JPH06260319A - Dust core for high frequency and manufacture thereof - Google Patents

Dust core for high frequency and manufacture thereof

Info

Publication number
JPH06260319A
JPH06260319A JP4649093A JP4649093A JPH06260319A JP H06260319 A JPH06260319 A JP H06260319A JP 4649093 A JP4649093 A JP 4649093A JP 4649093 A JP4649093 A JP 4649093A JP H06260319 A JPH06260319 A JP H06260319A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
resin
high frequency
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4649093A
Other languages
Japanese (ja)
Other versions
JP2710152B2 (en
Inventor
Takashi Motoda
高司 元田
Mutsumi Abe
睦 安部
Hidetoshi Nishimoto
英敏 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4649093A priority Critical patent/JP2710152B2/en
Publication of JPH06260319A publication Critical patent/JPH06260319A/en
Application granted granted Critical
Publication of JP2710152B2 publication Critical patent/JP2710152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a dust core for a high frequency in which insulation and magnetic flux density can be improved, heat resistance is improved to reduce iron loss and an available frequency band can be increased and a method for manufacturing the same. CONSTITUTION:Soft magnetic powder 1 is covered with a vitreous insulating layer 2 containing P, Mg, B, Fe as indispensable elements. The powder covered with the layer is covered with epoxy resin, imide resin or fluorine resin, or mixed with resin. Further, high purity iron powder is used as the powder, and the flakiness of the iron powder (mean diameter/thickness) is set to 1-6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電源装置用チョ
ークコイル等に用いられる高周波用圧粉磁心,及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency powder magnetic core used in, for example, a choke coil for a power supply device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、交流用軟磁性材料として、表面を
絶縁皮膜処理した珪素を含む電磁鋼板を何層にも積層し
たものがトランス等に用いられている。ところで最近で
は、インバータ制御方式の普及に伴って、高周波帯域で
の磁気特性の改善が求められている。しかし、上記珪素
鋼板を積層したタイプの磁心では、せいぜい1〜2HK
z以下の周波数帯域でしか用いることができず、高周波
用磁性材料としては不適当である。
2. Description of the Related Art Conventionally, as a soft magnetic material for AC, a transformer or the like is used in which many layers of electromagnetic steel sheets containing silicon whose surface is treated with an insulating film are laminated. By the way, recently, with the spread of the inverter control system, improvement of magnetic characteristics in a high frequency band is required. However, in the magnetic core of the type in which the above-mentioned silicon steel plates are laminated, at most 1-2 HK
It can be used only in the frequency band of z or less, and is unsuitable as a high frequency magnetic material.

【0003】一方、高周波用磁性材料としては、近年多
用されているソフトフェライトがある。このソフトフェ
ライトは上記珪素鋼板と比較すると、高周波特性に優
れ、鉄損値も低いが、磁束密度が低いという欠点があ
る。
On the other hand, as a high frequency magnetic material, there is soft ferrite which has been widely used in recent years. Compared with the above-mentioned silicon steel sheet, this soft ferrite is excellent in high frequency characteristics and has a low iron loss value, but has a drawback that the magnetic flux density is low.

【0004】このような問題に対して、最近、軟磁性粉
末にエポキシ樹脂やふっ素系樹脂等の有機バインダーを
被覆した圧粉磁心材料が提案されている(例えば、特開
昭59-50138号公報参照) 。また、軟磁性粉末に珪酸ソー
ダを主成分とする水ガラス等の無機バインダーを被覆し
た磁心材料も開発されている。これらの粉末磁心材料
は、上記ソフトフェライトに比べて磁束密度を向上でき
る利点があり、高周波特性の改善が図れる。
In order to solve such a problem, a powder magnetic core material has recently been proposed in which a soft magnetic powder is coated with an organic binder such as an epoxy resin or a fluorine resin (for example, Japanese Patent Laid-Open No. 59-50138). See). A magnetic core material has also been developed in which a soft magnetic powder is coated with an inorganic binder such as water glass whose main component is sodium silicate. These powder magnetic core materials have an advantage that the magnetic flux density can be improved as compared with the soft ferrite, and can improve the high frequency characteristics.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記軟
磁性粉末を樹脂,あるいは水ガラスで被覆したもので
は、耐熱性に乏しいという問題点がある。そのため、粉
末成形時に軟磁性粉末内部に発生する歪を開放させるた
めに必要な温度まで加熱することができず、保磁力の減
少を図ることが困難である。その結果、高周波域での鉄
損値が大きくなり、磁心として使用可能な周波数帯域に
限界が生じる問題がある。
However, the above soft magnetic powder coated with resin or water glass has a problem of poor heat resistance. Therefore, the powder cannot be heated to a temperature necessary to release the strain generated inside the soft magnetic powder during the powder molding, and it is difficult to reduce the coercive force. As a result, there is a problem that the iron loss value in the high frequency region becomes large and the frequency band usable as the magnetic core is limited.

【0006】ここで、本件出願人は、先に、歪取り温度
に耐え得るものとして、軟磁性粉末にCr及びPを必須
元素とするガラス状絶縁層を被覆してなる磁心材料を開
発した。この磁心材料によれば、絶縁層の構成元素とし
てCr及びPを採用したので、耐熱性が向上し、固化成
形時に生じる歪を開放するのに必要な温度に加熱でき、
その結果鉄損失を小さくできるとともに、使用可能な高
周波帯域を拡大でき、かつ絶縁性及び磁束密度を向上で
きる。
[0006] Here, the present applicant has previously developed a magnetic core material, which is made of a soft magnetic powder coated with a glass-like insulating layer containing Cr and P as essential elements, as a material capable of withstanding the strain relief temperature. According to this magnetic core material, since Cr and P are adopted as the constituent elements of the insulating layer, the heat resistance is improved, and it is possible to heat to the temperature necessary to release the strain generated during solidification molding,
As a result, the iron loss can be reduced, the usable high frequency band can be expanded, and the insulation and the magnetic flux density can be improved.

【0007】ところで、上記Cr,P酸化物からなる被
覆層の場合、上述の問題を解消できるものの、Cr公害
の観点から問題を残しており、この点の改善が要請され
ている。
By the way, in the case of the above-mentioned Cr, P oxide coating layer, although the above-mentioned problem can be solved, there is still a problem from the viewpoint of Cr pollution, and improvement of this point is demanded.

【0008】本発明の目的は、Cr,P酸化物被覆層と
同等の磁束密度,鉄損値,及び周波数特性を有する磁心
材料を見出し、上記要請に応えられる高周波用圧粉磁心
及びその製造方法を提供することにある。
An object of the present invention is to find a magnetic core material having a magnetic flux density, an iron loss value, and a frequency characteristic equivalent to those of a Cr or P oxide coating layer, and to meet the above-mentioned requirements, a high frequency powder magnetic core and a manufacturing method thereof. To provide.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、軟磁
性粉末を圧粉,接合,固化してなる高周波用圧粉磁心に
おいて、上記軟磁性粉末がP,Mg,B,Feを必須元
素とするガラス状絶縁層で被覆されていることを特徴と
している。
According to a first aspect of the present invention, in a high-frequency powder magnetic core formed by pressing, bonding and solidifying soft magnetic powder, the soft magnetic powder must contain P, Mg, B and Fe. It is characterized in that it is covered with a glassy insulating layer as an element.

【0010】また請求項2の発明は、上記高周波用圧粉
磁心の製造方法であって、軟磁性粉末と、P,Mg,
B,Feを必須元素とするガラス状絶縁剤とを混合する
とともに該混合体を乾燥させて水分を除去する第1工程
と、該乾燥した混合体を粉末成形プレスにて固化成形す
る第2工程と、該固化成形体を焼鈍する第3工程とを備
えたことを特徴としている。
According to a second aspect of the present invention, there is provided a method of manufacturing the above-mentioned dust core for high frequencies, which comprises soft magnetic powder, P, Mg,
A first step of mixing a glassy insulating agent containing B and Fe as essential elements and drying the mixture to remove water, and a second step of solidifying and molding the dried mixture with a powder molding press. And a third step of annealing the solidified compact.

【0011】また、請求項3,4の発明は上記絶縁層が
被覆された軟磁性粉末に、エポキシ樹脂,イミド樹脂,
あるいはふっ素系樹脂からなる樹脂層を再被覆すること
を特徴としている。
Further, according to the inventions of claims 3 and 4, the soft magnetic powder coated with the insulating layer is coated with an epoxy resin, an imide resin,
Alternatively, it is characterized in that a resin layer made of a fluorine-based resin is recoated.

【0012】ここで、本発明の軟磁性粉末としては、珪
素鋼粉,センダスト粉,アモルファス粉さらにはパーマ
ロイ粉等が採用可能であるが、高純度アトマイズ鉄粉を
採用するのが望ましく、これにより磁束密度の改善効果
が得られる。
Here, as the soft magnetic powder of the present invention, silicon steel powder, sendust powder, amorphous powder, and permalloy powder can be adopted, but it is desirable to use high-purity atomized iron powder. The effect of improving the magnetic flux density can be obtained.

【0013】上記高純度鉄粉を採用する場合、磁気特性
の向上を図るうえで、双ロールやボールミルで偏平度を
1〜6に偏平加工し、これにより反磁界係数を低下させ
ることが有効である。
When the above-mentioned high-purity iron powder is adopted, it is effective to flatten the flatness to 1 to 6 with a twin roll or a ball mill in order to improve the magnetic properties, thereby lowering the diamagnetic field coefficient. is there.

【0014】さらに、うず電流を微小域に閉じ込めるた
めに上記軟磁性粉末を微粉化することは、磁束密度を若
干犠牲にするが高周波特性の安定性,低鉄損を得るうえ
で有効である。
Further, pulverizing the soft magnetic powder in order to confine the eddy current in a minute region is effective in obtaining stability of high frequency characteristics and low iron loss, although the magnetic flux density is slightly sacrificed.

【0015】[0015]

【作用】請求項1及び2の発明に係る高周波用圧粉磁心
及びその製造方法によれば、軟磁性粉末をガラス状絶縁
層で被覆したので、この元来絶縁特性に良好なガラス状
絶縁層を介して軟磁性粉末同士を接合でき、絶縁性及び
磁束密度を向上できる。そして本発明では、上記ガラス
状絶縁層の構成元素としてP,Mg,B,Feを採用し
たので、上述のCr公害の問題を生じることなく耐熱性
を向上できる。これにより固化成形時に生じる歪を開放
するのに必要な温度に加熱でき、その結果鉄損失を小さ
くできるとともに、使用可能な高周波帯域を拡大でき、
かつ絶縁性及び磁束密度を向上でき、Cr,P酸化物被
覆層と同等の特性が得られ、上述の要請に応えられる。
According to the high-frequency dust core and the method for producing the same according to the inventions of claims 1 and 2, since the soft magnetic powder is coated with the glass-like insulating layer, the glass-like insulating layer originally having good insulating characteristics is obtained. The soft magnetic powders can be bonded to each other via the, and the insulating property and the magnetic flux density can be improved. Further, in the present invention, since P, Mg, B and Fe are adopted as the constituent elements of the glassy insulating layer, the heat resistance can be improved without causing the above-mentioned problem of Cr pollution. As a result, it can be heated to the temperature necessary to release the strain generated during solidification molding, and as a result, iron loss can be reduced and the usable high frequency band can be expanded.
In addition, the insulating property and the magnetic flux density can be improved, the characteristics equivalent to those of the Cr and P oxide coating layers can be obtained, and the above-mentioned requirements can be met.

【0016】また、請求項3,4の発明では、絶縁層が
被覆された軟磁性粉末に、エポキシ樹脂,イミド樹脂,
あるいはふっ素系樹脂からなる樹脂層を被覆したので、
成形体の機械的強度を向上できる。
According to the third and fourth aspects of the invention, the soft magnetic powder coated with the insulating layer is coated with an epoxy resin, an imide resin,
Or because it is coated with a resin layer made of fluorine-based resin,
The mechanical strength of the molded product can be improved.

【0017】[0017]

【実施例】以下、本発明の実施例を図について説明す
る。図1及び図2は本発明の一実施例による高周波用圧
粉磁心及びその製造方法を説明するための図であり、図
1は絶縁処理された軟磁性粉末の模式図、図2は製造工
程を示す模式図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views for explaining a high-frequency powder magnetic core and a method for manufacturing the same according to an embodiment of the present invention. FIG. 1 is a schematic view of soft magnetic powder subjected to insulation treatment, and FIG. 2 is a manufacturing process. It is a schematic diagram which shows.

【0018】図1において、1は本実施例の圧粉磁心を
構成する軟磁性粉末であり、該粉末1の外表面はガラス
状絶縁層2で被覆されている。そして、上記軟磁性粉末
1同士は上記絶縁層2を介して接合されている。ここ
で、上記軟磁性粉末1は、高純度アトマイズ鉄粉をボー
ルミル又は双ロールで偏平度(平均直径/厚さ)1〜6
の範囲内に偏平加工を施してなるものである。また、上
記絶縁層2は、P,Mg,B,Feを含有するガラス状
のものであり、後述する歪取りの焼鈍処理において硬化
処理されたものである。
In FIG. 1, reference numeral 1 is a soft magnetic powder constituting the dust core of this embodiment, and the outer surface of the powder 1 is covered with a glass-like insulating layer 2. The soft magnetic powders 1 are bonded to each other via the insulating layer 2. Here, the soft magnetic powder 1 is made of high-purity atomized iron powder with a ball mill or twin rolls and has a flatness (average diameter / thickness) of 1 to 6
The flattening is performed within the range of. The insulating layer 2 is a glass-like material containing P, Mg, B, and Fe, and is hardened in the later-described strain relief annealing treatment.

【0019】次に、図2に沿って上記圧粉磁心の一製造
方法を説明する。まず、水1l当たり、リン酸(163
g)、MgO(31g以下)、ホウ酸(30g)を含む
混合液からなる絶縁処理液4を作成する。この処理液4
を60メッシュ以下の高純度鉄粉3(100g)に対し
て0.05〜30ml添加,混合する。次にこの混合体
5を400℃以下で約10分間乾燥させ、この後解粒
し、絶縁処理粉末6とする。(図2(a),(b) 、第1 工
程)。
Next, a method of manufacturing the above dust core will be described with reference to FIG. First, phosphoric acid (163
g), MgO (31 g or less), and boric acid (30 g). This treatment liquid 4
0.05 to 30 ml is added to and mixed with high-purity iron powder 3 (100 g) of 60 mesh or less. Next, the mixture 5 is dried at 400 ° C. or lower for about 10 minutes, and then pulverized to obtain an insulating treated powder 6. (FIGS. 2 (a) and 2 (b), the first step).

【0020】ここで上記絶縁処理液4を作成する場合、
MgOはwt比でリン酸:MgO=5.3:1以上にする
と溶かしきれないので、これを上限とするのが望まし
い。また上記処理液4のリン酸濃度は、絶縁層の耐熱性
を向上させるMgOを溶かすのに必要であるが、この比
率以上になると上記リン酸量を多くするほど磁束密度が
低下することから上記比率以下とする。上述のCr,P
酸化物層を形成した場合は、その処理回数を増やすこと
により絶縁性の改善効果が認められたが、上記P,M
g,B,Fe酸化物層の場合は、処理回数を増やすより
もむしろ表面活性剤を添加し、上記処理液と軟磁性粉末
とのぬれ性を向上させる方が有効であると思われる。
Here, when the insulating treatment liquid 4 is prepared,
Since MgO cannot be completely dissolved when the phosphoric acid: MgO = 5.3: 1 or more by weight ratio, it is preferable to set this to the upper limit. Further, the phosphoric acid concentration of the treatment liquid 4 is necessary to dissolve MgO that improves the heat resistance of the insulating layer, but if it is more than this ratio, the magnetic flux density decreases as the phosphoric acid amount increases, so Below the ratio. Cr, P mentioned above
When an oxide layer was formed, the effect of improving the insulating property was recognized by increasing the number of treatments.
In the case of g, B and Fe oxide layers, it is considered more effective to add a surface active agent to improve the wettability between the treatment liquid and the soft magnetic powder rather than increasing the number of treatments.

【0021】また、上記絶縁処理粉末6に、エポキシ樹
脂,イミド樹脂,ふっ素系樹脂あるいは水ガラスを添
加,混合してもよく、このようにした場合は固化成形時
の機械的強度を向上できる。
Further, an epoxy resin, an imide resin, a fluorine resin or water glass may be added to and mixed with the insulating treated powder 6. In such a case, the mechanical strength at the time of solidification molding can be improved.

【0022】そして、上記水分を除去した絶縁処理粉末
6に必要に応じて、ステアリン酸カルシウム等の潤滑剤
を0.65wt%程度添加し、この混合体5を通常の粉末
成形プレス7により所定の磁心形状に固化成形する(図
2(c) 、第2工程)。
If necessary, a lubricant such as calcium stearate is added to the insulation-treated powder 6 from which the water has been removed in an amount of about 0.65% by weight, and the mixture 5 is made into a predetermined magnetic core by a usual powder molding press 7. It is solidified and shaped into a shape (FIG. 2 (c), second step).

【0023】この固化成形において、プレス7の成形圧
力は3〜6ton/cm2 が適当である。3ton/cm2 以下の圧
力では、成形体が脆くハンドリングが困難となり、また
6ton/cm2 を越えると、形成された絶縁層2の破壊を招
き高周波特性の劣化の原因となるとともに、金型寿命の
低下を招くからである。
In this solidification molding, the molding pressure of the press 7 is preferably 3 to 6 ton / cm 2 . The 3 ton / cm 2 or less of pressure, the molded body is fragile handling becomes difficult, and if it exceeds 6 ton / cm 2, could result in deterioration of the high-frequency characteristics leads to destruction of the formed insulating layer 2, die life This leads to a decrease in

【0024】次いで、上記固化成形体を、400℃〜6
00℃で約1時間加熱,焼鈍する(第3工程)。この結
果、純鉄粉中に生じていた歪が開放されると同時に絶縁
層が固化処理されてガラス状となり、所定形状の圧粉磁
心が得られる。なお、上記焼鈍処理はAr,N等の不活
性ガス雰囲気で処理するのが望ましい。
Then, the above-mentioned solidified molded body is heated to 400 ° C. to 6 ° C.
Heat and anneal at 00 ° C. for about 1 hour (third step). As a result, the strain generated in the pure iron powder is released, and at the same time, the insulating layer is solidified to be glass-like, and a dust core having a predetermined shape can be obtained. The annealing treatment is preferably performed in an atmosphere of an inert gas such as Ar or N.

【0025】このようにして、本実施例で得られた高周
波用圧粉磁心は、その組織状態として軟磁性粉末1のそ
れぞれが、ガラス状絶縁層2で分離されているので、絶
縁性及び磁束密度を向上することができるとともに、う
ず電流の発生を防止できる。
In this way, in the high-frequency dust core obtained in this example, since the soft magnetic powders 1 are separated by the glass-like insulating layer 2 as the texture state, the insulating property and the magnetic flux are The density can be improved and eddy current can be prevented from occurring.

【0026】そして、本実施例では、上記絶縁層2の構
成元素として、P,Mg,B,Feを必須としたので、
上述のCr公害の問題を解消しながら、該絶縁層2の耐
熱性を従来の水ガラス,樹脂等の場合に比べて向上で
き、そのため粉末形成時に軟磁性粉末内部に発生する歪
を開放させるために必要な温度まで加熱できる。その結
果、水ガラス等の無機バインダーを用いた場合のよう
に、保磁力の減少を図ることが困難であるという問題も
解消でき、高周波域での鉄損値が小さくなり、使用可能
な周波数帯域を拡大できる。
In this embodiment, since P, Mg, B and Fe are essential as constituent elements of the insulating layer 2,
While solving the problem of Cr pollution described above, the heat resistance of the insulating layer 2 can be improved as compared with the case of conventional water glass, resin, etc., so that the strain generated inside the soft magnetic powder during powder formation is released. It can be heated to the required temperature. As a result, it is possible to solve the problem that it is difficult to reduce the coercive force as in the case of using an inorganic binder such as water glass, the iron loss value in the high frequency range becomes small, and the usable frequency band is reduced. Can be expanded.

【0027】また、上記粉末を有機系絶縁バインダで被
覆していないので、材料の耐熱性や絶縁特性が構成する
樹脂特性に支配されるという問題も解消できる。
Further, since the powder is not coated with the organic insulating binder, the problem that the heat resistance and insulating properties of the material are governed by the resin properties of the constituents can be solved.

【0028】また、本実施例では、軟磁性粉末を双ロー
ルやボールミルで偏平度1〜6に加工したので、反磁界
係数を低減でき、磁気特性を向上できる効果がある。さ
らに、高周波電流は金属導体の表面に集中し易いが、本
実施例では軟磁性粉末を60メッシュアンダーと微粉化
したので、鉄損値の向上だけでなく、周波数特性を改善
できる。
Further, in this embodiment, since the soft magnetic powder is processed to have a flatness of 1 to 6 with a twin roll or a ball mill, the diamagnetic field coefficient can be reduced and the magnetic characteristics can be improved. Further, the high frequency current tends to concentrate on the surface of the metal conductor, but in this embodiment, the soft magnetic powder was finely pulverized to 60 mesh under, so that not only the iron loss value but also the frequency characteristic can be improved.

【0029】図3ないし図5はそれぞれ本発明の効果を
確認するために行った実験結果を説明するための特性図
である。図3は、高純度鉄粉100gに対して処理液の
添加量を0.05〜10ccと変化させた場合の交流初
透磁率の周波数依存性を示す図である。図中、特性曲線
(1)◎印は処理量0.05ccとした試料、特性曲線
(2)●印は処理量0.1ccとした試料、特性曲線
(3)▲印は0.3ccとした試料、特性曲線(4)○
印は1ccとした試料、特性曲線(5)△印は3ccと
した試料、特性曲線(6)□印は5ccとした試料、特
性曲線(7)▽印は10ccとした試料をそれぞれ示
す。
FIGS. 3 to 5 are characteristic diagrams for explaining the results of experiments conducted to confirm the effects of the present invention. FIG. 3 is a diagram showing the frequency dependence of the AC initial magnetic permeability when the amount of the treatment liquid added is changed from 0.05 to 10 cc with respect to 100 g of high-purity iron powder. In the figure, characteristic curve (1) ⊚ mark is a sample with a treatment amount of 0.05 cc, characteristic curve (2) ● mark is a sample with a treatment amount of 0.1 cc, characteristic curve (3) ▲ mark is 0.3 cc Sample, characteristic curve (4) ○
The mark indicates 1 cc, the characteristic curve (5) Δ indicates 3 cc, the characteristic curve (6) □ indicates 5 cc, and the characteristic curve (7) ∇ indicates 10 cc.

【0030】図3からも明らかなように、処理液量を
0.05cc,0.1ccとした試料(1),(2)で
は高い周波数域での透磁率の低下が大きく、絶縁効果は
認められるが安定性に劣る。また処理液量を10ccと
した試料(7)では安定性は良いものの透磁率のレベル
が低い。これに対して、処理液量を0.3〜5ccとし
た試料(3)〜(6)の場合、周波数が高くなっても透
磁率のレベル,及び安定性とも良好な値になっている。
As is clear from FIG. 3, the samples (1) and (2) having treatment liquid amounts of 0.05 cc and 0.1 cc show a large decrease in magnetic permeability in the high frequency range, and the insulating effect is recognized. However, it is inferior in stability. Further, in Sample (7) in which the treatment liquid amount was 10 cc, the stability was good, but the level of magnetic permeability was low. On the other hand, in the case of the samples (3) to (6) in which the treatment liquid amount was 0.3 to 5 cc, the magnetic permeability level and the stability were good values even when the frequency was high.

【0031】図4は、高純度鉄粉100gに対して処理
液量1ccとして処理し、これにイミド樹脂を湿式混合
によりコーティングした場合と、単に乾式混合した場合
との交流初透磁率の周波数依存性を示す図である。図
中、特性曲線(8)○印は、イミド樹脂を混合していな
い試料、特性曲線(9)△印は処理鉄粉vf99%にイ
ミド樹脂をvf1%湿式混合した後解粒した試料、特性
曲線(10)□印は処理鉄粉vf99%にイミド樹脂を
vf1%乾式混合した試料、特性曲線(11)●印は処
理鉄粉vf97%にイミド樹脂をvf3%湿式混合した
後解粒した試料、特性曲線(12)▽印は処理鉄粉vf
95%にイミド樹脂をvf5%湿式混合した後解粒した
試料をそれぞれ示す。
FIG. 4 shows the frequency dependence of the initial magnetic permeability of alternating current when 100 g of high-purity iron powder is treated as a treatment liquid amount of 1 cc and imide resin is coated by wet mixing and when it is simply dry mixed. It is a figure which shows sex. In the figure, the characteristic curve (8) ○ indicates a sample not mixed with an imide resin, and the characteristic curve (9) Δ indicates a sample obtained by wet mixing vf 99% treated iron powder vf 1% with an imide resin and then disintegrating. Curve (10) □ is a sample obtained by dry mixing vf99% of treated iron powder with vf1%, characteristic curve (11) ● is a sample obtained by wet mixing 97% of treated iron powder vf3% with imide resin and then disintegrated , Characteristic curve (12) ▽ indicates treated iron powder vf
Samples obtained by wet mixing 95% of an imide resin with 5% vf and then disintegrating are shown.

【0032】図4からも明らかなように、イミド樹脂を
混合していない試料(8)に対して、イミド樹脂量が増
えるほど透磁率のレベルは下がるものの、安定性は向上
している。また湿式混合した試料(9)と、乾式混合し
た試料(10)とを比べると、湿式コーティングした方
が安定性が高いことがわかる。又、同じことが水ガラス
の場合においても言える。
As is clear from FIG. 4, with respect to the sample (8) in which the imide resin is not mixed, the magnetic permeability level decreases as the amount of the imide resin increases, but the stability is improved. Further, comparing the wet-mixed sample (9) and the dry-mixed sample (10), it can be seen that the wet coating has higher stability. The same can be said for water glass.

【0033】図5は、高純度鉄粉の偏平化時間とアスペ
クト比(D/t)との関係を示す特性図である。このア
スペクト比Dは、図に示すように、平均直径(D1 +D
2 /2)/厚さtであり、図中、試料(13)はD/t
比1.5、試料(14)は3.5、試料(15)は5.
0、試料(16)は6.0、試料(17)は3.25試
料(18)は2.5である。
FIG. 5 is a characteristic diagram showing the relationship between the flattening time of high-purity iron powder and the aspect ratio (D / t). This aspect ratio D is, as shown in the figure, the average diameter (D 1 + D
2/2) / a thickness t, in the figure the sample (13) is D / t
The ratio is 1.5, the sample (14) is 3.5, and the sample (15) is 5.
0, the sample (16) was 6.0, the sample (17) was 3.25, and the sample (18) was 2.5.

【0034】そして上記各試料(13)〜(18)の磁
束密度を測定した。その結果、試料(13)は9000
G、試料(14)は10000G、試料(15)は12
000G、試料(16)は12000G、試料(17)
は10000G、試料(18)は8500Gであった。
このようにアスペクト比を1〜6の範囲にすることによ
り、磁気特性が向上することがわかる。なかでも試料
(14)〜(16)の場合は磁束密度がさらに向上して
おり、偏平化による効果が認められる。
Then, the magnetic flux density of each of the samples (13) to (18) was measured. As a result, the sample (13) was 9000
G, sample (14) 10000G, sample (15) 12
000G, sample (16) is 12000G, sample (17)
Was 10,000 G and the sample (18) was 8500 G.
It can be seen that the magnetic characteristics are improved by setting the aspect ratio in the range of 1 to 6. Among them, in the case of Samples (14) to (16), the magnetic flux density was further improved, and the effect of flattening is recognized.

【0035】[0035]

【発明の効果】以上のように本発明に係る高周波用圧粉
磁心及びその製造方法によれば、軟磁性粉末をP,M
g,B,Feを必須元素とするガラス状絶縁層で被覆し
たので、絶縁性及び磁束密度を向上でき、また耐熱性を
向上できることから鉄損を小さくできるとともに、使用
可能の周波数帯域を拡大できる効果がある。
As described above, according to the dust core for high frequency and the method for manufacturing the same according to the present invention, the soft magnetic powder is mixed with P and M.
Since the glass-like insulating layer containing g, B, and Fe as essential elements is coated, the insulating property and the magnetic flux density can be improved, and the heat resistance can be improved, so that the iron loss can be reduced and the usable frequency band can be expanded. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の一実施例による高周波用圧粉
磁心を示す模式図である。
FIG. 1 is a schematic view showing a high frequency powder magnetic core according to an embodiment of the invention of claim 1.

【図2】請求項2の発明の一実施例による圧粉磁心の製
造方法の模式図である。
FIG. 2 is a schematic view of a method of manufacturing a dust core according to an embodiment of the invention of claim 2.

【図3】本発明の効果を説明するための実験結果を示す
交流初透磁率と周波数との特性図である。
FIG. 3 is a characteristic diagram of AC initial permeability and frequency showing experimental results for explaining the effect of the present invention.

【図4】本発明の実験結果を示す交流初透磁率と周波数
との特性図である。
FIG. 4 is a characteristic diagram of AC initial permeability and frequency showing the experimental results of the present invention.

【図5】本発明の実験結果を示す偏平化時間とアスペク
ト比との特性図である。
FIG. 5 is a characteristic diagram of flattening time and aspect ratio showing experimental results of the present invention.

【符号の説明】[Explanation of symbols]

1 軟磁性粉末 2 ガラス状絶縁層 1 soft magnetic powder 2 glassy insulating layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性粉末を圧粉,接合,固化してなる
高周波用圧粉磁心において、上記軟磁性粉末がP,M
g,B,Feを必須元素とするガラス状絶縁層で被覆さ
れていることを特徴とする高周波用圧粉磁心。
1. A high-frequency powder magnetic core obtained by compacting, bonding and solidifying soft magnetic powder, wherein the soft magnetic powder is P, M.
A high-frequency powder magnetic core, which is coated with a glass-like insulating layer containing g, B, and Fe as essential elements.
【請求項2】 軟磁性粉末を圧粉,接合,固化してなる
高周波用圧粉磁心の製造方法において、上記軟磁性粉末
と、P,Mg,B,Feを必須元素とするガラス状絶縁
剤とを混合するとともに該混合体を乾燥させて水分を除
去する第1工程と、該乾燥した混合体を粉末成形プレス
にて固化成形する第2工程と、該固化成形体を焼鈍する
第3工程とを備えたことを特徴とする高周波用圧粉磁心
の製造方法。
2. A method for manufacturing a dust core for high frequency, which comprises compacting, bonding and solidifying a soft magnetic powder, wherein the soft magnetic powder and a glassy insulating agent containing P, Mg, B and Fe as essential elements. And a second step of drying the mixture to remove water, a second step of solidifying and molding the dried mixture with a powder molding press, and a third step of annealing the solidified body. A method of manufacturing a dust core for high frequency, comprising:
【請求項3】 請求項1において、上記絶縁層が被覆さ
れた軟磁性粉末に、エポキシ樹脂,イミド樹脂,あるい
はふっ素系樹脂からなる樹脂層を被覆形成したことを特
徴とする高周波用圧粉磁心。
3. The high-frequency dust core according to claim 1, wherein the soft magnetic powder coated with the insulating layer is coated with a resin layer made of an epoxy resin, an imide resin, or a fluorine-based resin. .
【請求項4】 請求項2において、上記軟磁性粉末及び
上記ガラス状絶縁剤にエポキシ樹脂,イミド樹脂,ある
いはふっ素系樹脂の粉末を混合したことを特徴とする高
周波用圧粉磁心の製造方法。
4. The method of manufacturing a high frequency powder magnetic core according to claim 2, wherein the soft magnetic powder and the glass-like insulating agent are mixed with a powder of epoxy resin, imide resin, or fluorine resin.
JP4649093A 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof Expired - Lifetime JP2710152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4649093A JP2710152B2 (en) 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4649093A JP2710152B2 (en) 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06260319A true JPH06260319A (en) 1994-09-16
JP2710152B2 JP2710152B2 (en) 1998-02-10

Family

ID=12748662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4649093A Expired - Lifetime JP2710152B2 (en) 1993-03-08 1993-03-08 High frequency dust core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2710152B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008233A1 (en) * 1996-08-21 1998-02-26 Tdk Corporation Magnetic powder and magnetic molded article
US6054219A (en) * 1996-05-28 2000-04-25 Hitachi, Ltd. Process for forming insulating layers on soft magnetic powder composite core from magnetic particles
JP2002013990A (en) * 2000-06-30 2002-01-18 Tokyo Shiyouketsu Kinzoku Kk Magnetic core for non-contact type displacement sensor
JP2002170707A (en) * 2000-12-04 2002-06-14 Daido Steel Co Ltd Dust core having high electric resistance and its manufacturing method
US6562458B2 (en) * 2000-02-11 2003-05-13 Höganäs Ab Iron powder and method for the preparation thereof
WO2005015581A1 (en) * 2003-08-06 2005-02-17 Nippon Kagaku Yakin Co., Ltd. Soft magnetic composite powder and production method therefor and production method for soft magnetic compact
US6903641B2 (en) 2001-01-19 2005-06-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Dust core and method for producing the same
US7029769B2 (en) 2002-03-20 2006-04-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Insulation film, powder for magnetic core and powder magnetic core and processes for producing the same
JP2006307312A (en) * 2005-03-28 2006-11-09 Mitsubishi Materials Pmg Corp Deposition film coated iron powder
WO2007015378A1 (en) * 2005-08-03 2007-02-08 Sumitomo Electric Industries, Ltd. Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core
JP2008159703A (en) * 2006-12-21 2008-07-10 Fuji Electric Holdings Co Ltd Method of manufacturing thin magnetic component
JP2010028131A (en) * 2003-12-29 2010-02-04 Hoganas Ab Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member
US7843092B2 (en) 2005-09-08 2010-11-30 Toyota Jidosha Kabushiki Kaisha Core and method for producing core
US20120138844A1 (en) * 2005-01-25 2012-06-07 Diamet Corporation IRON POWDER COATED WITH Mg-CONTAINING OXIDE FILM
WO2012124032A1 (en) 2011-03-11 2012-09-20 株式会社神戸製鋼所 Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core
US8445105B2 (en) 2006-09-11 2013-05-21 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for production thereof, and dust core
US10074468B2 (en) 2013-03-27 2018-09-11 Hitachi Chemical Company, Ltd. Powder magnetic core for reactor
CN111145986A (en) * 2018-11-01 2020-05-12 松下电器产业株式会社 Dust core and method for manufacturing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228107A (en) 2008-03-25 2009-10-08 Kobe Steel Ltd Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
JP5202382B2 (en) 2009-02-24 2013-06-05 株式会社神戸製鋼所 Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP5427666B2 (en) * 2009-03-30 2014-02-26 株式会社神戸製鋼所 Method for producing modified green compact, and powder magnetic core obtained by the production method
JP5580725B2 (en) 2010-12-20 2014-08-27 株式会社神戸製鋼所 Manufacturing method of dust core and dust core obtained by the manufacturing method
JP2012253317A (en) 2011-05-09 2012-12-20 Kobe Steel Ltd Manufacturing method of dust core, and dust core manufactured by the method
JP5833983B2 (en) 2012-07-20 2015-12-16 株式会社神戸製鋼所 Powder for dust core and dust core

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054219A (en) * 1996-05-28 2000-04-25 Hitachi, Ltd. Process for forming insulating layers on soft magnetic powder composite core from magnetic particles
US6063303A (en) * 1996-08-21 2000-05-16 Tdk Corporation Magnetic powder and magnetic molded article
WO1998008233A1 (en) * 1996-08-21 1998-02-26 Tdk Corporation Magnetic powder and magnetic molded article
US6562458B2 (en) * 2000-02-11 2003-05-13 Höganäs Ab Iron powder and method for the preparation thereof
JP2002013990A (en) * 2000-06-30 2002-01-18 Tokyo Shiyouketsu Kinzoku Kk Magnetic core for non-contact type displacement sensor
JP2002170707A (en) * 2000-12-04 2002-06-14 Daido Steel Co Ltd Dust core having high electric resistance and its manufacturing method
US6903641B2 (en) 2001-01-19 2005-06-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Dust core and method for producing the same
US7029769B2 (en) 2002-03-20 2006-04-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Insulation film, powder for magnetic core and powder magnetic core and processes for producing the same
US7390567B2 (en) 2003-08-06 2008-06-24 Nippon Kagaku Yakin Co., Ltd. Soft magnetic composite powder comprising an inorganic insulating coating, production method of the same, and production method of soft magnetic compact
WO2005015581A1 (en) * 2003-08-06 2005-02-17 Nippon Kagaku Yakin Co., Ltd. Soft magnetic composite powder and production method therefor and production method for soft magnetic compact
JP2010028131A (en) * 2003-12-29 2010-02-04 Hoganas Ab Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member
US8481178B2 (en) 2005-01-25 2013-07-09 Diamet Corporation Iron powder coated with Mg-containing oxide film
US9269481B2 (en) 2005-01-25 2016-02-23 Diamet Corporation Iron powder coated with Mg-containing oxide film
US20120138844A1 (en) * 2005-01-25 2012-06-07 Diamet Corporation IRON POWDER COATED WITH Mg-CONTAINING OXIDE FILM
JP2006307312A (en) * 2005-03-28 2006-11-09 Mitsubishi Materials Pmg Corp Deposition film coated iron powder
WO2007015378A1 (en) * 2005-08-03 2007-02-08 Sumitomo Electric Industries, Ltd. Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core
JP2007042891A (en) * 2005-08-03 2007-02-15 Sumitomo Electric Ind Ltd Soft magnetic material, its manufacturing method, powder magnetic core, and its manufacturing method
JP4707054B2 (en) * 2005-08-03 2011-06-22 住友電気工業株式会社 Soft magnetic material, method for producing soft magnetic material, dust core, and method for producing dust core
US7843092B2 (en) 2005-09-08 2010-11-30 Toyota Jidosha Kabushiki Kaisha Core and method for producing core
US8445105B2 (en) 2006-09-11 2013-05-21 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for production thereof, and dust core
JP2008159703A (en) * 2006-12-21 2008-07-10 Fuji Electric Holdings Co Ltd Method of manufacturing thin magnetic component
WO2012124032A1 (en) 2011-03-11 2012-09-20 株式会社神戸製鋼所 Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core
US10074468B2 (en) 2013-03-27 2018-09-11 Hitachi Chemical Company, Ltd. Powder magnetic core for reactor
CN111145986A (en) * 2018-11-01 2020-05-12 松下电器产业株式会社 Dust core and method for manufacturing same

Also Published As

Publication number Publication date
JP2710152B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JPH06260319A (en) Dust core for high frequency and manufacture thereof
CN105304308B (en) Sendust core preparation method and magnetic core inorganic compounding insulating coating material used
JP4872833B2 (en) Powder magnetic core and manufacturing method thereof
WO2009128425A1 (en) Composite magnetic material and manufacturing method thereof
WO2014116004A1 (en) Method for manufacturing fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
JPH01242757A (en) Alloy for low-frequency transformer and low-frequency transformer using said alloy
JPWO2011077601A1 (en) Powder magnetic core and manufacturing method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
JPS63302504A (en) Magnetic core and manufacture thereof
JPH10163017A (en) High frequency soft-magnetic material for low temp. sintering and manufacture of inductor using the same
JP5232708B2 (en) Powder magnetic core and manufacturing method thereof
US20020189714A1 (en) Method for the compaction of soft magnetic powder
EP1475808B1 (en) Powder magnetic core and high frequency reactor using the same
JP2009164402A (en) Manufacturing method of dust core
JP2001307914A (en) Magnetic powder for dust core, dust core using it, and method for manufacturing dust core
JPH06132109A (en) Compressed powder magnetic core for high frequency
JPH09180924A (en) Dust core and manufacture thereof
JPH10144512A (en) Manufacture of dust core
JP2003197416A (en) Method of manufacturing powder magnetic core, and powder magnetic core manufactured by the method
JPH08236332A (en) High-frequency dust core and its manufacture
JP2006241504A (en) Stacked oxide film-coated iron powder
JP2018142642A (en) Powder magnetic core
JP5232717B2 (en) Powder magnetic core and manufacturing method thereof
JP2002299113A (en) Soft magnetic powder and dust core using the same
JPH10208923A (en) Composite magnetic material and production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 16

EXPY Cancellation because of completion of term