JP6601139B2 - Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties - Google Patents

Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties Download PDF

Info

Publication number
JP6601139B2
JP6601139B2 JP2015205637A JP2015205637A JP6601139B2 JP 6601139 B2 JP6601139 B2 JP 6601139B2 JP 2015205637 A JP2015205637 A JP 2015205637A JP 2015205637 A JP2015205637 A JP 2015205637A JP 6601139 B2 JP6601139 B2 JP 6601139B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
atomic
based amorphous
less
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015205637A
Other languages
Japanese (ja)
Other versions
JP2017078186A (en
Inventor
有一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015205637A priority Critical patent/JP6601139B2/en
Publication of JP2017078186A publication Critical patent/JP2017078186A/en
Application granted granted Critical
Publication of JP6601139B2 publication Critical patent/JP6601139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、電力トランス、高周波トランスなどの鉄心等に用いられるFe系非晶質合金及びFe系非晶質合金薄帯に関するものである。   The present invention relates to an Fe-based amorphous alloy and an Fe-based amorphous alloy ribbon used for iron cores such as power transformers and high-frequency transformers.

合金を溶融状態から急冷することによって、連続的に薄帯や線を製造する方法として遠心急冷法、単ロ−ル法、双ロ−ル法等が知られている。これらの方法は、高速回転する金属製ドラムの内周面または外周面に溶融金属をオリフィス等から噴出させることによって、急速に溶融金属を凝固させて薄帯や線を製造するものである。また、合金組成を適正に選ぶことによって、液体金属に類似した非晶質合金を得ることができ、磁気的性質あるいは機械的性質に優れた材料を製造することができる。   Centrifugal quenching method, single roll method, twin roll method and the like are known as methods for continuously producing ribbons and wires by rapidly cooling an alloy from a molten state. In these methods, molten metal is ejected from an orifice or the like to the inner or outer peripheral surface of a metal drum that rotates at high speed, whereby the molten metal is rapidly solidified to produce a ribbon or wire. Further, by appropriately selecting the alloy composition, an amorphous alloy similar to a liquid metal can be obtained, and a material excellent in magnetic properties or mechanical properties can be produced.

このような急冷凝固により得られる非晶質合金として、これまで多くの成分が提案されている。例えば、特許文献1では、原子%で、Fe、Ni、Cr、Co、Vからの少なくとも1種で60〜90%、P、C、Bからの少なくとも1種で10〜30%、Al、Si、Sn、Sb、Ge、In、Beからの少なくとも1種で0.1〜15%からなる合金成分が提案されている。特許文献1に記載の技術は非晶質相が得られる合金成分を提案したもので、特に電力トランスや高周波トランスなどの鉄心等の用途に限定した、いわゆる磁気的性質のみに注目した成分の提案ではない。   Many components have been proposed as amorphous alloys obtained by such rapid solidification. For example, in Patent Document 1, at least one of Fe, Ni, Cr, Co, and V is 60 to 90% in atomic percent, and at least one of P, C, and B is 10 to 30%, Al, Si. , Sn, Sb, Ge, In, Be, and at least one alloy component of 0.1 to 15% has been proposed. The technique described in Patent Document 1 proposes an alloy component that can obtain an amorphous phase, and proposes a component that focuses on only the so-called magnetic properties, especially for applications such as power cores and high-frequency transformer cores. is not.

その後、磁気的性質に注目した非晶質合金としての合金成分も多く提案されている。例えば、特許文献2では、原子%で、Feが75〜78.5%、Siが4〜10.5%、Bが11〜21%からなる合金成分が提案されている。   Since then, many alloy components have been proposed as amorphous alloys that focus on magnetic properties. For example, Patent Document 2 proposes an alloy component consisting of 75% to 78.5% Fe, 4% to 10.5% Si, and 11% to 21% B in atomic percent.

一方、特許文献3では、Fe、Coからの少なくとも1種で70〜90%、B、C、Pからの少なくとも1種で10〜30%、さらに、Fe、Coの含有量を、Niでその3/4まで、V、Cr、Mn、Mo、Nb、Ta、Wでその1/4まで代替でき、又、B、C、Pの含有量を、Siでその3/5まで、Alでその1/3まで代替できる合金成分が提案されている。   On the other hand, in Patent Document 3, at least one of Fe and Co is 70 to 90%, at least one of B, C and P is 10 to 30%, and the content of Fe and Co is Ni. Up to 3/4, V, Cr, Mn, Mo, Nb, Ta, W can be substituted up to 1/4, and B, C, P content can be up to 3/5 for Si, Al for Al Alloy components that can be substituted for up to 1/3 have been proposed.

特許文献1、3で提案された非晶質合金成分の中でも、エネルギ−損失である鉄損が低いこと、飽和磁束密度および透磁率が高いこと、さらには安定して非晶質相が得られる等の理由から、例えば特許文献2に示すようなFeSiB系非晶質合金が、電力トランスや高周波トランスの鉄心等の用途として有望視されるようになった。   Among the amorphous alloy components proposed in Patent Documents 1 and 3, the iron loss as energy loss is low, the saturation magnetic flux density and the magnetic permeability are high, and an amorphous phase can be obtained stably. For these reasons, for example, an FeSiB-based amorphous alloy as shown in Patent Document 2 has come to be promising as an application for an iron core of a power transformer or a high-frequency transformer.

以来、軟磁気特性に優れたFe系非晶質合金の合金成分に関する開発は、このFeSiB系を中心にして進められた。すなわち、FeSiB系非晶質合金においての一層の鉄損低減開発が盛んに行われ、多くの成果が生み出された。   Since then, development related to alloy components of Fe-based amorphous alloys with excellent soft magnetic properties has been proceeding with a focus on this FeSiB system. That is, development of further reduction of iron loss in FeSiB-based amorphous alloys has been actively conducted, and many results have been produced.

非晶質合金における鉄損の改善はかなり進められ、例えば、特許文献4により、単板測定による鉄損W13/50(磁束密度1.3T、周波数50Hzにおける鉄損)で、安定して0.100W/kg以下の低鉄損を実現可能となるまでに至った。   The improvement of the iron loss in the amorphous alloy is considerably advanced. For example, according to Patent Document 4, the iron loss W13 / 50 (iron loss at a magnetic flux density of 1.3 T and a frequency of 50 Hz) measured by a single plate is stably reduced to 0. It came to be able to implement | achieve the low iron loss of 100 W / kg or less.

つまり、特許文献4では、原子%で、Feを78%以上86%以下、Bを8%以上18%以下、Cを3%以上10%以下、Siを0.1%以上5%以下、さらに、Alを0.1%以上3%以下含有し、残部不可避的不純物からなる合金成分が提案されている。   That is, in Patent Document 4, Fe is 78% to 86%, B is 8% to 18%, C is 3% to 10%, Si is 0.1% to 5% in atomic%, An alloy component containing 0.1% or more and 3% or less of Al with the remainder unavoidable impurities has been proposed.

特開昭49−91014号公報JP-A-49-91014 特開昭57−116750号公報JP 57-116750 A 特開昭61−30649号公報JP 61-30649 A 特開2008−240147号公報JP 2008-240147 A

従来、非晶質合金における鉄損低減開発はかなり進んでいるものの、一方で、電力トランスや高周波トランスなどの鉄心等の用途での磁束密度の改善が強く要求されている。しかし、従来、低鉄損を維持しながら飽和磁束密度が安定して1.60T以上となる非晶質合金を得ることは非常に困難であった。   Conventionally, development of iron loss reduction in amorphous alloys has progressed considerably, but on the other hand, there is a strong demand for improvement in magnetic flux density in applications such as iron cores such as power transformers and high-frequency transformers. However, conventionally, it has been very difficult to obtain an amorphous alloy in which the saturation magnetic flux density is stably 1.60 T or more while maintaining a low iron loss.

本発明は、このような磁束密度改善のニーズに応えるべく、低鉄損を維持しながら一層の高磁束密度化を実現できるFe系非晶質合金及びFe系非晶質合金薄帯の提供を課題とする。   The present invention provides an Fe-based amorphous alloy and an Fe-based amorphous alloy ribbon that can realize a higher magnetic flux density while maintaining a low iron loss in order to meet such needs for magnetic flux density improvement. Let it be an issue.

本発明者は、これまで提案された各種合金成分の構成元素のうち、先に述べた例えば、特許文献4に記載のFeをメインとし、B、C、Si及びAlからなる成分系に注目し、低鉄損を維持しながら更なる高磁束密度化について検討及び実験を行った。そして、Feをメインとし、添加元素がB、C、Si、Alを主体とする成分系を基本として、さらに他の元素も組み合わせて詳細実験を行った結果、飽和磁束密度が安定して1.60T以上になる非晶質合金の成分を見出した。そして、この知見を基に検討を重ね、本発明を完成するに至った。   The present inventor pays attention to the component system composed of B, C, Si, and Al mainly composed of Fe described in, for example, Patent Document 4 among the constituent elements of various alloy components proposed so far. Then, investigation and experiment were carried out to further increase the magnetic flux density while maintaining low iron loss. Further, as a result of detailed experiments based on a component system mainly composed of Fe and additive elements mainly including B, C, Si, and Al and further combined with other elements, the saturation magnetic flux density is stabilized. A component of an amorphous alloy that is 60 T or more was found. And based on this knowledge, examination was repeated and it came to complete this invention.

本発明は、上記知見に基づきなされたものであり、その要旨は、以下のとおりである。   This invention is made | formed based on the said knowledge, The summary is as follows.

(1)原子%で、Feを80.0%以上88.0%以下、Bを6.0%以上12.0%以下、Cを2.0%以上8.0%以下、Siを0.10%以上3.0%以下、Alを0.10%以上2.0%以下含有し、さらに、Moを0.10%以上6.0%以下含有し、残部不可避的不純物からなり、磁束密度1.3T、周波数50Hzにおける鉄損(W13/50)が0.100W/kg以下、かつ、飽和磁束密度が1.60T以上であることを特徴とする軟磁気特性に優れたFe系非晶質合金。
(2)Ni、Cr、Coのうち少なくとも1種以上で、上記(1)に記載の合金のFeを10.0原子%以下の範囲で、代替することを特徴とする、軟磁気特性に優れたFe系非晶質合金。
上記(1)または(2)に記載のFe系非晶質合金からなることを特徴とするFe系非晶質合金薄帯。
(1) Atomic%, Fe is 80.0% or more and 88.0% or less, B is 6.0% or more and 12.0% or less, C is 2.0% or more and 8.0% or less, and Si is 0.00. 10% or more and 3.0% or less, the Al containing 2.0% to 0.10%, further, a Mo containing 6.0% or less 0.10% or more, Ri Do the balance incidental impurities, the magnetic flux density 1.3 T, the iron loss at a frequency 50Hz (W13 / 50) is 0.100W / kg or less, and, Fe-based non-saturation magnetic flux density and excellent soft magnetic properties, characterized in der Rukoto than 1.60T A crystalline alloy.
(2) Excellent soft magnetic characteristics, characterized by substituting at least one of Ni, Cr and Co for Fe of the alloy described in (1) in a range of 10.0 atomic% or less. Fe-based amorphous alloy.
( 3 ) An Fe-based amorphous alloy ribbon comprising the Fe-based amorphous alloy according to (1) or (2) .

本発明によれば、低鉄損を維持したまま飽和磁束密度が1.60T以上となるFe系非晶質合金を提供できる。
また、本発明によれば、低鉄損を維持したまま飽和磁束密度が1.60T以上となるFe系非晶質合金薄帯を提供できる。
According to the present invention, it is possible to provide an Fe-based amorphous alloy having a saturation magnetic flux density of 1.60 T or more while maintaining a low iron loss.
Further, according to the present invention, it is possible to provide an Fe-based amorphous alloy ribbon having a saturation magnetic flux density of 1.60 T or more while maintaining a low iron loss.

以下、本発明の実施形態に係るFe系非晶質合金について詳細に説明する。
本実施形態のFe系非晶質合金の特徴は、Fe、B、C、Si、Alからなる合金に、更にMoを添加し、構成元素の含有量を最適化したことにより、軟磁気特性、特に低鉄損を維持したまま飽和磁束密度を製造ロット内で安定して一層高くすることを実現したことにある。また、本実施形態のFe系非晶質合金は、ベースであるFeの一部をNi、Cr、Coで代替することで更なる軟磁気特性の改善を実現したことにある。低鉄損とは、単板測定による鉄損W13/50(磁束密度1.3T、周波数50Hzにおける鉄損)で、安定して0.100W/kg以下を示すことであり、本実施形態では、この低鉄損特性を備えたまま1.60T以上の高い飽和磁束密度を示すFe系非晶質合金を実現できる。
Hereinafter, the Fe-based amorphous alloy according to the embodiment of the present invention will be described in detail.
The feature of the Fe-based amorphous alloy of this embodiment is that, by adding Mo to the alloy composed of Fe, B, C, Si, and Al and optimizing the content of the constituent elements, soft magnetic properties, In particular, it has been achieved that the saturation magnetic flux density is stably increased in the production lot while maintaining a low iron loss. In addition, the Fe-based amorphous alloy of the present embodiment lies in that soft magnetic characteristics are further improved by substituting a part of the base Fe with Ni, Cr, and Co. The low iron loss is an iron loss W13 / 50 (iron loss at a magnetic flux density of 1.3 T and a frequency of 50 Hz) measured by a single plate, and stably indicates 0.100 W / kg or less. In this embodiment, An Fe-based amorphous alloy exhibiting a high saturation magnetic flux density of 1.60 T or more can be realized with this low iron loss characteristic.

はじめに、本実施形態のFe系非晶質合金において、各元素の含有量を限定した理由について述べる。   First, the reason for limiting the content of each element in the Fe-based amorphous alloy of this embodiment will be described.

BおよびCは、本実施形態のFe系非晶質合金において、非晶質相形成及び非晶質相の熱的安定性を向上させるために添加する。さらに、これら元素の含有量を最適化することで、軟磁気特性を一層改善することが可能であり、例えば、飽和磁束密度を安定して1.60T以上を実現することができる。Bが6.0原子%未満、Cが2.0原子%未満ではFe系非晶質合金において、非晶質合金が安定して得られないことから、飽和磁束密度を安定して1.60T以上とすることが困難となる。一方、Bを12.0原子%超、Cを8.0原子%超としても、鉄損を安定して0.100W/kg以下を維持したまま、飽和磁束密度を安定して1.60T以上とすることは困難となる。従って、Bを6.0原子%以上12.0原子%以下、Cを2.0原子%以上8.0原子%以下の範囲に限定した。   B and C are added to improve the formation of the amorphous phase and the thermal stability of the amorphous phase in the Fe-based amorphous alloy of this embodiment. Furthermore, by optimizing the content of these elements, it is possible to further improve the soft magnetic characteristics. For example, it is possible to stably achieve a saturation magnetic flux density of 1.60 T or more. When B is less than 6.0 atomic% and C is less than 2.0 atomic%, an amorphous alloy cannot be stably obtained in an Fe-based amorphous alloy. It becomes difficult to make it above. On the other hand, even if B is more than 12.0 atomic% and C is more than 8.0 atomic%, the saturation magnetic flux density is stably 1.60 T or more while the iron loss is stably maintained at 0.100 W / kg or less. It becomes difficult. Therefore, B is limited to a range of 6.0 atomic% to 12.0 atomic%, and C is limited to a range of 2.0 atomic% to 8.0 atomic%.

さらに、本実施形態のFe系非晶質合金において、Si,Alを添加すると非晶質相形成能が改善し、非晶質相の熱的安定性が一層向上する。Si、Alの含有量はそれぞれ、0.10原子%以上、3.0原子%以下、0.10原子%以上、2.0原子%以下とする。Si及びAlが0.10原子%未満では非晶質相形成能の改善が認められず、Siが3.0原子%超、Alが2.0原子%超では非晶質相形成能の改善があまり認められないからである。   Furthermore, in the Fe-based amorphous alloy of this embodiment, when Si or Al is added, the amorphous phase forming ability is improved, and the thermal stability of the amorphous phase is further improved. The contents of Si and Al are 0.10 atomic% or more and 3.0 atomic% or less, 0.10 atomic% or more, and 2.0 atomic% or less, respectively. When Si and Al are less than 0.10 atomic%, the improvement of the amorphous phase forming ability is not observed, and when Si exceeds 3.0 atomic% and Al exceeds 2.0 atomic%, the amorphous phase forming ability is improved. This is because there is not much admission.

Moの添加も非晶質相形成能を一層向上させる。Moの含有量は0.10原子%以上、6.0原子%以下とする。Moが、0.10原子%未満では非晶質相形成能のより一層の向上が認められず、6.0原子%超では非晶質相形成能の向上があまり認められないからである。   The addition of Mo further improves the ability to form an amorphous phase. The Mo content is set to 0.10 atomic% or more and 6.0 atomic% or less. This is because when Mo is less than 0.10 atomic%, further improvement of the amorphous phase forming ability is not recognized, and when it exceeds 6.0 atomic%, improvement of the amorphous phase forming ability is not recognized so much.

Fe系非晶質合金において、Feの含有量は通常、70原子%以上であれば一般的な鉄心としての実用的なレベルの飽和磁束密度が得られるが、1.60T以上の高い飽和磁束密度を得るためには、Feを80.0原子%以上にする必要がある。一方、Feの含有量が88.0原子%超となると、非晶質相の形成が困難となり、非晶質合金特有の良好な軟磁気特性(例えば、鉄損W13/50を安定して0.100W/kg以下)を得ることが難しくなる。よって、本実施形態のFe系非晶質合金において、Fe含有量を80.0原子%以上88.0原子%以下の範囲と限定した。   In an Fe-based amorphous alloy, if the Fe content is usually 70 atomic% or more, a practical level of saturation magnetic flux density as a general iron core can be obtained, but a high saturation magnetic flux density of 1.60 T or more. In order to obtain the above, Fe needs to be 80.0 atomic% or more. On the other hand, when the Fe content exceeds 88.0 atomic%, it becomes difficult to form an amorphous phase, and good soft magnetic characteristics (for example, iron loss W13 / 50, which is unique to an amorphous alloy, is stably reduced to 0. .. 100 W / kg or less) is difficult to obtain. Therefore, in the Fe-based amorphous alloy of this embodiment, the Fe content is limited to a range of 80.0 atomic% or more and 88.0 atomic% or less.

一般的に、飽和磁束密度はFeの含有量でほぼ決まり、Feの含有量が高い程、飽和磁束密度が高くなる。本実施形態のFe系非晶質合金の場合、非晶質相を形成するためにBやCなどの元素を添加するが、その分Feの含有量が低くなり、得られる飽和磁束密度には制限があった。本実施形態のFe系非晶質合金では新たにMoを添加することで非晶質相形成能を向上させたことでFeの含有量を多くすることが可能となり、これが1つのポイントとなって本実施形態のFe系非晶質合金を実現できた。   In general, the saturation magnetic flux density is almost determined by the Fe content, and the saturation magnetic flux density increases as the Fe content increases. In the case of the Fe-based amorphous alloy of the present embodiment, elements such as B and C are added to form an amorphous phase. However, the Fe content is lowered correspondingly, and the saturation magnetic flux density obtained is There were restrictions. In the Fe-based amorphous alloy of this embodiment, it is possible to increase the content of Fe by improving the amorphous phase forming ability by newly adding Mo, which is one point. The Fe-based amorphous alloy of the present embodiment could be realized.

また、本実施形態のFe系非晶質合金において、飽和磁束密度1.65T以上を得るためのFeのより好ましい範囲は84.0〜88.0原子%とすることができ、更に好ましくは84.0原子%超〜88.0原子%とすることができる。
また、本実施形態のFe系非晶質合金において、0.090W/kg以下の低鉄損を得るためには、Feのより好ましい範囲は80.0〜84.0原子%とすることができる。
In the Fe-based amorphous alloy of the present embodiment, the more preferable range of Fe for obtaining a saturation magnetic flux density of 1.65 T or more can be 84.0 to 88.0 atomic%, and more preferably 84. More than 0.0 atomic% to 88.0 atomic%.
Further, in the Fe-based amorphous alloy of this embodiment, in order to obtain a low iron loss of 0.090 W / kg or less, a more preferable range of Fe can be 80.0 to 84.0 atomic%. .

本実施形態のFe系非晶質合金では、Feの一部をNi、Cr、Coの少なくとも1種で、10.0原子%以下の範囲で代替することで、高飽和磁束密度を維持したまま鉄損などの軟磁気特性の改善も実現できる。これら元素による代替量に上限を設けたのは、10.0原子%超となると、飽和磁束密度が低くなることや原料コストが嵩むためである。   In the Fe-based amorphous alloy of this embodiment, a part of Fe is replaced with at least one of Ni, Cr, and Co in a range of 10.0 atomic% or less, and a high saturation magnetic flux density is maintained. Improvements in soft magnetic properties such as iron loss can also be realized. The reason for setting an upper limit for the amount of substitution by these elements is that if it exceeds 10.0 atomic%, the saturation magnetic flux density is lowered and the raw material cost is increased.

本実施形態のFe系非晶質合金は、通常、薄帯の形態で得ることができる。このFe系非晶質合金薄帯は、上述の実施形態において説明した成分からなる合金を溶解し、溶湯をスロットノズル等を通して高速で移動している冷却板上に噴出し、該溶湯を急冷凝固させる方法、例えば、単ロ−ル法、双ロ−ル法によって製造することができる。これらのロール法に用いるロールは金属製であり、ロールを高速回転させ、ロール表面またはロール内面に溶湯を衝突させることで合金の急冷凝固が可能である。   The Fe-based amorphous alloy of this embodiment can be usually obtained in the form of a ribbon. This Fe-based amorphous alloy ribbon melts the alloy composed of the components described in the above embodiment, and sprays the molten metal on a cooling plate moving at high speed through a slot nozzle or the like, and rapidly quenches and solidifies the molten metal. For example, a single roll method or a twin roll method. The roll used in these roll methods is made of metal, and the alloy can be rapidly solidified by rotating the roll at high speed and causing the molten metal to collide with the roll surface or the roll inner surface.

単ロ−ル装置には、ドラムの内壁を使う遠心急冷装置、エンドレスタイプのベルトを使う装置、及びこれらの改良型である補助ロ−ルやロ−ル表面温度制御装置を付属させたもの、減圧下あるいは真空中、または不活性ガス中での鋳造装置も含まれる。   The single roll device is equipped with a centrifugal quenching device that uses the inner wall of the drum, a device that uses an endless belt, and an improved auxiliary roll and a roll surface temperature control device, A casting apparatus under reduced pressure or in a vacuum or in an inert gas is also included.

本実施形態では、薄帯の板厚、板幅などの寸法は特に限定しないが、薄帯の板厚は、例えば、10μm以上100μm以下が好ましい。また、板幅は10mm以上が好ましい。
以上説明の如く得られたFe系非晶質合金薄帯は、電力トランスや高周波トランスでの鉄心等の用途として用いることができる。
In the present embodiment, the thickness and width of the ribbon are not particularly limited, but the ribbon thickness is preferably 10 μm or more and 100 μm or less, for example. The plate width is preferably 10 mm or more.
The Fe-based amorphous alloy ribbon obtained as described above can be used for applications such as iron cores in power transformers and high-frequency transformers.

なお、本実施形態のFe系非晶質合金は、薄帯の他に粉末状とすることも可能である。その場合、上述の組成の合金溶湯を満たしたるつぼのノズルから回転するロールあるいは冷却用の水などの液体の中に高速で合金溶湯あるいは合金溶湯の液滴を噴出して急冷凝固する方法を採用することができる。   Note that the Fe-based amorphous alloy of the present embodiment can be powdered in addition to the ribbon. In that case, a method of rapidly cooling and solidifying the molten alloy or droplets of molten alloy in a liquid such as a rotating roll or cooling water from a crucible nozzle filled with the molten alloy of the above composition is adopted. can do.

上述の方法により、軟磁気特性に優れたFe系非晶質合金粉末を得ることができる。   By the above-described method, an Fe-based amorphous alloy powder excellent in soft magnetic properties can be obtained.

上述のように得られたFe系軟磁性合金粉末は、金型等により圧密して目的の形状に成形し、必要に応じ焼結して一体化することで、電力トランスや高周波トランス、コイルの鉄心等の用途として適用することができる。   The Fe-based soft magnetic alloy powder obtained as described above is compacted into a target shape by a mold or the like, and sintered and integrated as necessary, so that the power transformer, high-frequency transformer, and coil are integrated. It can be applied as a use such as an iron core.

なお、本実施形態のFe系非晶質合金が非晶質組織を有するか否かは、例えば、Fe管球を用いたX線回折装置によるX線回折測定で確認できる。すなわち、X線回折測定において明確な回折ピークが得られない場合は、Fe系非晶質合金が非晶質組織を有していると確認できる。   Whether or not the Fe-based amorphous alloy of the present embodiment has an amorphous structure can be confirmed by, for example, X-ray diffraction measurement using an X-ray diffractometer using an Fe tube. That is, when a clear diffraction peak is not obtained in the X-ray diffraction measurement, it can be confirmed that the Fe-based amorphous alloy has an amorphous structure.

以下、実施例について説明する。
(実施例1)
以下の表1に示す各種成分の合金をアルゴン雰囲気中で溶解し、単ロ−ル法で薄帯に鋳造した。鋳造雰囲気は大気中であった。そして、得られた薄帯について軟磁気特性を調査した。使用した単ロ−ル薄帯製造装置は、直径300mmの銅合金製冷却ロ−ル、試料溶解用の高周波電源、先端にスロットノズルが付いている石英ルツボ等から構成される。
Examples will be described below.
Example 1
Alloys of various components shown in Table 1 below were melted in an argon atmosphere and cast into a thin strip by a single roll method. The casting atmosphere was in the air. And the soft magnetic characteristic was investigated about the obtained thin strip. The single roll ribbon manufacturing apparatus used is composed of a copper alloy cooling roll having a diameter of 300 mm, a high-frequency power source for sample dissolution, a quartz crucible with a slot nozzle at the tip, and the like.

この実験では、長さ20mm、幅0.6mmのスロットノズルを使用した。冷却ロ−ルの周速は24m/秒とした。結果として、得られた薄帯の板厚は約25μmであり、板幅はスロットノズルの長さに依存するので20mmであり、長さはおよそ50mであった。   In this experiment, a slot nozzle having a length of 20 mm and a width of 0.6 mm was used. The peripheral speed of the cooling roll was 24 m / sec. As a result, the plate thickness of the obtained ribbon was about 25 μm, the plate width was 20 mm because it depends on the length of the slot nozzle, and the length was about 50 m.

得られた薄帯の飽和磁束密度は、VSM装置(振動試料型磁力計)を用いて測定した。薄帯の鉄損は、SST(Single Strip Tester)を用いて測定した。なお、鉄損測定条件は、磁束密度1.3T、周波数50kHzである。これらの特性測定用の試料は、いずれも1ロットの全長に渡って6箇所から採取し、鉄損測定用のサンプルは120mm長さに切断した薄帯サンプルとした。これら鉄損測定用の薄帯サンプルは360℃にて1時間、磁場中でアニ−ルを行って測定に供した。アニ−ル中の雰囲気は窒素雰囲気とした。一方、VSM装置用の試料は、上記6個所からの薄帯サンプルについていずれも幅中央部から採取した薄片とした。   The saturation magnetic flux density of the obtained ribbon was measured using a VSM apparatus (vibrating sample magnetometer). The iron loss of the ribbon was measured using SST (Single Strip Tester). The iron loss measurement conditions are a magnetic flux density of 1.3 T and a frequency of 50 kHz. All of these characteristic measurement samples were collected from six locations over the entire length of one lot, and the iron loss measurement sample was a strip sample cut to a length of 120 mm. These ribbon samples for measuring iron loss were subjected to measurement by annealing in a magnetic field at 360 ° C. for 1 hour. The atmosphere in the anneal was a nitrogen atmosphere. On the other hand, the samples for the VSM apparatus were thin pieces taken from the center of the width of the ribbon samples from the above six locations.

飽和磁束密度及び鉄損の測定結果は6個所でのデ−タの平均値を、表1に示した。   The measurement results of the saturation magnetic flux density and the iron loss are shown in Table 1 as average values of data at six locations.

Figure 0006601139
Figure 0006601139

表1の試料No.1〜23の結果から明らかなように、Feを80.0原子%以上88.0原子%以下、Bを6.0原子%以上12.0原子%以下、Cを2.0原子%以上8.0原子%以下、Siを0.10原子%以上3.0原子%以下、Alを0.10原子%以上2.0原子%以下、更に、Moを0.10原子%以上6.0原子%以下の本発明範囲とすることによって、飽和磁束密度1.60T以上、又、磁束密度1.3T、周波数50Hzにおける鉄損が0.100W/kg以下と、良好な軟磁気特性を有するFe系非晶質合金薄帯が得られることがわかった。なお、実施例のFe系非晶質合金薄帯はいずれも、X線回折測定において明確な回折ピークが観察されず、非晶質であることが確認された。   Sample No. in Table 1 As is clear from the results of 1 to 23, Fe is 80.0 atomic% or more and 88.0 atomic% or less, B is 6.0 atomic% or more and 12.0 atomic% or less, and C is 2.0 atomic% or more 8 0.0 atomic% or less, Si from 0.10 atomic% to 3.0 atomic%, Al from 0.10 atomic% to 2.0 atomic%, and Mo from 0.10 atomic% to 6.0 atomic% % Fe or less with a soft magnetic property such that the iron loss at a magnetic flux density of 1.3 T and a frequency of 50 Hz is 0.100 W / kg or less. It was found that an amorphous alloy ribbon was obtained. In addition, in any of the Fe-based amorphous alloy ribbons of the examples, no clear diffraction peak was observed in the X-ray diffraction measurement, and it was confirmed that the ribbon was amorphous.

これらに対して、試料No.24〜36に示す比較例のうち、試料No.25、26、28では、破断発生や、表面にうねりが発生し、飽和磁束密度や鉄損の測定ができなかった(表1中の軟磁気特性の欄中に「−」で示す)。   In contrast, sample no. Among the comparative examples shown in 24-36, sample No. In Nos. 25, 26, and 28, breakage occurred and waviness occurred on the surface, and saturation magnetic flux density and iron loss could not be measured (indicated by “-” in the column of soft magnetic properties in Table 1).

試料No.25はFe含有量が望ましい範囲の上限88.0原子%を上回った例であり、試料No.26はB含有量の望ましい範囲の下限6.0原子%を下回った例、そして試料No.28はC含有量が望ましい範囲の下限2.0原子%を下回った例である。   Sample No. 25 is an example in which the Fe content exceeded the upper limit of 88.0 atomic% of the desired range. 26 is an example in which the lower limit of the desirable range of B content is below 6.0 atomic%, and sample No. No. 28 is an example in which the C content is below the lower limit of 2.0 atomic% of the desirable range.

一方、試料No.24、27、29〜35では薄帯が得られても飽和磁束密度が1.60T以上及び鉄損が0.100W/kg以下の両者を満足する特性は得られなかった。   On the other hand, Sample No. In 24, 27, and 29 to 35, even if a ribbon was obtained, the characteristics satisfying both the saturation magnetic flux density of 1.60 T or more and the iron loss of 0.100 W / kg or less were not obtained.

試料No.24はFe含有量が望ましい範囲の下限80.0原子%を下回った例で飽和磁束密度が低下した例、試料No.27はB含有量が望ましい範囲の上限12.0原子%を上回り鉄損が増加した例、試料No.29はC含有量が望ましい範囲の上限8.0原子%を上回り鉄損が増加した例である。試料No.30はSi含有量が望ましい範囲の下限0.10原子%を下回り鉄損が増加した例、試料No.31はSi含有量が上限の3.0原子%を上回り鉄損が増加した例である。又、試料No.32はAl含有量が下限の0.10原子%を下回り鉄損が増加した例であり、試料No.33はAl含有量が上限の2.0原子%を上回り鉄損が増加した例である。更に、試料No.34はMo含有量が望ましい範囲の下限0.10原子%を下回り鉄損が増加した例、試料No.35はMo含有量が望ましい範囲の上限6.0原子%を上回り鉄損が増加した例である。   Sample No. 24 is an example in which the saturation magnetic flux density is lowered when the Fe content falls below the lower limit of 80.0 atomic%, and Sample No. 27 has an upper limit of 12.0 atomic% of the desired range of B content. An example in which the upper iron loss increased, Sample No. 29 is an example in which the upper iron loss increased beyond the upper limit of 8.0 atomic% in which the C content is desirable. Sample No. 30 was an example in which the iron loss increased below the lower limit of 0.10 atomic% in the desired range of the Si content, and sample No. 31 had an iron loss increased above the upper limit of 3.0 atomic% in the Si content. It is an example. Sample No. No. 32 is an example in which the Al content was below the lower limit of 0.10 atomic% and the iron loss increased. 33 is an example where the Al content exceeded the upper limit of 2.0 atomic% and the iron loss increased. Furthermore, sample no. Sample No. 34 is an example in which the iron loss is increased below the lower limit of 0.10 atomic% of the desired range of Mo content, and Sample No. 35 is an example of increase in the iron loss exceeding the upper limit of 6.0 atomic% in the desired range of the Mo content. It is.

更に、試料No.36はMoを含有しない例であり、Moを含有しないことから、飽和磁束密度1.60T以上、鉄損0.100W/kg以下の両者とも満足しない特性となった。   Furthermore, sample no. 36 is an example that does not contain Mo, and since it does not contain Mo, the saturation magnetic flux density of 1.60 T or more and the iron loss of 0.100 W / kg or less were not satisfied.

これらの対比から、本発明により、Fe系非晶質合金において磁束密度1.3T、周波数50Hzにおける鉄損が0.100W/kg以下という優れた鉄損を維持しながら、更なる飽和磁束密度の改善を実現できることがわかった。   From these contrasts, according to the present invention, the Fe-based amorphous alloy has a magnetic flux density of 1.3 T and an iron loss at a frequency of 50 Hz of 0.100 W / kg or less, while maintaining an excellent iron loss. It turns out that improvement can be realized.

(実施例2)
表1のNo.1に示す合金について、Feの一部をNi、Cr、Coの少なくとも1種で代替した各種成分の合金を用いて、実施例1と同様の装置、条件により薄帯を鋳造した。なお、用いた合金の具体的な成分については、Ni、Cr、Coについてのみを表2に示した。結果として、得られた薄帯の板厚、板幅、長さはそれぞれ、約25μm、20mm、およそ50mであった。得られた薄帯の飽和磁束密度及び鉄損について評価した。これらの特性評価に用いた試料の採取方法及び測定条件は、実施例1と同じであった。その測定結果を表2に示す。なお、表2での表示要領は、表1の場合と同様である。
(Example 2)
No. in Table 1 About the alloy shown in No. 1, a ribbon was cast by the same apparatus and conditions as in Example 1 using alloys of various components in which a part of Fe was replaced with at least one of Ni, Cr, and Co. In addition, about the specific component of the used alloy, only Ni, Cr, Co was shown in Table 2. As a result, the thickness, width, and length of the obtained ribbon were about 25 μm, 20 mm, and about 50 m, respectively. The obtained thin strip was evaluated for saturation magnetic flux density and iron loss. The sample collection method and measurement conditions used for these characteristic evaluations were the same as those in Example 1. The measurement results are shown in Table 2. The display procedure in Table 2 is the same as that in Table 1.

Figure 0006601139
Figure 0006601139

表2の試料No.1〜7の結果から明らかなように、Feの一部をNi、Cr、Coの少なくとも1種で、10.0原子%以下の範囲で代替しても、飽和磁束密度が1.60T以上で、鉄損をW13/50で安定して0.100W/kg以下とできることがわかった。また、いずれの試料も、X線回折測定において明確な回折ピークが観察されず、非晶質であることが確認された。   Sample No. in Table 2 As is clear from the results of 1 to 7, even when a part of Fe is replaced with at least one of Ni, Cr, and Co in the range of 10.0 atomic% or less, the saturation magnetic flux density is 1.60 T or more. It was found that the iron loss can be stably reduced to 0.100 W / kg or less at W13 / 50. Moreover, no clear diffraction peak was observed in any sample in the X-ray diffraction measurement, and it was confirmed that the sample was amorphous.

(実施例3)
表1のNo.11に示す合金について、Feの一部をNi、Cr,Coの少なくとも1種で代替した各種成分の合金を用いて、実施例1と同様の装置、条件により薄帯を鋳造した。なお、用いた合金の具体的な成分については、Ni、Cr、Coについてのみを表3に示した。結果として、得られた薄帯の板厚、板幅、長さはそれぞれ、約25μm、20mm、およそ50mであった。得られた薄帯の飽和磁束密度及び鉄損について評価した。これらの特性評価に用いた試料の採取方法及び測定条件は、実施例1と同じであった。その測定結果を、表3に示す。なお、表3での表示要領は、表1の場合と同様である。
(Example 3)
No. in Table 1 As for the alloy shown in No. 11, a ribbon was cast under the same apparatus and conditions as in Example 1 using alloys of various components in which part of Fe was replaced with at least one of Ni, Cr, and Co. In addition, about the specific component of the used alloy, only Ni, Cr, and Co was shown in Table 3. As a result, the thickness, width, and length of the obtained ribbon were about 25 μm, 20 mm, and about 50 m, respectively. The obtained thin strip was evaluated for saturation magnetic flux density and iron loss. The sample collection method and measurement conditions used for these characteristic evaluations were the same as those in Example 1. The measurement results are shown in Table 3. The display procedure in Table 3 is the same as that in Table 1.

Figure 0006601139
Figure 0006601139

表3の試料No.1〜7の結果から明らかなように、Feの一部をNi、Cr、Coの少なくとも1種で、10.0原子%以下の範囲で代替しても、飽和磁束密度が1.60T以上で、鉄損をW13/50で安定して0.100W/kg以下にできることがわかった。また、いずれの試料も、X線回折測定において明確な回折ピークが観察されず、非晶質であることが確認された。   Sample No. in Table 3 As is clear from the results of 1 to 7, even when a part of Fe is replaced with at least one of Ni, Cr, and Co in the range of 10.0 atomic% or less, the saturation magnetic flux density is 1.60 T or more. It was found that the iron loss can be stably reduced to 0.100 W / kg or less at W13 / 50. Moreover, no clear diffraction peak was observed in any sample in the X-ray diffraction measurement, and it was confirmed that the sample was amorphous.

本発明により、飽和磁束密度が高く鉄損が低い、すなわち、品質が良好なFe系非晶質合金、例えば、Fe系非晶質合金薄帯を工業的規模で安定して製造することが可能となった。本発明のFe系非晶質合金の特性は、これまでのFe系非晶質合金より品質が良好であることから、産業上の利用可能性は大きい。   According to the present invention, it is possible to stably produce an Fe-based amorphous alloy having high saturation magnetic flux density and low iron loss, that is, good quality, for example, an Fe-based amorphous alloy ribbon on an industrial scale. It became. Since the characteristics of the Fe-based amorphous alloy of the present invention are better than those of conventional Fe-based amorphous alloys, the industrial applicability is great.

Claims (3)

原子%で、Feを80.0%以上88.0%以下、Bを6.0%以上12.0%以下、Cを2.0%以上8.0%以下、Siを0.10%以上3.0%以下、Alを0.10%以上2.0%以下含有し、さらに、Moを0.10%以上6.0%以下含有し、残部不可避的不純物からなり、
磁束密度1.3T、周波数50Hzにおける鉄損(W13/50)が0.100W/kg以下であり、かつ、飽和磁束密度が1.60T以上であることを特徴とする、軟磁気特性に優れたFe系非晶質合金。
Atomic%, Fe is 80.0% or more and 88.0% or less, B is 6.0% or more and 12.0% or less, C is 2.0% or more and 8.0% or less, and Si is 0.10% or more. 3.0% or less, the Al containing 2.0% to 0.10%, further, a Mo containing 6.0% or less 0.10% or more, Ri Do the balance unavoidable impurities,
Magnetic flux density 1.3 T, the iron loss at a frequency 50Hz (W13 / 50) is not more than 0.100W / kg, and the saturation magnetic flux density is characterized in der Rukoto than 1.60T, excellent soft magnetic characteristics Fe-based amorphous alloy.
Ni、Cr、Coのうち少なくとも1種以上で、請求項1に記載のFe系非晶質合金のFeを10.0原子%以下の範囲で、代替したことを特徴とする、軟磁気特性に優れたFe系非晶質合金。   Soft magnetic properties characterized by replacing Fe of the Fe-based amorphous alloy according to claim 1 within a range of 10.0 atomic% or less with at least one of Ni, Cr, and Co. Excellent Fe-based amorphous alloy. 請求項1または請求項2に記載のFe系非晶質合金からなることを特徴とするFe系非晶質合金薄帯。 An Fe-based amorphous alloy ribbon comprising the Fe-based amorphous alloy according to claim 1 .
JP2015205637A 2015-10-19 2015-10-19 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties Active JP6601139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205637A JP6601139B2 (en) 2015-10-19 2015-10-19 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205637A JP6601139B2 (en) 2015-10-19 2015-10-19 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties

Publications (2)

Publication Number Publication Date
JP2017078186A JP2017078186A (en) 2017-04-27
JP6601139B2 true JP6601139B2 (en) 2019-11-06

Family

ID=58665830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205637A Active JP6601139B2 (en) 2015-10-19 2015-10-19 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties

Country Status (1)

Country Link
JP (1) JP6601139B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337994B1 (en) * 2017-06-26 2018-06-06 Tdk株式会社 Soft magnetic alloys and magnetic parts
EP4343008A1 (en) 2021-05-18 2024-03-27 Nippon Steel Corporation Fe-based amorphous alloy and fe-based amorphous alloy thin strip
CN115369335A (en) * 2022-08-19 2022-11-22 潍柴动力股份有限公司 Iron-based amorphous alloy and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562022B2 (en) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same
JP4771215B2 (en) * 2005-03-29 2011-09-14 日立金属株式会社 Magnetic core and applied products using it
JP5320765B2 (en) * 2007-02-28 2013-10-23 新日鐵住金株式会社 Fe-based amorphous alloy with excellent soft magnetic properties

Also Published As

Publication number Publication date
JP2017078186A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP7020119B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy thin band with excellent soft magnetic properties
JP5320764B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP4310480B2 (en) Amorphous alloy composition
JP6881249B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
JP6181346B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
KR101222127B1 (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
JP5932861B2 (en) Alloy composition, Fe-based nanocrystalline alloy ribbon, Fe-based nanocrystalline alloy powder and magnetic component
JP2009120927A (en) Soft magnetic amorphous alloy
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
JP6601139B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP6313956B2 (en) Nanocrystalline alloy ribbon and magnetic core using it
JP3560591B2 (en) Soft magnetic Co-based metallic glass alloy
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
EP2320436B1 (en) Amorphous magnetic alloys, associated articles and methods
JP6443112B2 (en) Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties
JP2007092096A (en) Amorphous magnetic alloy
JP4948868B2 (en) Fe-based amorphous alloy ribbon
JP6683419B2 (en) Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties
JP5320765B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP6819427B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R151 Written notification of patent or utility model registration

Ref document number: 6601139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151