JP5320765B2 - Fe-based amorphous alloy with excellent soft magnetic properties - Google Patents

Fe-based amorphous alloy with excellent soft magnetic properties Download PDF

Info

Publication number
JP5320765B2
JP5320765B2 JP2008034425A JP2008034425A JP5320765B2 JP 5320765 B2 JP5320765 B2 JP 5320765B2 JP 2008034425 A JP2008034425 A JP 2008034425A JP 2008034425 A JP2008034425 A JP 2008034425A JP 5320765 B2 JP5320765 B2 JP 5320765B2
Authority
JP
Japan
Prior art keywords
atomic
alloy
less
iron loss
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008034425A
Other languages
Japanese (ja)
Other versions
JP2008240147A (en
Inventor
有一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008034425A priority Critical patent/JP5320765B2/en
Publication of JP2008240147A publication Critical patent/JP2008240147A/en
Application granted granted Critical
Publication of JP5320765B2 publication Critical patent/JP5320765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、電力トランス、高周波トランスなどの鉄心等に用いられるFe系非晶質合金薄帯に関するものである。   The present invention relates to a Fe-based amorphous alloy ribbon used for iron cores such as power transformers and high-frequency transformers.

合金を溶融状態から急冷することによって、連続的に薄帯や線を製造する方法として遠心急冷法、単ロ−ル法、双ロ−ル法等が知られている。これらの方法は、高速回転する金属製ドラムの内周面または外周面に溶融金属をオリフィス等から噴出させることによって、急速に溶融金属を凝固させて薄帯や線を製造するものである。また、合金組成を適正に選ぶことによって、液体金属に類似した非晶質合金を得ることができ、磁気的性質あるいは機械的性質に優れた材料を製造することができる。   Centrifugal quenching method, single roll method, twin roll method and the like are known as methods for continuously producing ribbons and wires by rapidly cooling an alloy from a molten state. In these methods, molten metal is ejected from an orifice or the like to the inner or outer peripheral surface of a metal drum that rotates at high speed, whereby the molten metal is rapidly solidified to produce a ribbon or wire. Further, by appropriately selecting the alloy composition, an amorphous alloy similar to a liquid metal can be obtained, and a material excellent in magnetic properties or mechanical properties can be produced.

このような急冷凝固により得られる非晶質合金として、これまで多くの成分が提案されている。例えば、特許文献1では、原子%で、Fe、Ni、Cr、Co、Vからの少なくとも1種で60〜90%、P、C、Bからの少なくとも1種で10〜30%、Al、Si、Sn、Sb、Ge、In、Beからの少なくとも1種で0.1〜15%からなる合金成分が提案されている。本特許は非晶質相が得られる合金成分を提案したもので、特に電力トランスや高周波トランスなどの鉄心等の用途に限定した、いわゆる磁気的性質のみに注目した成分の提案ではない。   Many components have been proposed as amorphous alloys obtained by such rapid solidification. For example, in Patent Document 1, at least one of Fe, Ni, Cr, Co, and V is 60 to 90% in atomic percent, and at least one of P, C, and B is 10 to 30%, Al, Si. , Sn, Sb, Ge, In, Be, and at least one alloy component of 0.1 to 15% has been proposed. This patent proposes an alloy component capable of obtaining an amorphous phase, and is not a proposal of a component focusing on only so-called magnetic properties, particularly limited to uses such as iron cores such as power transformers and high-frequency transformers.

その後、磁気的性質に注目した非晶質合金としての合金成分も多く提案されている。例えば、特許文献2では、原子%で、Feが75〜78.5%、Siが4〜10.5%、Bが11〜21%からなる合金成分が提案されている。
一方、特許文献3では、Fe、Coからの少なくとも1種で70〜90%、B、C、Pからの少なくとも1種で10〜30%、さらに、Fe、Coの含有量を、Niでその3/4まで、V、Cr、Mn、Mo、Nb、Ta、Wでその1/4まで代替でき、又、B、C、Pの含有量を、Siでその3/5まで、Alでその1/3まで代替できる合金成分が提案されている。
Since then, many alloy components have been proposed as amorphous alloys that focus on magnetic properties. For example, Patent Document 2 proposes an alloy component consisting of 75% to 78.5% Fe, 4% to 10.5% Si, and 11% to 21% B in atomic percent.
On the other hand, in Patent Document 3, at least one of Fe and Co is 70 to 90%, at least one of B, C and P is 10 to 30%, and the content of Fe and Co is Ni. Up to 3/4, V, Cr, Mn, Mo, Nb, Ta, W can be substituted up to 1/4, and B, C, P content can be up to 3/5 for Si, Al for Al Alloy components that can be substituted for up to 1/3 have been proposed.

特許文献1、3で提案された非晶質合金成分の中でも、エネルギ−損失である鉄損が低いこと、飽和磁束密度および透磁率が高いこと、さらには安定して非晶質相が得られる等の理由から、例えば特許文献2に示すようなFeSiB系非晶質合金が、電力トランスや高周波トランスの鉄心等の用途として有望視されるようになった。   Among the amorphous alloy components proposed in Patent Documents 1 and 3, the iron loss as energy loss is low, the saturation magnetic flux density and the magnetic permeability are high, and an amorphous phase can be obtained stably. For these reasons, for example, an FeSiB-based amorphous alloy as shown in Patent Document 2 has come to be promising as an application for an iron core of a power transformer or a high-frequency transformer.

以来、軟磁気特性に優れたFe系非晶質合金の合金成分に関する開発は、このFeSiB系を中心にして進められた。すなわち、FeSiB系非晶質合金においての一層の鉄損低減開発が盛んに行われ、多くの成果が生み出された。   Since then, development related to alloy components of Fe-based amorphous alloys with excellent soft magnetic properties has been proceeding with a focus on this FeSiB system. That is, development of further reduction of iron loss in FeSiB-based amorphous alloys has been actively conducted, and many results have been produced.

しかしながら、非晶質合金における鉄損低減開発がかなり進んでいるものの、本用途での特性改善の要求は依然強く、更なる鉄損改善が要求されている。例えば、鉄損に関して単板測定による鉄損W13/50(磁束密度1.3T、周波数50Hzにおける鉄損)を用いて述べると、これまで0.12W/kgを下回るまで改善することができたものの、安定して0.10W/kg以下にすることは非常に困難であった。
特開昭49−91014号公報 特開昭57−116750号公報 特開昭61−30649号公報
However, although the development of iron loss reduction in amorphous alloys has progressed considerably, the demand for improvement in characteristics in this application is still strong, and further improvement in iron loss is required. For example, the iron loss W13 / 50 (magnetic loss 1.3T, iron loss at a frequency of 50 Hz) measured by a single plate with respect to the iron loss can be improved to below 0.12 W / kg. It was very difficult to stably achieve 0.10 W / kg or less.
JP-A-49-91014 JP 57-116750 A JP 61-30649 A

本発明の目的は、このような更なる鉄損改善のニ−ズに応えるべく、一層の低鉄損化を実現できる非晶質合金を提供することにある。   An object of the present invention is to provide an amorphous alloy that can realize further reduction in iron loss in order to meet the need for further improvement in iron loss.

本発明者は、これまで提案された各種合金成分の構成元素のうち、先に述べた例えば、特許文献1および3での第2の成分群として分類されるP、C、Bの元素に注目し、再度それら元素の組み合わせ及び含有量について検討、実験を行った。そして、B、Cを主体とする成分系を基本として、さらに他の元素も組み合わせた詳細実験を行った結果、課題を実現できる、すなわち、鉄損W13/50(磁束密度1.3T、周波数50Hzにおける鉄損)で、安定して0.10W/kg以下を実現できる非晶質合金の成分を見出した。そして、この知見を基に検討を重ね、本発明を完成するに至ったのである。   The inventor of the present invention pays attention to the elements of P, C, and B classified as the second component group in Patent Documents 1 and 3 described above, for example, among the constituent elements of various alloy components that have been proposed so far. Then, the combination and content of these elements were examined and experimented again. As a result of detailed experiments combining other elements based on the component system mainly composed of B and C, the problem can be realized, that is, iron loss W13 / 50 (magnetic flux density 1.3T, frequency 50Hz). In other words, the present inventors have found an amorphous alloy component that can stably realize 0.10 W / kg or less in terms of iron loss. And based on this knowledge, examination was repeated and it came to complete this invention.

本発明は、以下の通りである。
(1)原子%で、Feを78%以上86%以下、Bを8%以上18%以下、Cを3%以上10%以下、Siを0.1%以上1.8%以下、さらに、Alを0.1%以上1.4%以下含有し、残部不可避的不純物からなることを特徴とする、軟磁気特性に優れたFe系非晶質合金。
(2)Ni、Cr、Coのうち少なくとも1種以上で、上記(1)に記載の合金のFeを30%以下の範囲で代替することを特徴とする、軟磁気特性に優れたFe系非晶質合金。
(3)原子%で、Feを78%以上86%以下、Bを8%以上18%以下、Cを3%以上10%以下、Siを0.1%以上1.8%以下、さらに、Alを0.005%以上1.4%以下含有し、残部不可避的不純物からなることを特徴とする、軟磁気特性に優れたFe系非晶質合金。
(4)Ni、Cr、Coのうち少なくとも1種以上で、上記(3)に記載の合金のFeを30%以下の範囲で代替することを特徴とする、軟磁気特性に優れたFe系非晶質合金。
The present invention is as follows.
(1) Atomic%, Fe is 78% to 86%, B is 8% to 18%, C is 3% to 10%, Si is 0.1% to 1.8 %, Al Fe-based amorphous alloy having excellent soft magnetic characteristics, characterized by comprising 0.1% or more and 1.4% or less, and the balance being inevitable impurities.
(2) Fe-based non-excellent soft magnetic properties characterized by substituting at least one of Ni, Cr and Co for Fe in the alloy described in (1) in a range of 30% or less. A crystalline alloy.
(3) Atomic%, Fe is 78% to 86%, B is 8% to 18%, C is 3% to 10%, Si is 0.1% to 1.8 %, Al An Fe-based amorphous alloy having excellent soft magnetic characteristics, characterized by comprising 0.005% or more and 1.4% or less, and the balance being inevitable impurities.
(4) Fe-based non-excellent soft magnetic characteristics characterized in that at least one of Ni, Cr, and Co is substituted for Fe in the alloy described in (3) within a range of 30% or less. A crystalline alloy.

本発明によれば、非晶質合金の鉄損を一層低減することが可能となり、単板測定による鉄損W13/50を安定して0.10W/kg以下とすることができる。   According to the present invention, the iron loss of the amorphous alloy can be further reduced, and the iron loss W13 / 50 by the single plate measurement can be stably reduced to 0.10 W / kg or less.

以下、本発明について詳細に説明する。
本発明の特徴は、Feをベ−スとした合金において、B、Cを添加し、さらにSi、Alを添加することで構成元素の種類と含有量を最適化したことにより、軟磁気特性、特に鉄損をロット内で安定して一層低くすることを実現したことにある。又、ベ−スであるFeの一部をNi、Cr、Coで代替することで更なる軟磁気特性の改善を実現したことにある。
Hereinafter, the present invention will be described in detail.
A feature of the present invention is that, in an alloy based on Fe, by adding B and C, and further adding Si and Al, the kind and content of the constituent elements are optimized, so that soft magnetic properties, In particular, the iron loss can be stably reduced in the lot. Another advantage is that the soft magnetic properties are further improved by replacing part of the base Fe with Ni, Cr, and Co.

はじめに、各元素の含有量を限定した理由について述べる。BおよびCは、非晶質相形成及び非晶質相の熱的安定性を向上させるために添加する。さらに、これら元素の含有量を最適化することで、鉄損値が一層改善できることが可能で、例えば、単板測定による鉄損W13/50が安定して0.10W/kg以下とすることができる。Bが8原子%未満、Cが3原子%未満では非晶質合金が安定して得られないことから、鉄損が安定して0.10W/kg以下とすることが困難となる。一方、Bを18原子%超、Cが10原子%超としても、非晶質相が安定して得られなくなり、鉄損をW13/50で安定して0.1W/kg以下とすることができなくなる。従って、Bを8原子%以上18原子%以下、Cを3原子%以上10原子%以下の範囲に限定した。さらに、Cは5原子%以上8原子%以下が好ましい。   First, the reason for limiting the content of each element will be described. B and C are added to improve the amorphous phase formation and the thermal stability of the amorphous phase. Furthermore, it is possible to further improve the iron loss value by optimizing the content of these elements. For example, the iron loss W13 / 50 by the single plate measurement can be stably reduced to 0.10 W / kg or less. it can. If B is less than 8 atomic% and C is less than 3 atomic%, an amorphous alloy cannot be stably obtained, so it is difficult to stably reduce the iron loss to 0.10 W / kg or less. On the other hand, even if B is more than 18 atomic% and C is more than 10 atomic%, an amorphous phase cannot be obtained stably, and iron loss can be stably reduced to 0.1 W / kg or less at W13 / 50. become unable. Therefore, B is limited to a range of 8 atomic% to 18 atomic% and C is limited to a range of 3 atomic% to 10 atomic%. Furthermore, C is preferably 5 atomic% or more and 8 atomic% or less.

さらに、SiおよびAlを添加すると非晶質相形成能が改善し、非晶質相の熱的安定性が一層向上する。そして、これらの元素の含有量として、Siを0.1原子%以上1.8原子%以下、Alを0.005原子%以上1.4原子%以下とする。Siの場合、0.1原子%未満ではその効果が認められず、1.8原子%超ではもはやこの効果が薄れてしまう。又、Alにおいても、0.005原子%未満もしくは1.4原子%超ではこの効果が認められなくなる。
Further, when Si and Al are added, the amorphous phase forming ability is improved, and the thermal stability of the amorphous phase is further improved. And as content of these elements, Si is 0.1 atomic% or more and 1.8 atomic% or less, and Al is 0.005 atomic% or more and 1.4 atomic% or less. In the case of Si, if less than 0.1 atomic%, the effect is not observed, and if it exceeds 1.8 atomic%, this effect is no longer effective. Also in Al, this effect is not recognized when the content is less than 0.005 atomic% or more than 1.4 atomic%.

Feの含有量は通常、70原子%以上であれば一般的な鉄心としての実用的なレベルの飽和磁束密度が得られるが、1.5T以上の高い飽和磁束密度とするためには、Feを78原子%以上にする必要がある。一方、Feの含有量が86原子%超となると、非晶質相の形成が困難となり、鉄損W13/50を安定して0.10W/kg以下とすることが難しくなる。よって、Fe含有量を78原子%以上86原子%以下の範囲と限定した。   When the Fe content is usually 70 atomic% or more, a practical level of saturation magnetic flux density as a general iron core can be obtained, but in order to obtain a high saturation magnetic flux density of 1.5 T or more, Fe is used. It needs to be 78 atomic% or more. On the other hand, when the Fe content exceeds 86 atomic%, it becomes difficult to form an amorphous phase, and it becomes difficult to stably reduce the iron loss W13 / 50 to 0.10 W / kg or less. Therefore, the Fe content is limited to a range of 78 atomic% to 86 atomic%.

本発明では、Feの一部をNi、Cr、Coの少なくとも1種で、0超30原子%以下の範囲で代替することで、透磁率や磁束密度などの軟磁気特性の改善が実現でき、かつ、鉄損をW13/50で安定して0.10W/kg以下とできる。これら元素による代替量に制限を設けたのは、30原子%超となると、原料コストが嵩むためである。   In the present invention, by replacing a part of Fe with at least one of Ni, Cr, and Co in the range of more than 0 and 30 atomic% or less, improvement of soft magnetic properties such as magnetic permeability and magnetic flux density can be realized, Moreover, the iron loss can be stably reduced to 0.10 W / kg or less at W13 / 50. The reason why the substitution amount by these elements is limited is that the raw material cost increases when it exceeds 30 atomic%.

本発明の非晶質合金の薄帯は、本発明の成分からなる合金を溶解し、溶湯をスロットノズル等を通して高速で移動している冷却板上に噴出し、該溶湯を急冷凝固させる方法、例えば、単ロ−ル法、双ロ−ル法によって製造することができる。単ロ−ル装置には、ドラムの内壁を使う遠心急冷装置、エンドレスタイプのベルトを使う装置、およびこれらの改良型である補助ロ−ルやロ−ル表面温度制御装置を付属させたもの、減圧下あるいは真空中、または不活性ガス中での鋳造装置も含まれる。本発明では、薄帯の板厚、板幅などの寸法は特に限定しないが、薄帯の板厚は、例えば、10μm以上100μm以下が好ましい。また、板幅は10mm以上が好ましい。   A thin ribbon of the amorphous alloy of the present invention is a method of melting the alloy comprising the components of the present invention, spraying the molten metal on a cooling plate moving at high speed through a slot nozzle or the like, and rapidly solidifying the molten metal, For example, it can be produced by a single roll method or a twin roll method. The single roll device is equipped with a centrifugal quenching device that uses the inner wall of the drum, a device that uses an endless belt, and an auxiliary roll or a roll surface temperature control device that is an improved version of these devices. A casting apparatus under reduced pressure or in a vacuum or in an inert gas is also included. In the present invention, the thickness and width of the ribbon are not particularly limited, but the thickness of the ribbon is preferably 10 μm or more and 100 μm or less, for example. The plate width is preferably 10 mm or more.

以下、本発明の実施例によりさらに説明する。
(実施例1)
表1に示す各種成分の合金をアルゴン雰囲気中で溶解し、単ロ−ル法で薄帯に鋳造した。鋳造雰囲気は大気中であった。そして、得られた薄帯について薄帯特性を調査した。使用した単ロ−ル薄帯製造装置は、直径300mmの銅合金製冷却ロ−ル、試料溶解用の高周波電源、先端にスロットノズルが付いている石英ルツボ等から構成される。この実験では、長さ20mm、幅0.6mmのスロットノズルを使用した。冷却ロ−ルの周速は24m/秒とした。結果として、得られた薄帯の板厚は約25μmであり、板幅はスロットノズルの長さに依存するので20mmであった。
Examples of the present invention will be further described below.
Example 1
Alloys of various components shown in Table 1 were melted in an argon atmosphere and cast into a thin strip by a single roll method. The casting atmosphere was in the air. And the ribbon property was investigated about the obtained ribbon. The single roll ribbon manufacturing apparatus used is composed of a copper alloy cooling roll having a diameter of 300 mm, a high-frequency power source for sample dissolution, a quartz crucible with a slot nozzle at the tip, and the like. In this experiment, a slot nozzle having a length of 20 mm and a width of 0.6 mm was used. The peripheral speed of the cooling roll was 24 m / sec. As a result, the plate thickness of the obtained ribbon was about 25 μm, and the plate width was 20 mm because it depends on the length of the slot nozzle.

薄帯の鉄損は、SST(Single Strip Tester)を用いて行った。測定条件は、磁束密度1.3T、周波数50kHzである。鉄損測定試料には、1ロットの全長に渡って12箇所から120mm長さに切断した薄帯サンプルを用い、それらの薄帯サンプルを360℃にて1時間磁場中でアニ−ルを行って測定に供した。アニ−ル中の雰囲気は窒素とした。   The iron loss of the ribbon was performed using SST (Single Strip Tester). The measurement conditions are a magnetic flux density of 1.3 T and a frequency of 50 kHz. For the iron loss measurement sample, strip samples cut from 12 locations to 120 mm length over the entire length of one lot were used, and the strip samples were annealed at 360 ° C. for 1 hour in a magnetic field. It used for the measurement. The atmosphere in the anneal was nitrogen.

鉄損測定結果として、1ロットの中での最大値(Wmax)、最小値(Wmin)の値、および偏差((Wmax−Wmin)/Wmin)の値を、表1に示した。   Table 1 shows the maximum value (Wmax), the minimum value (Wmin), and the deviation ((Wmax−Wmin) / Wmin) in one lot as iron loss measurement results.

表1の試料No.1〜27の結果から明らかなように、Feを78原子%以上86原子%以下、Bを8原子%以上18原子%以下、Cを3原子%以上10原子%以下、さらに、Siを0.1%原子以上1.8原子%以下、Alを0.005原子%以上1.4原子%以下の本発明の範囲とすることによって、磁束密度1.3T、周波数50Hzにおける鉄損が0.1W/kg未満で、かつ、その偏差((Wmax−Wmin)/Wmin)が0.1未満となり、薄帯の全長に渡って軟磁気特性に優れた薄帯が得られることがわかった。
これに対して、試料No.28〜37に示す比較例の成分範囲では、鉄損が0.1W/kgより大きくなる部位が存在し、偏差((Wmax−Wmin)/Wmin)も0.1以上となってしまう。
これらのことから、本発明によって、更なる軟磁気特性の改善が実現できることがわか
った。

Figure 0005320765
Sample No. in Table 1 As is clear from the results of 1-27, Fe is 78 atomic% to 86 atomic%, B is 8 atomic% to 18 atomic%, C is 3 atomic% to 10 atomic%, and Si is 0.00%. The iron loss at a magnetic flux density of 1.3 T and a frequency of 50 Hz is 0.1 W by making the range of the present invention from 1% atom to 1.8 atom% and Al from 0.005 atom% to 1.4 atom%. And the deviation ((Wmax−Wmin) / Wmin) was less than 0.1, and it was found that a ribbon having excellent soft magnetic properties was obtained over the entire length of the ribbon.
In contrast, sample no. In the component range of the comparative example shown in 28 to 37, there is a portion where the iron loss is larger than 0.1 W / kg, and the deviation ((Wmax−Wmin) / Wmin) is also 0.1 or more.
From these facts, it was found that further improvement of soft magnetic characteristics can be realized by the present invention.
Figure 0005320765

(実施例2)
表1のNo.1に示す合金について、Feの一部をNi、Cr、Coの少なくとも1種で代替した各種成分の合金を用いて、実施例1と同様の装置、条件により薄帯を鋳造した。なお、用いた合金の具体的な成分については、Ni、Cr、Coについてのみを表2に示した。結果として、得られた薄帯の板厚は約25μmであった。得られた薄帯の鉄損を評価した。鉄損評価のための測定サンプルの採取方法及び測定条件は、実施例1と同じであった。その測定結果を表2に示す。なお、表2での表示要領は、表1の場合同様である。
(Example 2)
No. in Table 1 About the alloy shown in No. 1, a ribbon was cast by the same apparatus and conditions as in Example 1 using alloys of various components in which a part of Fe was replaced with at least one of Ni, Cr, and Co. In addition, about the specific component of the used alloy, only Ni, Cr, Co was shown in Table 2. As a result, the thickness of the obtained ribbon was about 25 μm. The iron loss of the obtained ribbon was evaluated. The method for collecting the measurement sample and the measurement conditions for the iron loss evaluation were the same as in Example 1. The measurement results are shown in Table 2. The display procedure in Table 2 is the same as that in Table 1.

表2の試料No.1〜9の結果から明らかなように、Feの一部をNi、Cr、Coの少なくとも1種で、30原子%以下の範囲で代替しても、鉄損をW13/50で安定して0.10W/kg未満とできることがわかった。

Figure 0005320765
Sample No. in Table 2 As is clear from the results of 1 to 9, even if a part of Fe is replaced with at least one of Ni, Cr, and Co in the range of 30 atomic% or less, the iron loss is stably reduced to W13 / 50. It was found that it could be less than 10 W / kg.
Figure 0005320765

(実施例5)
表1のNo.25に示す合金について、Feの一部をNi、Cr、Coの少なくとも1種で代替した各種成分の合金を用いて、実施例1と同様の装置、条件により薄帯を鋳造した。なお、用いた合金の具体的な成分については、Ni、Cr、Coについてのみを表5に示した。結果として、得られた薄帯の板厚は約25μmであった。得られた薄帯の鉄損を評価した。鉄損評価のための測定サンプルの採取方法及び測定条件は、実施例1と同じであった。その測定結果を、表5示す。なお、表5での表示要領は、表1の場合同様である。
(Example 5)
No. in Table 1 As for the alloy shown in FIG. 25, a ribbon was cast under the same apparatus and conditions as in Example 1 using alloys of various components in which a part of Fe was replaced with at least one of Ni, Cr, and Co. In addition, about the specific component of the used alloy, only Ni, Cr, and Co was shown in Table 5. As a result, the thickness of the obtained ribbon was about 25 μm. The iron loss of the obtained ribbon was evaluated. The method for collecting the measurement sample and the measurement conditions for the iron loss evaluation were the same as in Example 1. The measurement results are shown in Table 5. The display procedure in Table 5 is the same as that in Table 1.

表5の試料No.1〜7の結果から明らかなように、Feの一部をNi、Cr、Coの少なくとも1種で、30原子%以下の範囲で代替しても、鉄損をW13/50で安定して0.10W/kg未満とできることがわかった。

Figure 0005320765
Sample No. in Table 5 As is clear from the results of 1 to 7, even if a part of Fe is replaced with at least one of Ni, Cr, and Co in the range of 30 atomic% or less, the iron loss is stably reduced to W13 / 50. It was found that it could be less than 10 W / kg.
Figure 0005320765

本発明の合金は、電力トランスや高周波トランスの鉄心や、更には各種電磁機器の部品や磁気シ−ルド材などに用いられる軟磁性材料として、幅広く使用することができる。   The alloy of the present invention can be widely used as a soft magnetic material used for iron cores of power transformers and high-frequency transformers, as well as parts of various electromagnetic devices and magnetic shield materials.

Claims (4)

原子%で、Feを78%以上86%以下、Bを8%以上18%以下、Cを3%以上10%以下、Siを0.1%以上1.8%以下、さらに、Alを0.1%以上1.4%以下含有し、残部不可避的不純物からなることを特徴とする、軟磁気特性に優れたFe系非晶質合金。 In atomic percent, Fe is 78% to 86%, B is 8% to 18%, C is 3% to 10%, Si is 0.1% to 1.8 %, and Al is 0.1%. An Fe-based amorphous alloy having excellent soft magnetic properties, comprising 1% or more and 1.4% or less, the balance being inevitable impurities. Ni、Cr、Coのうち少なくとも1種以上で、請求項1に記載の合金のFeを30%以下の範囲で代替することを特徴とする、軟磁気特性に優れたFe系非晶質合金。   An Fe-based amorphous alloy having excellent soft magnetic characteristics, wherein at least one of Ni, Cr and Co is substituted for Fe in the alloy according to claim 1 in a range of 30% or less. 原子%で、Feを78%以上86%以下、Bを8%以上18%以下、Cを3%以上10%以下、Siを0.1%以上1.8%以下、さらに、Alを0.005%以上1.4%以下含有し、残部不可避的不純物からなることを特徴とする、軟磁気特性に優れたFe系非晶質合金。 In atomic percent, Fe is 78% to 86%, B is 8% to 18%, C is 3% to 10%, Si is 0.1% to 1.8 %, and Al is 0.1%. An Fe-based amorphous alloy having excellent soft magnetic characteristics, characterized by containing 005% to 1.4% and the balance being inevitable impurities. Ni、Cr、Coのうち少なくとも1種以上で、請求項3に記載の合金のFeを30%以下の範囲で代替することを特徴とする、軟磁気特性に優れたFe系非晶質合金。   An Fe-based amorphous alloy having excellent soft magnetic characteristics, wherein at least one of Ni, Cr and Co is substituted for Fe in the alloy according to claim 3 in a range of 30% or less.
JP2008034425A 2007-02-28 2008-02-15 Fe-based amorphous alloy with excellent soft magnetic properties Active JP5320765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034425A JP5320765B2 (en) 2007-02-28 2008-02-15 Fe-based amorphous alloy with excellent soft magnetic properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007048665 2007-02-28
JP2007048665 2007-02-28
JP2008034425A JP5320765B2 (en) 2007-02-28 2008-02-15 Fe-based amorphous alloy with excellent soft magnetic properties

Publications (2)

Publication Number Publication Date
JP2008240147A JP2008240147A (en) 2008-10-09
JP5320765B2 true JP5320765B2 (en) 2013-10-23

Family

ID=39911824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034425A Active JP5320765B2 (en) 2007-02-28 2008-02-15 Fe-based amorphous alloy with excellent soft magnetic properties

Country Status (1)

Country Link
JP (1) JP5320765B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601139B2 (en) * 2015-10-19 2019-11-06 日本製鉄株式会社 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169208A (en) * 1981-04-10 1982-10-18 Nippon Steel Corp Manufacture of amorphous alloy with excellent constant permeability
JPS61243152A (en) * 1985-11-29 1986-10-29 Res Inst Iron Steel Tohoku Univ High magnetic premeability amorphous alloy and its production

Also Published As

Publication number Publication date
JP2008240147A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5320764B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP7020119B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy thin band with excellent soft magnetic properties
KR101222127B1 (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
JP6881249B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
CN103125002B (en) There is ferromagnetic amorphous alloy strip steel rolled stock and the application thereof of the blemish decreased
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP6601139B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
JP3432661B2 (en) Fe-based amorphous alloy ribbon
JP5361149B2 (en) Fe-based amorphous alloy ribbon
JP5320765B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP6443112B2 (en) Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties
JP4948868B2 (en) Fe-based amorphous alloy ribbon
JP6683419B2 (en) Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties
JP6819427B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon
JP2022177475A (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS AND Fe-BASED AMORPHOUS ALLOY RIBBON HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
WO2022244819A1 (en) Fe-based amorphous alloy and fe-based amorphous alloy thin strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5320765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350