JP2710152B2 - High frequency dust core and manufacturing method thereof - Google Patents

High frequency dust core and manufacturing method thereof

Info

Publication number
JP2710152B2
JP2710152B2 JP4649093A JP4649093A JP2710152B2 JP 2710152 B2 JP2710152 B2 JP 2710152B2 JP 4649093 A JP4649093 A JP 4649093A JP 4649093 A JP4649093 A JP 4649093A JP 2710152 B2 JP2710152 B2 JP 2710152B2
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
dust core
magnetic powder
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4649093A
Other languages
Japanese (ja)
Other versions
JPH06260319A (en
Inventor
高司 元田
睦 安部
英敏 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4649093A priority Critical patent/JP2710152B2/en
Publication of JPH06260319A publication Critical patent/JPH06260319A/en
Application granted granted Critical
Publication of JP2710152B2 publication Critical patent/JP2710152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば電源装置用チョ
ークコイル等に用いられる高周波用圧粉磁心,及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency dust core used for, for example, a choke coil for a power supply device, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、交流用軟磁性材料として、表面を
絶縁皮膜処理した珪素を含む電磁鋼板を何層にも積層し
たものがトランス等に用いられている。ところで最近で
は、インバータ制御方式の普及に伴って、高周波帯域で
の磁気特性の改善が求められている。しかし、上記珪素
鋼板を積層したタイプの磁心では、せいぜい1〜2HK
z以下の周波数帯域でしか用いることができず、高周波
用磁性材料としては不適当である。
2. Description of the Related Art Conventionally, as a soft magnetic material for an alternating current, a multilayered electromagnetic steel sheet containing silicon whose surface is treated with an insulating film is used for a transformer or the like. By the way, recently, with the spread of the inverter control system, improvement of magnetic characteristics in a high frequency band is required. However, in the magnetic core of the type in which the silicon steel plates are laminated, at most 1-2HK
It can be used only in a frequency band equal to or lower than z, and is unsuitable as a high-frequency magnetic material.

【0003】一方、高周波用磁性材料としては、近年多
用されているソフトフェライトがある。このソフトフェ
ライトは上記珪素鋼板と比較すると、高周波特性に優
れ、鉄損値も低いが、磁束密度が低いという欠点があ
る。
On the other hand, as a high frequency magnetic material, there is a soft ferrite which is frequently used in recent years. This soft ferrite is superior to the above-mentioned silicon steel sheet in high-frequency characteristics and has a low iron loss value, but has a drawback of low magnetic flux density.

【0004】このような問題に対して、最近、軟磁性粉
末にエポキシ樹脂やふっ素系樹脂等の有機バインダーを
被覆した圧粉磁心材料が提案されている(例えば、特開
昭59-50138号公報参照) 。また、軟磁性粉末に珪酸ソー
ダを主成分とする水ガラス等の無機バインダーを被覆し
た磁心材料も開発されている。これらの粉末磁心材料
は、上記ソフトフェライトに比べて磁束密度を向上でき
る利点があり、高周波特性の改善が図れる。
In order to solve such a problem, a dust core material in which a soft magnetic powder is coated with an organic binder such as an epoxy resin or a fluororesin has recently been proposed (for example, Japanese Patent Application Laid-Open No. 59-50138). See). Also, a magnetic core material in which a soft magnetic powder is coated with an inorganic binder such as water glass containing sodium silicate as a main component has been developed. These powder magnetic core materials have an advantage that the magnetic flux density can be improved as compared with the soft ferrite, and the high frequency characteristics can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記軟
磁性粉末を樹脂,あるいは水ガラスで被覆したもので
は、耐熱性に乏しいという問題点がある。そのため、粉
末成形時に軟磁性粉末内部に発生する歪を開放させるた
めに必要な温度まで加熱することができず、保磁力の減
少を図ることが困難である。その結果、高周波域での鉄
損値が大きくなり、磁心として使用可能な周波数帯域に
限界が生じる問題がある。
However, when the soft magnetic powder is coated with resin or water glass, there is a problem that heat resistance is poor. Therefore, it is not possible to heat to a temperature necessary for releasing the strain generated inside the soft magnetic powder during powder molding, and it is difficult to reduce the coercive force. As a result, there is a problem that an iron loss value in a high frequency range is increased, and a frequency band usable as a magnetic core is limited.

【0006】ここで、本件出願人は、先に、歪取り温度
に耐え得るものとして、軟磁性粉末にCr及びPを必須
元素とするガラス状絶縁層を被覆してなる磁心材料を開
発した。この磁心材料によれば、絶縁層の構成元素とし
てCr及びPを採用したので、耐熱性が向上し、固化成
形時に生じる歪を開放するのに必要な温度に加熱でき、
その結果鉄損失を小さくできるとともに、使用可能な高
周波帯域を拡大でき、かつ絶縁性及び磁束密度を向上で
きる。
Here, the present applicant has previously developed a magnetic core material formed by coating a soft magnetic powder with a glass-like insulating layer containing Cr and P as essential elements as a material capable of withstanding a strain relief temperature. According to this magnetic core material, since Cr and P are employed as constituent elements of the insulating layer, heat resistance is improved, and the material can be heated to a temperature required to release strain generated during solidification molding,
As a result, the iron loss can be reduced, the usable high frequency band can be expanded, and the insulating property and the magnetic flux density can be improved.

【0007】ところで、上記Cr,P酸化物からなる被
覆層の場合、上述の問題を解消できるものの、Cr公害
の観点から問題を残しており、この点の改善が要請され
ている。
By the way, in the case of the coating layer made of Cr and P oxides described above, although the above problem can be solved, there remains a problem from the viewpoint of Cr pollution, and improvement of this point is demanded.

【0008】本発明の目的は、Cr,P酸化物被覆層と
同等の磁束密度,鉄損値,及び周波数特性を有する磁心
材料を見出し、上記要請に応えられる高周波用圧粉磁心
及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to find a magnetic core material having the same magnetic flux density, iron loss value, and frequency characteristics as Cr and P oxide coating layers, and to meet the above-mentioned demands, and to provide a high-frequency dust core and a method of manufacturing the same. Is to provide.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、軟磁
性粉末を圧粉,接合,固化してなる高周波用圧粉磁心に
おいて、上記軟磁性粉末がP,Mg,B,Feを必須元
素とするガラス状絶縁層で被覆されていることを特徴と
している。
According to a first aspect of the present invention, there is provided a high frequency dust core obtained by compacting, bonding and solidifying soft magnetic powder, wherein the soft magnetic powder contains P, Mg, B and Fe as essential components. It is characterized by being covered with a glassy insulating layer as an element.

【0010】また請求項2の発明は、上記高周波用圧粉
磁心の製造方法であって、軟磁性粉末と、P,Mg,
B,Feを必須元素とするガラス状絶縁剤とを混合する
とともに該混合体を乾燥させて水分を除去する第1工程
と、該乾燥した混合体を粉末成形プレスにて固化成形す
る第2工程と、該固化成形体を焼鈍する第3工程とを備
えたことを特徴としている。
A second aspect of the present invention is the method for manufacturing the high frequency dust core, wherein the soft magnetic powder, P, Mg,
A first step of mixing a glassy insulating material containing B and Fe as essential elements and drying the mixture to remove moisture, and a second step of solidifying and molding the dried mixture with a powder molding press And a third step of annealing the solidified compact.

【0011】また、請求項3,4の発明は上記絶縁層が
被覆された軟磁性粉末に、エポキシ樹脂,イミド樹脂,
あるいはふっ素系樹脂からなる樹脂層を再被覆すること
を特徴としている。
According to a third aspect of the present invention, the soft magnetic powder coated with the insulating layer comprises an epoxy resin, an imide resin,
Alternatively, the method is characterized in that a resin layer made of a fluororesin is recoated.

【0012】ここで、本発明の軟磁性粉末としては、珪
素鋼粉,センダスト粉,アモルファス粉さらにはパーマ
ロイ粉等が採用可能であるが、高純度アトマイズ鉄粉を
採用するのが望ましく、これにより磁束密度の改善効果
が得られる。
Here, as the soft magnetic powder of the present invention, silicon steel powder, sendust powder, amorphous powder, permalloy powder and the like can be used, but it is preferable to use high-purity atomized iron powder. The effect of improving the magnetic flux density is obtained.

【0013】上記高純度鉄粉を採用する場合、磁気特性
の向上を図るうえで、双ロールやボールミルで偏平度を
1〜6に偏平加工し、これにより反磁界係数を低下させ
ることが有効である。
When the high-purity iron powder is used, in order to improve the magnetic properties, it is effective to flatten the flatness to 1 to 6 with a twin roll or a ball mill, thereby lowering the demagnetizing coefficient. is there.

【0014】さらに、うず電流を微小域に閉じ込めるた
めに上記軟磁性粉末を微粉化することは、磁束密度を若
干犠牲にするが高周波特性の安定性,低鉄損を得るうえ
で有効である。
Further, pulverizing the soft magnetic powder in order to confine the eddy current in a very small area is effective in obtaining a high frequency characteristic stability and a low iron loss, although the magnetic flux density is slightly sacrificed.

【0015】[0015]

【作用】請求項1及び2の発明に係る高周波用圧粉磁心
及びその製造方法によれば、軟磁性粉末をガラス状絶縁
層で被覆したので、この元来絶縁特性に良好なガラス状
絶縁層を介して軟磁性粉末同士を接合でき、絶縁性及び
磁束密度を向上できる。そして本発明では、上記ガラス
状絶縁層の構成元素としてP,Mg,B,Feを採用し
たので、上述のCr公害の問題を生じることなく耐熱性
を向上できる。これにより固化成形時に生じる歪を開放
するのに必要な温度に加熱でき、その結果鉄損失を小さ
くできるとともに、使用可能な高周波帯域を拡大でき、
かつ絶縁性及び磁束密度を向上でき、Cr,P酸化物被
覆層と同等の特性が得られ、上述の要請に応えられる。
According to the high frequency dust core and the method of manufacturing the same according to the first and second aspects of the present invention, the soft magnetic powder is covered with the glassy insulating layer. The soft magnetic powders can be joined to each other via the metal, and the insulating property and the magnetic flux density can be improved. In the present invention, since P, Mg, B, and Fe are employed as the constituent elements of the glassy insulating layer, the heat resistance can be improved without causing the above-described problem of Cr pollution. As a result, it can be heated to a temperature required to release the strain generated during solidification molding, and as a result, iron loss can be reduced and the usable high frequency band can be expanded,
In addition, the insulating property and the magnetic flux density can be improved, the same characteristics as those of the Cr and P oxide coating layers can be obtained, and the above demand can be satisfied.

【0016】また、請求項3,4の発明では、絶縁層が
被覆された軟磁性粉末に、エポキシ樹脂,イミド樹脂,
あるいはふっ素系樹脂からなる樹脂層を被覆したので、
成形体の機械的強度を向上できる。
According to the third and fourth aspects of the present invention, an epoxy resin, an imide resin,
Or because it covered a resin layer made of fluororesin,
The mechanical strength of the molded body can be improved.

【0017】[0017]

【実施例】以下、本発明の実施例を図について説明す
る。図1及び図2は本発明の一実施例による高周波用圧
粉磁心及びその製造方法を説明するための図であり、図
1は絶縁処理された軟磁性粉末の模式図、図2は製造工
程を示す模式図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and 2 are views for explaining a high-frequency dust core according to one embodiment of the present invention and a method of manufacturing the same, FIG. 1 is a schematic view of an insulated soft magnetic powder, and FIG. FIG.

【0018】図1において、1は本実施例の圧粉磁心を
構成する軟磁性粉末であり、該粉末1の外表面はガラス
状絶縁層2で被覆されている。そして、上記軟磁性粉末
1同士は上記絶縁層2を介して接合されている。ここ
で、上記軟磁性粉末1は、高純度アトマイズ鉄粉をボー
ルミル又は双ロールで偏平度(平均直径/厚さ)1〜6
の範囲内に偏平加工を施してなるものである。また、上
記絶縁層2は、P,Mg,B,Feを含有するガラス状
のものであり、後述する歪取りの焼鈍処理において硬化
処理されたものである。
In FIG. 1, reference numeral 1 denotes a soft magnetic powder constituting the dust core of the present embodiment, and the outer surface of the powder 1 is covered with a glass-like insulating layer 2. The soft magnetic powders 1 are joined via the insulating layer 2. Here, the soft magnetic powder 1 is obtained by flattening (average diameter / thickness) 1 to 6 of a high-purity atomized iron powder by a ball mill or a twin roll.
The flattening process is performed within the range. The insulating layer 2 is a glass-like material containing P, Mg, B, and Fe, and has been subjected to a hardening process in a later-described annealing process for removing strain.

【0019】次に、図2に沿って上記圧粉磁心の一製造
方法を説明する。まず、水1l当たり、リン酸(163
g)、MgO(31g以下)、ホウ酸(30g)を含む
混合液からなる絶縁処理液4を作成する。この処理液4
を60メッシュ以下の高純度鉄粉3(100g)に対し
て0.05〜30ml添加,混合する。次にこの混合体
5を400℃以下で約10分間乾燥させ、この後解粒
し、絶縁処理粉末6とする。(図2(a),(b) 、第1 工
程)。
Next, a method of manufacturing the above-described dust core will be described with reference to FIG. First, phosphoric acid (163
g), an insulating solution 4 composed of a mixed solution containing MgO (31 g or less) and boric acid (30 g) is prepared. This treatment liquid 4
Is added to and mixed with high purity iron powder 3 (100 g) of 60 mesh or less in an amount of 0.05 to 30 ml. Next, the mixture 5 is dried at 400 ° C. or lower for about 10 minutes, and then pulverized to obtain an insulating powder 6. (FIGS. 2A and 2B, first step).

【0020】ここで上記絶縁処理液4を作成する場合、
MgOはwt比でリン酸:MgO=5.3:1以上にする
と溶かしきれないので、これを上限とするのが望まし
い。また上記処理液4のリン酸濃度は、絶縁層の耐熱性
を向上させるMgOを溶かすのに必要であるが、この比
率以上になると上記リン酸量を多くするほど磁束密度が
低下することから上記比率以下とする。上述のCr,P
酸化物層を形成した場合は、その処理回数を増やすこと
により絶縁性の改善効果が認められたが、上記P,M
g,B,Fe酸化物層の場合は、処理回数を増やすより
もむしろ表面活性剤を添加し、上記処理液と軟磁性粉末
とのぬれ性を向上させる方が有効であると思われる。
Here, when preparing the insulating treatment liquid 4,
MgO cannot be completely dissolved if phosphoric acid: MgO = 5.3: 1 or more in terms of wt ratio, so it is desirable to set this as the upper limit. Further, the concentration of phosphoric acid in the treatment liquid 4 is necessary for dissolving MgO for improving the heat resistance of the insulating layer. However, when the ratio exceeds this ratio, as the amount of phosphoric acid increases, the magnetic flux density decreases. It should be less than the ratio. Cr, P described above
In the case where an oxide layer was formed, the effect of improving the insulating property was recognized by increasing the number of treatments.
In the case of the g, B, and Fe oxide layers, it may be more effective to add a surfactant to improve the wettability between the treatment liquid and the soft magnetic powder, rather than increasing the number of treatments.

【0021】また、上記絶縁処理粉末6に、エポキシ樹
脂,イミド樹脂,ふっ素系樹脂あるいは水ガラスを添
加,混合してもよく、このようにした場合は固化成形時
の機械的強度を向上できる。
Further, an epoxy resin, an imide resin, a fluorine-based resin or water glass may be added to and mixed with the above-mentioned insulating powder 6. In such a case, the mechanical strength during solidification molding can be improved.

【0022】そして、上記水分を除去した絶縁処理粉末
6に必要に応じて、ステアリン酸カルシウム等の潤滑剤
を0.65wt%程度添加し、この混合体5を通常の粉末
成形プレス7により所定の磁心形状に固化成形する(図
2(c) 、第2工程)。
If necessary, a lubricant such as calcium stearate is added to the insulation-treated powder 6 from which water has been removed at about 0.65 wt%. It is solidified into a shape (FIG. 2 (c), second step).

【0023】この固化成形において、プレス7の成形圧
力は3〜6ton/cm2 が適当である。3ton/cm2 以下の圧
力では、成形体が脆くハンドリングが困難となり、また
6ton/cm2 を越えると、形成された絶縁層2の破壊を招
き高周波特性の劣化の原因となるとともに、金型寿命の
低下を招くからである。
In this solidification molding, the molding pressure of the press 7 is suitably from 3 to 6 ton / cm 2 . The 3 ton / cm 2 or less of pressure, the molded body is fragile handling becomes difficult, and if it exceeds 6 ton / cm 2, could result in deterioration of the high-frequency characteristics leads to destruction of the formed insulating layer 2, die life This leads to a decrease in

【0024】次いで、上記固化成形体を、400℃〜6
00℃で約1時間加熱,焼鈍する(第3工程)。この結
果、純鉄粉中に生じていた歪が開放されると同時に絶縁
層が固化処理されてガラス状となり、所定形状の圧粉磁
心が得られる。なお、上記焼鈍処理はAr,N等の不活
性ガス雰囲気で処理するのが望ましい。
Next, the solidified molded body is heated at 400 ° C. to 6 ° C.
Heat and anneal at 00 ° C. for about 1 hour (third step). As a result, the strain generated in the pure iron powder is released, and at the same time, the insulating layer is solidified to be glassy, so that a dust core having a predetermined shape is obtained. It is desirable that the above-described annealing process be performed in an atmosphere of an inert gas such as Ar or N.

【0025】このようにして、本実施例で得られた高周
波用圧粉磁心は、その組織状態として軟磁性粉末1のそ
れぞれが、ガラス状絶縁層2で分離されているので、絶
縁性及び磁束密度を向上することができるとともに、う
ず電流の発生を防止できる。
As described above, since the soft magnetic powder 1 is separated by the glassy insulating layer 2 in the structure state of the powder magnetic core for high frequency obtained in this embodiment, the insulating property and the magnetic flux The density can be improved and the generation of eddy current can be prevented.

【0026】そして、本実施例では、上記絶縁層2の構
成元素として、P,Mg,B,Feを必須としたので、
上述のCr公害の問題を解消しながら、該絶縁層2の耐
熱性を従来の水ガラス,樹脂等の場合に比べて向上で
き、そのため粉末形成時に軟磁性粉末内部に発生する歪
を開放させるために必要な温度まで加熱できる。その結
果、水ガラス等の無機バインダーを用いた場合のよう
に、保磁力の減少を図ることが困難であるという問題も
解消でき、高周波域での鉄損値が小さくなり、使用可能
な周波数帯域を拡大できる。
In this embodiment, P, Mg, B, and Fe are essential as constituent elements of the insulating layer 2.
The heat resistance of the insulating layer 2 can be improved as compared with the conventional case of water glass, resin or the like while solving the problem of the Cr pollution described above, so that the strain generated inside the soft magnetic powder during powder formation is released. To the required temperature. As a result, it is possible to solve the problem that it is difficult to reduce the coercive force, as in the case where an inorganic binder such as water glass is used. Can be expanded.

【0027】また、上記粉末を有機系絶縁バインダで被
覆していないので、材料の耐熱性や絶縁特性が構成する
樹脂特性に支配されるという問題も解消できる。
Further, since the above-mentioned powder is not coated with the organic insulating binder, the problem that the heat resistance and the insulating properties of the material are governed by the properties of the constituent resin can be solved.

【0028】また、本実施例では、軟磁性粉末を双ロー
ルやボールミルで偏平度1〜6に加工したので、反磁界
係数を低減でき、磁気特性を向上できる効果がある。さ
らに、高周波電流は金属導体の表面に集中し易いが、本
実施例では軟磁性粉末を60メッシュアンダーと微粉化
したので、鉄損値の向上だけでなく、周波数特性を改善
できる。
In this embodiment, since the soft magnetic powder is processed to a flatness of 1 to 6 by a twin roll or ball mill, the demagnetizing field coefficient can be reduced and the magnetic properties can be improved. Further, the high frequency current tends to concentrate on the surface of the metal conductor, but in this embodiment, the soft magnetic powder is pulverized to 60 mesh under, so that not only the iron loss value but also the frequency characteristics can be improved.

【0029】図3ないし図5はそれぞれ本発明の効果を
確認するために行った実験結果を説明するための特性図
である。図3は、高純度鉄粉100gに対して処理液の
添加量を0.05〜10ccと変化させた場合の交流初
透磁率の周波数依存性を示す図である。図中、特性曲線
(1)◎印は処理量0.05ccとした試料、特性曲線
(2)●印は処理量0.1ccとした試料、特性曲線
(3)▲印は0.3ccとした試料、特性曲線(4)○
印は1ccとした試料、特性曲線(5)△印は3ccと
した試料、特性曲線(6)□印は5ccとした試料、特
性曲線(7)▽印は10ccとした試料をそれぞれ示
す。
FIGS. 3 to 5 are characteristic diagrams for explaining the results of experiments performed to confirm the effects of the present invention. FIG. 3 is a diagram showing the frequency dependence of the AC initial magnetic permeability when the amount of the processing solution added to 100 g of high-purity iron powder is changed from 0.05 to 10 cc. In the figure, the characteristic curve (1) ◎ indicates a sample with a processing amount of 0.05 cc, the characteristic curve (2) ● indicates a sample with a processing amount of 0.1 cc, and the characteristic curve (3) ▲ indicates a 0.3 cc. Sample, characteristic curve (4) ○
The mark indicates a sample of 1 cc, the characteristic curve (5) indicates a sample of 3 cc, the characteristic curve (6) indicates a sample of 5 cc, and the characteristic curve (7) indicates a sample of 10 cc.

【0030】図3からも明らかなように、処理液量を
0.05cc,0.1ccとした試料(1),(2)で
は高い周波数域での透磁率の低下が大きく、絶縁効果は
認められるが安定性に劣る。また処理液量を10ccと
した試料(7)では安定性は良いものの透磁率のレベル
が低い。これに対して、処理液量を0.3〜5ccとし
た試料(3)〜(6)の場合、周波数が高くなっても透
磁率のレベル,及び安定性とも良好な値になっている。
As is clear from FIG. 3, in the samples (1) and (2) in which the treatment liquid volumes were 0.05 cc and 0.1 cc, the magnetic permeability in a high frequency range was greatly reduced, and the insulating effect was recognized. But poor stability. In sample (7) in which the amount of the processing solution was 10 cc, the stability was good, but the level of the magnetic permeability was low. On the other hand, in the case of the samples (3) to (6) in which the amount of the processing liquid is 0.3 to 5 cc, even when the frequency is increased, the level of the magnetic permeability and the stability are good.

【0031】図4は、高純度鉄粉100gに対して処理
液量1ccとして処理し、これにイミド樹脂を湿式混合
によりコーティングした場合と、単に乾式混合した場合
との交流初透磁率の周波数依存性を示す図である。図
中、特性曲線(8)○印は、イミド樹脂を混合していな
い試料、特性曲線(9)△印は処理鉄粉vf99%にイ
ミド樹脂をvf1%湿式混合した後解粒した試料、特性
曲線(10)□印は処理鉄粉vf99%にイミド樹脂を
vf1%乾式混合した試料、特性曲線(11)●印は処
理鉄粉vf97%にイミド樹脂をvf3%湿式混合した
後解粒した試料、特性曲線(12)▽印は処理鉄粉vf
95%にイミド樹脂をvf5%湿式混合した後解粒した
試料をそれぞれ示す。
FIG. 4 shows the frequency dependence of the initial magnetic permeability of AC between the case where 100 g of high-purity iron powder is treated with a treatment liquid amount of 1 cc and the imide resin is coated by wet mixing and the case where it is simply dry mixed. FIG. In the figure, the characteristic curve (8) 印 indicates a sample in which imide resin was not mixed, and the characteristic curve (9) △ indicates a sample obtained by wet-mixing treated iron powder vf99% with imide resin vf1% and then granulating. Curve (10) □ indicates a sample obtained by dry mixing imide resin vf1% with treated iron powder vf99%, and characteristic curve (11) indicates a sample obtained by wet mixing imide resin vf3% vf3% with treated iron powder vf97% and then granulated. , Characteristic curve (12) ▽ indicates treated iron powder vf
Samples obtained by wet mixing 95% of imide resin with 5% of vf and then pulverizing are shown.

【0032】図4からも明らかなように、イミド樹脂を
混合していない試料(8)に対して、イミド樹脂量が増
えるほど透磁率のレベルは下がるものの、安定性は向上
している。また湿式混合した試料(9)と、乾式混合し
た試料(10)とを比べると、湿式コーティングした方
が安定性が高いことがわかる。又、同じことが水ガラス
の場合においても言える。
As is clear from FIG. 4, as compared with the sample (8) in which the imide resin is not mixed, as the amount of the imide resin increases, the level of the magnetic permeability decreases, but the stability is improved. Further, comparing the wet-mixed sample (9) with the dry-mixed sample (10), it can be seen that the stability is higher when wet-coated. The same can be said for water glass.

【0033】図5は、高純度鉄粉の偏平化時間とアスペ
クト比(D/t)との関係を示す特性図である。このア
スペクト比Dは、図に示すように、平均直径(D1 +D
2 /2)/厚さtであり、図中、試料(13)はD/t
比1.5、試料(14)は3.5、試料(15)は5.
0、試料(16)は6.0、試料(17)は3.25試
料(18)は2.5である。
FIG. 5 is a characteristic diagram showing the relationship between the flattening time of high-purity iron powder and the aspect ratio (D / t). This aspect ratio D is, as shown in the figure, an average diameter (D 1 + D
2/2) / a thickness t, in the figure the sample (13) is D / t
Ratio 1.5, sample (14) is 3.5, sample (15) is 5.
0, sample (16) was 6.0, sample (17) was 3.25, sample (18) was 2.5.

【0034】そして上記各試料(13)〜(18)の磁
束密度を測定した。その結果、試料(13)は9000
G、試料(14)は10000G、試料(15)は12
000G、試料(16)は12000G、試料(17)
は10000G、試料(18)は8500Gであった。
このようにアスペクト比を1〜6の範囲にすることによ
り、磁気特性が向上することがわかる。なかでも試料
(14)〜(16)の場合は磁束密度がさらに向上して
おり、偏平化による効果が認められる。
The magnetic flux density of each of the samples (13) to (18) was measured. As a result, the sample (13) was 9000
G, sample (14) is 10,000 G, sample (15) is 12
000G, sample (16) is 12000G, sample (17)
Was 10,000 G, and the sample (18) was 8500 G.
It can be seen that setting the aspect ratio in the range of 1 to 6 improves the magnetic characteristics. Among them, in the case of samples (14) to (16), the magnetic flux density is further improved, and the effect of flattening is recognized.

【0035】[0035]

【発明の効果】以上のように本発明に係る高周波用圧粉
磁心及びその製造方法によれば、軟磁性粉末をP,M
g,B,Feを必須元素とするガラス状絶縁層で被覆し
たので、絶縁性及び磁束密度を向上でき、また耐熱性を
向上できることから鉄損を小さくできるとともに、使用
可能の周波数帯域を拡大できる効果がある。
As described above, according to the high-frequency dust core and the method of manufacturing the same according to the present invention, the soft magnetic powder is formed of P, M
Since it is covered with a glassy insulating layer containing g, B, and Fe as essential elements, the insulating property and the magnetic flux density can be improved, and since the heat resistance can be improved, the iron loss can be reduced and the usable frequency band can be expanded. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明の一実施例による高周波用圧粉
磁心を示す模式図である。
FIG. 1 is a schematic view showing a high-frequency dust core according to an embodiment of the present invention;

【図2】請求項2の発明の一実施例による圧粉磁心の製
造方法の模式図である。
FIG. 2 is a schematic view of a method for manufacturing a dust core according to an embodiment of the present invention.

【図3】本発明の効果を説明するための実験結果を示す
交流初透磁率と周波数との特性図である。
FIG. 3 is a characteristic diagram of AC initial permeability and frequency showing experimental results for explaining the effect of the present invention.

【図4】本発明の実験結果を示す交流初透磁率と周波数
との特性図である。
FIG. 4 is a characteristic diagram of AC initial permeability and frequency showing experimental results of the present invention.

【図5】本発明の実験結果を示す偏平化時間とアスペク
ト比との特性図である。
FIG. 5 is a characteristic diagram showing a flattening time and an aspect ratio showing experimental results of the present invention.

【符号の説明】[Explanation of symbols]

1 軟磁性粉末 2 ガラス状絶縁層 1 soft magnetic powder 2 glassy insulating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 英敏 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (56)参考文献 特開 昭50−28445(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hidetoshi Nishimoto 1-3-18 Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd. Kobe Head Office (56) References JP 50-28445 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軟磁性粉末を圧粉,接合,固化してなる
高周波用圧粉磁心において、上記軟磁性粉末がP,M
g,B,Feを必須元素とするガラス状絶縁層で被覆さ
れていることを特徴とする高周波用圧粉磁心。
1. A high frequency dust core obtained by dusting, bonding and solidifying soft magnetic powder, wherein the soft magnetic powder is P, M
A high frequency dust core, which is covered with a glassy insulating layer containing g, B and Fe as essential elements.
【請求項2】 軟磁性粉末を圧粉,接合,固化してなる
高周波用圧粉磁心の製造方法において、上記軟磁性粉末
と、P,Mg,B,Feを必須元素とするガラス状絶縁
剤とを混合するとともに該混合体を乾燥させて水分を除
去する第1工程と、該乾燥した混合体を粉末成形プレス
にて固化成形する第2工程と、該固化成形体を焼鈍する
第3工程とを備えたことを特徴とする高周波用圧粉磁心
の製造方法。
2. A method for manufacturing a high-frequency dust core obtained by compacting, bonding and solidifying soft magnetic powder, wherein the soft magnetic powder and a glassy insulating material containing P, Mg, B and Fe as essential elements. , A first step of drying the mixture to remove moisture, a second step of solidifying the dried mixture with a powder molding press, and a third step of annealing the solidified body And a method for producing a high-frequency dust core.
【請求項3】 請求項1において、上記絶縁層が被覆さ
れた軟磁性粉末に、エポキシ樹脂,イミド樹脂,あるい
はふっ素系樹脂からなる樹脂層を被覆形成したことを特
徴とする高周波用圧粉磁心。
3. The high frequency dust core according to claim 1, wherein the soft magnetic powder coated with the insulating layer is coated with a resin layer made of an epoxy resin, an imide resin, or a fluororesin. .
【請求項4】 請求項2において、上記軟磁性粉末及び
上記ガラス状絶縁剤にエポキシ樹脂,イミド樹脂,ある
いはふっ素系樹脂の粉末を混合したことを特徴とする高
周波用圧粉磁心の製造方法。
4. The method according to claim 2, wherein an epoxy resin, an imide resin, or a fluorine resin powder is mixed with the soft magnetic powder and the glassy insulating agent.
JP4649093A 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof Expired - Lifetime JP2710152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4649093A JP2710152B2 (en) 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4649093A JP2710152B2 (en) 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06260319A JPH06260319A (en) 1994-09-16
JP2710152B2 true JP2710152B2 (en) 1998-02-10

Family

ID=12748662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4649093A Expired - Lifetime JP2710152B2 (en) 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2710152B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032503A1 (en) 2006-09-11 2008-03-20 Kabushiki Kaisha Kobe Seiko Sho Iron-based soft magnetic powder for dust core, method for producing the same and dust core
EP2105936A1 (en) 2008-03-25 2009-09-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Iron-based soft magnetic powder for dust core, production method thereof, and dust core
EP2221835A1 (en) 2009-02-24 2010-08-25 Kabushiki Kaisha Kobe Seiko Sho Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
JP2010255116A (en) * 2009-03-30 2010-11-11 Kobe Steel Ltd Method for producing modified green compact, and powder magnetic core obtained by the production method
EP2466597A1 (en) 2010-12-20 2012-06-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Production process of dust core and dust core obtained thereby
EP2523195A1 (en) 2011-05-09 2012-11-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing dust core, and dust core produced by the method
KR20150030735A (en) 2012-07-20 2015-03-20 가부시키가이샤 고베 세이코쇼 Powder for powder magnetic core, and powder magnetic core

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69717718T2 (en) * 1996-05-28 2003-11-13 Hitachi Powdered Metals Co., Ltd. Soft magnetic powder composite core made of particles with insulating layers
WO1998008233A1 (en) * 1996-08-21 1998-02-26 Tdk Corporation Magnetic powder and magnetic molded article
SE0000454D0 (en) * 2000-02-11 2000-02-11 Hoeganaes Ab Iron powder and method for the preparation thereof
JP2002013990A (en) * 2000-06-30 2002-01-18 Tokyo Shiyouketsu Kinzoku Kk Magnetic core for non-contact type displacement sensor
JP2002170707A (en) * 2000-12-04 2002-06-14 Daido Steel Co Ltd Dust core having high electric resistance and its manufacturing method
WO2002058085A1 (en) 2001-01-19 2002-07-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Dust core and method for producing the same
JP4060101B2 (en) 2002-03-20 2008-03-12 株式会社豊田中央研究所 Insulating film, magnetic core powder and powder magnetic core, and methods for producing them
CN100565721C (en) 2003-08-06 2009-12-02 日本科学冶金株式会社 The manufacture method of soft magnetic composite powder and manufacture method thereof and soft magnetic compact
SE0303580D0 (en) * 2003-12-29 2003-12-29 Hoeganaes Ab Composition for producing soft magnetic composites by powder metallurgy
EP2502689B8 (en) * 2005-01-25 2014-06-11 Diamet Corporation Iron powder coated with Mg-containing oxide film
JP5027390B2 (en) * 2005-03-28 2012-09-19 株式会社ダイヤメット Deposited film-coated iron powder
JP4707054B2 (en) * 2005-08-03 2011-06-22 住友電気工業株式会社 Soft magnetic material, method for producing soft magnetic material, dust core, and method for producing dust core
JP4655838B2 (en) 2005-09-08 2011-03-23 トヨタ自動車株式会社 Core manufacturing method
JP4827719B2 (en) * 2006-12-21 2011-11-30 富士電機株式会社 Manufacturing method of thin magnetic parts
US20140002219A1 (en) 2011-03-11 2014-01-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Iron base soft magnetic powder for powder magnetic cores, fabrication method for same, and powder magnetic core
WO2014157517A1 (en) 2013-03-27 2014-10-02 日立化成株式会社 Powder magnetic core for reactor
CN111145986A (en) * 2018-11-01 2020-05-12 松下电器产业株式会社 Dust core and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032503A1 (en) 2006-09-11 2008-03-20 Kabushiki Kaisha Kobe Seiko Sho Iron-based soft magnetic powder for dust core, method for producing the same and dust core
EP2105936A1 (en) 2008-03-25 2009-09-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Iron-based soft magnetic powder for dust core, production method thereof, and dust core
EP2221835A1 (en) 2009-02-24 2010-08-25 Kabushiki Kaisha Kobe Seiko Sho Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
US10256019B2 (en) 2009-02-24 2019-04-09 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
JP2010255116A (en) * 2009-03-30 2010-11-11 Kobe Steel Ltd Method for producing modified green compact, and powder magnetic core obtained by the production method
EP2466597A1 (en) 2010-12-20 2012-06-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Production process of dust core and dust core obtained thereby
US8323422B2 (en) 2010-12-20 2012-12-04 Kobe Steel, Ltd. Production process of dust core and dust core obtained thereby
EP2523195A1 (en) 2011-05-09 2012-11-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing dust core, and dust core produced by the method
KR20150030735A (en) 2012-07-20 2015-03-20 가부시키가이샤 고베 세이코쇼 Powder for powder magnetic core, and powder magnetic core
US9922758B2 (en) 2012-07-20 2018-03-20 Kobe Steel, Ltd. Powder for powder magnetic core, and powder magnetic core

Also Published As

Publication number Publication date
JPH06260319A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
JP2710152B2 (en) High frequency dust core and manufacturing method thereof
US7752737B2 (en) Method for manufacturing a powder magnetic core
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
WO2014116004A1 (en) Method for manufacturing fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
KR100844613B1 (en) Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal and inductance part comprising the magnetic core
JP2008270368A (en) Dust core and method of manufacturing the same
US5138393A (en) Magnetic core
JP2010027854A (en) Dust core and manufacturing method thereof
JP2009164402A (en) Manufacturing method of dust core
JPH10163017A (en) High frequency soft-magnetic material for low temp. sintering and manufacture of inductor using the same
US6723179B2 (en) Soft magnetism alloy powder, treating method thereof, soft magnetism alloy formed body, and production method thereof
JPH06132109A (en) Compressed powder magnetic core for high frequency
US20020189714A1 (en) Method for the compaction of soft magnetic powder
JP2010251473A (en) Dust core and method of manufacturing the same
JP2000232014A (en) Manufacture of composite magnetic material
JPH10144512A (en) Manufacture of dust core
JP3021208B2 (en) Winding integrated magnetic element and method of manufacturing the same
JP3201782B2 (en) Manufacturing method of dust core
JPH08236332A (en) High-frequency dust core and its manufacture
US2531445A (en) Manufacture of magnetic bodies from compressed powdered materials
JP2009259979A (en) Dust core, manufacturing method of dust core, choke coil, and its manufacturing method
JP2918255B2 (en) Manufacturing method of magnetic core
JPH10189323A (en) Dust core and its manufacture
JP3388247B2 (en) Wound core and method of manufacturing the same
JP3929853B2 (en) Method for producing silicon-iron alloy metal soft magnetic dust core

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 16

EXPY Cancellation because of completion of term