JP2001300697A - Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon - Google Patents

Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon

Info

Publication number
JP2001300697A
JP2001300697A JP2000124840A JP2000124840A JP2001300697A JP 2001300697 A JP2001300697 A JP 2001300697A JP 2000124840 A JP2000124840 A JP 2000124840A JP 2000124840 A JP2000124840 A JP 2000124840A JP 2001300697 A JP2001300697 A JP 2001300697A
Authority
JP
Japan
Prior art keywords
mol
crystallized
ribbon
ribon
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000124840A
Other languages
Japanese (ja)
Inventor
Atsushi Sunakawa
淳 砂川
Yoshio Bizen
嘉雄 備前
Katsuto Yoshizawa
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000124840A priority Critical patent/JP2001300697A/en
Publication of JP2001300697A publication Critical patent/JP2001300697A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an Fe base amorphous ribon with which a nano-crystallized material excellent in magnetic characteristic can be obtained, and a manufacturing method of a nano-crystallized soft magnetic material using this amorphous ribon. SOLUTION: This amorphous ribon for nano-crystallized material is produced by pouring molten metal composed of <=10 mol% B and <=15 mol% one or more elements in 4A, 5A and 6A groups in the periodic table of elements and the balance substantially Fe into a moving cooling body while introducing gas having >=32 J/mol.K specific heat at constant pressure at 30 deg.C toward this molten metal. The nano-crystallized soft magnetic material having <=100 nm average crystallized grain diameter can be obtained by applying the heat treatment to this ribon at not lower than the crystallized temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナノ結晶材料とし
て用いるためのFe基アモルファスリボンの製造方法及
びこれを用いたナノ結晶軟磁性材料の製造方法に関す
る。
The present invention relates to a method for producing an Fe-based amorphous ribbon for use as a nanocrystalline material and a method for producing a nanocrystalline soft magnetic material using the same.

【0002】[0002]

【従来の技術】アモルファスリボンを製造するための製
造方法としては液体急冷法が広く知られている。液体急
冷法としては単ロール法、双ロール法、遠心法等がある
が、生産性およびメンテナンスのし易さから考えると、
高速で回転する一つの冷却ロール上に溶融金属を供給し
て、急冷凝固させてリボンを得る単ロール法が優れてい
る。特定の成分に調整されたアモルファスリボンを、上
述した手法で製造し、このアモルファスリボンを前駆体
として熱処理して結晶化することによって、平均結晶粒
径100nm以下のナノ結晶材料が得られることが知ら
れている。
2. Description of the Related Art As a production method for producing an amorphous ribbon, a liquid quenching method is widely known. As the liquid quenching method, there are a single roll method, a twin roll method, a centrifugal method, and the like, but from the viewpoint of productivity and ease of maintenance,
The single roll method in which a molten metal is supplied onto one cooling roll rotating at high speed and rapidly solidified to obtain a ribbon is excellent. It is known that an amorphous ribbon adjusted to a specific component is manufactured by the above-described method, and a nanocrystalline material having an average crystal grain size of 100 nm or less can be obtained by heat-treating and crystallizing the amorphous ribbon as a precursor. Have been.

【0003】この様なナノ結晶材料が得られる組成とし
ては、代表的な組成としては特公平4―4393号、特
公平7―74419号、特許第2812574号公報等
に記載のFe―Si―B―(Nb、Ti、Hf、Mo、
W、Ta)―Cu合金、Fe―(Co、Ni)―Cu―
Si―B―(Nb、W、Ta、Zr、Hf、Ti、M
o)合金、Fe−(Hf、Nb、Zr)−B合金、Fe
−Cu−(Hf、Nb、Zr)−B合金等が知られてい
る。また、前記ナノ結晶材料はアモルファス合金にみら
れる熱的不安定性がほとんどなく、経時変化も小さく、
低磁歪で高い透磁率を有することから、コモンモードチ
ョークコイル、パルストランス、漏電ブレーカー等に使
用されている。
As a composition from which such a nanocrystalline material can be obtained, typical compositions are Fe-Si-B described in Japanese Patent Publication No. 4-4393, Japanese Patent Publication No. 7-74419, and Japanese Patent No. 2812574. -(Nb, Ti, Hf, Mo,
W, Ta) -Cu alloy, Fe- (Co, Ni) -Cu-
Si-B- (Nb, W, Ta, Zr, Hf, Ti, M
o) alloy, Fe- (Hf, Nb, Zr) -B alloy, Fe
-Cu- (Hf, Nb, Zr) -B alloy and the like are known. In addition, the nanocrystalline material has almost no thermal instability seen in the amorphous alloy, has little change with time,
Because of its low magnetostriction and high magnetic permeability, it is used for common mode choke coils, pulse transformers, earth leakage breakers and the like.

【0004】[0004]

【発明が解決しようとする課題】本発明者等の検討によ
れば、ナノ結晶材料では、熱処理による結晶化の前の前
駆体としてのアモルファスリボンに結晶相がないことが
重要であることを確認した。前記熱処理前のアモルファ
ス相中の結晶相はごくわずか表層に生成されただけで
も、結晶化温度以上で熱処理した後の磁気特性が劣化す
る。これは、鋳造中に析出する結晶相は、粒径0.2〜
1μmのナノ結晶ではないデンドライト状の結晶であ
り、熱処理によってアモルファス相から結晶化した結晶
相よりも異常に大きいため、熱処理後の組織が不均一と
なることから、結晶磁気異方性が大きくなり、磁気特性
の劣化を招くことが原因である。
According to the study of the present inventors, it has been confirmed that in a nanocrystalline material, it is important that the amorphous ribbon as a precursor before the crystallization by heat treatment has no crystalline phase. did. Even if the crystal phase in the amorphous phase before the heat treatment is very slightly generated on the surface layer, the magnetic properties after the heat treatment at a crystallization temperature or higher are deteriorated. This is because the crystal phase precipitated during casting has a particle size of 0.2 to
It is a dendrite-like crystal that is not a nanocrystal of 1 μm and is abnormally larger than a crystal phase crystallized from an amorphous phase by heat treatment. Therefore, the structure after heat treatment becomes non-uniform, and the crystal magnetic anisotropy increases. This causes deterioration of magnetic characteristics.

【0005】従って、ナノ結晶材の前駆体としてのアモ
ルファスリボンは、結晶化していないことが重要であ
る。このためリボン製造時可能な限り急冷していた。し
かし、あまり低い温度まで冷却しすぎると、製造中にリ
ボンが破断し、連続的に回収できないという問題が生じ
る。また、ナノ結晶材は脆いため、熱処理前のアモルフ
ァスリボンをトロイダル状に巻回したり、打抜くことに
よって所望する形状とした後、結晶化温度以上で熱処理
して使用するが、このような鋳造時の破断箇所があると
連続的に巻磁心等を生産し難くなる点でも問題である。
そこで本発明は、磁気特性に優れたナノ結晶材を得るこ
とができるFe基アモルファスリボンの製造方法及びこ
れを用いたナノ結晶軟磁性材料の製造方法を提供するこ
とを目的とする。
[0005] Therefore, it is important that the amorphous ribbon as a precursor of the nanocrystalline material is not crystallized. For this reason, it was cooled as quickly as possible during ribbon production. However, if the temperature is too low, the ribbon breaks during production, and a problem arises in that the ribbon cannot be continuously collected. In addition, since the nanocrystalline material is brittle, the amorphous ribbon before heat treatment is wound into a toroidal shape or punched to obtain a desired shape, and then used after heat treatment at a crystallization temperature or higher. There is also a problem in that it becomes difficult to continuously produce a wound magnetic core or the like if there is a broken portion.
Therefore, an object of the present invention is to provide a method for producing an Fe-based amorphous ribbon capable of obtaining a nanocrystalline material having excellent magnetic properties, and a method for producing a nanocrystalline soft magnetic material using the same.

【0006】[0006]

【課題を解決するための手段】本発明者等は、 Bを10
mol%以下、4A、5A、6A族の少なくとも1種以
上の元素を15mol%以下含み、残部実質的にFeか
らなるナノ結晶材用アモルファスリボンに生じる結晶相
の生成場所を調査した結果、結晶相は、特にリボンのロ
ール接触面側に発生するエアポケットと呼ばれる窪み部
に生成していることを見出し、このエアポケットに発生
する結晶の発生を防止すべく検討を行い、熱容量の大き
いガスを導入することが、鋳造時の結晶の発生の抑制に
有効であることを見いだし、本発明に到達した。
Means for Solving the Problems The present inventors set B to 10
mol% or less, at least one element of the group 4A, 5A, or 6A was contained in an amount of 15 mol% or less, and the balance was substantially investigated. Found that air bubbles were formed in the hollow part called the air pocket generated on the roll contact surface side of the ribbon, and studied to prevent the generation of crystals generated in this air pocket, and introduced a gas with a large heat capacity. Has been found to be effective in suppressing the generation of crystals during casting, and has reached the present invention.

【0007】すなわち本発明は、Bを10mol%以
下、4A、5A、6A族の少なくとも1種以上の元素を
15mol%以下含み、残部実質的にFeからなる溶湯
に向かって、30℃における定圧比熱が32J/mol
・K以上のガスを導入しながら、移動冷却体に注湯する
ことを特徴とするナノ結晶材用アモルファスリボンの製
造方法である。より好ましくは、前記ガスの30℃にお
ける定圧比熱が35J/mol・K以上が良い。
That is, according to the present invention, a constant pressure specific heat at 30 ° C. is applied to a molten metal containing B of 10 mol% or less and at least one element of the 4A, 5A, and 6A groups of 15 mol% or less and the balance substantially consisting of Fe. Is 32 J / mol
A method for producing an amorphous ribbon for a nanocrystalline material, which comprises pouring a molten metal into a moving cooling body while introducing a gas of K or more. More preferably, the gas has a constant pressure specific heat at 30 ° C. of 35 J / mol · K or more.

【0008】なお、本発明のナノ結晶材とは、平均粒径
が100nm以下の組織を有する材料を意味する。ま
た、溶湯にはアモルファス形成能及び磁気特性の点か
ら、B以外のメタロイド元素として、C、Si等の元素
が5〜30mol%、主成分であるFeが70mol%
以上、熱処理後の結晶粒微細化の点からCu、Ag、A
uの少なくとも1種以上の元素を3mol%以下、より
好ましくは、0.1mol%以上含有することが望まし
い。
[0008] The nanocrystalline material of the present invention means a material having a structure having an average particle diameter of 100 nm or less. In addition, from the viewpoint of the ability to form an amorphous phase and magnetic properties, the molten metal contains 5 to 30 mol% of an element such as C or Si as a metalloid element other than B, and 70 mol% of Fe as a main component.
As described above, Cu, Ag, A
It is desirable that at least one element of u be contained in an amount of 3 mol% or less, more preferably 0.1 mol% or more.

【0009】上述した方法で製造したナノ結晶用アモル
ファスリボンを結晶化温度以上で熱処理し、平均結晶粒
径100nm以下のナノ結晶組織を形成することによ
り、磁気特性の優れたナノ結晶軟磁性材料を得ることが
できる。
[0009] The amorphous ribbon for nanocrystals produced by the above-described method is heat-treated at a temperature higher than the crystallization temperature to form a nanocrystal structure having an average crystal grain size of 100 nm or less. Obtainable.

【0010】[0010]

【発明の実施の形態】上述したように、本発明の重要な
特徴は、ナノ結晶用アモルファスリボンの鋳造時に、熱
容量の大きい、すなわち比熱の大きいガスを適用したこ
とである。本発明者等の検討によれば、エアポケットは
冷却ロール表面に付随してくる空気が、溶湯の溜り部
(以下「パドル」と呼ぶ。)と冷却ロールの境界層に入
り込んだ際、急激に膨張することによって生じるもので
あるが、エアポケットの発生した部分は冷却ロールと密
着しないため、非常に冷却速度が遅くなると考えられ
る。本発明は、エアポケットとロールの間に存在する気
体の温度上昇を、熱容量の大きいガスの導入により抑制
することによって、エアポケットの発生した部分の冷却
速度を高め、ナノ結晶材の前駆体となるアモルファスリ
ボンが、鋳造時に部分的に結晶を含むことを抑制できた
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that a gas having a large heat capacity, that is, a gas having a large specific heat is applied when casting an amorphous ribbon for nanocrystals. According to the studies by the present inventors, the air pockets are rapidly formed when the air accompanying the surface of the cooling roll enters the boundary layer between the molten metal pool (hereinafter referred to as “paddle”) and the cooling roll. Although it is caused by the expansion, the portion where the air pocket is generated does not adhere to the cooling roll, so that the cooling speed is considered to be extremely slow. The present invention suppresses the temperature rise of the gas present between the air pocket and the roll by introducing a gas having a large heat capacity, thereby increasing the cooling rate of the portion where the air pocket is generated, and forming a precursor of the nanocrystalline material. Can suppress the inclusion of crystals partially during casting.

【0011】以下に、本発明について詳しく説明する。
本発明において、雰囲気ガスの30℃における定圧比熱
が32J/mol・K以上に大きいということは、
パドル内に巻き込まれても温度上昇し難いため、リボン
のエアポケット部の冷却速度(移動冷却体による溶湯か
らの抜熱速度)を高めるのに非常に効果がある。30℃
における定圧比熱が32J/mol・K未満だと、製造
したアモルファスリボンの特にエアポケット部分に、熱
処理後のナノ結晶材の磁気特性を大きく劣化させるほど
の結晶相が発生するからである。30℃における定圧比
熱が32J/mol・K以上のガスとしてCO2、CO
とN、Ar等の混合ガス、SO2、NOガスなど
が挙げられるが、中でもCOガスは比較的安全且つ低
コストであるため、工業的にも有効である。
Hereinafter, the present invention will be described in detail.
In the present invention, that the constant pressure specific heat C P at 30 ° C. of the atmospheric gas is greater than 32 J / mol · K is
Since the temperature is hardly increased even if the ribbon is caught in the paddle, it is very effective to increase the cooling speed of the air pocket portion of the ribbon (the speed of removing heat from the molten metal by the moving cooling body). 30 ° C
If the specific heat at constant pressure is less than 32 J / mol · K, a crystalline phase is generated in the manufactured amorphous ribbon, particularly in the air pocket portion, such that the magnetic properties of the nanocrystalline material after the heat treatment are significantly deteriorated. CO 2, CO at a constant pressure specific heat at 30 ° C. of 32 J / mol · K or more
A mixed gas of 2 and N 2 , Ar, etc., SO 2, NO X gas and the like can be cited. Among them, CO 2 gas is relatively safe and low cost, and is industrially effective.

【0012】また、Bを10mol%以下としたのは、
B量が著しく多いと、熱処理した際、磁壁の移動を妨げ
るFeBやFeBといった磁気的にハードな化合物
相が析出しやすくなり、bcc−Fe固溶体を主相とす
る均一なナノ結晶相が得難くなるからである。このた
め、ナノ結晶材用のFe基アモルファス合金に含まれる
B量は、磁気特性の点から好ましくは10mol%以下
が良い。また、本発明に記載の4A、5A、6A族元素
はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W
を意味する。これらの元素はアモルファスリボンを結晶
化温度以上で熱処理した際、生成するbcc−Fe結晶
相の周囲に残存するアモルファス相に濃縮し、残存する
アモルファス相を安定化させるため、bcc−Fe結晶
粒の成長を抑制するため必須である。これらの元素を1
5mol%以下としたのは、15mol%を超えるとリ
ボンが脆くなり、取り扱い難くなるからである。これら
の元素のbcc−Fe結晶粒を抑制する効果は異なる
が、より好ましい範囲は1〜10mol%である。
The reason why B is set to 10 mol% or less is as follows.
If the amount of B is extremely large, a magnetically hard compound phase such as Fe 3 B or Fe 2 B which hinders the movement of the magnetic domain wall is likely to be precipitated during the heat treatment, and a uniform nanocrystal having a bcc-Fe solid solution as a main phase. This is because it is difficult to obtain a phase. For this reason, the amount of B contained in the Fe-based amorphous alloy for the nanocrystalline material is preferably 10 mol% or less from the viewpoint of magnetic properties. The group 4A, 5A, and 6A elements described in the present invention include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W.
Means These elements are concentrated in the amorphous phase remaining around the generated bcc-Fe crystal phase when the amorphous ribbon is heat-treated at a crystallization temperature or higher, and stabilize the remaining amorphous phase. It is essential to suppress growth. One of these elements
The reason for setting the content to 5 mol% or less is that if the content exceeds 15 mol%, the ribbon becomes brittle and becomes difficult to handle. These elements have different effects of suppressing bcc-Fe crystal grains, but a more preferable range is 1 to 10 mol%.

【0013】また、Cu、Ag、Auは、4A、5A、
6A族元素と複合添加することによって、結晶化温度以
上で熱処理した際の初晶の核の数を増加させることか
ら、ナノ結晶材料としての結晶粒を微細化する効果があ
る。Cu、Ag、Auの少なくとも1種以上を3mol
%以下としたのは、3mol%を越えるとリボンが脆く
なるからである。また、Cu、Ag、AuはFeと分離
しやすい元素であるため、あまり多いと液体急冷法を用
いてもFeと分離し、均一に固溶させることができなく
なる点でも問題となるため、3mol%以下が良い。こ
れらの元素の効果を明確に得るためには、好ましくは、
0.1mol%以上添加する。
Further, Cu, Ag, and Au are 4A, 5A,
The combined addition with the Group 6A element increases the number of primary crystal nuclei when heat-treated at a crystallization temperature or higher, and thus has the effect of refining crystal grains as a nanocrystalline material. 3 mol of at least one of Cu, Ag and Au
% Or less because if it exceeds 3 mol%, the ribbon becomes brittle. Further, Cu, Ag, and Au are elements that are easily separated from Fe. If the amount is too large, it is separated from Fe even if the liquid quenching method is used, and the solid solution cannot be uniformly formed. % Or less is good. In order to clearly obtain the effects of these elements, preferably,
0.1 mol% or more is added.

【0014】また、本発明に記載の移動冷却体として
は、回転する円筒状のロールまたは、移動するベルトな
ど、移動する冷却表面を確保できる部材を使用すること
ができるが、前述したように生産性やメンテナンス等の
点から、回転する一つの円筒状ロールを用いる、単ロー
ル法の適用が好ましい。ロールの材質としては、Cu、
Cu−Be合金、Cu−Cr合金等の熱伝導率が高い材
料が良い。また、ロール内部にロールの円周方向または
軸方向に水等の液体を流すと、よりロール表面の温度調
整がし易い。
Further, as the moving cooling body described in the present invention, a member capable of securing a moving cooling surface such as a rotating cylindrical roll or a moving belt can be used. From the viewpoints of properties, maintenance, and the like, it is preferable to apply a single roll method using one rotating cylindrical roll. The material of the roll is Cu,
A material having a high thermal conductivity such as a Cu-Be alloy or a Cu-Cr alloy is preferable. Further, when a liquid such as water flows in the inside of the roll in the circumferential direction or the axial direction of the roll, the temperature of the roll surface can be more easily adjusted.

【0015】また、ナノ結晶材料は、単ロール法等によ
って作製したアモルファスリボンを結晶化温度以上で熱
処理することによって得られるが、大気中で熱処理する
と表面が酸化し、熱処理後の磁気特性が劣化するため、
窒素、アルゴン等の酸素が少ない雰囲気中で行った方が
良い。
[0015] The nanocrystalline material is obtained by heat-treating an amorphous ribbon produced by a single roll method or the like at a crystallization temperature or higher. However, when heat-treated in the air, the surface is oxidized and the magnetic properties after the heat treatment deteriorate. To do
It is better to carry out in an atmosphere with little oxygen such as nitrogen and argon.

【0016】[0016]

【実施例】(実施例1)mol%で0.9Cu−3Nb
−15.5Si−7B、残部実質的にFeからなる組成
のリボンを製造した。リボン製造に用いた装置を図1に
示す。図中の坩堝2内に予め溶製した前記組成のインゴ
ットを装入し、高周波コイル6により加熱溶解した後、
Cu−Be合金からなる回転する冷却ロール3上に、ノ
ズル1から溶融金属を噴出、急冷凝固して、幅25mm、
厚さ20μmのアモルファスリボンを製造した。製造時
冷却ロール表面の温度は200℃とし、パドル直近にA
r、N、空気、CO及びCOにArまたはN
混合し、30℃における定圧比熱を20〜40J/mo
l・Kの範囲としたガスをノズル7から流しながら、リ
ボンを製造した。作製したリボンは、図1中の剥離ノズ
ル5より、ロールの回転方向とは逆向きにガスを噴出す
ることによって、剥離させて回収した。
(Example 1) 0.9 Cu-3Nb in mol%
A ribbon having a composition of -15.5Si-7B and the balance substantially consisting of Fe was produced. The apparatus used for ribbon production is shown in FIG. An ingot having the above-mentioned composition previously melted was placed in the crucible 2 in the drawing, and heated and melted by the high-frequency coil 6,
Molten metal is ejected from a nozzle 1 onto a rotating cooling roll 3 made of a Cu-Be alloy, rapidly solidified, and has a width of 25 mm.
An amorphous ribbon having a thickness of 20 μm was manufactured. During production, the temperature of the cooling roll surface was 200 ° C, and A
Ar, N 2 is mixed with r, N 2 , air, CO 2 and CO 2 , and the specific heat at a constant pressure at 30 ° C. is 20 to 40 J / mo.
The ribbon was manufactured while flowing a gas having a range of 1 · K from the nozzle 7. The produced ribbon was peeled and recovered by ejecting gas from the peeling nozzle 5 in FIG. 1 in a direction opposite to the rotation direction of the roll.

【0017】評価は鋳造開始から30min後のリボン
を採取し、冷却ロール接触面側における結晶相の析出ピ
ーク強度及び、熱処理後の磁気特性について行った。結
晶相の析出ピーク強度はX線回折装置を用い、アモルフ
ァス状態における強度を基準としたときのα−Fe(2
00)ピーク強度で求めた。また、磁気特性は前記サイ
ズのリボンを外径19mm、内径15mmのトロイダル
状コアを530℃、1時間の熱処理後、比初透磁率μを
測定した。ただし、測定周波数は低周波ではリボンの表
面粗さの影響が大きいため、より熱処理前のリボンにお
ける結晶相析出の影響を見るため、10kHzとした。
The evaluation was performed on the ribbon 30 minutes after the start of casting, and the precipitation peak intensity of the crystal phase on the cooling roll contact surface side and the magnetic properties after the heat treatment were evaluated. The precipitation peak intensity of the crystal phase was determined by using an X-ray diffractometer and using α-Fe (2
00) Determined by peak intensity. The magnetic properties were measured by measuring the relative initial magnetic permeability μ of the ribbon having the above-mentioned size after heat-treating a toroidal core having an outer diameter of 19 mm and an inner diameter of 15 mm at 530 ° C. for 1 hour. However, the measurement frequency was set to 10 kHz because the influence of the surface roughness of the ribbon was large at a low frequency.

【0018】結果を図2、図3に示す。図2、3から3
0℃における1molあたりの比熱が大きいガスを適用
したものほど、結晶化し難く、熱処理後の周波数10k
Hzにおけるμも大きくなり、30℃における定圧比熱
が32J/mol・K以上のガスの適用で80000を
越える高いμが得られた。また、図2、3において鋳造
時比熱の21J/mol・Kのガスを適用したリボン
と、比熱が32.5J/mol・Kのガスを適用したリ
ボンから、外径19mm、内径15mmのトロイダル状
コアを作製し、周波数10kHzにおけるμを測定し
た。その結果、21J/mol・Kの方が410、32
J/mol・Kの方が370とほぼ同等の値であった。
これに対し熱処理後のμは、図3に示すように21J/
mol・Kの方が50500、32J/mol・Kの方
が85000であった。従って、鋳造時に発生した結晶
相は、鋳造ままよりも熱処理後の磁気特性に対して大き
く影響を及ぼしていることは、明らかである。
The results are shown in FIGS. Figures 2, 3 and 3
A gas having a higher specific heat per 1 mol at 0 ° C. is more difficult to crystallize and has a frequency of 10 k after heat treatment.
The μ at Hz also increased, and a high μ exceeding 80,000 was obtained by applying a gas having a specific heat at a constant pressure of 30 J / mol · K or more at 30 ° C. 2 and 3, a toroidal shape having an outer diameter of 19 mm and an inner diameter of 15 mm was obtained from a ribbon to which a gas having a specific heat during casting of 21 J / mol · K was applied and a ribbon to which a gas having a specific heat of 32.5 J / mol · K was applied. A core was prepared, and μ at a frequency of 10 kHz was measured. As a result, it was 410, 32 for 21 J / mol · K.
J / mol · K was almost equal to 370.
On the other hand, μ after the heat treatment was 21 J /
50500 for mol · K and 85,000 for 32 J / mol · K. Therefore, it is clear that the crystal phase generated at the time of casting has a greater effect on the magnetic properties after the heat treatment than as-cast.

【0019】また、図2においてロール接触面側に結晶
相の析出が認められた比熱が32J/mol・K未満で
作製したリボンを透過電子顕微鏡にて観察したところ、
図4に示すような粒径100nmを越えるデンドライト
状の結晶相がエアポケット部で認められた。さらに熱処
理後の組織も観察したところ、パドル周辺に32J/m
ol・K以上のガスを流して作製したリボンは、平均粒
径50nm以下の均一な組織であったが、32J/mo
l・K未満のガスを流しながら作製したリボンには、い
ずれも100nmを越える結晶粒が多数認められ、不均
一な組織であった。
In FIG. 2, a ribbon produced at a specific heat of less than 32 J / mol · K at which a crystal phase was deposited on the roll contact surface side was observed with a transmission electron microscope.
As shown in FIG. 4, a dendrite-like crystal phase having a particle size exceeding 100 nm was observed in the air pocket portion. Furthermore, when the structure after the heat treatment was also observed, 32 J / m
The ribbon produced by flowing a gas of ol · K or more had a uniform structure with an average particle diameter of 50 nm or less, but was 32 J / mo.
In each of the ribbons produced while flowing a gas of less than 1 · K, a large number of crystal grains exceeding 100 nm were observed, and the ribbon had an uneven structure.

【0020】(実施例2)図1と同様の装置を用い、表
1に記載の組成を有するリボンを製造した。坩堝内に予
め溶製した前記組成のインゴットを装入し、高周波誘導
加熱により溶解した後、Cu−Be合金からなる冷却ロ
ール上に溶融金属を噴出、急冷凝固して、幅40mm、厚
さ20μmのアモルファスリボンを製造した。製造時冷
却ロール表面の温度は190℃とし、パドル周辺にCO
とNを混合し、30℃における定圧比熱を35J/
mol・Kとしたガスをパドル直近に吹き付けながらリ
ボンを作製した。
Example 2 A ribbon having the composition shown in Table 1 was manufactured using the same apparatus as that shown in FIG. A crucible is charged with an ingot of the above-mentioned composition previously melted and melted by high-frequency induction heating, and then a molten metal is jetted onto a cooling roll made of a Cu-Be alloy, rapidly cooled and solidified, and has a width of 40 mm and a thickness of 20 μm. Was manufactured. During the production, the temperature of the cooling roll surface was set to 190 ° C, and CO
2 and N 2, and the constant pressure specific heat at 30 ° C. is 35 J /
A ribbon was produced while blowing a gas of mol · K in the vicinity of the paddle.

【0021】評価は、鋳造開始から20min後のリボ
ンを採取し、冷却ロール接触面側における結晶相の析出
ピークの有無及び、熱処理後の磁気特性について行っ
た。磁気特性は外径19mm、内径15mmの巻磁心を
熱処理温度を500〜600℃、1H保持後冷却し、周
波数10kHzにおける比初透磁率μの最大値を求め
た。その結果、熱処理前のリボンにはいずれも結晶相の
析出ピークは認められなかった。しかし、1kHzにお
けるμは本発明の範囲の組成を有するリボンでは、80
000〜130000の高い値が得られた、B11mo
l%のリボンでは最大11000と非常に小さい値しか
得られなかった。また、熱処理後のリボンを透過電子顕
微鏡にて観察したところ、いずれも平均粒径100nm
以下であった。
The evaluation was performed on a ribbon 20 minutes after the start of casting, and the presence or absence of a crystal phase precipitation peak on the cooling roll contact surface side and the magnetic properties after heat treatment were evaluated. As for the magnetic characteristics, the core having an outer diameter of 19 mm and an inner diameter of 15 mm was cooled after maintaining the heat treatment temperature at 500 to 600 ° C. for 1 H, and the maximum value of the relative initial magnetic permeability μ at a frequency of 10 kHz was determined. As a result, no precipitation peak of the crystal phase was observed in any of the ribbons before the heat treatment. However, μ at 1 kHz is 80 for a ribbon having a composition within the range of the present invention.
B11mo, where high values of 000 to 130000 were obtained
With 1% ribbon, only a very small value of 11,000 was obtained. When the ribbon after the heat treatment was observed with a transmission electron microscope, all of the ribbons had an average particle diameter of 100 nm.
It was below.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例3)図1と同様の装置を用い、m
ol%で、1.1Cu−3Nb―Zr0.1―15.2
Si−8.5B、残部実質的にFeからなる組成のリボ
ンを作製した。坩堝内に予め溶製した上記組成のインゴ
ットを装入し、高周波誘導加熱により溶解した後、Cu
−Be合金からなる冷却ロール上に溶融金属を噴出、急
冷凝固して、幅18mm、厚さ19μmのアモルファスリ
ボンを製造した。製造時冷却ロール表面の温度は195
℃とし、パドル直近に30℃における定圧比熱が37J
/mol・KのCOガスを吹き付けながらリボンを作
製した。
(Embodiment 3) Using the same apparatus as in FIG.
ol%, 1.1Cu-3Nb-Zr0.1-15.2
A ribbon having a composition consisting of Si-8.5B and the balance substantially consisting of Fe was produced. A crucible is charged with an ingot of the above composition previously melted and melted by high-frequency induction heating.
A molten metal was jetted onto a cooling roll made of a Be alloy and rapidly solidified to produce an amorphous ribbon having a width of 18 mm and a thickness of 19 μm. The temperature of the cooling roll surface during production was 195.
℃, constant pressure specific heat at 30 ℃ near the paddle is 37J
/ Mol · K CO 2 gas was blown to produce a ribbon.

【0024】評価は、鋳造開始から25min後のリボ
ンを用い、冷却ロール接触面側におけるαFe結晶相の
析出ピークの有無及び、熱処理後の磁気特性について評
価した。結晶相の析出ピークはX線回折装置を用いて評
価し、磁気特性は外径19mm、内径15mmの巻磁心
を熱処理温度540℃で1H保持後冷却し、周波数1k
Hzにおける比初透磁率μで評価した。その結果、熱処
理前のリボンに結晶相の析出を示すピークは認められな
かった。また、熱処理後のμは83200と実用上充分
な値が得られた。さらに、熱処理後のリボンを透過電子
顕微鏡にて観察したところ、平均粒径100nm以下の
均一な組織であった。
Using a ribbon 25 minutes after the start of casting, evaluation was made on the presence or absence of a precipitation peak of the αFe crystal phase on the cooling roll contact surface side and the magnetic properties after heat treatment. The precipitation peak of the crystal phase was evaluated using an X-ray diffractometer. The magnetic characteristics were as follows. A magnetic core having an outer diameter of 19 mm and an inner diameter of 15 mm was cooled at a heat treatment temperature of 540 ° C. for 1 H, and cooled at a frequency of 1 k.
The evaluation was made based on the specific initial magnetic permeability μ at Hz. As a result, no peak indicating the precipitation of a crystal phase was observed in the ribbon before the heat treatment. Further, μ after the heat treatment was 83200, which was a practically sufficient value. Furthermore, when the ribbon after the heat treatment was observed with a transmission electron microscope, it was a uniform structure having an average particle diameter of 100 nm or less.

【0025】(実施例4)図1と同様の装置を用い、m
ol%で7Nb−9B、残部実質的にFeからなる組成
のリボンを作製した。坩堝内に予め溶製した上記組成の
インゴットを装入し、高周波誘導加熱により溶解した
後、Cu−Be合金からなる冷却ロール上に溶融金属を
噴出、急冷凝固して、幅7mm、厚さ19μmのアモルフ
ァスリボンを製造した。製造時冷却ロール表面の温度は
185℃とし、パドル直近に30℃における定圧比熱が
33J/mol・KのCOとArの混合ガスを吹き付
けた。
(Embodiment 4) Using the same apparatus as in FIG.
A ribbon having a composition consisting of 7Nb-9B at ol% and the balance substantially consisting of Fe was produced. A crucible was charged with an ingot of the above-mentioned composition previously melted and melted by high-frequency induction heating, and then a molten metal was jetted onto a cooling roll made of a Cu-Be alloy, rapidly cooled and solidified to a width of 7 mm and a thickness of 19 μm. Was manufactured. During the production, the temperature of the cooling roll surface was set to 185 ° C., and a mixed gas of CO 2 and Ar having a specific heat at a constant pressure of 33 J / mol · K at 30 ° C. was sprayed immediately near the paddle.

【0026】評価は、鋳造開始から30min後のリボ
ンの冷却ロール接触面側におけるαFe結晶相の析出ピ
ークの有無及び、熱処理後の磁気特性について評価し
た。結晶相の析出ピークはX線回折装置を用いて評価
し、磁気特性は外径20mm、内径16mmの巻磁心を
熱処理温度650℃で3H保持後冷却し、磁場の強さ
0.4A/m、周波数1kHzにおけるμで評価した。
その結果、熱処理前のリボンに結晶相の析出を示すピー
クは認められなかった。また、熱処理後のμは4950
0であった。さらに、熱処理後のリボンを透過電子顕微
鏡にて観察したところ、平均粒径100nm以下の均一
な組織であった。
The evaluation was made on the presence or absence of a precipitation peak of the αFe crystal phase on the cooling roll contact surface side of the ribbon 30 minutes after the start of casting, and the magnetic properties after heat treatment. The precipitation peak of the crystal phase was evaluated using an X-ray diffractometer, and the magnetic properties of the wound core having an outer diameter of 20 mm and an inner diameter of 16 mm were kept at a heat treatment temperature of 650 ° C. for 3 hours, then cooled, and the magnetic field strength was 0.4 A / m. The evaluation was performed using μ at a frequency of 1 kHz.
As a result, no peak indicating the precipitation of a crystal phase was observed in the ribbon before the heat treatment. Μ after the heat treatment is 4950
It was 0. Furthermore, when the ribbon after the heat treatment was observed with a transmission electron microscope, it was a uniform structure having an average particle diameter of 100 nm or less.

【0027】[0027]

【発明の効果】本発明によれば、磁気特性に優れるナノ
結晶材用Fe基アモルファスリボンが、熱処理後の磁気
特性にとって非常に有害となる結晶相の析出や、製造中
における破断もなく連続的に安定して製造可能となるた
め、その工業的価値は大きい。
According to the present invention, an Fe-based amorphous ribbon for a nanocrystalline material having excellent magnetic properties can be continuously formed without precipitation of a crystal phase which is very harmful to the magnetic properties after heat treatment and without breakage during manufacturing. The industrial value is great because it can be manufactured stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を実施する装置の一例を示す
模式図である。
FIG. 1 is a schematic view showing an example of an apparatus for performing a manufacturing method of the present invention.

【図2】使用するガスの比熱と、リボンのロール接触面
側の結晶相ピーク強度の関係を示した図である。
FIG. 2 is a diagram showing a relationship between specific heat of a gas used and a crystal phase peak intensity on a roll contact surface side of a ribbon.

【図3】使用するガスの比熱と、磁気特性の関係を示し
た図である。
FIG. 3 is a diagram showing a relationship between specific heat of a gas used and magnetic characteristics.

【図4】比較例における鋳造ままリボンのロール接触面
側のエアポケット部の透過電子顕微鏡写真である。
FIG. 4 is a transmission electron micrograph of an air pocket portion on a roll contact surface side of an as-cast ribbon in a comparative example.

【符号の説明】[Explanation of symbols]

1 ノズル、2 坩堝、3 冷却ロール、4 リボン、
5 剥離ノズル、6高周波コイル、7 ガスノズル
1 nozzle, 2 crucible, 3 cooling roll, 4 ribbon,
5 peeling nozzle, 6 high frequency coil, 7 gas nozzle

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E004 DB02 TA01 TA03 TB02 TB04 5E041 AA11 AA19 BD00 BD03 CA01 HB07 HB11 HB19 NN01 NN17 ──────────────────────────────────────────────────続 き Continued from the front page F term (reference) 4E004 DB02 TA01 TA03 TB02 TB04 5E041 AA11 AA19 BD00 BD03 CA01 HB07 HB11 HB19 NN01 NN17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Bを10mol%以下、4A、5A、6
A族の少なくとも1種以上の元素を15mol%以下含
み、残部実質的にFeからなる溶湯に向かって、30℃
における定圧比熱が32J/mol・K以上のガスを導
入しながら、移動冷却体に注湯することを特徴とするナ
ノ結晶材用アモルファスリボンの製造方法。
1. The method according to claim 1, wherein B is 10 mol% or less, 4A, 5A, 6
15 ° C. or less containing at least one or more elements of Group A, and the remaining 30 ° C.
3. A method for producing an amorphous ribbon for a nanocrystalline material, comprising pouring a molten metal into a moving cooling body while introducing a gas having a specific heat at a constant pressure of 32 J / mol · K or more.
【請求項2】 Cu、Ag、Auの少なくと1種以上の
元素を3mol%以下含有することを特徴とする請求項
1に記載のナノ結晶材用アモルファスリボンの製造方
法。
2. The method for producing an amorphous ribbon for a nanocrystalline material according to claim 1, wherein at least one element of Cu, Ag, and Au is contained in an amount of 3 mol% or less.
【請求項3】 請求項1または2に記載の方法で製造し
たアモルファスリボンを結晶化温度以上で熱処理し、平
均結晶粒径100nm以下のナノ結晶組織を形成するこ
とを特徴とするナノ結晶軟磁性材料の製造方法。
3. A nanocrystalline soft magnetic material, wherein the amorphous ribbon produced by the method according to claim 1 is heat-treated at a crystallization temperature or higher to form a nanocrystalline structure having an average crystal grain size of 100 nm or less. Material manufacturing method.
JP2000124840A 2000-04-25 2000-04-25 Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon Pending JP2001300697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124840A JP2001300697A (en) 2000-04-25 2000-04-25 Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124840A JP2001300697A (en) 2000-04-25 2000-04-25 Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon

Publications (1)

Publication Number Publication Date
JP2001300697A true JP2001300697A (en) 2001-10-30

Family

ID=18634903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124840A Pending JP2001300697A (en) 2000-04-25 2000-04-25 Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon

Country Status (1)

Country Link
JP (1) JP2001300697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077651A1 (en) * 2006-01-04 2007-07-12 Hitachi Metals, Ltd. Amorphous alloy thin-band, nanocrystalline soft magnetic alloy and magnetic core consisting of nanocrystalline soft magnetic alloy
JP2010229466A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077651A1 (en) * 2006-01-04 2007-07-12 Hitachi Metals, Ltd. Amorphous alloy thin-band, nanocrystalline soft magnetic alloy and magnetic core consisting of nanocrystalline soft magnetic alloy
US8083867B2 (en) 2006-01-04 2011-12-27 Hitachi Metals, Ltd. Amorphous alloy ribbon, nanocrystalline soft magnetic alloy and magnetic core consisting of nanocrystalline soft magnetic alloy
JP2010229466A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic core

Similar Documents

Publication Publication Date Title
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
US10468182B2 (en) Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core
JP5182601B2 (en) Magnetic core made of amorphous alloy ribbon, nanocrystalline soft magnetic alloy and nanocrystalline soft magnetic alloy
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
US6749700B2 (en) Method for producing amorphous alloy ribbon, and method for producing nano-crystalline alloy ribbon with same
JP5327075B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
WO2010084888A1 (en) Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP2018167298A (en) METHOD FOR PRODUCING Fe-Si-B-BASED NANOCRYSTAL ALLOY
JP6080094B2 (en) Winding core and magnetic component using the same
JPH01242755A (en) Fe-based magnetic alloy
KR20150054912A (en) Ultrafine crystal alloy ribbon, fine crystal soft magnetic alloy ribbon, and magnetic parts using same
JP6003899B2 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
JP3494371B2 (en) Method for producing amorphous alloy ribbon and method for producing nanocrystalline alloy ribbon using the same
JP2003213331A (en) METHOD FOR MANUFACTURING SOFT MAGNETIC Fe ALLOY, AND SOFT MAGNETIC Fe ALLOY
JP4623400B2 (en) Soft magnetic alloy ribbon and magnetic core and apparatus using the same
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP2004353090A (en) Amorphous alloy ribbon and member using the same
JP4257629B2 (en) Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
JP2010150602A (en) Fe-BASED SOFT MAGNETIC THIN STRIP AND HIGH-FREQUENCY MAGNETIC CORE USING THE SAME
JP3364299B2 (en) Amorphous metal wire
US20010007266A1 (en) Methods for producing iron-based amorphous alloy ribbon and nanocrystalline material
JP2002322546A (en) Fe BASED SOFT MAGNETIC ALLOY AND MAGNETIC CORE USING THE ALLOY
JP2001300697A (en) Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100108