JP2001252749A - METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL - Google Patents

METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL

Info

Publication number
JP2001252749A
JP2001252749A JP2000361504A JP2000361504A JP2001252749A JP 2001252749 A JP2001252749 A JP 2001252749A JP 2000361504 A JP2000361504 A JP 2000361504A JP 2000361504 A JP2000361504 A JP 2000361504A JP 2001252749 A JP2001252749 A JP 2001252749A
Authority
JP
Japan
Prior art keywords
ribbon
amorphous ribbon
producing
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000361504A
Other languages
Japanese (ja)
Inventor
Atsushi Sunakawa
淳 砂川
Yoshio Bizen
嘉雄 備前
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000361504A priority Critical patent/JP2001252749A/en
Publication of JP2001252749A publication Critical patent/JP2001252749A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Abstract

PROBLEM TO BE SOLVED: To provide a method by which an Fe-base amorphous ribbon for nano-crystal material excellent in a magnetic characteristic can continuously and stably be produced without breaking. SOLUTION: In the production of the Fe-base amorphous ribbon for nano- crystal material, having <=10 atomic % boron content, molten is poured on a cooling roll and the solidified Fe-base amorphous ribbon in the temperature range of 100-300 deg.C is detached from the cooling roll. It is desirable that the material contains by atomic % <=15% the total of the components in the 4A, 5A, 6A groups in the periodic table or 0.5-15% Nb desirably 1-10% Nb or 0.1% to <4% Cu or 5-15% Si as the components besides B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナノ結晶材料とし
て用いるためのFe基アモルファスリボンの製造方法、
およびナノ結晶材料の製造方法に関する。
The present invention relates to a method for producing an Fe-based amorphous ribbon for use as a nanocrystalline material,
And a method for producing a nanocrystalline material.

【0002】[0002]

【従来の技術】アモルファスリボンを製造するための製
造方法としては液体急冷法が広く知られている。液体急
冷法としては単ロール法、双ロール法、遠心法等がある
が、生産性およびメンテナンスのし易さから考えると、
高速で回転する一つの冷却ロール上に溶融金属を供給し
て、急冷凝固させてリボンを得る単ロール法が優れてい
る。
2. Description of the Related Art As a production method for producing an amorphous ribbon, a liquid quenching method is widely known. As the liquid quenching method, there are a single roll method, a twin roll method, a centrifugal method, and the like, but from the viewpoint of productivity and ease of maintenance,
The single roll method in which a molten metal is supplied onto one cooling roll rotating at high speed and rapidly solidified to obtain a ribbon is excellent.

【0003】このような手法で作製したリボンを熱処理
することによってナノ結晶材料が得られる。Fe基ナノ
結晶材料の代表的な組成としては特公平4―4393
号、特公平7―74419号、特許第2812574号
等に記載のFe―Si―B―(Nb、Ti、Hf、M
o、W、Ta)―Cu合金、Fe―(Co、Ni)―C
u―Si―B―(Nb、W、Ta、Zr、Hf、Ti、
Mo)合金、第Fe−(Hf、Nb、Zr)−B合金、
Fe−Cu−(Hf、Nb、Zr)−B合金等が知られ
ている。上記ナノ結晶材料はアモルファス合金にみられ
る熱的不安定性がほとんどなく、経時変化も小さく、低
磁歪で高い透磁率を有することから、コモンモードチョ
ークコイル、パルストランス、漏電ブレーカー等に使用
されている。
A nanocrystalline material can be obtained by heat-treating a ribbon produced by such a method. A typical composition of the Fe-based nanocrystalline material is Japanese Patent Publication No. 4-3933.
Fe-Si-B- (Nb, Ti, Hf, M) described in JP-B-7-74419, Japanese Patent No. 2812574, and the like.
o, W, Ta) -Cu alloy, Fe- (Co, Ni) -C
u-Si-B- (Nb, W, Ta, Zr, Hf, Ti,
Mo) alloy, Fe- (Hf, Nb, Zr) -B alloy,
Fe-Cu- (Hf, Nb, Zr) -B alloys and the like are known. The nanocrystalline material has almost no thermal instability found in amorphous alloys, has little change over time, has low magnetostriction and high magnetic permeability, and is therefore used in common mode choke coils, pulse transformers, earth leakage breakers, etc. .

【0004】[0004]

【発明が解決しようとする課題】ナノ結晶材料を製造す
る場合、ナノ結晶材料の前駆体となる熱処理前のアモル
ファスリボンに結晶相がないことが重要である。これ
は、鋳造時等の熱処理前にアモルファス相中に生成した
結晶相は、熱処理によってアモルファス相から生じた結
晶相よりも異常に大きく、熱処理後の組織が不均一とな
るため、結晶磁気異方性が大きくなり、軟磁気特性が劣
化するからである。したがって、リボン製造においては
結晶化しないように急速に冷却させることが重要であ
る。このため、リボン製造時可能な限り急冷することが
望ましい。
When a nanocrystalline material is produced, it is important that the amorphous ribbon before heat treatment, which is a precursor of the nanocrystalline material, has no crystalline phase. This is because the crystal phase formed in the amorphous phase before heat treatment such as during casting is abnormally larger than the crystal phase generated from the amorphous phase by heat treatment, and the structure after heat treatment becomes non-uniform. This is because the magnetic properties are increased and the soft magnetic characteristics are deteriorated. Therefore, in ribbon production, it is important to cool rapidly so as not to crystallize. For this reason, it is desirable to cool the ribbon as quickly as possible during ribbon production.

【0005】しかし、本発明者の検討によると、冷却し
すぎると製造中にリボンが破断し、連続的に回収できな
いという問題が生じる。また、アモルファスリボンは一
般的にトロイダル状に巻き回して使用する場合が多いた
め、破断箇所があると連続的にコアを生産し難くなる点
でも問題である。本発明は、軟磁気特性に優れたナノ結
晶材料用Fe基アモルファスリボンを破断なく連続的に
安定して製造可能な方法を提供することを目的とする。
However, according to the study of the present inventor, there is a problem that if the temperature is excessively cooled, the ribbon is broken during the production and cannot be continuously collected. In addition, since the amorphous ribbon is generally used by being wound in a toroidal shape in many cases, there is a problem in that it is difficult to continuously produce a core if there is a broken portion. An object of the present invention is to provide a method capable of continuously and stably producing an Fe-based amorphous ribbon for a nanocrystalline material having excellent soft magnetic properties without breaking.

【0006】[0006]

【課題を解決するための手段】本発明者は、結晶相の生
成を抑えたナノ結晶材料用Fe基アモルファスリボンを
破断なく連続的に安定して製造可能とする方法を鋭意検
討した結果、原子%でB量が10%以下の組成を有する
アモルファスリボン製造においては、冷却ロール上から
剥離する際のリボン温度が極めて重要であることを見出
した。
Means for Solving the Problems The present inventors diligently studied a method for continuously and stably producing an Fe-based amorphous ribbon for a nanocrystalline material with suppressed generation of a crystal phase without breaking. In the production of an amorphous ribbon having a composition in which the B content is 10% or less in terms of%, it has been found that the ribbon temperature at the time of peeling from the cooling roll is extremely important.

【0007】すなわち本発明は、原子%でBを10%以
下含むナノ結晶材料用Fe基アモルファスリボンの製造
方法であって、原子%でBを10%以下含むFe基金属
溶湯を冷却ロール上に注湯し、凝固したFe基アモルフ
ァスリボンの温度が100〜300℃の範囲で該アモル
ファスリボンを前記冷却ロールから剥離させることを特
徴とするナノ結晶材料用Fe基アモルファスリボンの製
造方法である。なお、本発明で言うところのナノ結晶材
料とは平均結晶粒径が300nm以下、好ましくは平均
結晶粒径が100nm以下の組織を有する材料を意味す
る。
That is, the present invention relates to a method for producing an Fe-based amorphous ribbon for a nanocrystalline material containing 10% or less of B in atomic%, wherein a molten Fe-based metal containing 10% or less of B in atomic% is placed on a cooling roll. A method of manufacturing an Fe-based amorphous ribbon for nanocrystalline materials, comprising: releasing the cast and solidified Fe-based amorphous ribbon from the cooling roll in a temperature range of 100 to 300 ° C. The nanocrystalline material in the present invention means a material having a structure having an average crystal grain size of 300 nm or less, preferably an average crystal grain size of 100 nm or less.

【0008】鋳造後のリボンを結晶化温度以上で熱処理
した際の結晶粒微細化の点から、Fe基金属溶湯にはB
以外の成分として原子%で、4A、5A、6A族を合計
で15%以下含ことが好ましい。
From the viewpoint of crystal grain refinement when the ribbon after casting is heat-treated at a temperature higher than the crystallization temperature, B
As a component other than the above, it is preferable to contain a total of 15% or less of 4A, 5A, and 6A groups in atomic%.

【0009】さらにNbを0.5%以上15%以下、好
ましくは1%以上10%以下、あるいはCuを0.1%
以上4%未満、あるいはSiを5%以上25%以下含む
ことが好ましい。
Further, Nb is 0.5% to 15%, preferably 1% to 10%, or Cu is 0.1%.
It is preferable that the Si content is not less than 4% and less than 4%, or 5% to 25%.

【0010】また、Fe基金属溶湯組成を原子%で、Bを
2%以上10%以下、Nbを1%以上5%以下、Cuを
0.1%以上3%以下、Siを10%以上20%以下、
残部実質的にFeとし、鋳造したアモルファスリボンの
板厚を8〜25μmとするとさらに良い。
[0010] Further, the composition of the Fe-based metal melt is atomic%, B is 2% to 10%, Nb is 1% to 5%, Cu is 0.1% to 3%, Si is 10% to 20%. %Less than,
It is more preferable that the balance be substantially Fe, and the thickness of the cast amorphous ribbon be 8 to 25 μm.

【0011】上記においては、鋳造したFe基アモルフ
ァスリボンの温度が100〜250℃の範囲で該アモル
ファスリボンを剥離させることが好ましく、150〜2
50℃で行うとさらに好ましい。
In the above, it is preferable that the amorphous ribbon is peeled at a temperature of 100 to 250 ° C. in the cast Fe-based amorphous ribbon.
It is more preferable to carry out at 50 ° C.

【0012】以上の方法により得られるナノ結晶材料用
Fe基アモルファスリボンを該アモルファスリボンの結
晶化温度以上で熱処理することでナノ結晶材料を製造す
ることが出来る。
A nanocrystalline material can be manufactured by subjecting the Fe-based amorphous ribbon for a nanocrystalline material obtained by the above method to a heat treatment at a temperature not lower than the crystallization temperature of the amorphous ribbon.

【0013】[0013]

【発明の実施の形態】上述したように、本発明の重要な
特徴は、B量が10at%以下の組成を有するアモルフ
ァスリボンを冷却ロール上から剥離する温度を100〜
300℃としたことである。Bはアモルファス形成能を
向上する効果がある元素であり、ある程度多い方が良い
が、ナノ結晶材料用Fe基アモルファスリボンにとって
はあまり多いと好ましくない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that the temperature at which an amorphous ribbon having a composition having a B content of 10 at% or less is peeled off from a cooling roll is set to 100 to 100 at%.
That is, the temperature was set to 300 ° C. B is an element that has the effect of improving the ability to form an amorphous phase, and it is preferable that the B level be large to some extent, but it is not preferable that the B level is too large for an Fe-based amorphous ribbon for a nanocrystalline material.

【0014】これは、ナノ結晶材料はFe基アモルファ
スリボン作製後、結晶化温度以上で熱処理することによ
って得られるが、B量が著しく多いと磁壁の移動を妨げ
るFeBやFeBといった磁気的にハードな化合物
相が析出しやすくなり、bcc−Fe固溶体を主相とす
る均一なナノ結晶相が得難くなるからである。よって磁
気特性の点からB量は10at%以下が良い。一方、B
は上記のようにアモルファス形成能を向上する元素であ
ることから、少なくとも2at%以上添加することが好
ましい。
[0014] This post-nanocrystalline materials produced Fe-based amorphous ribbon, is obtained by heat treatment at a crystallization temperature or higher, the magnetic such Fe 3 B or Fe 2 B where B amount prevents a significantly greater movement of the magnetic wall This is because a hard compound phase easily precipitates, and it is difficult to obtain a uniform nanocrystalline phase having a bcc-Fe solid solution as a main phase. Therefore, the amount of B is preferably 10 at% or less from the viewpoint of magnetic characteristics. On the other hand, B
Is an element that improves the ability to form an amorphous phase as described above, so it is preferable to add at least 2 at% or more.

【0015】ところが、このB量が10at%以下のF
e基合金はアモルファス形成能が低く、得られたアモル
ファスは非常に不安定な構造となる。すなわち短範囲な
規則化が生じ易くこの部分は強度的に弱い。そのため結
晶相を含まないアモルファスリボンを破断なく連続して
製造するためには、剥離温度を制御する必要が生じる。
以下に剥離温度の限定理由を述べる。
However, when the amount of B is less than 10 at%,
The e-base alloy has a low amorphous forming ability, and the obtained amorphous has a very unstable structure. That is, short-range ordering is likely to occur, and this portion is weak in strength. Therefore, in order to continuously produce an amorphous ribbon containing no crystalline phase without breaking, it is necessary to control the peeling temperature.
The reasons for limiting the peeling temperature will be described below.

【0016】下限を100℃としたのは、剥離温度が1
00℃よりも低いとリボンの製造中にリボンが無数に破
断するからである。リボンは剥離するまではロール上に
密着しているが、その間リボンには温度変化に伴う収縮
応力が加わっている。上述したようにB量が10at%
以下のFe基アモルファス合金は構造的に不安定であ
る。このためB量が10at%を越えるアモルファス合
金に比べて上記収縮応力によって破断しやすいと思われ
る。上述したリボンの破断は、B量が10at%を越え
るナノ結晶材料用のFe基アモルファスリボンではほと
んど起こっておらず、B量10at%以下のFe基アモ
ルファスでのみ生じる特異な現象である。
The reason why the lower limit is set to 100 ° C. is that the peeling temperature is 1
If the temperature is lower than 00 ° C., the ribbon breaks innumerably during the production of the ribbon. Until the ribbon is peeled off, the ribbon is in close contact with the roll, during which time the ribbon is subjected to shrinkage stress due to temperature changes. As described above, the amount of B is 10 at%.
The following Fe-based amorphous alloys are structurally unstable. Therefore, it is considered that the alloy is easily broken by the shrinkage stress as compared with an amorphous alloy having a B content exceeding 10 at%. The ribbon breakage described above is a unique phenomenon that hardly occurs in the Fe-based amorphous ribbon for a nanocrystalline material having a B content exceeding 10 at%, and occurs only in the Fe-based amorphous having a B content of 10 at% or less.

【0017】次に、上限を300℃としたのは、それ以
上の温度ではリボンが脆化するからである。剥離温度が
高くなれば上記収縮応力は小さくなり、製造中における
破断は抑制される。しかしながらあまり高いとアモルフ
ァス特有の構造緩和による脆化を生じる。この現象はF
e基のアモルファスで生じ易く、なかでも本発明のよう
なB量10at%以下の合金は、特にアモルファス状態
が不安定であるため、冷却ロール上でアモルファス化し
た後、剥離回収するまでの間に脆化しやすい。量産にお
いてリボンは数千mにもなるが、リボンが脆化すると、
リール等に巻き取って回収する際やハンドリング時に、
わずかなねじれ応力が加わっても破断しやすいため、取
り扱い難く非効率的である。よってB量10at%以下
の合金において、この脆化現象を防止するためには上限
を300℃とする必要がある。なお、剥離温度を100
〜250℃とするとより好ましく、150〜250℃と
るすとさらに好ましい。
Next, the reason why the upper limit is set to 300 ° C. is that the ribbon becomes brittle at a temperature higher than 300 ° C. The higher the peeling temperature is, the smaller the above-mentioned shrinkage stress is, and the breakage during manufacturing is suppressed. However, if it is too high, embrittlement occurs due to structural relaxation specific to amorphous. This phenomenon is F
An alloy having a B content of 10 at% or less, such as the present invention, is particularly unstable in an amorphous state. Easy to embrittle. In mass production, the ribbon can be several thousand meters, but when the ribbon becomes brittle,
At the time of winding and collecting on reels and handling,
Even if a slight torsional stress is applied, it is easy to break, so it is difficult to handle and inefficient. Therefore, in an alloy having a B content of 10 at% or less, it is necessary to set the upper limit to 300 ° C. in order to prevent this embrittlement phenomenon. The peeling temperature is 100
The temperature is more preferably set to a temperature of from 250 to 250 ° C, and further preferably from 150 to 250 ° C.

【0018】なお、リボン温度は株式会社キーエンス製
の放射温度計を用いて測定した。放射温度計の校正は冷
却ロールと同じ材質の板材にアモルファスリボンを密着
させ、板材を加熱した際のアモルファスリボンの温度変
化を熱電対にて測定した結果を元に行った。
The ribbon temperature was measured using a radiation thermometer manufactured by Keyence Corporation. The calibration of the radiation thermometer was performed based on the result of measuring the temperature change of the amorphous ribbon when the plate material was heated by using a thermocouple while the amorphous ribbon was adhered to the plate material of the same material as the cooling roll.

【0019】さらに、熱処理後の結晶粒微細化に効果の
あることから、4A、5A、6A族元素をBと合わせて
含むことが好ましい。しかし4A、5A、6A族元素の
添加量が多いと鋳造後のリボンが脆くなるためその添加
量は15at%以下とする。
Further, it is preferable to include a group 4A, 5A, or 6A element together with B, since it is effective in refining crystal grains after heat treatment. However, if the added amount of the 4A, 5A, or 6A group element is large, the ribbon after casting becomes brittle, so the added amount is 15 at% or less.

【0020】4A、5A、6A族元素のうち、Nbは上
記の目的で添加する場合に特に有効な元素であり原子%
で0.5%以上15%以下添加することが好ましい。N
bを添加する場合、その量が少なすぎると十分な効果が
得られないため0.5%以上添加する。なお、Nb含有
量を原子%で1%以上10%以下とするとより好まし
く、1%以上5%以下とするとさらに好ましい。
Of the 4A, 5A and 6A group elements, Nb is an element particularly effective when added for the above purpose,
It is preferable to add 0.5% or more and 15% or less. N
When adding b, if the amount is too small, a sufficient effect cannot be obtained, so that 0.5% or more is added. The Nb content is more preferably 1% or more and 10% or less in atomic%, and still more preferably 1% or more and 5% or less.

【0021】Nbに併せてCuを添加することにより、
熱処理時の核生成のサイトが増加し熱処理後の結晶粒を
いっそう微細化することが出来る。Cuの添加量を0.
1at%よりも少なくすると十分な効果が得られないた
め、0.1at%以上添加する。しかし、添加量を多く
すると鋳造後のリボンが脆くなり、またCuとFeとは
分離しやすい元素であるため、あまり多いと液体急冷法
を用いてもFeと分離し、均一に固溶させることができ
なくなる点でも問題となるため、4at%未満が良い。
好ましくは3at%以下である。
By adding Cu in addition to Nb,
The number of nucleation sites during the heat treatment increases, and the crystal grains after the heat treatment can be further refined. The addition amount of Cu is set to 0.
If the amount is less than 1 at%, a sufficient effect cannot be obtained. However, if the added amount is large, the ribbon after casting becomes brittle, and Cu and Fe are elements that are easily separated, so if too much, even if the liquid quenching method is used, it is separated from Fe and uniformly dissolved. Since there is also a problem in that it cannot be performed, the content is preferably less than 4 at%.
Preferably it is 3 at% or less.

【0022】また、アモルファス形成能及び磁気特性の
観点からSiを5at%以上添加すると良い。しかし添
加量が多いとリボンが脆化することから25at%以下
とする。好ましくは10at%以上20at%以下であ
る。
It is preferable to add Si in an amount of 5 at% or more from the viewpoints of amorphous forming ability and magnetic properties. However, if the addition amount is large, the ribbon becomes brittle, so the content is set to 25 at% or less. Preferably it is 10 at% or more and 20 at% or less.

【0023】上記の各理由から、Fe基金属溶湯組成をB
を2at%以上10at%以下、Nbを1at%以上5
at%以下、Cuを0.1at%以上3at%以下、S
iを10at%以上20at%以下、残部実質的にFe
とすることが好ましい。
For each of the above reasons, the composition of the Fe-based metal
2 at% to 10 at%, Nb 1 at% to 5
at% or less, Cu is 0.1 at% or more and 3 at% or less, S
i is 10 at% or more and 20 at% or less, and the balance is substantially Fe
It is preferable that

【0024】また、上述したようにBの添加量を10a
t%以下とすると、アモルファス形成能が低下し鋳造後
のアモルファスが不安定な構造となり脆化する。あまり
板厚が厚いと鋳造時のロール上での冷却速度が低下し、
一層リボンの脆化を生じる。よって本発明ではロール上
での十分な冷却速度を得るため、板厚は25μm以下と
する。一方リボンが薄すぎるとリボンに穴等が生じ、健
全なリボンを製造することが困難となる。よって下限は
8μmとする。
As described above, the addition amount of B is 10a
If the content is less than t%, the amorphous forming ability is reduced, and the amorphous after casting becomes an unstable structure and becomes brittle. If the sheet thickness is too large, the cooling rate on the roll during casting decreases,
Further embrittlement of the ribbon occurs. Therefore, in the present invention, in order to obtain a sufficient cooling rate on the roll, the plate thickness is set to 25 μm or less. On the other hand, if the ribbon is too thin, holes are formed in the ribbon, making it difficult to produce a sound ribbon. Therefore, the lower limit is set to 8 μm.

【0025】上記の製造方法で得られるナノ結晶材料用
Fe基アモルファスリボンを、該アモルファスリボンの
結晶化温度以上で熱処理することにより、アモルファス
がナノ結晶化しナノ結晶材料を得ることが出来る。この
ナノ結晶化のための熱処理はアモルファスの結晶化温度
をTxをした場合に、Tx〜Tx+200℃の範囲で行
うことが好ましい。
By subjecting the Fe-based amorphous ribbon for a nanocrystalline material obtained by the above-described manufacturing method to a heat treatment at a temperature not lower than the crystallization temperature of the amorphous ribbon, the amorphous is nanocrystallized and a nanocrystalline material can be obtained. This heat treatment for nanocrystallization is preferably performed in the range of Tx to Tx + 200 ° C. when the amorphous crystallization temperature is Tx.

【0026】[0026]

【実施例】(実施例1)図1に示す単ロール急冷装置を
用いて原子%で1Cu−3Nb−15.5Si−7B、
残部実質的にFeからなる組成のリボンを製造した。坩
堝2内に予め溶製した上記組成のインゴットを装入し、
高周波誘導加熱により溶解した後、Cu−Be合金から
なる冷却ロール3上に溶融金属をノズル1から噴出、急
冷凝固して、幅27mm、厚さ19μmのアモルファス
リボンを製造した。ここで、冷却ロールの外径は600
mm、周速は27m/sとし、ロール内に流れる冷却水
温を種々変更することによって、リボン剥離温度を調整
した。剥離は剥離ノズル5からの窒素の高圧ガスジェッ
トで行った。評価はリボン製造時における破断の有無及
び、製造後のリボンを用いてJIS Z 2248に記
載の180°曲げ試験を行った際の割れの有無で行っ
た。
(Example 1) 1 Cu-3Nb-15.5Si-7B in atomic% using a single roll quenching apparatus shown in FIG.
A ribbon having a composition substantially consisting of the remainder substantially Fe was produced. Ingot of the above-mentioned composition previously melted is placed in crucible 2,
After being melted by high-frequency induction heating, a molten metal was jetted from a nozzle 1 onto a cooling roll 3 made of a Cu-Be alloy and rapidly solidified to produce an amorphous ribbon having a width of 27 mm and a thickness of 19 µm. Here, the outer diameter of the cooling roll is 600
mm, the peripheral speed was 27 m / s, and the ribbon peeling temperature was adjusted by variously changing the temperature of the cooling water flowing in the roll. Peeling was performed with a high-pressure gas jet of nitrogen from the peeling nozzle 5. The evaluation was made based on the presence or absence of breakage during ribbon production and the presence or absence of cracks when a 180 ° bending test described in JIS Z 2248 was performed using the ribbon after production.

【0027】表1に結果を示す。リボンの剥離温度が1
00℃より低いNo.1は高圧ガスジェットによる剥離
時に破断が生じた。また、剥離温度300℃を越えたN
o.5はリボンは連続的に製造はできたが、180°曲
げ試験により割れが生じた。また、No.2のリボンを
550℃で熱処理し、透過電子顕微鏡にて組織を観察し
た結果を図2に示す。図から平均結晶粒径100nm以
下の非常に均一な組織であることが分かる。また、N
o.3、4のリボンについても同様に組織観察を行った
が、いずれも平均結晶粒径30nm以下の均一な組織で
あった。
Table 1 shows the results. Ribbon peeling temperature is 1
No. lower than 00 ° C. Sample No. 1 was broken when peeled by a high-pressure gas jet. In addition, N exceeding 300 ° C.
o. In No. 5, the ribbon could be manufactured continuously, but cracks occurred in the 180 ° bending test. In addition, No. 2 was heat-treated at 550 ° C., and the result of observing the structure with a transmission electron microscope is shown in FIG. From the figure, it can be seen that the structure is very uniform with an average crystal grain size of 100 nm or less. Also, N
o. The structure of the ribbons 3 and 4 was observed in the same manner, and all of the ribbons had a uniform structure with an average crystal grain size of 30 nm or less.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例2)図1に示す単ロール急冷装置
を用いて原子%で1Cu−3Mo−15.5Si−8
B、残部実質的にFeからなる組成及び比較例として1
Cu−3Mo−15.5Si−11B、残部実質的にF
eからなるリボンを製造した。坩堝内に予め溶製した上
記組成のインゴットを装入し、高周波誘導加熱により溶
解した後、Cu−Be合金からなる冷却ロール上に溶融
金属を噴出、急冷凝固して、幅27mm、厚さ19μm
のアモルファスリボンを製造した。ここで、冷却ロール
の外径は800mm、周速は27m/sとし、ロール内
に流れる冷却水温を種々変更することによって、リボン
剥離温度を調整した。剥離は窒素の高圧ガスジェットで
行った。評価はリボン製造時における破断の有無及び、
製造したリボンを180°曲げした際の割れの有無で行
った。
Example 2 1 Cu-3Mo-15.5Si-8 in atomic% using a single roll quenching apparatus shown in FIG.
B, the balance being substantially composed of Fe and 1 as a comparative example
Cu-3Mo-15.5Si-11B, balance substantially F
e was manufactured. A crucible is charged with an ingot of the above composition previously melted and melted by high-frequency induction heating, and then a molten metal is jetted onto a cooling roll made of a Cu-Be alloy, rapidly cooled and solidified, and has a width of 27 mm and a thickness of 19 μm.
Was manufactured. Here, the outer diameter of the cooling roll was 800 mm, the peripheral speed was 27 m / s, and the ribbon peeling temperature was adjusted by variously changing the temperature of the cooling water flowing in the roll. Peeling was performed with a high pressure gas jet of nitrogen. Evaluation is for the presence or absence of breakage during ribbon production,
The evaluation was performed based on the presence or absence of cracks when the manufactured ribbon was bent at 180 °.

【0030】表2および表3に結果を示すが、B量が8
at%のアモルファスリボンは100℃より剥離温度が
低い場合はリボン製造中に剥離位置で破断し、300℃
を越えた場合は180°曲げ試験で割れが生じた。11
at%のアモルファスリボンは製造中における破断も1
80°曲げによる割れも生じていない。また、製造中に
破断の生じなかったリボンを550℃で熱処理し、透過
電子顕微鏡にて組織観察した。いずれもその平均結晶粒
径は30nm以下であった。また、このリボンを巻き回
して作製した外径19mm、内径15mmのコアを同様
の温度で熱処理し、周波数1kHzにおける透磁率を測
定したところ、B量が8at%のものは90000〜1
00000の値が得られたが、B量が11at%のもの
は50000〜60000程度とB量8at%の合金に
比べて非常に低い値であった。
Tables 2 and 3 show the results.
At% amorphous ribbon, if the peeling temperature is lower than 100 ° C, it will break at the peeling position during ribbon production,
When it exceeded 180 °, cracking occurred in the 180 ° bending test. 11
At% amorphous ribbon breaks 1 during manufacturing
No cracking due to 80 ° bending occurred. The ribbon that did not break during production was heat-treated at 550 ° C., and the structure was observed with a transmission electron microscope. In each case, the average crystal grain size was 30 nm or less. A core having an outer diameter of 19 mm and an inner diameter of 15 mm produced by winding this ribbon was heat-treated at the same temperature, and the magnetic permeability at a frequency of 1 kHz was measured.
Although a value of 00000 was obtained, those with a B content of 11 at% were about 50,000 to 60000, which was a very low value as compared with an alloy with a B content of 8 at%.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】(実施例3)図1に示すような単ロール急
冷装置を用い、原子%で7Nb−9B、残部実質的にF
eからなる組成及び2Zr−4Nb−8.5B、残部実
質的にFeからなるリボンを製造した。坩堝内に予め溶
製した上記組成のインゴットを装入し、高周波誘導加熱
により溶解した後、Cu−Be合金からなる冷却ロール
上にArガスでシールしつつ溶融金属を噴出、急冷凝固
して、幅25mm、厚さ19μmのアモルファスリボン
を製造した。ここで、冷却ロールの周速は25m/sと
し、ロール内に流れる冷却水温を種々変更することによ
って、リボン剥離温度を調整した。剥離は窒素の高圧ガ
スジェットで行った。また、評価はリボン製造時におけ
る破断の有無で行った。
(Embodiment 3) Using a single roll quenching apparatus as shown in FIG. 1, 7Nb-9B in atomic% and substantially F in the remainder.
e, a ribbon consisting of 2Zr-4Nb-8.5B and the balance substantially consisting of Fe was produced. A crucible is charged with an ingot of the above-mentioned composition previously melted and melted by high-frequency induction heating, and then the molten metal is jetted out while being sealed with an Ar gas on a cooling roll made of a Cu-Be alloy, and rapidly solidified, An amorphous ribbon having a width of 25 mm and a thickness of 19 μm was manufactured. Here, the peripheral speed of the cooling roll was 25 m / s, and the ribbon peeling temperature was adjusted by variously changing the temperature of the cooling water flowing in the roll. Peeling was performed with a high pressure gas jet of nitrogen. The evaluation was based on the presence or absence of breakage during ribbon production.

【0034】表4および5に結果を示すが、いずれの合
金も剥離温度が100℃より低いものは剥離位置でリボ
ンが破断した。また、製造中に破断の生じなかったリボ
ンを550℃で熱処理し、透過電子顕微鏡にて組織観察
した。いずれもその平均結晶粒径は50nm以下であっ
た。
The results are shown in Tables 4 and 5. As for all alloys having a peeling temperature lower than 100 ° C., the ribbon was broken at the peeling position. The ribbon that did not break during production was heat-treated at 550 ° C., and the structure was observed with a transmission electron microscope. In each case, the average crystal grain size was 50 nm or less.

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】(実施例4)図1に示すような単ロール急
冷装置を用い、予め溶製した表6に示すような組成のイ
ンゴットを坩堝内に装入し、高周波誘導加熱により溶解
した後、Cu−Be合金からなる冷却ロール上に溶融金
属を噴出、急冷凝固して、幅35mm、厚さ17μmの
リボンを各組成につき20回ずつ製造した。ここで、冷
却ロールの外径は600mm、周速は27m/sとし、
ロール内に流れる冷却水温を変更することによって、リ
ボン剥離温度を200℃とした。剥離は剥離ノズル5か
らの窒素の高圧ガスジェットで行った。評価は20回鋳
造した内、リボン製造時における破断、およびリボンを
180°曲げした際の割れが生じる割合で行った。表6
に結果を示す。Nb量が5at%を越えたものおよび、
Cu量が3at%を越えたものは、歩留りが低下するこ
とが分かる。
Example 4 Using a single-roll quenching apparatus as shown in FIG. 1, an ingot having the composition shown in Table 6 previously melted was placed in a crucible and melted by high-frequency induction heating. A molten metal was jetted onto a cooling roll made of a Cu-Be alloy and rapidly solidified to produce a ribbon having a width of 35 mm and a thickness of 17 μm, 20 times for each composition. Here, the outer diameter of the cooling roll is 600 mm, the peripheral speed is 27 m / s,
The ribbon peeling temperature was set to 200 ° C. by changing the temperature of the cooling water flowing in the roll. Peeling was performed with a high-pressure gas jet of nitrogen from the peeling nozzle 5. The evaluation was performed at a rate at which breakage during ribbon production and cracking when the ribbon was bent at 180 ° were performed during 20 times of casting. Table 6
Shows the results. Nb content exceeding 5 at% and
It can be seen that when the amount of Cu exceeds 3 at%, the yield decreases.

【0038】[0038]

【表6】 [Table 6]

【0039】さらに、特に良好な結果の得られた表6の
No.1の組成について、同様の製造装置を用いて、鋳
造時のリボンの剥離温度及び板厚を変え、各条件につき
10回ずつ製造し、リボン製造中における破断、および
リボンを180°曲げした際の割れが生じたリボンの割
合を調査した。なお、上記板厚の変更は、溶湯が噴出す
るノズルサイズを変更することによって行った。
Further, in Table 6 where particularly good results were obtained, For the composition of No. 1, using the same manufacturing apparatus, the peeling temperature and the thickness of the ribbon at the time of casting were changed, and the ribbon was manufactured 10 times for each condition. The percentage of ribbons with cracks was investigated. The change in the plate thickness was performed by changing the nozzle size from which the molten metal was jetted.

【0040】表7に結果を示す。剥離温度200℃で板
厚の影響を比較すると27μmのリボンは非常に脆く、
製造中の破断に加え180°曲げによる割れも生じ易
い。また、板厚20μmにおいてリボンの剥離温度の影
響を比較すると、剥離温度が150〜250℃でとくに
破断等を生じにくいことがわかる。この剥離温度が15
0〜250℃のリボンを550℃で熱処理し、透過電子
顕微鏡にて組織観察した。いずれもその平均結晶粒径は
30nm以下であった。
Table 7 shows the results. Comparing the effect of the thickness at a peeling temperature of 200 ° C., the 27 μm ribbon is very brittle,
In addition to breaking during manufacturing, cracking due to 180 ° bending is also likely to occur. Comparing the influence of the peeling temperature of the ribbon at a plate thickness of 20 μm, it can be seen that when the peeling temperature is 150 to 250 ° C., breakage and the like are particularly unlikely to occur. This peeling temperature is 15
The ribbon at 0 to 250 ° C was heat-treated at 550 ° C, and the structure was observed with a transmission electron microscope. In each case, the average crystal grain size was 30 nm or less.

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【発明の効果】本発明によれば、B量10at%以下の
組成を有するナノ結晶材料用Fe基アモルファスリボン
が破断なく連続的に安定して製造可能となるばかりでな
く、脆化していないため製造後のリボンも連続的に回収
でき、その工業的価値は大きい。
According to the present invention, an Fe-based amorphous ribbon for a nanocrystalline material having a composition with a B content of 10 at% or less can not only be continuously and stably manufactured without breakage but also is not embrittled. The ribbon after production can be continuously collected, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるアモルファスリボンを製造する
様子を示す模式図である。
FIG. 1 is a schematic view showing a state of manufacturing an amorphous ribbon according to the present invention.

【図2】本発明に関わるアモルファスリボンの熱処理後
の金属ミクロ組織写真である。
FIG. 2 is a metal microstructure photograph of an amorphous ribbon according to the present invention after heat treatment.

【符号の説明】[Explanation of symbols]

1 ノズル、2 坩堝、3 冷却ロール、4 アモルフ
ァスリボン、5 剥離ノズル
1 nozzle, 2 crucible, 3 cooling roll, 4 amorphous ribbon, 5 peeling nozzle

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 原子%でBを10%以下含むナノ結晶材
料用Fe基アモルファスリボンの製造方法であって、原
子%でBを10%以下含むFe基金属溶湯を冷却ロール
上に注湯し、凝固したアモルファスリボンの温度が10
0〜300℃の範囲で該アモルファスリボンを前記冷却
ロールから剥離させることを特徴とするナノ結晶材料用
Fe基アモルファスリボンの製造方法。
1. A method for producing an Fe-based amorphous ribbon for a nanocrystalline material containing 10% or less of B in atomic%, wherein a molten Fe-based metal containing 10% or less of B in atomic% is poured on a cooling roll. The temperature of the solidified amorphous ribbon is 10
A method for producing an Fe-based amorphous ribbon for a nanocrystalline material, comprising separating the amorphous ribbon from the cooling roll in a temperature range of 0 to 300 ° C.
【請求項2】 Fe基金属溶湯は、原子%で4A、5
A、6A族を合計15%以下含むことを特徴とする請求
項1に記載のナノ結晶材料用Fe基アモルファスリボン
の製造方法。
2. The Fe-based metal melt is 4 A, 5 A in atomic%.
The method for producing an Fe-based amorphous ribbon for a nanocrystalline material according to claim 1, wherein a total of 15% or less of group A and group 6A is contained.
【請求項3】 Fe基金属溶湯は、原子%でNbを0.
5%以上15%以下含むことを特徴とする請求項1また
は請求項2に記載のナノ結晶材料用Fe基アモルファス
リボンの製造方法。
3. The Fe-based metal melt contains Nb in an atomic percentage of 0.1%.
The method for producing an Fe-based amorphous ribbon for a nanocrystalline material according to claim 1, wherein the content is 5% or more and 15% or less.
【請求項4】 Fe基金属溶湯は、原子%でNbを1%
以上10%以下含むことを特徴とする請求項3に記載の
ナノ結晶材料用Fe基アモルファスリボンの製造方法。
4. The Fe-based metal melt contains 1% of Nb in atomic%.
The method for producing an Fe-based amorphous ribbon for a nanocrystalline material according to claim 3, wherein the content is not less than 10%.
【請求項5】 Fe基金属溶湯は、原子%でCuを0.
1%以上4%未満含むことを特徴とする請求項1ないし
請求項4のいずれかに記載のナノ結晶材料用Fe基アモ
ルファスリボンの製造方法。
5. The Fe-based metal melt contains Cu at 0.1 atomic%.
The method for producing an Fe-based amorphous ribbon for a nanocrystalline material according to any one of claims 1 to 4, wherein the content is 1% or more and less than 4%.
【請求項6】 Fe基金属溶湯は、原子%でSiを5%
以上25%以下含むことを特徴とする請求項1ないし請
求項5のいずれかに記載のナノ結晶材料用Fe基アモル
ファスリボンの製造方法。
6. The Fe-based metal melt contains 5% of Si in atomic%.
The method for producing an Fe-based amorphous ribbon for a nanocrystalline material according to any one of claims 1 to 5, wherein the content is at least 25% or less.
【請求項7】 Fe基金属溶湯組成を、原子%でBを2
%以上10%以下、Nbを1%以上5%以下、Cuを
0.1%以上3%以下、Siを10%以上20%以下、
残部実質的にFeとし、凝固したアモルファスリボンの
板厚を8〜25μmとすることを特徴とする請求項1に
記載のナノ結晶材料用Fe基アモルファスリボンの製造
方法。
7. The composition of a Fe-based metal melt, wherein
% To 10%, Nb is 1% to 5%, Cu is 0.1% to 3%, Si is 10% to 20%,
2. The method according to claim 1, wherein the remainder is substantially Fe, and the thickness of the solidified amorphous ribbon is 8 to 25 [mu] m.
【請求項8】 凝固したアモルファスリボンの温度が1
00〜250℃の範囲で該アモルファスリボンを冷却ロ
ールから剥離させることを特徴とする請求項1ないし請
求項7のいずれかに記載のナノ結晶材料用Fe基アモル
ファスリボンの製造方法。
8. The temperature of the solidified amorphous ribbon is 1
The method for producing an Fe-based amorphous ribbon for a nanocrystalline material according to any one of claims 1 to 7, wherein the amorphous ribbon is separated from the cooling roll in a temperature range of 00 to 250 ° C.
【請求項9】 凝固したFe基アモルファスリボンの温
度が150〜250℃の範囲で該アモルファスリボンを
冷却ロールから剥離させることを特徴とする請求項8に
記載のナノ結晶材料用Fe基アモルファスリボンの製造
方法。
9. The Fe-based amorphous ribbon for a nanocrystalline material according to claim 8, wherein the solidified Fe-based amorphous ribbon has a temperature in the range of 150 to 250 ° C., and the amorphous ribbon is separated from the cooling roll. Production method.
【請求項10】 請求項1ないし請求項9のいずれかに
記載の方法により得られるナノ結晶材料用Fe基アモル
ファスリボンを該アモルファスリボンの結晶化温度以上
で熱処理することを特徴するナノ結晶材料の製造方法。
10. A nanocrystalline material characterized by subjecting an Fe-based amorphous ribbon for a nanocrystalline material obtained by the method according to any one of claims 1 to 9 to a heat treatment at a temperature not lower than the crystallization temperature of the amorphous ribbon. Production method.
JP2000361504A 2000-01-06 2000-11-28 METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL Pending JP2001252749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000361504A JP2001252749A (en) 2000-01-06 2000-11-28 METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-617 2000-01-06
JP2000000617 2000-01-06
JP2000361504A JP2001252749A (en) 2000-01-06 2000-11-28 METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL

Publications (1)

Publication Number Publication Date
JP2001252749A true JP2001252749A (en) 2001-09-18

Family

ID=26583184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000361504A Pending JP2001252749A (en) 2000-01-06 2000-11-28 METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL

Country Status (1)

Country Link
JP (1) JP2001252749A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084888A1 (en) * 2009-01-20 2010-07-29 日立金属株式会社 Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
WO2011122589A1 (en) * 2010-03-29 2011-10-06 日立金属株式会社 Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy
CN114515822A (en) * 2020-11-18 2022-05-20 安泰非晶科技有限责任公司 Amorphous nanocrystalline alloy strip and preparation method thereof
WO2022183909A1 (en) * 2021-03-01 2022-09-09 青岛云路先进材料技术股份有限公司 Fe-based amorphous nanocrystalline alloy and preparation method therefor
CN115807198A (en) * 2022-11-24 2023-03-17 江西大有科技有限公司 Amorphous strip and preparation method thereof, and preparation method of amorphous magnetic ring

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084888A1 (en) * 2009-01-20 2010-07-29 日立金属株式会社 Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2010189761A (en) * 2009-01-20 2010-09-02 Hitachi Metals Ltd Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
DE112010000836T5 (en) 2009-01-20 2012-12-06 Hitachi Metals, Ltd. A soft magnetic alloy ribbon and manufacturing method therefor, and a soft magnetic alloy ribbon magnetic device
US9222145B2 (en) 2009-01-20 2015-12-29 Hitachi Metals, Ltd. Soft magnetic alloy ribbon and its production method, and magnetic device having soft magnetic alloy ribbon
WO2011122589A1 (en) * 2010-03-29 2011-10-06 日立金属株式会社 Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy
JP5720674B2 (en) * 2010-03-29 2015-05-20 日立金属株式会社 Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
CN114515822A (en) * 2020-11-18 2022-05-20 安泰非晶科技有限责任公司 Amorphous nanocrystalline alloy strip and preparation method thereof
WO2022183909A1 (en) * 2021-03-01 2022-09-09 青岛云路先进材料技术股份有限公司 Fe-based amorphous nanocrystalline alloy and preparation method therefor
CN115807198A (en) * 2022-11-24 2023-03-17 江西大有科技有限公司 Amorphous strip and preparation method thereof, and preparation method of amorphous magnetic ring

Similar Documents

Publication Publication Date Title
JP5182601B2 (en) Magnetic core made of amorphous alloy ribbon, nanocrystalline soft magnetic alloy and nanocrystalline soft magnetic alloy
JP4310480B2 (en) Amorphous alloy composition
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
KR100601413B1 (en) Fe-base amorphous alloy thin strip of excellent soft magnetic characteristic, iron core produced therefrom and master alloy for quench solidification thin strip production for use therein
US7744703B2 (en) Fe-based amorphous alloy strip
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
TWI452147B (en) Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
JP2008248380A (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
JP2008240148A (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
JP4623400B2 (en) Soft magnetic alloy ribbon and magnetic core and apparatus using the same
JP6003899B2 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP2004353090A (en) Amorphous alloy ribbon and member using the same
US6648994B2 (en) Methods for producing iron-based amorphous alloy ribbon and nanocrystalline material
JP2001252749A (en) METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JP4798642B2 (en) Parts using Fe-based nanocrystalline alloys manufactured from high-toughness Fe-based amorphous alloys and high-toughness Fe-based amorphous alloys
CN109880985A (en) The manufacturing method of soft magnetic materials
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH08144029A (en) Iron-base amorphous alloy excellent in magnetic property and embrittlement resistance and its production
JPH11302823A (en) Manufacture of iron-base amorphous alloy foil
JP2001300697A (en) Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon
JP5320765B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties