JP2008131696A - Composite magnetic material and rotor - Google Patents

Composite magnetic material and rotor Download PDF

Info

Publication number
JP2008131696A
JP2008131696A JP2006311434A JP2006311434A JP2008131696A JP 2008131696 A JP2008131696 A JP 2008131696A JP 2006311434 A JP2006311434 A JP 2006311434A JP 2006311434 A JP2006311434 A JP 2006311434A JP 2008131696 A JP2008131696 A JP 2008131696A
Authority
JP
Japan
Prior art keywords
magnetic
thickness
steel sheet
magnetic material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006311434A
Other languages
Japanese (ja)
Inventor
Hiromitsu Itabashi
弘光 板橋
Shigeo Tanigawa
茂穂 谷川
Makoto Ushijima
誠 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006311434A priority Critical patent/JP2008131696A/en
Publication of JP2008131696A publication Critical patent/JP2008131696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite magnetic material which can be applied to a rotary machine having a high operation frequency and can attain improvement in iron loss and a reduction in size of a motor as well, and a rotor using the same. <P>SOLUTION: The composite magnetic material is prepared by laminating a magnetic steel plate having a plate thickness of 0.1 mm to 0.3 mm and a saturated magnetic flux density of 1.8 T or more and a soft magnetic alloy thin band having a plate thickness of 50 μm or less and an iron loss of 15 W/kg or less when operated at a frequency of 1,000 Hz and a magnetic flux density of 1.0 T. Preferably, the soft magnetic alloy thin band has a thickness ratio of 5 to 35% relative to the thickness of the magnetic steel plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は車載用モータやサーボモータ、電子部品といった高効率モータに用いられる複合磁性材料およびそれを用いた回転子に関し、特に、高回転モータの回転子として用いた際に低損失・高透磁率であるという優れた磁気特性を持つものに関する。   The present invention relates to a composite magnetic material used in a high-efficiency motor such as an in-vehicle motor, a servo motor, and an electronic component, and a rotor using the composite magnetic material, and in particular, low loss and high magnetic permeability when used as a rotor of a high-speed motor. It has an excellent magnetic property.

トランスやモータに用いられる磁心には、安価でかつ優れた磁気特性を得るために、特許文献1に見られるような、電磁鋼板を積層した積層磁心が多く用いられている。この積層磁心は電磁鋼板を回転子(ロータ)形状などに打ち抜き加工し、その後所望の厚さまで積層し、溶接やかしめ加工などにより一体化して作られている。現在、モータは小形化、高速化、高効率化が進み、高周波でより鉄損の小さい材料が要求されているが、溶接やかしめ加工を行った電磁鋼板のロータでは、溶接部やかしめ部の近傍で歪などによる磁性劣化が生じる。このため、鉄損が増大したり、透磁率が低下したりするという問題がある。また電磁鋼板では、板厚0.5mmや0.35mm程度のものが通常使われるが、モータが高速化するに伴い渦電流損失が増加するという問題点がある。   For magnetic cores used in transformers and motors, in order to obtain inexpensive and excellent magnetic characteristics, a laminated magnetic core in which electromagnetic steel sheets are laminated as shown in Patent Document 1 is often used. This laminated magnetic core is made by punching a magnetic steel sheet into a rotor (rotor) shape, etc., then laminating it to a desired thickness, and integrating it by welding or caulking. Currently, motors are becoming smaller, faster, and more efficient, and materials with lower iron loss are required at higher frequencies. However, in the rotors of electromagnetic steel sheets that have been welded or crimped, Magnetic deterioration due to strain or the like occurs in the vicinity. For this reason, there exists a problem that an iron loss increases or a magnetic permeability falls. In addition, electromagnetic steel sheets having a thickness of about 0.5 mm or 0.35 mm are usually used, but there is a problem that eddy current loss increases as the motor speed increases.

また、電磁鋼板以外の材料としては、軟磁性合金薄帯が最適な材料の一つとして挙げられる。例えば、特許文献2には、非晶質合金薄帯に樹脂を塗布して圧着させたリラクタンス回転機の回転子が開示されている。軟磁性合金薄帯は、板厚が20〜30μmと非常に薄い材料である。磁性材の板厚が薄いほど渦電流損失を小さくできるため、エネルギー・環境問題に対して高効率化が求められているモータでは、特に低鉄損、高透磁率化が可能な材質として有用である。   Moreover, as a material other than the electromagnetic steel sheet, a soft magnetic alloy ribbon is cited as one of the optimum materials. For example, Patent Document 2 discloses a rotor of a reluctance rotating machine in which a resin is applied to an amorphous alloy ribbon and pressed. The soft magnetic alloy ribbon is a very thin material with a plate thickness of 20 to 30 μm. Since the eddy current loss can be reduced as the magnetic material is thinner, it is particularly useful as a material that can achieve low iron loss and high permeability in motors that require high efficiency for energy and environmental problems. is there.

上記に挙げた二つの磁性材料は、それぞれに長所と欠点を持つ。電磁鋼板は、その90%以上が主成分のFeであるため、高い飽和磁束密度値をもつ。そのため、モータ等の機器の小型化には適しているが、一方で、高回転用途では、損失低下のために薄くする必要が出てくる。そのため、圧延工程が必要となるが、圧延工程は、薄くなればなるほど薄板化のための冷間圧延工程が複雑となり製造価格が高くなる。また、薄くなればなるほど、かしめ接合では、十分な接合強度が得られえなくなり、安価なトランスやモータが製造できないという問題がある。
他方の材料の軟磁性合金薄帯は鉄損が低いという特徴を持つ低損失の磁性材料である。しかし、厚さが100μm以下であるために積み重ね枚数が多くなることや、方法飽和磁束密度が電磁鋼板に比べて低くモータの小型化を果たしにくいという問題がある。
Each of the two magnetic materials listed above has advantages and disadvantages. Since 90% or more of the electrical steel sheet is composed mainly of Fe, it has a high saturation magnetic flux density value. Therefore, although it is suitable for downsizing of devices such as motors, on the other hand, in high rotation applications, it is necessary to reduce the thickness to reduce loss. Therefore, although a rolling process is required, the thinner the rolling process is, the more complicated the cold rolling process for thinning the plate and the higher the manufacturing cost. Further, there is a problem that as the thickness becomes thinner, sufficient joining strength cannot be obtained by caulking, and an inexpensive transformer or motor cannot be manufactured.
The soft magnetic alloy ribbon of the other material is a low-loss magnetic material characterized by low iron loss. However, since the thickness is 100 μm or less, there are problems that the number of stacked sheets increases and the method saturation magnetic flux density is lower than that of the electromagnetic steel sheet, and it is difficult to reduce the size of the motor.

特許文献3には、非晶質金属磁性材料やナノ結晶金属磁性材料のような磁性金属薄帯と、珪素鋼板とを交互に積層させた積層体が開示されている。磁性金属薄帯を珪素鋼板に接着させたことで、磁性金属薄帯に最適な温度範囲の熱処理が可能となることが開示されている。
特開2006−9048号公報 特開2005−160231号公報 特開2005−104008号公報
Patent Document 3 discloses a laminate in which magnetic metal ribbons such as amorphous metal magnetic materials and nanocrystalline metal magnetic materials and silicon steel plates are alternately laminated. It is disclosed that the heat treatment in the temperature range optimum for the magnetic metal ribbon can be achieved by bonding the magnetic metal ribbon to the silicon steel plate.
Japanese Patent Laid-Open No. 2006-9048 JP 2005-160231 A JP 2005-104008 A

しかしながら、特許文献3では、磁性金属薄帯と珪素鋼板とを交互に積層させること、磁性金属薄帯と珪素鋼板の種類、接着するための樹脂の種類などは開示されているものの、鉄損や磁束密度などに関する磁気特性については全く開示されていない。
特に高速回転モータなどの用途しては、動作周波数が1000Hzと高い周波数になるものも珍しくない。特許文献1に記載した電磁鋼板による積層体に対してどの程度鉄損が低くなければならないのか、また、磁束密度の低下をどの程度まで抑える必要があるか、検討の余地がある。
本発明は上記問題を解決し、実製品として鉄損の改善とモータの小型化が両立可能な複合磁性材料およびそれを用いた回転子を提供することを目的とする。
However, Patent Document 3 discloses that the magnetic metal ribbon and the silicon steel plate are alternately laminated, the type of the magnetic metal ribbon and the silicon steel plate, the type of the resin for bonding, and the like. No magnetic properties relating to magnetic flux density are disclosed.
Especially for applications such as high-speed rotary motors, it is not uncommon for the operating frequency to be as high as 1000 Hz. There is room for examination as to how much the iron loss should be reduced with respect to the laminated body of electromagnetic steel sheets described in Patent Document 1 and to what extent it is necessary to suppress the decrease in magnetic flux density.
An object of the present invention is to solve the above problems and to provide a composite magnetic material capable of achieving both improvement in iron loss and miniaturization of a motor as an actual product, and a rotor using the same.

本発明は、板厚が0.1mm以上0.3mm以下であり飽和磁束密度が1.8T以上である電磁鋼板と、板厚が50μm以下であり周波数1000Hz,磁束密度1.0Tで作動した場合の鉄損が15W/kg以下である軟磁性合金薄帯を積層した複合磁性材料を用いたものである。   The present invention relates to an electromagnetic steel sheet having a plate thickness of 0.1 mm to 0.3 mm and a saturation magnetic flux density of 1.8 T or more, and an iron loss when operating at a frequency of 1000 Hz and a magnetic flux density of 1.0 T with a plate thickness of 50 μm or less. A composite magnetic material in which soft magnetic alloy ribbons of 15 W / kg or less are laminated is used.

電磁鋼板の厚さに対して、軟磁性合金薄帯の厚さの比率を5〜35%としたものが好ましい。また、電磁鋼板1枚に対して、軟磁性合金薄帯を2〜8枚積層したものが好ましい。   The ratio of the thickness of the soft magnetic alloy ribbon to the thickness of the electromagnetic steel sheet is preferably 5 to 35%. Moreover, what laminated | stacked 2-8 soft magnetic alloy thin ribbons with respect to one electromagnetic steel plate is preferable.

前記電磁鋼板は、組成式Fe1−xSi(但し、原子%でx=2.5〜4。5であり、不可避不純物を含む)からなるものが好ましい。 The electromagnetic steel sheet is preferably made of the composition formula Fe 1-x Si x (however, in atomic%, x = 2.5 to 4.5 and includes inevitable impurities).

前記軟磁性合金薄帯は非晶質合金であり、合金組成がTaSibBcCd(ただし、TはFe、またはFeとFeに対し10%以下のCo、Niの少なくとも一種を含む元素)で表され、原子%で76≦a<84%、0<b≦12%、8≦c≦18%、d≦3%および不可避不純物からなるものが好ましい。 The soft magnetic alloy ribbon is an amorphous alloy, the alloy composition T a Si b B c C d ( although, T is includes Fe, or Fe and Fe to 10% or less of Co, at least one of Ni Element) and is composed of 76 ≦ a <84%, 0 <b ≦ 12%, 8 ≦ c ≦ 18%, d ≦ 3% and inevitable impurities in atomic percent.

動作周波数が400Hz以上の環境下で用いられる回転子に上記の複合磁性材料を用いることが好ましい。   It is preferable to use the above composite magnetic material for a rotor used in an environment where the operating frequency is 400 Hz or more.

複合磁性材料として、鉄損の低減による回転体の高効率化と磁束密度の低下を最小限に抑えることで回転体の小型化に効果がある。   As a composite magnetic material, there is an effect in reducing the size of the rotating body by minimizing the increase in efficiency of the rotating body by reducing the iron loss and the decrease in magnetic flux density.

電磁鋼板の板厚は0.08mm以上0.3mm以下のものを用いる。詳細は実施例で述べるが、電磁鋼板の板厚が0.3mmを超えると鉄損が悪化してしまい、軟磁性合金薄帯の割合を多くしても鉄損の改善効果が及ばず、かつ飽和磁束密度を下げる要因となってしまう。また、電磁鋼板の板厚が0.1mm未満の場合、量産しても回転機用材料としてのコストレベルを超えてしまい実用的でない。電磁鋼板の板厚は、0.12mm以上0.25mm以下がさらに好ましい。
飽和磁束密度は1.8T以上、さらには1.9T以上のものが好ましい。
The thickness of the electrical steel sheet is 0.08mm or more and 0.3mm or less. Details will be described in the examples, but when the thickness of the magnetic steel sheet exceeds 0.3 mm, the iron loss deteriorates, and even if the proportion of the soft magnetic alloy ribbon is increased, the effect of improving the iron loss does not reach and is saturated. It becomes a factor to lower the magnetic flux density. Further, when the thickness of the electromagnetic steel sheet is less than 0.1 mm, even if mass-produced, the cost level as a rotating machine material will be exceeded, which is not practical. The thickness of the electromagnetic steel sheet is more preferably 0.12 mm or more and 0.25 mm or less.
The saturation magnetic flux density is preferably 1.8 T or more, more preferably 1.9 T or more.

磁性合金薄帯は、板厚が50μm以下であり周波数1000Hz,磁束密度1.0Tで作動した場合の鉄損が15W/kg以下であるものが用いられる。板厚が50μmを超えると、渦電流損失による鉄損が増えてしまい、電磁鋼板と複合させて鉄損を下げることが難しくなる。厚さが5μm未満では製造が困難であり、また、表面の影響が大きくなり特性を均一することが難しい。   A magnetic alloy ribbon having a plate thickness of 50 μm or less, a core loss of 15 W / kg or less when operated at a frequency of 1000 Hz and a magnetic flux density of 1.0 T is used. When the plate thickness exceeds 50 μm, the iron loss due to eddy current loss increases, and it becomes difficult to reduce the iron loss by combining with the electromagnetic steel plate. If the thickness is less than 5 μm, it is difficult to manufacture, and the influence of the surface becomes large, making it difficult to make the characteristics uniform.

電磁鋼板の厚さに対して、軟磁性合金薄帯の厚さの比率を5〜35%としたものが好ましい。5%未満であると鉄損の改善効果が小さく、従来の電磁鋼板単体からなる積層体とあまり差が得られない複合積層体となる。また、35%を超えると複合積層体全体の磁束密度が低下してしまい、モータの小型化を行うだけの磁気特性が得られない。厚さとしては30〜250μmが好ましい。
電磁鋼板1枚に対して、軟磁性合金薄帯を2〜8枚積層したものが好ましい。複数枚を積層することで、軟磁性合金薄帯が薄くなり、渦電流損失を減らすことができる。
The ratio of the thickness of the soft magnetic alloy ribbon to the thickness of the electrical steel sheet is preferably 5 to 35%. If it is less than 5%, the effect of improving the iron loss is small, and a composite laminate is obtained in which a difference is not so much obtained from a conventional laminate made of a single electrical steel sheet. On the other hand, if it exceeds 35%, the magnetic flux density of the entire composite laminate is lowered, and magnetic characteristics sufficient to reduce the size of the motor cannot be obtained. The thickness is preferably 30 to 250 μm.
What laminated | stacked 2-8 soft magnetic alloy thin ribbons with respect to one electromagnetic steel plate is preferable. By laminating a plurality of sheets, the soft magnetic alloy ribbon becomes thin and eddy current loss can be reduced.

前記電磁鋼板は、組成式Fe1−xSi(但し、原子%でx=2.5〜4.5であり、不可避不純物を含む)からなるものが好ましい。Siが2.5原子%未満であると、鋼板の比抵抗が小さくなり、渦電流損失がさらに増大してしまう。逆に、多量添加して鋼板の比抵抗を高め、渦電流損失を低減させることもできるが、Si量が高い合金組成では塑性変形させることが困難であり、冷間圧延を行う際にひびが入りやすく、製造コストが高くなってしまう。350℃以上で温間圧延することでこの問題を回避できるが、一般的な設備以外のコストがかかり、同様に製造コストが高くなってしまう。コストとの関係から、Si量の上限値は4.5原子%以下が好ましい。
またCr、Mo、Zr、Hf、Nb、Mnなどの元素は添加料が低い方が好ましいが、0.01〜5%含んでもよい。また、不可避な不純物としてC、S、P、Sn、Cu、Al、Ti、Ca、Sbなどが有り、これらの元素の添加料も低い方が好ましい。
Wherein the electromagnetic steel sheet, the composition formula Fe 1-x Si x (where a x = 2.5 to 4.5 in atomic%, including unavoidable impurities) is preferably one made of. When Si is less than 2.5 atomic%, the specific resistance of the steel sheet decreases, and eddy current loss further increases. Conversely, it can be added in a large amount to increase the specific resistance of the steel sheet and reduce eddy current loss. It is easy to enter and the manufacturing cost becomes high. Although this problem can be avoided by warm rolling at 350 ° C. or higher, costs other than general equipment are required, and the production cost is similarly increased. From the relationship with cost, the upper limit of the Si amount is preferably 4.5 atomic% or less.
Further, elements such as Cr, Mo, Zr, Hf, Nb, and Mn are preferable to have a low additive, but may be contained in an amount of 0.01 to 5%. Inevitable impurities include C, S, P, Sn, Cu, Al, Ti, Ca, Sb and the like, and it is preferable that the additive of these elements is also low.

軟磁性合金薄帯は、合金組成がTaSibBcCd(ただし、TはFe、またはFeとFeに対し10%以下のCo、Niの少なくとも一種を含む元素)で表され、原子%で76≦a<84%、0<b≦12%、8≦c≦18%、d≦3%、および不可避不純物からなる高BS材を使用することが好ましい。
Fe量aは76%より少ないと鉄心材料として十分なBSが得られず磁心が大型化し好ましくない。また84%以上では熱安定性が低下し、安定した非晶質合金薄帯が製造できなくなるためである。求められる磁気特性から、Fe量の10%以下をCo、Niの少なくとも一種で置換することができる。
Si量bは非晶質形成能に寄与する元素でBsを向上させるためには12%以下とする必要がある。
B量cは非晶質形成能に最も寄与し、8%未満では熱安定性が低下してしまい、18%より多いと添加しても非晶質形成能などの改善効果が見られない。高BSな非晶質の熱安定性を保つには10%以上であることが好ましい。
Cは材料の角形性およびBSを向上し磁心を小型化できると共に、低騒音化する効果がある。3%より多くすると脆化と熱安定性が低下し、磁心製造が困難となり好ましくない。C量dは0.01%未満ではほとんど効果がないため、それ以上添加することが好ましい。
Fe量の10%以下をNi、Coの一種または二種で置換するとBSが向上し、磁心の小型化に寄与するがコストが高い原料であるため10%より多く含有させるのは現実的ではない。またMnは微量添加で若干BSを向上させる効果があるが0.50at%以上添加すると逆にBSが低下し、好ましくは0.1%以上0.3%以下がよい。
またCr, Mo, Zr, Hf, Nbの1種以上の元素を0.01〜5%含んでもよく、不可避な不純物としてS, P, Sn, Cu, Al, Ti から少なくとも1種以上の元素を0.50%以下含有してもよい。
Soft magnetic alloy ribbons are represented by an alloy composition of Ta Si b B c C d (where T is an element containing at least one of Co and Ni of 10% or less of Fe or Fe and Fe). 76 ≦ a <84% at%, 0 <b ≦ 12% , 8 ≦ c ≦ 18%, d ≦ 3%, and it is preferable to use a high B S material consisting of unavoidable impurities.
If the Fe content a is less than 76%, sufficient B S cannot be obtained as a core material, and the magnetic core becomes large, which is not preferable. Further, if it is 84% or more, the thermal stability is lowered, and a stable amorphous alloy ribbon cannot be produced. From the required magnetic properties, 10% or less of the amount of Fe can be replaced with at least one of Co and Ni.
Si content b in order to improve B s in element contributing to the amorphous forming ability is required to be 12% or less.
The B amount c contributes most to the amorphous forming ability, and if it is less than 8%, the thermal stability is lowered. If it is more than 18%, no improvement effect such as the amorphous forming ability is observed even if it is added. It is preferred to maintain the thermal stability of the high B S amorphous 10% or more.
C improves the squareness of the material and B S , can reduce the size of the magnetic core, and has the effect of reducing noise. If it exceeds 3%, embrittlement and thermal stability are lowered, and the production of the magnetic core becomes difficult, which is not preferable. If the C amount d is less than 0.01%, there is almost no effect, so it is preferable to add more.
Substituting 10% or less of the amount of Fe with one or two of Ni and Co improves B S and contributes to the miniaturization of the magnetic core, but since it is a high cost raw material, it is realistic to contain more than 10% Absent. Further, Mn has an effect of slightly improving B S when added in a small amount, but when added in an amount of 0.50 at% or more, B S is lowered, and preferably 0.1% or more and 0.3% or less.
Moreover, it may contain 0.01 to 5% of one or more elements of Cr, Mo, Zr, Hf, and Nb, and 0.50% of at least one element from S, P, Sn, Cu, Al, and Ti as inevitable impurities. You may contain below.

回転磁界型モータの回転数と動作周波数の間には、Ns=120×f/p(Ns:回転速度(rpm) f:周波数(Hz) p:モータ極数)の式の関係が成立することが一般に知られている。
従って、2極のユニバーサルモータで、10krpmで鉄心の動作周波数は、133Hz、20krpmで266Hz、30krpmで400Hzとなる。さらに、モータの極数が増えた場合は、極数に応じて、鉄心の動作周波数が高くなる。
本発明においては、動作周波数400Hz以上において、鉄損の差が顕著になってくることから、動作周波数400Hz以上(2極モータの場合、30krpm以上)で動作するモータにおいて本発明の複合磁性材料を適用することが好ましい。
The relationship of the formula of Ns = 120 × f / p (Ns: rotational speed (rpm) f: frequency (Hz) p: number of motor poles) is established between the rotational speed and the operating frequency of the rotating field motor. Is generally known.
Therefore, with a 2-pole universal motor, the operating frequency of the iron core at 10 krpm is 133 Hz, 266 Hz at 20 krpm, and 400 Hz at 30 krpm. Furthermore, when the number of poles of the motor increases, the operating frequency of the iron core increases according to the number of poles.
In the present invention, since the difference in iron loss becomes significant at an operating frequency of 400 Hz or higher, the composite magnetic material of the present invention is used in a motor that operates at an operating frequency of 400 Hz or higher (in the case of a two-pole motor, 30 krpm or higher). It is preferable to apply.

電磁鋼板、軟磁性合金薄帯に塗布する樹脂溶液は、熱硬化性のものが好ましく、一般的に市販されている既知の樹脂が使用できる。通常は溶剤で5〜15重量%に希釈して使用する。溶剤乾燥後の厚さを薄くすれば占積率が向上するが、ピンホールなどの欠陥発生率も増え、積層体で隣接する金属薄帯間の絶縁が不十分となる恐れがある。従って、乾燥後の厚さとしては、0.5ミクロン〜3ミクロンが好ましい。
塗布方法としては、ディップ法、ドクターブレード法、グラビアロール法など、既知の塗布方法が可能であるが、塗布厚さの均一性と時間当たりの生産性(塗布速度)を考慮するとグラビアロール法が優れている。グラビアロール法を用いて両面に塗布するには、片面ずつ行う必要がある。
樹脂を乾燥させるには、乾燥炉内の風量を多くすることが好ましい。遠赤外線ヒーターによる乾燥方法でもよい。
The resin solution applied to the magnetic steel sheet and the soft magnetic alloy ribbon is preferably a thermosetting resin, and generally known resins can be used. Usually, it is diluted to 5 to 15% by weight with a solvent. If the thickness after drying the solvent is reduced, the space factor is improved, but the rate of occurrence of defects such as pinholes is also increased, and there is a risk that insulation between adjacent metal ribbons in the laminate is insufficient. Therefore, the thickness after drying is preferably 0.5 to 3 microns.
As a coating method, known coating methods such as a dip method, a doctor blade method, and a gravure roll method are possible, but in consideration of uniformity of coating thickness and productivity per hour (coating speed), the gravure roll method is used. Are better. In order to apply on both sides using the gravure roll method, it is necessary to carry out one side at a time.
In order to dry the resin, it is preferable to increase the air volume in the drying furnace. A drying method using a far infrared heater may be used.

電磁鋼板、軟磁性合金薄帯を、積層用の金型キャビティ内に入れ、複数枚を積層させる。積層体の上下には、圧をかけるための可動型が接するため、後工程の圧着工程後に積層体と稼動型が剥離できるよう、積層体と可動型との間に市販の樹脂フィルムを挟むと良い。   A magnetic steel sheet and a soft magnetic alloy ribbon are placed in a laminating mold cavity and a plurality of sheets are laminated. Since a movable mold for applying pressure is in contact with the top and bottom of the laminate, a commercially available resin film is sandwiched between the laminate and the movable mold so that the laminate and the working mold can be separated after the subsequent crimping step. good.

積層体は、金型ごと乾燥窒素雰囲気のホットプレス炉内に設置される。炉内を塗布した樹脂のガラス転移点以上の温度に昇温する。この温度で保持した状態で、電磁鋼板と軟磁性合金薄帯を加圧して圧着する。保持する温度の上限は、樹脂の熱分解開始温度未満であれば問題ない。
炉内の雰囲気は、乾燥窒素雰囲気とすることが好ましい。窒素純度98vol%以上で、かつ露点が−30℃以下の雰囲気であれば、樹脂から際発生する水分をすばやく除去し、かつ金属薄帯表面の酸化を防止することができる。液体窒素からの窒素ガスは、純度99.9998%、露点−50℃以下であるため、より好ましい。
The laminate is placed in a hot press furnace in a dry nitrogen atmosphere together with the mold. The temperature is raised to a temperature above the glass transition point of the resin applied in the furnace. With this temperature maintained, the magnetic steel sheet and the soft magnetic alloy ribbon are pressed and pressure bonded. If the upper limit of the temperature to hold | maintain is less than the thermal decomposition start temperature of resin, there is no problem.
The atmosphere in the furnace is preferably a dry nitrogen atmosphere. If the atmosphere has a nitrogen purity of 98 vol% or more and a dew point of −30 ° C. or less, moisture generated from the resin can be quickly removed and oxidation of the surface of the metal ribbon can be prevented. Nitrogen gas from liquid nitrogen is more preferable because it has a purity of 99.99998% and a dew point of −50 ° C. or less.

(実施例)
電磁鋼板と非晶質の磁性合金薄帯を組み合わせた積層体を製造した。電磁鋼板として、原子%でFebalSiからなる合金組成で、厚さが0.2mmの無方向性の電磁鋼板を用いた。また、磁性金属薄帯として、Fe系の非晶質磁性金属薄帯(Metglas社製2605SA1材:厚さ21μm)を用いた。この電磁鋼板と磁性合金薄帯の両面に樹脂を塗布し、その後この樹脂を乾燥させた。樹脂を塗布後、電磁鋼板と磁性合金薄帯を積層させ、その状態でホットプレス炉内で樹脂がガラス転移点以上の温度になるまで昇温させ、本発明の複合磁性材料を得た。また、磁性合金薄帯を電磁鋼板1枚に対して1〜3枚用い、複合磁性材料中の磁性合金薄帯の厚さの比率が約10%,18%,30%となる3種類の複合磁性材料を製造した。(実施例1〜3)
また、比較として、電磁鋼板の厚さが0.35mmの無方向性の電磁鋼板を用い、同様にして複合磁性材料を得た。また、磁性合金薄帯を電磁鋼板1枚に対して1,2,8枚用い、複合磁性材料中の磁性合金薄帯の厚さの比率が約6%,19%,24%となる3種類の複合磁性材料を製造した。(比較例1〜3)
この複合磁性材料の代表的な鉄損値W10/50、W10/400、W10/1kを測定した。また、磁束密度として、外部磁場800A/mのときの磁束密度B800と、外部磁場8000A/mのときの磁束密度B8000を測定した。磁束密度は、樹脂分を除外した電磁鋼板と磁性合金薄帯のみの積層体として換算した場合の値である。表1に示す。
複合磁性材料は、それぞれ、W10/50での鉄損の値は、ほぼ同じ値を示しており、厚さによる差は、認められない。しかし、W10/400、W10/1kと動作周波数が高くなるにつれて、厚さ0.35mmの電磁鋼板を用いた複合磁性材料(比較例1〜3)の鉄損値は、本発明の0.2mmの電磁鋼板を用いた複合磁性材料(実施例1〜3)の鉄損よりも大きい値になり、回転機用の複合磁性材料として十分な利点が得られなかった。一方、本発明の複合磁性材料は、電磁鋼板と磁性合金薄帯を所定の比率で複合化したことにより、後述する0.2mmの電磁鋼板のみからなる積層体(比較例5)の鉄損値に比べて、W10/1000が5〜20%低下していることが確認できた。また、B800の値は、比較例5の電磁鋼板積層体と同程度であり、B8000の値も5%以内の低下に抑えることができ、装置の効率化と小型化を両立可能な複合磁性材料を得ることが出来た。
(Example)
A laminate was produced by combining an electromagnetic steel sheet and an amorphous magnetic alloy ribbon. As the electrical steel sheet, a non-oriented electrical steel sheet having an alloy composition of Fe bal Si 3 at atomic% and a thickness of 0.2 mm was used. Further, as the magnetic metal ribbon, an Fe-based amorphous magnetic metal ribbon (2605SA1 made by Metglas: thickness 21 μm) was used. A resin was applied to both surfaces of the magnetic steel sheet and the magnetic alloy ribbon, and then the resin was dried. After applying the resin, the magnetic steel sheet and the magnetic alloy ribbon were laminated, and in that state, the temperature was raised in a hot press furnace until the temperature of the resin was equal to or higher than the glass transition point, thereby obtaining the composite magnetic material of the present invention. In addition, one to three magnetic alloy ribbons are used for one electromagnetic steel sheet, and the thickness ratio of the magnetic alloy ribbon in the composite magnetic material is approximately 10%, 18%, and 30%. A magnetic material was produced. (Examples 1-3)
For comparison, a non-oriented electrical steel sheet having a thickness of 0.35 mm was used to obtain a composite magnetic material in the same manner. In addition, 1, 2, and 8 magnetic alloy ribbons are used for one electromagnetic steel sheet, and the thickness ratio of the magnetic alloy ribbons in the composite magnetic material is approximately 6%, 19%, and 24%. The composite magnetic material was manufactured. (Comparative Examples 1-3)
Typical iron loss values W10 / 50, W10 / 400, and W10 / 1k of this composite magnetic material were measured. As the magnetic flux density, a magnetic flux density B800 when the external magnetic field was 800 A / m and a magnetic flux density B8000 when the external magnetic field was 8000 A / m were measured. The magnetic flux density is a value when converted as a laminate of only the electromagnetic steel sheet and the magnetic alloy ribbon excluding the resin component. Table 1 shows.
Each of the composite magnetic materials has almost the same iron loss value at W10 / 50, and no difference due to thickness is recognized. However, as the operating frequency is increased to W10 / 400 and W10 / 1k, the iron loss value of the composite magnetic material (Comparative Examples 1 to 3) using the electromagnetic steel sheet having a thickness of 0.35 mm is 0.2 mm electromagnetic according to the present invention. It became a value larger than the iron loss of the composite magnetic material (Examples 1-3) using a steel plate, and sufficient advantage as a composite magnetic material for rotating machines was not obtained. On the other hand, the composite magnetic material of the present invention combines the magnetic steel sheet and the magnetic alloy ribbon at a predetermined ratio, so that the iron loss value of a laminate (Comparative Example 5) consisting of only a 0.2 mm electromagnetic steel sheet, which will be described later, is obtained. In comparison, it was confirmed that W10 / 1000 decreased by 5-20%. In addition, the value of B800 is similar to that of the magnetic steel sheet laminate of Comparative Example 5, the value of B8000 can be suppressed to within 5%, and a composite magnetic material that can achieve both efficiency and downsizing of the apparatus. I was able to get.

Figure 2008131696
Figure 2008131696

(比較例4〜7)
比較として、合金組成が原子%でFebalSiからなり、厚さがそれぞれ、0.35mm、0.2mmの無方向性の電磁鋼板、および、合金組成がFebalSi6.5からなり、厚さが0.1mmの無方向性の電磁鋼板からなる積層体(比較例4〜6)を作成した。この電磁鋼板のみを積層した積層体の代表的な鉄損値W10/50、W10/400、W10/1kを測定した。また、磁束密度として、外部磁場800A/mのときの磁束密度B800と、外部磁場8000A/mのときの磁束密度B8000を測定した。それぞれの板厚による鉄損の差は、周波数50Hzでは少ないが、周波数が高くなるにつれてその差が大きくなっている。周波数1kHzでは、0.35mm厚の無方向性電磁鋼板の鉄損値は、0.1mm厚のものに比べて約4倍の値となり、薄いほうが低損失化に有利であることがわかる。一方で、磁束密度の値は、無方向性電磁鋼板の厚さ0.35mm及び0.2mmは、標準的な無方向性電磁鋼板であり、B8000は、約1.8Tの値が得られている。しかしながら、厚さ0.1mmの電磁鋼板のB8000は、1.62Tと0.35mm、0.2mmの電磁鋼板に比べて著しく低くなっている。そのため、鉄心の主材としては、磁束密度が低いため、モータの小型化には好ましくない。
また、磁性金属薄帯として、Fe系の非晶質磁性金属薄帯(Metglas社製2605SA1材:厚さ21μm)を用いた積層体(比較例7)を製造した。上記と同様に、この非晶質磁性金属薄帯のみを積層した積層体の代表的な鉄損値W10/50、W10/400、W10/1kを測定した。また、磁束密度として、外部磁場800A/mのときの磁束密度B800と、外部磁場8000A/mのときの磁束密度B8000を測定した。このアモルファス材は25μmと板厚が非常に薄いため、鉄損値が電磁鋼板に比べて各周波数で低い値を示している。しかしながら、B8000の値が低くいため、モータの小型化を果たすだけの磁気特性を持っていなかった。

(Comparative Examples 4-7)
For comparison, the alloy composition is made of Fe bal Si 3 at atomic percent, the non-oriented electrical steel sheet has a thickness of 0.35 mm and 0.2 mm, respectively, and the alloy composition is made of Fe bal Si 6.5 and has a thickness of 0.1 Laminates (Comparative Examples 4 to 6) made of non-oriented electromagnetic steel sheets with a thickness of mm were prepared. The typical iron loss values W10 / 50, W10 / 400, and W10 / 1k of the laminate in which only the electromagnetic steel sheets were laminated were measured. As the magnetic flux density, a magnetic flux density B800 when the external magnetic field was 800 A / m and a magnetic flux density B8000 when the external magnetic field was 8000 A / m were measured. The difference in iron loss due to the plate thickness is small at a frequency of 50 Hz, but the difference increases as the frequency increases. At a frequency of 1 kHz, the iron loss value of a 0.35 mm thick non-oriented electrical steel sheet is about four times that of a 0.1 mm thick steel sheet, and it can be seen that a thinner one is advantageous for lowering the loss. On the other hand, as for the value of magnetic flux density, the non-oriented electrical steel sheet thicknesses of 0.35 mm and 0.2 mm are standard non-oriented electrical steel sheets, and B8000 has a value of about 1.8 T. However, the B8000 of the 0.1 mm thick electrical steel sheet is significantly lower than the 1.62T, 0.35 mm, and 0.2 mm electrical steel sheets. Therefore, as a main material of the iron core, the magnetic flux density is low, which is not preferable for miniaturization of the motor.
In addition, a laminate (Comparative Example 7) was manufactured using an Fe-based amorphous magnetic metal ribbon (2605SA1 material manufactured by Metglas: thickness 21 μm) as the magnetic metal ribbon. In the same manner as described above, typical iron loss values W10 / 50, W10 / 400, and W10 / 1k of the laminate in which only the amorphous magnetic metal ribbons were laminated were measured. As the magnetic flux density, a magnetic flux density B800 when the external magnetic field was 800 A / m and a magnetic flux density B8000 when the external magnetic field was 8000 A / m were measured. Since this amorphous material has a very thin plate thickness of 25 μm, the iron loss value is lower at each frequency than the electromagnetic steel plate. However, because the value of B8000 is low, it did not have enough magnetic properties to achieve miniaturization of the motor.

Claims (6)

板厚が0.1mm以上0.3mm以下であり飽和磁束密度が1.8T以上である電磁鋼板と、板厚が50μm以下であり周波数1000Hz,磁束密度1.0Tで作動した場合の鉄損が15W/kg以下である軟磁性合金薄帯を積層したことを特徴とする複合磁性材料。 Magnetic steel sheet with a plate thickness of 0.1 mm to 0.3 mm and a saturation magnetic flux density of 1.8 T or more, and iron loss when the plate thickness is 50 μm or less, frequency 1000 Hz, and magnetic flux density 1.0 T is 15 W / kg or less A composite magnetic material characterized by laminating soft magnetic alloy ribbons. 前記電磁鋼板の厚さに対して、軟磁性合金薄帯の厚さの比率を5〜35%としたことを特徴とする請求項1に記載の複合磁性材料。 2. The composite magnetic material according to claim 1, wherein a thickness ratio of the soft magnetic alloy ribbon is 5 to 35% with respect to the thickness of the electromagnetic steel sheet. 前記電磁鋼板1枚に対して、軟磁性合金薄帯を2〜8枚積層した請求項1又は請求項2に記載の複合磁性材料。 The composite magnetic material according to claim 1 or 2, wherein 2 to 8 soft magnetic alloy ribbons are laminated on one electromagnetic steel sheet. 前記電磁鋼板は、組成式Fe1−xSi(但し、原子%でx=2.5〜4.5であり、不可避不純物を含む)からなることを特徴とする請求項1乃至請求項3に記載の複合磁性材料。 The electromagnetic steel sheet is composed of a composition formula Fe 1-x Si x (wherein, x = 2.5 to 4.5 in atomic percent and includes inevitable impurities). The composite magnetic material described in 1. 前記軟磁性合金薄帯は非晶質合金であり、合金組成がTaSibBcCd(ただし、TはFe、またはFeとFeに対し10%以下のCo、Niの少なくとも一種を含む元素)で表され、原子%で76≦a<84%、0<b≦12%、8≦c≦18%、d≦3%および不可避不純物からなることを特徴とする請求項1乃至4に記載の複合磁性材料。 The soft magnetic alloy ribbon is an amorphous alloy, the alloy composition T a Si b B c C d ( although, T is includes Fe, or Fe and Fe to 10% or less of Co, at least one of Ni 1 to 4, characterized in that it is composed of 76 ≦ a <84%, 0 <b ≦ 12%, 8 ≦ c ≦ 18%, d ≦ 3% and inevitable impurities in atomic percent. The composite magnetic material described. 請求項1乃至請求項5の複合磁性材料を用いた、動作周波数が400Hz以上の環境下で用いられることを特徴とする回転子。
A rotor using the composite magnetic material according to claim 1, wherein the rotor is used in an environment having an operating frequency of 400 Hz or more.
JP2006311434A 2006-11-17 2006-11-17 Composite magnetic material and rotor Pending JP2008131696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311434A JP2008131696A (en) 2006-11-17 2006-11-17 Composite magnetic material and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311434A JP2008131696A (en) 2006-11-17 2006-11-17 Composite magnetic material and rotor

Publications (1)

Publication Number Publication Date
JP2008131696A true JP2008131696A (en) 2008-06-05

Family

ID=39557025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311434A Pending JP2008131696A (en) 2006-11-17 2006-11-17 Composite magnetic material and rotor

Country Status (1)

Country Link
JP (1) JP2008131696A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012077631A1 (en) * 2010-12-06 2014-05-19 日立金属株式会社 Composite magnetic material and composite magnetic material
JP2017099157A (en) * 2015-11-25 2017-06-01 パナソニックIpマネジメント株式会社 Laminate of magnetic plate and motor
JP2017143251A (en) * 2016-02-09 2017-08-17 国立大学法人東北大学 Laminate of magnetic plates and motor
CN108155730A (en) * 2016-12-06 2018-06-12 松下电器产业株式会社 Iron core and motor
JPWO2017033873A1 (en) * 2015-08-21 2018-08-09 吉川工業株式会社 Stator core and motor including the same
JP2018174650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Iron core and motor including the same
WO2020044745A1 (en) * 2018-08-28 2020-03-05 パナソニックIpマネジメント株式会社 Method of manufacturing stator, stator, and motor
KR20210021094A (en) * 2018-07-13 2021-02-24 지멘스 악티엔게젤샤프트 Method for manufacturing material layer and material layer structure for dynamoelectric rotating machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012077631A1 (en) * 2010-12-06 2014-05-19 日立金属株式会社 Composite magnetic material and composite magnetic material
JPWO2017033873A1 (en) * 2015-08-21 2018-08-09 吉川工業株式会社 Stator core and motor including the same
JP2017099157A (en) * 2015-11-25 2017-06-01 パナソニックIpマネジメント株式会社 Laminate of magnetic plate and motor
JP2017143251A (en) * 2016-02-09 2017-08-17 国立大学法人東北大学 Laminate of magnetic plates and motor
CN108155730A (en) * 2016-12-06 2018-06-12 松下电器产业株式会社 Iron core and motor
JP2018174650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Iron core and motor including the same
KR20210021094A (en) * 2018-07-13 2021-02-24 지멘스 악티엔게젤샤프트 Method for manufacturing material layer and material layer structure for dynamoelectric rotating machine
KR102395755B1 (en) 2018-07-13 2022-05-10 지멘스 악티엔게젤샤프트 Method for manufacturing material layer and material layer structure for dynamoelectric rotating machine
US11451121B2 (en) 2018-07-13 2022-09-20 Siemens Aktiengesellschaft Method for producing a material layer and a material layer structure for a dynamoelectric rotary machine
WO2020044745A1 (en) * 2018-08-28 2020-03-05 パナソニックIpマネジメント株式会社 Method of manufacturing stator, stator, and motor

Similar Documents

Publication Publication Date Title
JP2008131696A (en) Composite magnetic material and rotor
US10742077B2 (en) Soft magnetic laminated core and method of producing a laminated core for a stator and/or rotor of an electric machine
JP5883437B2 (en) Magnetic material and coil component using the same
JP5082002B1 (en) Magnetic materials and coil parts
TW200302495A (en) Magnetic substrate, its lamination, and method for manufacturing the same
JP4872833B2 (en) Powder magnetic core and manufacturing method thereof
TW466816B (en) Bulk amorphous metal magnetic components for electric motors
US20100323206A1 (en) Soft magnetic material and production method therefor
US20060280944A1 (en) Ferromagnetic powder for dust core
JP2008213410A (en) Laminated sheet and manufacturing method of laminate
JP5843124B2 (en) Core manufacturing method
US20230216356A1 (en) Material layer for a laminated core of an electric machine
JP5163490B2 (en) Soft magnetic metal ribbon laminate and method for producing the same
JP2007221869A (en) Laminate
US4427462A (en) Electric apparatus and its magnetic core of (100)[011] silicon-iron sheet made by rapid quenching method
JP2007281314A (en) Soft magnetic alloy ribbon laminate and its manufacturing method
JP2009059954A (en) Disc type reactor
US20120228966A1 (en) Electric motor and process for manufacturing a rotor or a stator of an electric motor
JP2007266184A (en) Method of manufacturing core for closed magnetic path reactor excellent in lamination accuracy, and core for closed magnetic path reactor
JP2012511628A (en) Method for producing an improved electrical steel strip
JP6110097B2 (en) High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
JP2001332411A (en) Composite magnetic material
JPH05275255A (en) Manufacture of transformer of good magnetic properties
JP2020072626A (en) Stator core of rotary electric machine
JP4357822B2 (en) Method for producing amorphous metal ribbon laminate