合金を溶解し、合金溶湯を移動
している冷却基板上にスロットノズルを通して噴出させ
て、該合金を急冷凝固させて非晶質薄帯を製造する方法
において、鋳造中に薄帯長手方向に少くとも2ヶ所で薄
帯温度を測定し、薄帯温度が800℃以下150℃以上
の温度範囲内にある薄帯部位の全部または一部を1vo
l%以上30vol%以下の酸素を含む雰囲気中に保持
し、その温度範囲以外の温度にある薄帯部位を非酸化性
雰囲気に保持することを特徴とするFe基非晶質合金薄
帯の製造方法。
(3) The composition is (FeaSib Bc Cd)
Was dissolved alloy represented by 100-X M X, and is ejected through the slot nozzle onto a cooling substrate which is moving the molten alloy, thereby rapidly solidifying the alloy in the process for producing the amorphous ribbon, During casting, the ribbon temperature is measured at least at two places in the longitudinal direction of the ribbon, and all or a part of the ribbon portion whose ribbon temperature is within a temperature range of 800 ° C. or less and 150 ° C. or more is subjected to 1 vol.
Manufacturing an Fe-based amorphous alloy ribbon, wherein the ribbon is maintained in an atmosphere containing 1% or more and 30% by volume or less of oxygen and a ribbon portion at a temperature outside the temperature range is maintained in a non-oxidizing atmosphere. Method.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】ただし、a、b、cおよびdは原子%で、
70≦a≦86、1≦b≦19、7≦c≦20、0.0
2≦d≦4、a+b+c+d=100であり、MはPお
よびSの少なくとも一種で、重量%で0.0003≦X
≦0.1である。 (4)板厚が10μm以上100μm以下の非晶質合金
薄帯の少なくとも片側の薄帯表面に極薄酸化層を有し、
さらに、該酸化層の下部にPおよびSの少なくとも一種
含む偏析層を形成させることを特徴とする上記(3)記
載のFe基非晶質合金薄帯の製造方法。
Wherein a, b, c and d are atomic%,
70 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.0
2 ≦ d ≦ 4, a + b + c + d = 100, M is at least one of P and S, and 0.0003 ≦ X by weight%.
≦ 0.1. (4) an ultrathin oxide layer on at least one side of the amorphous alloy ribbon having a thickness of 10 μm or more and 100 μm or less,
The method for producing an Fe-based amorphous alloy ribbon according to the above (3), further comprising forming a segregation layer containing at least one of P and S below the oxide layer.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】[0010]

【発明の実施の形態】本発明の特徴は、薄帯表面に極薄
酸化層を形成させることによって鉄損を低減した非晶質
合金薄帯を製造するために、単ロールなどの液体急冷法
を用いてFe−Si−Bを主成分とする非晶質合金薄帯
を鋳造する際、鋳造中の薄帯温度を測定し、その温度に
応じて雰囲気中の酸素量を制御することにある。本発明
者らは、Fe−Si−B−C系およびFe−Si−B−
C(P、S)系、および不可避不純物の非晶質合金薄帯
を鋳造する際、薄帯の冷却速度、剥離温度、薄帯の厚さ
および雰囲気中の酸素濃度を変えて、それぞれの薄帯の
鉄損を調べた。その結果、鉄損の低いもの、高いものな
ど、種々の値が得られたが、何故、鉄損が変化したのか
を明確にするために鋳造した薄帯の構造を丹念に調べ、
鉄損に影響を及ぼす因子を探すことから始めた。解析手
法は、X線回折による結晶化の有無、GDS(グロ−放
電発光分光法)による表面層の各元素の濃度分布測定、
などである。数多くの薄帯を調査した結果、前記した鋳
造条件をかえることによって、非晶質表面にある酸化層
厚みが変わることが新たに判明し、さらに、その酸化層
の厚みと鉄損の間に密接な関係があることが分かった。
すなわち、Fe−Si−B−C系非晶質薄帯では板厚が
10μm以上100μm以下の薄帯表面に厚さが5nm
以上20nm以下の極薄酸化層がある場合に低鉄損薄帯
が得られ、また、Fe−Si−B−C−M系、MはPお
よびSの少なくとも一種、である非晶質合金薄帯では板
厚が10μm以上100μm以下の薄帯表面の極薄酸化
層の下部にPおよびSの少なくとも一種を含む偏析層が
ある場合に低鉄損薄帯が得られることがわかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A feature of the present invention is that a liquid quenching method such as a single roll method is used to produce an amorphous alloy ribbon having reduced iron loss by forming an extremely thin oxide layer on the surface of the ribbon. When casting an amorphous alloy ribbon containing Fe-Si-B as a main component using the method, the temperature of the ribbon during casting is measured, and the amount of oxygen in the atmosphere is controlled according to the temperature. . The present inventors have proposed Fe-Si-BC and Fe-Si-B-
When casting C (P, S) -based and amorphous alloy ribbons of unavoidable impurities, the cooling rate of the ribbon, the peeling temperature, the thickness of the ribbon, and the oxygen concentration in the atmosphere are changed to change the thickness of each ribbon. The iron loss of the obi was examined. As a result, various values, such as low and high iron loss, were obtained, but carefully examined the structure of the cast ribbon to clarify why the iron loss changed,
I started by looking for factors that affect iron loss. The analysis methods include the presence or absence of crystallization by X-ray diffraction, measurement of the concentration distribution of each element in the surface layer by GDS (glow discharge emission spectroscopy),
And so on. As a result of investigating a number of ribbons, it was newly found that changing the casting conditions described above changed the thickness of the oxide layer on the amorphous surface. It turns out that there is a relationship.
That is, the thickness of the Fe-Si-BC-based amorphous ribbon is 5 nm on the surface of the ribbon having a thickness of 10 μm or more and 100 μm or less.
When there is an ultrathin oxide layer having a thickness of not less than 20 nm, a low iron loss ribbon can be obtained, and an amorphous alloy thin film of Fe-Si-BCM type, wherein M is at least one of P and S, It was found that a low iron loss ribbon can be obtained when there is a segregation layer containing at least one of P and S below the ultra-thin oxide layer on the surface of the ribbon having a thickness of 10 μm or more and 100 μm or less.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】薄帯厚さは、それが10μm未満の場合、
もしくは、100μm超になると安定して鋳造すること
が難しくなるため、10μm以上100μm以下が好ま
しい。さらに好ましくは、10μm以上70μm以下が
より薄帯鋳造が安定するため好ましい。薄帯幅は特に規
定しないが、20mm以上が好ましい。本発明者らは、
組成がFeaSib Bc Cd の合金、ただし、a、b、
cおよびdは原子%で、70≦a≦86、1≦b≦1
9、7≦c≦20、0.02≦d≦4、a+b+c+d
=100の非晶質合金薄帯に重量%で0.0003%以
上0.1%以下のPおよびSの少なくとも一種を含有さ
せることによって、鉄損がさらに低減することを見い出
した。Pは重量%で0.003%以上0.1%以下、S
は0.0003%以上0.01%以下が好ましい。Pお
よびSの効果は、非晶質薄帯と極薄酸化層の間に生成す
るPおよびSの偏析層に起因している。それらの偏析層
にはヒステリシス損失を低減させる効果がある。非晶質
薄帯と極薄酸化層の間にPおよびSの少なくとも一種の
偏析層がある構造の薄帯の場合には、前記極薄酸化層は
その厚さが100nm程度まで鉄損改善効果に寄与する
ことができる。100nmより厚くなっても、それ以上
の鉄損改善効果はみられない。また、非晶質薄帯と極薄
酸化層の間に形成されるPおよびSの少なくとも一種の
偏析層の厚みは0.2nm以上が好ましく、より好まし
くは前記厚みが0.2nm〜15nmである。
[0015] The ribbon thickness is less than 10 µm,
Alternatively, if it exceeds 100 μm, it becomes difficult to perform stable casting, so that it is preferably 10 μm or more and 100 μm or less. More preferably, the thickness is 10 μm or more and 70 μm or less, because the strip casting is more stable. The width of the ribbon is not particularly limited, but is preferably 20 mm or more. We have:
Alloy of composition FeaSib Bc Cd, where a, b,
c and d are atomic%, 70 ≦ a ≦ 86, 1 ≦ b ≦ 1
9, 7 ≦ c ≦ 20, 0.02 ≦ d ≦ 4, a + b + c + d
It has been found that iron loss can be further reduced by including at least one of P and S in an amount of 0.0003% or more and 0.1% or less by weight in an amorphous alloy ribbon of = 100. P is 0.003% or more and 0.1% or less by weight, S
Is preferably 0.0003% or more and 0.01% or less. The effect of P and S results from the segregation layer of P and S generated between the amorphous ribbon and the ultrathin oxide layer. These segregation layers have the effect of reducing hysteresis loss. In the case of a ribbon having a structure in which at least one segregation layer of P and S is present between the amorphous ribbon and the ultrathin oxide layer, the ultrathin oxide layer has an iron loss improving effect up to a thickness of about 100 nm. Can be contributed to. Even if the thickness is more than 100 nm, no further effect of improving iron loss is observed. The thickness of at least one segregation layer of P and S formed between the amorphous ribbon and the ultrathin oxide layer is preferably 0.2 nm or more, and more preferably the thickness is 0.2 nm to 15 nm. .

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】本願発明は所定の合金成分を溶解し、溶湯
を移動している冷却基板上にスロットノズルを通して噴
出させて、該合金を急冷凝固させる方法、例えば、単ロ
ール法、双ロール法によって製造することができる。単
ロール装置には、ドラムの内壁を使う遠心急冷装置、エ
ンドレスタイプのベルトを使う装置、などが使用可能で
ある。図1および図2には本発明を実施するための装置
構成を単ロール法を用いた場合を例にして示してある。
回転している冷却ロール1にるつぼ3で溶解された合金
溶湯2を噴出させ、非晶質薄帯6を鋳造する際、薄帯温
度を接触式熱電対4および5でオンライン測温する。放
射温度計を用いても良い。鋳造中に合金の融点と測温し
た2点を合わせた計3カ所の薄帯温度を用いて冷却ロー
ルの上の薄帯温度分布を推定する。測温点が多い方が温
度分布の推定精度が向上するが、多すぎると扱いが煩雑
になる。通常は2〜4カ所程度で測温すれば十分であ
る。鋳造量が少なく、鋳造中に薄帯の温度分布を求める
時間がない時には、予備実験で薄帯の温度分布を求めて
おけば良い。このようにして求めた薄帯温度分布から薄
帯温度が800℃になっている位置を求め、そこに、例
えば、図1の7および8で示した2重構造のノズルを配
置する。ノズル7からはアルゴン、窒素などの不活性ガ
スを噴出させ、ノズル8からは1vol%以上30vo
l%以下の酸素を含む不活性ガスを噴出させる。これに
よって、薄帯温度が800℃以下150℃以上の範囲に
ある薄帯部位を1vol%以上30vol%以下の酸素
を含む雰囲気に保持し、その温度範囲以外の温度にある
薄帯部位を非酸化性雰囲気にすることができる。ただ
し、図1の場合には、150℃より低い薄帯温度範囲が
大気に触れるが、この温度範囲では酸化速度が遅いた
め、非酸化性雰囲気に保持しなくても酸化層厚みにはほ
とんど影響しない。
According to the present invention, a predetermined alloy component is melted, and the molten metal is jetted onto a moving cooling substrate through a slot nozzle to rapidly cool and solidify the alloy, for example, by a single roll method or a twin roll method. can do. As the single roll device, a centrifugal quenching device using the inner wall of the drum, a device using an endless type belt, and the like can be used. FIGS. 1 and 2 show an apparatus configuration for carrying out the present invention using a single roll method as an example.
When the molten alloy 2 melted by the crucible 3 is jetted onto the rotating cooling roll 1 and the amorphous ribbon 6 is cast, the ribbon temperature is measured online by the contact thermocouples 4 and 5. A radiation thermometer may be used. The ribbon temperature distribution on the cooling roll is estimated using a total of three ribbon temperatures including the melting point of the alloy and two points measured during casting. Although the estimation accuracy of the temperature distribution is improved as the number of the temperature measuring points increases, the handling becomes complicated when the number is too large. Usually, it is sufficient to measure the temperature at about 2 to 4 places. When the casting amount is small and there is no time for obtaining the temperature distribution of the ribbon during casting, the temperature distribution of the ribbon may be obtained by a preliminary experiment. A position where the ribbon temperature is 800 ° C. is determined from the ribbon temperature distribution thus determined, and, for example, a nozzle having a double structure shown in 7 and 8 in FIG. An inert gas such as argon or nitrogen is ejected from the nozzle 7, and 1 vol% or more and 30 vol from the nozzle 8.
An inert gas containing 1% or less of oxygen is jetted. In this manner, the ribbon portion having a ribbon temperature of 800 ° C. or less and 150 ° C. or more is maintained in an atmosphere containing oxygen of 1 vol% or more and 30 vol% or less, and the ribbon portion having a temperature outside the temperature range is not oxidized. The atmosphere can be made sexual. However, in the case of FIG. 1, although the ribbon temperature range lower than 150 ° C. is exposed to the atmosphere, the oxidation rate is slow in this temperature range, so that even if the temperature is not maintained in a non-oxidizing atmosphere, the thickness of the oxide layer is hardly affected. do not do.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成がFeaSib Bc Cd で表示され
る合金を溶解し、合金溶湯を移動している冷却基板上に
スロットノズルを通して噴出させて、該合金を急冷凝固
させて非晶質薄帯を製造する方法において、鋳造中に薄
帯長手方向に少なくとも2カ所で薄帯温度を測定し、薄
帯温度が800℃以下150℃以上の温度範囲内にある
薄帯部位の全部または一部を1vol%以上30vol
%以下の酸素を含む雰囲気中に保持し、その温度範囲以
外の温度にある薄帯部位を非酸化性雰囲気に保持するこ
とを特徴とするFe基非晶質合金薄帯の製造方法。ただ
し、a、b、cおよびdは原子%で、70≦a≦86、
1≦b≦19、7≦c≦20、0.02≦d≦4、a+
b+c+d=100である。
1. An alloy having a composition represented by FeaSib Bc Cd is melted, and a molten alloy is jetted through a slot nozzle onto a moving cooling substrate to rapidly solidify the alloy to form an amorphous ribbon. In the manufacturing method, the ribbon temperature is measured at at least two places in the longitudinal direction of the ribbon during casting, and all or a part of the ribbon portion where the ribbon temperature is within a temperature range of 800 ° C. or less and 150 ° C. or more is 1 vol. % Or more 30vol
%. A method for producing an Fe-based amorphous alloy ribbon, wherein the ribbon is maintained in an atmosphere containing not more than 0.1% of oxygen, and the ribbon portion having a temperature outside the temperature range is maintained in a non-oxidizing atmosphere. However, a, b, c and d are atomic%, 70 ≦ a ≦ 86,
1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.02 ≦ d ≦ 4, a +
b + c + d = 100.
【請求項2】 板厚が10μm以上100μm以下の非
晶質合金薄帯の少なくとも片側の薄帯表面に厚さが5n
m以上20nm以下の極薄酸化層を形成させることを特
徴とする請求項1記載のFe基非晶質合金薄帯の製造方
法。
2. An amorphous alloy ribbon having a thickness of 10 μm or more and 100 μm or less has a thickness of 5n on at least one surface of the ribbon.
The method for producing an Fe-based amorphous alloy ribbon according to claim 1, wherein an ultrathin oxide layer having a thickness of not less than m and not more than 20 nm is formed.
【請求項3】 組成が(FeaSib Bc Cd )100-X
X で表示される合金を溶解し、合金溶湯を移動してい
る冷却基板上にスロットノズルを通して噴出させて、該
合金を急冷凝固させて非晶質薄帯を製造する方法におい
て、鋳造中に薄帯長手方向に少なくとも2ヶ所で薄帯温
度を測定し、薄帯温度が800℃以下150℃以上の温
度範囲内にある薄帯部位の全部または一部を1vol%
以上30vol%以下の酸素を含む雰囲気中に保持し、
その温度範囲以外の温度にある薄帯部位を非酸化性雰囲
気に保持することを特徴とするFe基非品質合金薄帯の
製造方法。ただし、a、b、cおよびdは原子%で、7
0≦a≦86、1≦b≦19、7≦c≦20、0.02
≦d≦4、a+b+c+d=100であり、MはPまた
はSの少なくとも一種で、重量%で0.0003≦X≦
0.1である。
3. The composition having a composition of (FeaSib Bc Cd) 100-X
It was dissolved alloy represented by M X, and is ejected through the slot nozzle onto a cooling substrate which is moving the molten alloy, thereby rapidly solidifying the alloy in the process for producing the amorphous ribbon, during casting The ribbon temperature is measured at least at two places in the longitudinal direction of the ribbon, and the whole or a part of the ribbon portion where the ribbon temperature is within a temperature range of 800 ° C. or less and 150 ° C. or more is 1 vol%.
It is kept in an atmosphere containing at least 30 vol% of oxygen,
A method for producing an Fe-based non-quality alloy ribbon, comprising maintaining a ribbon portion at a temperature outside the temperature range in a non-oxidizing atmosphere. However, a, b, c and d are atomic%, and 7
0 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.02
≦ d ≦ 4, a + b + c + d = 100, M is at least one of P and S, and 0.0003 ≦ X ≦% by weight.
0.1.
【請求項4】 板厚が10μm以上100μm以下の非
晶質合金薄帯の少なくとも片側の薄帯表面に極薄酸化層
を有し、さらに、該酸化層の下部にPおよびSの少なく
とも一種を含む偏析層を形成させることを特徴とする請
求項3記載のFe基非晶質合金薄帯の製造方法。
4. An amorphous alloy ribbon having a thickness of 10 μm or more and 100 μm or less has an ultrathin oxide layer on at least one surface of the ribbon, and further has at least one of P and S under the oxide layer. The method for producing an Fe-based amorphous alloy ribbon according to claim 3, wherein a segregation layer containing the alloy is formed.
JP10107682A 1998-04-17 1998-04-17 Manufacture of iron-base amorphous alloy foil Withdrawn JPH11302823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10107682A JPH11302823A (en) 1998-04-17 1998-04-17 Manufacture of iron-base amorphous alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10107682A JPH11302823A (en) 1998-04-17 1998-04-17 Manufacture of iron-base amorphous alloy foil

Publications (1)

Publication Number Publication Date
JPH11302823A true JPH11302823A (en) 1999-11-02

Family

ID=14465307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10107682A Withdrawn JPH11302823A (en) 1998-04-17 1998-04-17 Manufacture of iron-base amorphous alloy foil

Country Status (1)

Country Link
JP (1) JPH11302823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111082A1 (en) * 1999-11-18 2001-06-27 Ykk Corporation Formed article of amorphous alloy having hardened surface and method for production thereof
JP2007221869A (en) * 2006-02-15 2007-08-30 Hitachi Metals Ltd Laminate
KR20130101015A (en) * 2010-08-31 2013-09-12 메트글라스, 인코포레이티드 Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP2013537933A (en) * 2010-08-31 2013-10-07 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons with reduced surface defects and their applications
JP2013541642A (en) * 2010-09-09 2013-11-14 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons with reduced surface protrusions, their casting methods and applications

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111082A1 (en) * 1999-11-18 2001-06-27 Ykk Corporation Formed article of amorphous alloy having hardened surface and method for production thereof
US6530998B1 (en) 1999-11-18 2003-03-11 Ykk Corporation Formed article of amorphous alloy having hardened surface and method for production thereof
JP2007221869A (en) * 2006-02-15 2007-08-30 Hitachi Metals Ltd Laminate
KR20130101015A (en) * 2010-08-31 2013-09-12 메트글라스, 인코포레이티드 Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP2013537933A (en) * 2010-08-31 2013-10-07 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons with reduced surface defects and their applications
JP2013540894A (en) * 2010-08-31 2013-11-07 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons and their manufacture
US8968489B2 (en) 2010-08-31 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
US8974609B2 (en) 2010-08-31 2015-03-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP2013541642A (en) * 2010-09-09 2013-11-14 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons with reduced surface protrusions, their casting methods and applications
US8968490B2 (en) 2010-09-09 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
JP2017206768A (en) * 2010-09-09 2017-11-24 メトグラス・インコーポレーテッド Strong magnetic amorphous alloy ribbon with reduced projection on surface, casting method and application

Similar Documents

Publication Publication Date Title
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
JP5320764B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP2018123424A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
KR101222127B1 (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP6881249B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
JPH09202946A (en) Iron base amorphous alloy thin strip
JPH11302823A (en) Manufacture of iron-base amorphous alloy foil
KR100427834B1 (en) Wide iron-based amorphous alloy thin strip having improved magnetic properties, and method of making the same
JP4037989B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
JP4969808B2 (en) Manufacturing method and manufacturing apparatus for iron-based amorphous ribbon with excellent magnetic properties
JPH08283919A (en) Iron-base amorphous alloy foil and its production
JP3639689B2 (en) Method for producing Fe-based amorphous alloy ribbon
JP4037988B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
JP2001252749A (en) METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL
JP4441140B2 (en) Iron-based amorphous alloy ribbon
JPH08144029A (en) Iron-base amorphous alloy excellent in magnetic property and embrittlement resistance and its production
JP3887029B2 (en) Quenched metal ribbon with excellent soft magnetic properties and method for producing the same
JPH11300450A (en) Fe base amorphous alloy thin band having extremely thin oxidized layer
JPH06287721A (en) Amorphous alloy thin strip enhanced in crystallization resistance on surface
RU2009258C1 (en) Magnetic alloy for oxidizing annealing and method for production thereof
JP5320765B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705