JP2010028131A - Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member - Google Patents

Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member Download PDF

Info

Publication number
JP2010028131A
JP2010028131A JP2009245401A JP2009245401A JP2010028131A JP 2010028131 A JP2010028131 A JP 2010028131A JP 2009245401 A JP2009245401 A JP 2009245401A JP 2009245401 A JP2009245401 A JP 2009245401A JP 2010028131 A JP2010028131 A JP 2010028131A
Authority
JP
Japan
Prior art keywords
iron
soft magnetic
powder
composition
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009245401A
Other languages
Japanese (ja)
Inventor
Lisa Kjellen
チェーレン、リサ
Asa Ahlin
アーリン、オーサ
Lars Hultman
ハルトマン、ラルス
Ola Andersson
アンダーソン、オラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas AB
Original Assignee
Hoganas AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoganas AB filed Critical Hoganas AB
Publication of JP2010028131A publication Critical patent/JP2010028131A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Abstract

<P>PROBLEM TO BE SOLVED: To use not only a novel powder composition with desired powder characteristic but also the powder composition for manufacturing soft magnetic complex constituent member. <P>SOLUTION: A powder composition is provided, which is formed of an electrically insulated particle of a soft magnetic material of iron or iron-based powder, and a lubricant selected from a group comprising of fatty acid amide having 14 to 22 C atoms of 0.1 to 2 wt.%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄基粉末(iron-based powder)組成物に関する。詳しくは、本発明は、粉末冶金製造経路により軟磁性複合体構成部材を製造するための粉末組成物に関する。それら組成物は、高密度のみならず、価値のある磁気的及び機械的性質を有する軟磁性複合体構成部材を製造し易くする。   The present invention relates to an iron-based powder composition. Specifically, the present invention relates to a powder composition for producing a soft magnetic composite component by a powder metallurgy production route. These compositions facilitate the manufacture of soft magnetic composite components that have not only high density but also valuable magnetic and mechanical properties.

軟磁性材料は、インダクター、電気機械のための固定子及び回転子、アクチュエータ、センサー、及び変圧器のコア中のコア材料のような用途で用いられている。電気機械中の回転子及び固定子のような軟磁性のコアは、慣用的には鋼積層体から作られている。軟磁性複合体、SMC材料は、通常鉄基粒子である軟磁性粒子のそれぞれの粒子に電気絶縁被覆を与えたものに基づいている。場合により、それら絶縁粒子を潤滑剤及び/又は結合剤と一緒に慣用的粉末冶金法を用いて成形することにより、SMC部品が得られる。この粉末冶金法を用いることにより、鋼積層体を用いる場合よりもSMC構成部材(component)の設計に一層大きな自由度を与える材料を製造することができる。なぜなら、SMC材料は、三次元的磁束を有し、三次元的形態のものをその成形法により得ることができるからである。   Soft magnetic materials are used in applications such as core materials in inductors, stators and rotors for electrical machines, actuators, sensors, and transformer cores. Soft magnetic cores, such as rotors and stators in electrical machines, are conventionally made from steel laminates. Soft magnetic composites and SMC materials are based on soft magnetic particles, usually iron-based particles, each of which is provided with an electrical insulation coating. Optionally, SMC parts are obtained by molding these insulating particles together with lubricants and / or binders using conventional powder metallurgy. By using this powder metallurgy method, it is possible to produce a material that gives a greater degree of freedom in designing the SMC component than when using a steel laminate. This is because the SMC material has a three-dimensional magnetic flux, and a three-dimensional form can be obtained by the molding method.

鉄コアの構成部材の二つの重要な特性は、その透磁率及びコアロス(core loss)特性である。材料の透磁率は、それが磁化される能力又はそれが磁束を保持する能力の尺度である。透磁率は、磁化力又は磁場強度に対する誘導磁束の比として定義される。磁性材料を交流磁場に曝すと、エネルギー損失、コアロスは、ヒステリシス損失及び渦電流損失の両方によって起きる。ヒステリシス損失は、鉄コアの構成部材内に維持された磁力に打ち勝つのに必要なエネルギー消費によってもたらされ、交流磁場の周波数に比例する。渦電流損失は、鉄コアの構成部材中に交流(AC)条件により起こされる磁束の変化により鉄コアの構成部材中に電流が生ずることによってもたらされ、交流磁場の周波数の二乗に比例する。その場合、渦電流を最小にするためには大きな電気抵抗率が望ましく、大きな周波数では特に重要になる。AC用途のためのコアの構成部材のヒステリシス損失を減少し、透磁率を増大するためには、一般に成形部品を熱処理することが望ましい。   Two important properties of an iron core component are its permeability and core loss characteristics. A material's permeability is a measure of its ability to be magnetized or to retain magnetic flux. Permeability is defined as the ratio of induced magnetic flux to magnetizing force or magnetic field strength. When a magnetic material is exposed to an alternating magnetic field, energy loss and core loss are caused by both hysteresis loss and eddy current loss. Hysteresis loss is caused by the energy consumption required to overcome the magnetic force maintained in the iron core component and is proportional to the frequency of the alternating magnetic field. Eddy current loss is caused by the occurrence of current in the iron core component due to changes in magnetic flux caused by alternating current (AC) conditions in the iron core component and is proportional to the square of the frequency of the alternating magnetic field. In that case, a large electrical resistivity is desirable to minimize eddy currents and becomes particularly important at large frequencies. In order to reduce the hysteresis loss of core components for AC applications and increase the magnetic permeability, it is generally desirable to heat treat the molded part.

被覆された鉄基粉末を用いた磁性体コアの構成部材を粉末冶金で製造する研究は、或る物理的及び磁気的性質を、最終的構成部材の他の性質に致命的な影響を与えることなく、向上させる鉄粉末組成物を開発することに向けられてきた。望ましい構成部材の性質には、例えば、広い周波数範囲にわたる大きな透磁率、低いコアロス、大きな飽和誘導、(大きな密度)及び大きな強度が含まれる。通常構成部材の密度を増大すると、これらの性質の全てが向上する。   Research into the manufacture of magnetic core components using coated iron-based powders by powder metallurgy can have a fatal impact on certain physical and magnetic properties on other properties of the final component Instead, it has been directed to develop improved iron powder compositions. Desirable component properties include, for example, high permeability over a wide frequency range, low core loss, high saturation induction, (high density) and high strength. Increasing the density of normal components improves all of these properties.

希望の粉末特性には、圧縮成形技術に対する適合性が含まれ、それは、とりわけ、粉末を高密度高強度構成部材へ容易に成形することができ、その部品を成形装置から容易に射出することができ、それら構成部材が滑らかな表面仕上げを持つことを意味する。   Desired powder properties include compatibility with compression molding techniques, which, among other things, allows powders to be easily formed into high density, high strength components and that the parts can be easily injected from the molding equipment. It means that the components have a smooth surface finish.

本発明は、希望の粉末特性を有する新規な粉末組成物のみならず、軟磁性複合体構成部材を製造するためにその粉末組成物を使用することに関する。新規な組成物は、希望の性質を有する構成部材へ成形(及び熱処理)することができる。   The present invention relates to the use of a powder composition to produce a soft magnetic composite component as well as a novel powder composition having the desired powder properties. The novel composition can be molded (and heat treated) into components having the desired properties.

本発明は、軟磁性構成部材それ自体と同様、優れた構成部材特性を有する軟磁性の鉄基構成部材を製造する方法にも関する。   The present invention also relates to a method for producing a soft magnetic iron-based component having excellent component characteristics as well as the soft magnetic component itself.

簡単に述べると、本発明による粉末組成物は、電気的に絶縁した軟磁性材料粒子及び脂肪酸アミド潤滑剤により構成される。場合により熱可塑性結合剤が組成物中に存在する。本発明による方法には、混合、成形、及び場合により、得られた構成部材の熱処理が含まれ、優れた性質を有する軟磁性の鉄基構成部材を与える結果になる。   Briefly, the powder composition according to the present invention is composed of electrically insulated soft magnetic material particles and a fatty acid amide lubricant. Optionally a thermoplastic binder is present in the composition. The method according to the invention includes mixing, molding, and optionally heat treatment of the resulting component, resulting in a soft magnetic iron-based component having superior properties.

本発明の詳細な記述
粉末は、実質的に純粋で、不規則な形の粒子を有する水噴霧鉄粉末又はスポンジ状鉄粉末であるのが好ましい。これに関連して用語「実質的に純粋」とは、粉末が含有物を実質的に含まないのがよく、不純物、O、C、及びNの量が、最低限に維持されるべきであることを意味する。平均粒径は、一般に300μmより小さく、10μmより大きい。そのような粉末の例は、スウーデンのヘガネス

ABから入手することができるABC 100.30、ASC 100.29、AT40.29、ASC200、ASC300、NC 100.24、SC 100.26、MH300、MH40.28、MH40.24である。
Detailed Description of the Invention The powder is preferably water atomized iron powder or sponge iron powder having substantially pure and irregularly shaped particles. In this context, the term “substantially pure” means that the powder should be substantially free of inclusions and the amount of impurities, O, C, and N should be kept to a minimum. Means that. The average particle size is generally less than 300 μm and greater than 10 μm. Examples of such powders are Swedish Höganäs

ABC 100.30, ASC 100.29, AT40.29, ASC200, ASC300, NC 100.24, SC 100.26, MH300, MH40.28, MH40.24 available from AB.

本発明の一つの態様によれば、用いられる粉末は、一般的型プレスで通常のものよりも粗い粒子を有する。実際上、このことは、それら粉末が微細粒子を本質的に含まないことを意味する。用語「本質的に微細粒子を含まない」とは、SS−EN24 497に記載されている方法により測定して、45μmより小さい粒径を持つものが、粉末粒子の約10%より少なく、好ましくは5%より少ないことを意味する。平均粒径は、106〜425μmの間にあるのが典型的である。212μmより大きな粒子の量は、典型的には約20%より多い。最大粒径は約2mmでもよい。   According to one embodiment of the invention, the powder used has coarser particles than usual in a conventional mold press. In practice, this means that the powders are essentially free of fine particles. The term “essentially free of fine particles” means that less than about 10% of the powder particles have a particle size of less than 45 μm as measured by the method described in SS-EN24 497, preferably Means less than 5%. The average particle size is typically between 106 and 425 μm. The amount of particles larger than 212 μm is typically greater than about 20%. The maximum particle size may be about 2 mm.

PM工業内で通常用いられている鉄基粒子の粒径は、ガウス分布曲線に従って分布し、平均粒径は30〜100μmの領域にあり、粒子の約10〜30%は45μmより小さい。従って、本発明により用いられる粉末は、通常用いられている粒径分布から逸脱した粒径分布を持っていてもよい。これらの粗い粉末は、粉末の微細な部分を除去するか、希望の粒径分布を有する粉末を製造することにより得ることができる。しかし、本発明は、粗い粉末に限定されるものではなく、PM工業内で型プレスのために通常用いられている粒径を有する粉末も、本発明に含まれている。   The particle size of iron-based particles normally used in the PM industry is distributed according to a Gaussian distribution curve, the average particle size is in the region of 30-100 μm, and about 10-30% of the particles are smaller than 45 μm. Therefore, the powder used according to the present invention may have a particle size distribution deviating from the normally used particle size distribution. These coarse powders can be obtained by removing fine parts of the powder or by producing a powder having a desired particle size distribution. However, the present invention is not limited to coarse powders, and powders having a particle size normally used for mold pressing within the PM industry are also included in the present invention.

粉末粒子の電気絶縁体は、無機材料から作ってもよい。特に適当なものは、US6348265(これは参考のためここに入れてある)に記載されている種類の絶縁であり、それは絶縁性酸素及び燐含有障壁を有する本質的に純粋な鉄からなる基礎粉末の粒子に関する。被覆に関連して、それは、複合体構成部材の性質が、被覆の厚さによって影響を受けることがあることに特に言及しておくべきであろう。絶縁粒子を含む粉末は、スウーデンのヘガネスABからサムアロイ(Somaloy)(商標名)500及び550として入手することができる。   The electrical insulation of the powder particles may be made from an inorganic material. Particularly suitable is an insulation of the type described in US Pat. No. 6,348,265, which is hereby incorporated by reference, which is a base powder consisting essentially of pure iron with an insulating oxygen and phosphorus containing barrier. Related to the particles. In connection with the coating, it should be particularly noted that the properties of the composite component may be affected by the thickness of the coating. Powders containing insulating particles are available as Somaloy ™ 500 and 550 from Höganäs AB, Sweden.

本発明に従い用いられる潤滑剤は、脂肪酸アミドからなる群から選択される。特に適切なアミドは、12〜24、好ましくは14〜22個のC原子、最も好ましくは18〜22個のC原子を有する飽和又は不飽和脂肪酸の第一級アミンである。潤滑剤は、組成物の2重量%より少なく、好ましくは1.5重量%より少ない量で用いることができる。潤滑剤の特に好ましい量は、重量で0.05〜1%、好ましくは0.05〜0.8%、一層好ましくは0.1〜0.8%、最も好ましくは0.1〜0.5%である。特に好ましい潤滑剤は、ステアリン酸アミド、オレイン酸アミド、ベヘン酸アミド、エルカ酸アミド、パルミチン酸アミドであり、ステアリン酸アミドが最も好ましい。米国特許第6,537,389号明細書には、表面上、菜種油メチルエステルと組合せたステアリン酸アミドが、軟磁性粉末を成形するための結合剤としての熱可塑性樹脂、ポリフタルアミドと関連させた潤滑剤として言及されている。   The lubricant used in accordance with the present invention is selected from the group consisting of fatty acid amides. Particularly suitable amides are primary amines of saturated or unsaturated fatty acids having 12 to 24, preferably 14 to 22 C atoms, most preferably 18 to 22 C atoms. The lubricant can be used in an amount of less than 2% by weight of the composition, preferably less than 1.5% by weight. A particularly preferred amount of lubricant is 0.05 to 1% by weight, preferably 0.05 to 0.8%, more preferably 0.1 to 0.8%, most preferably 0.1 to 0.5%. %. Particularly preferred lubricants are stearic acid amide, oleic acid amide, behenic acid amide, erucic acid amide, palmitic acid amide, with stearic acid amide being most preferred. In US Pat. No. 6,537,389, on the surface, stearamide combined with rapeseed oil methyl ester is associated with polyphthalamide, a thermoplastic resin as a binder for forming soft magnetic powders. It is mentioned as a lubricant.

固体潤滑剤は、一般に約1〜2g/cmの密度を有し、それは約7.8g/cmである鉄基粉末の密度と比較して非常に低い。その結果、組成物中にこれら密度の低い潤滑剤を含有させることは、成形構成部材の理論密度を低下するであろう。従って、大きな密度の構成部材を製造するためには、潤滑剤の量を低いレベルに維持することが必須である。しかし、潤滑剤の量が少ないと、取り出し(ejection)の問題を起こす傾向がある。上で言及した種類の潤滑剤は、取り出しの問題を起こすことなく、少ない量で用いることができることが今回思いがけなく発見された。 Solid lubricants generally have a density of about 1 to 2 g / cm 3, it is very low compared to the density of the iron-based powder is about 7.8 g / cm 3. As a result, inclusion of these low density lubricants in the composition will reduce the theoretical density of the molded component. Therefore, in order to produce a high density component, it is essential to maintain the amount of lubricant at a low level. However, low amounts of lubricant tend to cause ejection problems. It has now been unexpectedly discovered that the types of lubricants mentioned above can be used in small quantities without causing problems with removal.

内部潤滑剤、即ち、鉄基粉末混合物に添加される潤滑剤を、型壁の潤滑剤、DWLで置き換え、大きな成形圧力と組合せると、大きな圧粉密度(green density)に到達することができる。しかし、この既知の方法の一つの欠点は、絶縁された鉄基粉末を大きな成形圧力で成形した時、鉄基粉末の絶縁が簡単に損傷し、高周波でのコアロスが大きくなることである。更に、DWLを使用すると、更に工程の複雑性を増し、サイクル時間を長くし、工業的環境中での生産の健全性を低下することがある。   When the internal lubricant, i.e., the lubricant added to the iron-based powder mixture, is replaced with a mold wall lubricant, DWL, and combined with a large molding pressure, a large green density can be reached. . However, one drawback of this known method is that when the insulated iron-based powder is molded at a high molding pressure, the insulation of the iron-based powder is easily damaged and the core loss at high frequencies is increased. In addition, the use of DWL can further increase process complexity, increase cycle times, and reduce the soundness of production in an industrial environment.

本発明によれば、脂肪酸アミドは、絶縁された鉄又は鉄基粉末に対する唯一の添加剤として用いることができるが、或る用途では、熱可塑性樹脂、特にポリフェニレンスルフィド(PPS)を少量添加するのが有利である。これに関連して、用語「少量」とは、組成物の重量に基づき、2より少なく、好ましくは0.8より少なく、一層好ましくは0.6より少なく、最も好ましくは0.5%より少ないものとして解釈すべきである。0.05より少ない量では、PPSの効果は観察されなかった。特にPPSの量が0.1〜0.5、好ましくは0.2〜0.5、又は0.4重量%の範囲にすることができるであろう。PPSの添加は、良好な周波数安定性が要求される場合には特に重要になる。   According to the present invention, fatty acid amides can be used as the only additive to insulated iron or iron-based powders, but in certain applications, small amounts of thermoplastic resins, especially polyphenylene sulfide (PPS), are added. Is advantageous. In this context, the term “small amount” refers to less than 2, preferably less than 0.8, more preferably less than 0.6, most preferably less than 0.5%, based on the weight of the composition. It should be interpreted as a thing. At amounts less than 0.05, no PPS effect was observed. In particular, the amount of PPS could be in the range of 0.1-0.5, preferably 0.2-0.5, or 0.4% by weight. The addition of PPS is particularly important when good frequency stability is required.

PPSとステアリン酸との組合せは、特許出願WO 01/22448により知られている。この出願の実施例には、軟磁性材料を、電気的に絶縁された鉄基粉末とPPS及びステアリン酸とを混合することにより製造できることが記載されている。この混合物を、上昇させた温度で成形し、得られた成形部品を、窒素雰囲気中で260℃で熱処理し、次に285〜300℃で第二の熱処理を行う。今回、思いがけなく、脂肪酸アミドを対応する脂肪酸の代わりに含有する新規な粉末組成物を用いることにより、幾つかの利点を得ることができることが判明した。即ち、この新規な粉末は、予想外に改良された潤滑性を有し、成形部品を型から取り出すのに必要な取り出しエネルギー(ejection energy)を低くする結果になり、一層大きな密度及び一層良好な抗折力(transverse rupture strength)を得ることができることが判明している。更に、成形工程は周囲温度で行うことができる。また、WO公報によれば必要となる第一熱処理工程を省略することができるので、熱処理を促進することができる。   The combination of PPS and stearic acid is known from patent application WO 01/24448. The examples of this application describe that soft magnetic materials can be made by mixing electrically insulated iron-based powders with PPS and stearic acid. The mixture is molded at an elevated temperature, and the resulting molded part is heat treated at 260 ° C. in a nitrogen atmosphere, followed by a second heat treatment at 285-300 ° C. It has now been unexpectedly found that several advantages can be obtained by using a novel powder composition containing a fatty acid amide instead of the corresponding fatty acid. That is, the new powder has unexpectedly improved lubricity and results in lower ejection energy required to remove the molded part from the mold, resulting in greater density and better It has been found that a transverse rupture strength can be obtained. Furthermore, the molding process can be carried out at ambient temperature. Further, according to the WO publication, the necessary first heat treatment step can be omitted, so that the heat treatment can be promoted.

絶縁された粒子を有し、熱可塑性樹脂と組合された電磁鉄基粉末が、米国特許出願2002/0084440に記載されている。本発明による粒子とは対照的に、これらの従来知られている粒子は稀土類元素も含んでいる。更に熱可塑性樹脂が、比較的多量に、即ち、少なくとも5重量%で用いられている。更に、鉄基粉末の粒径が極めて小さい(例として3μmが言及されている)。極めて多種類の化合物から選択された潤滑剤も含有させることができる。これらの粉末組成物は、好ましくは、高度に耐候性の結合永久磁石を製造するための射出成形、押出し、射出圧縮成形、及び射出プレスのために有用であると教示されている。   Magnetic iron-based powders having insulated particles and combined with a thermoplastic resin are described in US patent application 2002/0084440. In contrast to the particles according to the invention, these previously known particles also contain rare earth elements. Furthermore, thermoplastic resins are used in relatively large amounts, ie at least 5% by weight. Furthermore, the particle size of the iron-based powder is very small (3 μm is mentioned as an example). Lubricants selected from a very wide variety of compounds can also be included. These powder compositions are preferably taught to be useful for injection molding, extrusion, injection compression molding, and injection presses to produce highly weathered bonded permanent magnets.

本発明により複合体構成部材を製造するためには、粉末組成物を先ず型中で一軸プレスし、それは通常潤滑される必要はないが、その粉末組成物は潤滑された型の中で用いてもよい。成形された構成部材を、次に型から取り出し、場合により熱処理にかける。   In order to produce a composite component according to the present invention, the powder composition is first uniaxially pressed in a mold, which usually does not need to be lubricated, but the powder composition is used in a lubricated mold. Also good. The molded component is then removed from the mold and optionally subjected to a heat treatment.

成形は周囲温度又は上昇させた温度で、1500MPaまでの圧力で行うことができる。   Molding can be performed at ambient or elevated temperatures and pressures up to 1500 MPa.

本発明の好ましい態様に従い、成形はこのようにして穏やかに加熱された工具で行い、圧粉密度及び取り出しの挙動(ejection behaviour)のみならず、相対的最大透磁率も改良されるであろう。上昇させた温度及び一層低い成形圧力で成形した構成部材の性質と、周囲温度及び一層高い成形圧力で同じ圧粉密度まで成形した構成部材の性質とを比較すると、上昇させた温度で成形した構成部材の方が一層大きな透磁率を有するであろう。一層大きな構成部材の場合、本発明による改良を達成するためには、粉末の温度を同様に上昇させることが必要になるであろう。   In accordance with a preferred embodiment of the present invention, molding will be performed with a gently heated tool in this manner, which will improve not only the green density and the ejection behavior, but also the relative maximum permeability. Comparing the properties of components molded at elevated temperature and lower molding pressure with the properties of components molded to the same dust density at ambient temperature and higher molding pressure, the configuration molded at elevated temperature The member will have a higher magnetic permeability. For larger components, it may be necessary to raise the temperature of the powder as well in order to achieve the improvement according to the invention.

熱処理を、一つか又は幾つかの工程で行うことができる。推奨される一工程の熱処理は、酸素含有雰囲気(空気)中で250〜550℃の温度で30分〜4時間の時間行われる。   The heat treatment can be performed in one or several steps. The recommended one-step heat treatment is performed at a temperature of 250 to 550 ° C. for 30 minutes to 4 hours in an oxygen-containing atmosphere (air).

別法として、250〜350℃で30分〜3時間の間、空気又は不活性ガス中で熱処理を行い、次に350〜550℃の温度で15分〜2時間、酸素含有雰囲気(空気)中で熱処理を行う。   Alternatively, heat treatment is performed in air or an inert gas at 250 to 350 ° C. for 30 minutes to 3 hours, and then in an oxygen-containing atmosphere (air) at a temperature of 350 to 550 ° C. for 15 minutes to 2 hours. And heat treatment.

組成物中にPPSが含有されている場合、幾らか異なった熱処理が推奨される。例えば、この場合、酸素含有雰囲気(空気)中、250〜350℃で30分〜4時間熱処理を行うことができる。別法として、空気又は不活性ガス中で250〜350℃の温度で30分〜3時間熱処理を行い、次に酸素含有雰囲気(空気)中で300〜500℃で15分〜2時間熱処理を行う。   If PPS is included in the composition, a somewhat different heat treatment is recommended. For example, in this case, heat treatment can be performed in an oxygen-containing atmosphere (air) at 250 to 350 ° C. for 30 minutes to 4 hours. Alternatively, heat treatment is performed in air or an inert gas at a temperature of 250 to 350 ° C. for 30 minutes to 3 hours, and then heat treatment is performed in an oxygen-containing atmosphere (air) at 300 to 500 ° C. for 15 minutes to 2 hours. .

希望の性質を有する最終的構成部材を得るために、種々の雰囲気、時間、及び温度を用いて熱処理を行うことができることは、この新規な粉末組成物を特に魅力的なものにしている。   The ability to heat-treat using a variety of atmospheres, times and temperatures to obtain a final component having the desired properties makes this novel powder composition particularly attractive.

上に記載したように粗い粒子及び潤滑剤を含む絶縁された鉄基粉末含有組成物を、高圧、例えば、800MPaより高い圧力で成形し、次にその成形された構成部材を熱処理することにより、密度≧7.5g/cm、相対的最大透磁率、μmax≧600、保磁力、Hc≦250A/m、及び比抵抗、ρ≧20μΩmを有する軟磁性複合体構成部材が得られる。そのような構成部材は、例えば、電気機械の固定子及び回転子構成部材で要求される厳しい用途で重要になるであろう。 By forming an insulated iron-based powder-containing composition comprising coarse particles and a lubricant as described above at high pressure, for example, a pressure greater than 800 MPa, and then heat treating the molded component, A soft magnetic composite component having a density ≧ 7.5 g / cm 3 , a relative maximum permeability, μmax ≧ 600, a coercive force, Hc ≦ 250 A / m, and a specific resistance, ρ ≧ 20 μΩm is obtained. Such components would be important in demanding applications required, for example, in electrical machine stator and rotor components.

図1は、コアロス/サイクルを、周波数の関数としてプロットしたグラフである。FIG. 1 is a graph plotting core loss / cycle as a function of frequency.

本発明を、更に次の実施例により例示する。
例1
次の材料を用いた。
水噴霧鉄基粉末で、粒子が薄い無機被覆を有するもの(スウェーデンのヘガネスABから入手することができるサムアロイ500)を出発材料として用いた。 PPS粉末、
ステアリン酸粉末、潤滑剤A、
ステアリン酸アミド粉末、潤滑剤B。
The invention is further illustrated by the following examples.
Example 1
The following materials were used.
Water-sprayed iron-based powder with a thin inorganic coating (Sum Alloy 500 available from Höganäs, Sweden) was used as the starting material. PPS powder,
Stearic acid powder, lubricant A,
Stearamide powder, lubricant B.

3kgの基礎粉末サムアロイ500を、表1に従い、PPS及びステアリン酸アミド又はステアリン酸と混合した。   3 kg of base powder thumb alloy 500 was mixed with PPS and stearamide or stearic acid according to Table 1.

粉末混合物を、45mmの内径、55mmの外径、及び5mmの高さを有する環状試料に、周囲温度(室温)で800MPaで成形した。高さ10mmの環状試料も成形し、これらの試料について押出(取り出し)力(ejection force)を測定した。取り出しエネルギー(ejection energy)を表2に示す。それらの結果は、脂肪酸アミドを用いることにより、得られる取り出しエネルギーがかなり低くなることを示している。   The powder mixture was molded into an annular sample having an inner diameter of 45 mm, an outer diameter of 55 mm, and a height of 5 mm at 800 MPa at ambient temperature (room temperature). An annular sample having a height of 10 mm was also molded, and the extrusion (ejection force) was measured for these samples. Table 2 shows the ejection energy. The results show that the extraction energy obtained is considerably lower by using fatty acid amides.

成形後、部品を空気中で290℃で120分間熱処理した。得られた熱処理済み環は、25回転巻かれていた。標準IEC60404−6、第2版、2003−06に従ってLCRメーター(HP4284A)で、相対的AC誘導透磁率を測定した。   After molding, the parts were heat treated in air at 290 ° C. for 120 minutes. The obtained heat-treated ring was wound 25 times. Relative AC induced permeability was measured with an LCR meter (HP4284A) according to standard IEC 60404-6, 2nd edition, 2003-06.

初期透磁率の低下(周波数安定性)を表3及び4に示す。初期透磁率の低下は、10及び100kHzでの初期透磁率の差を、10kHzでの初期透磁率で割ったものとして表される。表3は、脂肪酸アミドの量を0.3%から0.5%へ増大することにより、一層良い周波数安定性を得ることができることを示している。表4は、脂肪酸アミドを対応する脂肪酸の代わりに用いることにより、一層良好な周波数安定性が得られることを示している。更に、表4は、PPSがないと、得られる周波数安定性が大きく低下することを明らかにしている。しかし、A9について1kHzでの初期透磁率は、A3の場合の75に対して95であることが判明した。或る用途では、低い周波数で大きな初期透磁率が有利である。   Tables 3 and 4 show the decrease in initial magnetic permeability (frequency stability). The decrease in initial permeability is expressed as the difference between the initial permeability at 10 and 100 kHz divided by the initial permeability at 10 kHz. Table 3 shows that better frequency stability can be obtained by increasing the amount of fatty acid amide from 0.3% to 0.5%. Table 4 shows that better frequency stability can be obtained by using fatty acid amides instead of the corresponding fatty acids. Further, Table 4 reveals that the frequency stability obtained is greatly reduced without PPS. However, it was found that the initial permeability at 1 kHz for A9 was 95 versus 75 for A3. In some applications, a large initial permeability at low frequencies is advantageous.

電気比抵抗(specific electrical resistivity)を、4点測定法により測定し、表5に示す。この表から、脂肪酸アミドを、対応する酸の代わりに用いることにより、かなり一層大きな電気抵抗率を得ることができることを結論することができる。   Specific electrical anisotropic was measured by a four-point measurement method and shown in Table 5. From this table it can be concluded that considerably higher electrical resistivity can be obtained by using fatty acid amides instead of the corresponding acids.

空気中で290℃で120分間熱処理した後の抗折力、TRSに関して試料を試験した。TRSは、ISO 3995に従って試験した。TRSは、200℃の温度で部品について試験した。TRSを表6に示す。0.5%のPPS及び0.3%のステアリン酸アミドを含む(A3)試料は、0.5%のPPS及び0.3%のステアリン酸を含む試料(A2)及び0.2%PPS+0.6%ステアリン酸を含む試料(A1)の両方と比較して、室温(RT)及び200℃の両方でかなり一層大きなTRSを示している。全有機含有量の低い混合物については密度が一層高くなり、そのことは一層大きな誘導及び透磁率(μmax)を与える結果になるであろう。   Samples were tested for bending strength, TRS, after heat treatment at 290 ° C. for 120 minutes in air. TRS was tested according to ISO 3995. The TRS was tested on parts at a temperature of 200 ° C. Table 6 shows the TRS. A sample containing 0.5% PPS and 0.3% stearamide (A3) is a sample containing 0.5% PPS and 0.3% stearic acid (A2) and 0.2% PPS + 0. Compared to both samples containing 6% stearic acid (A1), it shows a much larger TRS at both room temperature (RT) and 200 ° C. For mixtures with a low total organic content, the density will be higher, which will result in greater induction and permeability (μmax).

例2
次の材料を用いた。
水噴霧鉄基粉末で、粒子が薄い燐含有の無機の被覆を有するもの(スウェーデンのヘガネスABから入手することができるサムアロイ500)を出発材料として用いた。
PPS粉末、
ステアリン酸粉末、潤滑剤A、
ステアリン酸アミド粉末、潤滑剤B、
ベヘン酸アミド粉末、潤滑剤C、
オレイン酸アミド粉末、潤滑剤D、
ケノルーブ(Kenolube)(商標名)。
Example 2
The following materials were used.
Water-sprayed iron-based powder with a thin phosphorous-containing inorganic coating (Sam Alloy 500 available from Höganäs, Sweden) was used as the starting material.
PPS powder,
Stearic acid powder, lubricant A,
Stearamide powder, lubricant B,
Behenamide powder, lubricant C,
Oleic acid amide powder, lubricant D,
Kenolube (trade name).

基礎粉末サムアロイ500を、表7に従い、PPS及び潤滑剤と混合した。   Base powder thumb alloy 500 was mixed with PPS and lubricant according to Table 7.

粉末混合物をISO 3995に従い、周囲温度で800MPaの成形圧力で試験棒へ成形した。成形後、それら部品を二工程の熱処理で熱処理した。第一工程は、不活性窒素雰囲気中で290℃で105分間行なった。この工程に続き、空気中で350℃で60分間次の熱処理工程を行なった。試料を、ISO 3995に従い、抗折力、TRSに関して試験した。   The powder mixture was molded into test bars according to ISO 3395 at a molding pressure of 800 MPa at ambient temperature. After molding, the parts were heat treated in a two-step heat treatment. The first step was performed at 290 ° C. for 105 minutes in an inert nitrogen atmosphere. Following this step, the following heat treatment step was performed in air at 350 ° C. for 60 minutes. Samples were tested for flexural strength, TRS according to ISO 3395.

抗折力の試験結果を表8に示す。表8から分かるように、脂肪酸アミドを含む混合物を用いて調製した試料は、充分なTRS値を与える。熱処理後に一層大きな密度に到達し、それは誘導及び透磁率に関して有利である。PPS含有量を0.3%以下へ低下すると、TRSが80MPaより高い値へ増大する。PPSを含まず、ステアリン酸アミド潤滑剤を含む試料でも、100MPaより高いTRS値を有する。従来用いられていた潤滑剤であるケノルーブを使用しても、必要な抗折力を与える結果にはならない。   Table 8 shows the bending strength test results. As can be seen from Table 8, samples prepared with a mixture containing fatty acid amides give sufficient TRS values. A higher density is reached after heat treatment, which is advantageous with respect to induction and permeability. When the PPS content is reduced to 0.3% or less, TRS increases to a value higher than 80 MPa. Even samples that do not contain PPS and contain stearamide lubricants have TRS values higher than 100 MPa. The use of Kenolube, which is a conventionally used lubricant, does not result in the necessary bending strength.

例3
この例は、一般に用いられているステアリン酸亜鉛及びエチレンビスステアルアミド潤滑剤と比較して、本発明による脂肪酸アミド潤滑剤を、粗い粉末及び大きな成形圧力と組合せて少量用いると、成形構成部材の取り出す間で、低い押出力及び取り出した構成部材の完全な表面仕上げが得られる。
Example 3
This example shows that when compared to the commonly used zinc stearate and ethylene bisstearamide lubricants, the fatty acid amide lubricants according to the present invention are used in small amounts in combination with coarse powders and large molding pressures. During the removal, a low pressing force and a complete surface finish of the removed components are obtained.

US6,348,265に従って、無機絶縁体により粒子が取り巻かれている粗い軟磁性鉄基粉末を2kg、表9に従って潤滑剤0.2重量%と混合した。粗い鉄基粉末の粒径分布を、表10に示す。混合物E及びFは、既知の潤滑剤を含む比較例である。   According to US 6,348,265, 2 kg of coarse soft magnetic iron-based powder with particles surrounded by an inorganic insulator was mixed with 0.2 wt% lubricant according to Table 9. Table 10 shows the particle size distribution of the coarse iron-based powder. Mixtures E and F are comparative examples containing known lubricants.

得られた混合物を型へ移し、25mmの直径を有する円柱状試験試料(50g)へ、一軸プレス運動で1100MPaの成形圧力で成形した。用いた型材料は、慣用的工具鋼であった。成形試料の取り出す間、押出力を記録した。試料を取り出すために必要な全取り出しエネルギー/包摂面積(enveloping area)を計算した。次の表11は、取り出しエネルギー、圧粉密度、及び表面仕上げを示している。   The obtained mixture was transferred to a mold and molded into a cylindrical test sample (50 g) having a diameter of 25 mm by a uniaxial press motion at a molding pressure of 1100 MPa. The mold material used was conventional tool steel. The pushing force was recorded during removal of the molded sample. The total extraction energy / enveloping area required to remove the sample was calculated. Table 11 below shows the take-out energy, the green density, and the surface finish.

例4
次の例は、軟磁性の鉄基粉末の粒径分布が、取り出しの挙動及び圧粉密度に与える影響を例示している。例3による「粗い」粉末を用いた。「微細」粉末の粒径分布を表12に与える。混合物は、例3の手順に従い、0.2重量%のステアルアミドを用いて調製した。「微細」粉末に基づく混合物は、試料Hの記号を付け、試料Cと比較した。
Example 4
The following example illustrates the effect of the particle size distribution of the soft magnetic iron-based powder on the removal behavior and the green density. The “coarse” powder according to Example 3 was used. The particle size distribution of the “fine” powder is given in Table 12. The mixture was prepared according to the procedure of Example 3 with 0.2 wt% stearamide. The mixture based on the “fine” powder was labeled as Sample H and compared to Sample C.

混合物を、例3で用いた手順に従い円柱試料へ成形した。次の表13は、圧粉密度及び表面の外観を示している。   The mixture was formed into a cylindrical sample according to the procedure used in Example 3. Table 13 below shows the green density and surface appearance.

表13から分かるように、微細粉末を含む組成物は、一層低い圧粉密度及び悪化した表面仕上げを与える結果になる。   As can be seen from Table 13, the composition comprising fine powder results in a lower green density and a worse surface finish.

例5
この例は、既知の潤滑剤、エチレンビスステアルアミド(EBS)、及び潤滑剤ステアルアミドの一例を比較する。例3による「粗い」粉末を用い、表14に従い、それぞれEBS及びステアルアミドと混合した。試料は、例3の手順に従い調製した。
Example 5
This example compares an example of a known lubricant, ethylene bisstearamide (EBS), and lubricant stearamide. The “coarse” powder from Example 3 was used and mixed with EBS and stearamide, respectively, according to Table 14. Samples were prepared according to the procedure of Example 3.

粉末混合物を、内径45mm、外径55mm、高さ10mmの環に1100MPaで成形した。成形試料を取り出す間、型からそれら試料を取り出すのに必要な全取り出しエネルギー/包摂面積を計算した。次の表15は、計算した取り出しエネルギー/面積、圧粉密度、及び表面外観を示している。   The powder mixture was molded at 1100 MPa into a ring with an inner diameter of 45 mm, an outer diameter of 55 mm, and a height of 10 mm. While removing the molded samples, the total removal energy / inclusion area required to remove the samples from the mold was calculated. Table 15 below shows the calculated extraction energy / area, green density, and surface appearance.

表15から分かるように、新規な潤滑剤は0.2%位の僅かな量で添加してもよく、依然として完全な表面仕上げが得られるのに対し、参考潤滑剤、EBSの場合、完全な表面仕上げを得るための最低限の添加率は0.4%である。   As can be seen from Table 15, the new lubricant may be added in as little as 0.2% and still provide a complete surface finish, whereas the reference lubricant, EBS, The minimum addition rate for obtaining a surface finish is 0.4%.

例6
この例は、同様な取り出しエネルギー値を達成するために、それぞれ潤滑成分ステアルアミド及びEBSを最低限の量で用いて製造した構成部材の磁気特性を比較する。例5による混合物2及び混合物6から形成した構成部材を、熱処理後の磁気特性に関して比較した。
Example 6
This example compares the magnetic properties of components made using the minimum amounts of the lubricating components stearamide and EBS, respectively, to achieve similar extraction energy values. The components formed from mixture 2 and mixture 6 according to example 5 were compared with respect to the magnetic properties after heat treatment.

高さが5mmであった点を除き、例5に従う環状試料を成形した。圧粉体試料を空気中で300℃で60分間熱処理し、次に空気中で530℃で30分間の第二の熱処理工程を行なった。得られた熱処理済みの環をセンスターン(sense turn)100及びドライブターン(drive turn)100として巻き、ブロックハウス(Brockhaus)ヒステリシスグラフで試験した。次の表16は、10kA/mでの誘導レベル、最大相対的透磁率、保磁力Hc及び400Hzでのコアロス、1Tを示している。   An annular sample according to Example 5 was molded except that the height was 5 mm. The green compact sample was heat-treated in air at 300 ° C. for 60 minutes, and then subjected to a second heat treatment step in air at 530 ° C. for 30 minutes. The resulting heat-treated ring was wound as a sense turn 100 and a drive turn 100 and tested on a Brockhaus hysteresis graph. Table 16 below shows the induction level at 10 kA / m, the maximum relative permeability, the coercivity Hc and the core loss at 400 Hz, 1T.

表16から分かるように、軟磁気特性は、本発明による構成部材の方が優れている。   As can be seen from Table 16, the component according to the present invention is superior in soft magnetic properties.

例7
次の例は、成形した試料の取り出し特性及び圧粉密度に対する型温度の影響を示している。この例では、本発明によるアミド潤滑剤として第一級アミド、ステアルアミドを選択した。例3の手順に従い、電気的に絶縁した粗い軟磁性鉄基粉末2kgに、0.2%のステアルアミドを添加した。
Example 7
The following example shows the effect of mold temperature on the pick-up properties and compact density of the molded sample. In this example, primary amide, stearamide was selected as the amide lubricant according to the present invention. According to the procedure of Example 3, 0.2% stearamide was added to 2 kg of electrically insulated coarse soft magnetic iron-based powder.

粉末混合物を、内径45mm、外径55mm、高さ10mmの環に1100MPaの成形圧力で成形した。成形した試料を取り出す間、押出力を記録した。型からそれら試料を取り出すのに必要な全取り出しエネルギー/包摂面積を計算した。次の表17は、型の種々の温度で成形した試料の取り出しエネルギー、圧粉密度、及び表面外観を示している。   The powder mixture was molded into a ring having an inner diameter of 45 mm, an outer diameter of 55 mm, and a height of 10 mm at a molding pressure of 1100 MPa. The pushing force was recorded while the molded sample was removed. The total removal energy / inclusion area required to remove the samples from the mold was calculated. Table 17 below shows the take-out energy, compact density, and surface appearance of samples molded at various temperatures of the mold.

表17から分かるように、取り出しエネルギー及び圧粉密度は、型温度を上昇させると明らかに影響を受ける。   As can be seen from Table 17, the removal energy and the green density are clearly affected when the mold temperature is increased.

例8
この例は、本発明により製造した構成部材の部材としての性質を、DWLを補助剤として成形した構成部材の性質と比較する。本発明の例と比較例との両方で、例3による「粗い」粉末を用いた。本発明の例では潤滑剤として0.2重量%のステアルアミドを用い、得られた粉末組成物を80℃に制御した型温度で、7.6g/cmの圧粉密度を有する環状試料へ成形した。比較例では内部潤滑剤を用いず、その代わりDWLを適用した。環状試料を、周囲温度で7.6g/cmの密度へ成形した。
Example 8
This example compares the properties of the components produced according to the present invention with the properties of the components molded with DWL as an adjuvant. The “coarse” powder according to Example 3 was used in both the inventive example and the comparative example. In the example of the present invention, 0.2% by weight of stearamide was used as a lubricant, and the obtained powder composition was molded into an annular sample having a green density of 7.6 g / cm 3 at a mold temperature controlled at 80 ° C. did. In the comparative example, the internal lubricant was not used and DWL was applied instead. The annular sample was molded to a density of 7.6 g / cm 3 at ambient temperature.

環状試料の外径は55mm、内径は45mm、高さは5mmであった。   The outer diameter of the annular sample was 55 mm, the inner diameter was 45 mm, and the height was 5 mm.

成形後の熱処理を、表18に従って行なった。電気比抵抗を、四点法により測定した。ヒステリシスグラフで磁気測定を行う前に、環状試料をドライブターン100及びセンスターン100として巻いた。DC特性が、10kA/mでループから得られた。1Tで種々の周波数でコアロスを損失した。図1には、周波数の関数としてコアロス/サイクルをプロットしてある。   The heat treatment after molding was performed according to Table 18. The electrical specific resistance was measured by a four-point method. The annular sample was wound as a drive turn 100 and a sense turn 100 before performing magnetic measurements on the hysteresis graph. DC characteristics were obtained from the loop at 10 kA / m. Core loss was lost at various frequencies at 1T. FIG. 1 plots core loss / cycle as a function of frequency.

表18及び図1から、本発明は、DWL法と比較して一層低いHc及び一層大きな抵抗率により、交流電場で与えるコアロスが著しく低いことを結論することができる。   From Table 18 and FIG. 1, it can be concluded that the present invention has significantly lower core loss in an alternating electric field due to lower Hc and higher resistivity compared to the DWL method.

例9
この例では、本発明により優れた磁気特性を有する鉄粉のコアを得ることができることを示す。上昇させた型温度が最大相対的透磁率に与える明白な影響も示す。
Example 9
This example shows that an iron powder core having excellent magnetic properties can be obtained by the present invention. The obvious effect of elevated mold temperature on the maximum relative permeability is also shown.

例3による「粗い」粉末を、種々の含有量及び種類の潤滑剤を用いて混合した。環状試料(OD=55、ID=45、h=5mm)及び棒(30×12×6mm)の両方を、表19に示す処理条件を用いて製造した。   The “coarse” powder from Example 3 was mixed with various contents and types of lubricants. Both annular samples (OD = 55, ID = 45, h = 5 mm) and bars (30 × 12 × 6 mm) were manufactured using the processing conditions shown in Table 19.

環状試料の質量及び大きさを測定することにより密度を決定した。電気比抵抗を四点法により環状試料について測定した。ブロックハウス・ヒステリシスグラフで磁気測定を行う前に、環状試料をドライブターン100及びセンスターン100として巻いた。μmax及びHcのようなDC特性が10kA/mでループから得られたのに対し、コアロスは1T及び400Hzで測定した。熱処理した部品の抗折力(TRS)を、三点曲げ法により試験棒について決定した。   The density was determined by measuring the mass and size of the annular sample. The electrical resistivity was measured for the annular sample by the four-point method. Prior to performing magnetic measurements on the block house hysteresis graph, the annular sample was wound as a drive turn 100 and a sense turn 100. DC characteristics such as μmax and Hc were obtained from the loop at 10 kA / m, whereas core loss was measured at 1T and 400 Hz. The bending strength (TRS) of the heat-treated parts was determined for the test bars by the three-point bending method.


Claims (23)

鉄又は鉄基粉末の軟磁性材料の粒子で、電気絶縁層が与えられている前記鉄又は鉄基粉末粒子、及び0.05〜2重量%の、12〜24個のC原子を有する飽和又は不飽和直鎖脂肪酸の第一級アミドからなる群から選択された潤滑剤からなる粉末組成物。   Particles of soft magnetic material of iron or iron-based powder, said iron or iron-based powder particles provided with an electrical insulating layer, and 0.05-2% by weight of saturated or having 12-24 C atoms A powder composition comprising a lubricant selected from the group consisting of primary amides of unsaturated linear fatty acids. 脂肪酸が14〜22個のC原子を有する、請求項1に記載の組成物。   2. A composition according to claim 1 wherein the fatty acid has 14 to 22 C atoms. 脂肪酸アミドが、ステアリン酸アミド、オレイン酸、ベヘン酸アミド、エルカ酸アミド、パルミチン酸アミドからなる群から選択されている、請求項1又は2に記載の組成物。   The composition according to claim 1 or 2, wherein the fatty acid amide is selected from the group consisting of stearic acid amide, oleic acid, behenic acid amide, erucic acid amide, palmitic acid amide. 更に、ポリフェニレンスルフィドを含有する、請求項1〜3のいずれか1項に記載の組成物。   Furthermore, the composition of any one of Claims 1-3 containing polyphenylene sulfide. ポリフェニレンスルフィドが、0.05〜2.0重量%の量で用いられている、請求項4に記載の組成物。   5. A composition according to claim 4, wherein polyphenylene sulfide is used in an amount of 0.05 to 2.0% by weight. 脂肪酸アミドが、0.05〜1重量%、好ましくは0.05〜0.8重量%、一層好ましくは0.1〜0.8重量%、最も好ましくは0.1〜0.5重量%の量で存在する、請求項1〜5のいずれか1項に記載の組成物。   Fatty acid amide is 0.05 to 1 wt%, preferably 0.05 to 0.8 wt%, more preferably 0.1 to 0.8 wt%, most preferably 0.1 to 0.5 wt%. 6. A composition according to any one of claims 1 to 5, present in an amount. 電気絶縁層が、無機材料から作られている、請求項1〜6のいずれか1項に記載の組成物。   The composition according to claim 1, wherein the electrically insulating layer is made of an inorganic material. 層が酸素及び燐を含んでいる、請求項7に記載の組成物。   The composition of claim 7, wherein the layer comprises oxygen and phosphorus. 鉄又は鉄基粉末が、本質的に純粋な鉄からなる、請求項1〜8のいずれか1項に記載の組成物。   9. A composition according to any one of claims 1 to 8, wherein the iron or iron-based powder consists essentially of pure iron. 軟磁性の鉄又は鉄基粉末粒子の10重量%未満、好ましくは5重量%未満が、45μmより小さい粒径を有する、請求項1〜9のいずれか1項に記載の組成物。   10. Composition according to any one of the preceding claims, wherein less than 10%, preferably less than 5% by weight of soft magnetic iron or iron-based powder particles have a particle size of less than 45 [mu] m. 粒子の少なくとも20%が、212μmより大きい粒径を有する、請求項10に記載の組成物。   11. A composition according to claim 10, wherein at least 20% of the particles have a particle size greater than 212 [mu] m. a) 粒子が電気絶縁層によって取り巻かれている軟磁性鉄の又は鉄基粉末と、2重量%までの、12〜24個のC原子を有する飽和又は不飽和直鎖脂肪酸の第一級アミドを含む群から選択された潤滑剤とを混合する工程、
b) 組成物を成形する工程、及び
c) 場合により、得られた部品を熱処理に付す工程、
を含む軟磁性構成部材の製造方法。
a) soft magnetic iron or iron-based powder in which the particles are surrounded by an electrically insulating layer and up to 2% by weight of primary amides of saturated or unsaturated linear fatty acids having 12 to 24 C atoms Mixing with a lubricant selected from the group comprising:
b) forming the composition, and c) optionally subjecting the resulting part to a heat treatment,
The manufacturing method of the soft-magnetic structural member containing this.
成形を上昇させた温度で行う、請求項12に記載の方法。   The method according to claim 12, wherein the molding is performed at an elevated temperature. 潤滑剤の量が、重量で、0.05〜0.8%、好ましくは0.1〜0.8%、一層好ましくは0.1〜0.5%である、請求項12又は13に記載の方法。   The amount of lubricant is 0.05 to 0.8%, preferably 0.1 to 0.8%, more preferably 0.1 to 0.5% by weight. the method of. 成形を、800MPaより高い成形圧力で行う、請求項12〜14のいずれか1項に記載の方法。   The method according to any one of claims 12 to 14, wherein the molding is performed at a molding pressure higher than 800 MPa. 軟磁性の鉄又は鉄基粉末の10%未満、好ましくは5%未満が、45μmより小さい粒径を有する、請求項12〜15のいずれか1項に記載の方法。   16. A method according to any one of claims 12 to 15, wherein less than 10%, preferably less than 5% of the soft magnetic iron or iron-based powder has a particle size of less than 45 [mu] m. 熱処理を、250℃〜550℃で行う、請求項12〜16のいずれか1項に記載の方法。   The method according to any one of claims 12 to 16, wherein the heat treatment is performed at 250C to 550C. 熱処理を第一工程で350℃まで行い、次に550℃までの熱処理を行う、請求項12〜16のいずれか1項に記載の方法。   The method according to any one of claims 12 to 16, wherein the heat treatment is performed up to 350 ° C in the first step, and then the heat treatment is performed up to 550 ° C. 熱処理を、空気中又は不活性雰囲気中で行う、請求項12〜18のいずれか1項に記載の方法。   The method according to any one of claims 12 to 18, wherein the heat treatment is performed in air or in an inert atmosphere. 絶縁した鉄基粉末と潤滑剤とを含む組成物を成形し、次にその成形した構成部材を熱処理することにより得られ、
密度≧7.5g/cm
最大相対的透磁率がμmax≧600,
保磁力がHc≦250A/m,
比抵抗がρ≧20μΩm
を有する軟磁性複合体構成部材。
Obtained by molding a composition comprising an insulated iron-based powder and a lubricant, and then heat-treating the molded component,
Density ≧ 7.5 g / cm 3 ,
Maximum relative permeability is μmax ≧ 600,
The coercive force is Hc ≦ 250 A / m,
Specific resistance is ρ ≧ 20μΩm
A soft magnetic composite component.
密度≧7.6g/cmである、請求項19に記載の軟磁性複合体構成部材。 The soft magnetic composite component according to claim 19, wherein the density is ≧ 7.6 g / cm 3 . ρ≧100μΩmの比抵抗を有する、請求項20又は21に記載の軟磁性複合体構成部材。   The soft magnetic composite component according to claim 20 or 21, which has a specific resistance of ρ ≧ 100 μΩm. μmax≧700の最大相対的透磁率を有する、請求項20〜22のいずれか1項に記載の軟磁性複合体構成部材。   23. The soft magnetic composite component according to any one of claims 20 to 22, having a maximum relative permeability of [mu] max ≧ 700.
JP2009245401A 2003-12-29 2009-10-26 Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member Pending JP2010028131A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0303580A SE0303580D0 (en) 2003-12-29 2003-12-29 Composition for producing soft magnetic composites by powder metallurgy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006546896A Division JP5138227B2 (en) 2003-12-29 2004-12-15 Powder composition, soft magnetic component and method for producing soft magnetic composite component

Publications (1)

Publication Number Publication Date
JP2010028131A true JP2010028131A (en) 2010-02-04

Family

ID=30768888

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006546896A Active JP5138227B2 (en) 2003-12-29 2004-12-15 Powder composition, soft magnetic component and method for producing soft magnetic composite component
JP2009245401A Pending JP2010028131A (en) 2003-12-29 2009-10-26 Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006546896A Active JP5138227B2 (en) 2003-12-29 2004-12-15 Powder composition, soft magnetic component and method for producing soft magnetic composite component

Country Status (16)

Country Link
EP (1) EP1700319B1 (en)
JP (2) JP5138227B2 (en)
KR (1) KR100775179B1 (en)
CN (1) CN100533610C (en)
AU (1) AU2004309770B2 (en)
BR (1) BRPI0418274A (en)
CA (1) CA2552142C (en)
DK (1) DK1700319T3 (en)
ES (1) ES2655322T3 (en)
PL (1) PL1700319T3 (en)
RU (1) RU2326461C2 (en)
SE (1) SE0303580D0 (en)
TW (1) TWI394178B (en)
UA (1) UA78954C2 (en)
WO (1) WO2005064621A1 (en)
ZA (1) ZA200605385B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2139630B1 (en) 2007-03-21 2013-05-15 Höganäs Ab (publ) Powder metal polymer composites
JP5363081B2 (en) * 2008-11-28 2013-12-11 住友電気工業株式会社 Metallurgical powder, dust core, metallurgical powder manufacturing method and dust core manufacturing method
JP5650928B2 (en) * 2009-06-30 2015-01-07 住友電気工業株式会社 SOFT MAGNETIC MATERIAL, MOLDED BODY, DUST CORE, ELECTRONIC COMPONENT, SOFT MAGNETIC MATERIAL MANUFACTURING METHOD, AND DUST CORE MANUFACTURING METHOD
CA2773441C (en) * 2009-09-18 2018-02-06 Hoeganaes Ab (Publ) Ferromagnetic powder composition and method for its production
RU2469430C1 (en) * 2011-09-13 2012-12-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Soft magnetic composite material
CA2861581C (en) 2011-12-30 2021-05-04 Scoperta, Inc. Coating compositions
DE102013200229A1 (en) * 2013-01-10 2014-07-10 Robert Bosch Gmbh Soft magnetic composite material and method for producing such
NL2011129C2 (en) * 2013-07-09 2015-01-12 Eco Logical Entpr B V COMPACT ELECTRICAL DEVICE AND ELECTRODYNAMIC LOUDSPEAKER, ELECTRIC MOTOR, SCREENER AND ADJUSTABLE COUPLING BASED ON THEM.
JP2015070077A (en) * 2013-09-27 2015-04-13 住友電気工業株式会社 Powder-compact magnetic core, producing method thereof, and coil part
GB201409250D0 (en) * 2014-05-23 2014-07-09 H Gan S Ab Publ New product
JP6423629B2 (en) * 2014-06-30 2018-11-14 住友電気工業株式会社 Powder core and coil parts
KR101664603B1 (en) * 2014-11-27 2016-10-11 현대자동차주식회사 Powder metallurgical method
AU2016317860B2 (en) 2015-09-04 2021-09-30 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
CN105458249A (en) * 2015-11-26 2016-04-06 扬州海昌粉末冶金有限公司 Method for manufacturing high-magnetic-conductivity sintered iron-based soft magnetism product
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
JP6882375B2 (en) * 2019-06-06 2021-06-02 株式会社神戸製鋼所 Mixed powder for dust core and powder magnetic core

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250825A (en) * 1985-04-30 1986-11-07 Sony Corp Magnetic recording medium
JPH04319515A (en) * 1991-04-18 1992-11-10 Fuji Photo Film Co Ltd Magnetic recording medium
JPH06260319A (en) * 1993-03-08 1994-09-16 Kobe Steel Ltd Dust core for high frequency and manufacture thereof
JPH08236332A (en) * 1995-02-22 1996-09-13 Kobe Steel Ltd High-frequency dust core and its manufacture
JPH0974011A (en) * 1995-09-07 1997-03-18 Tdk Corp Dust core and manufacture thereof
JPH09512388A (en) * 1994-04-25 1997-12-09 ホガナス アクチボラゲット Heat treatment of magnetic iron powder
JPH11354359A (en) * 1998-06-10 1999-12-24 Hitachi Ltd Method and device for manufacturing duct core
JP2000504785A (en) * 1996-02-23 2000-04-18 ホガナス アクチボラゲット Phosphate-coated iron powder and method for producing the same
JP2000232014A (en) * 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd Manufacture of composite magnetic material
JP2001510286A (en) * 1997-07-18 2001-07-31 ホガナス アクチボラゲット Soft magnetic synthetic material and method for producing the same
JP2002317204A (en) * 2001-04-20 2002-10-31 Kawasaki Steel Corp Highly compressive iron powder
JP2002329626A (en) * 2001-04-27 2002-11-15 Toyota Central Res & Dev Lab Inc Dust core and its manufacturing method
JP2003510460A (en) * 1999-09-23 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Press molding material and method for producing soft magnetic composite material using the press molding material
JP2003303711A (en) * 2001-03-27 2003-10-24 Jfe Steel Kk Iron base powder and dust core using the same, and method of manufacturing iron base powder
JP2003317224A (en) * 2002-04-25 2003-11-07 Hitachi Maxell Ltd Magnetic tape

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB682897A (en) 1950-04-27 1952-11-19 Gen Aniline & Film Corp Improved magnetic powders and method of making the same
EP0276273A1 (en) * 1986-08-02 1988-08-03 FISONS plc Use of certain polysaccharides for the treatment of hepatic or renal failure
CA2254734A1 (en) * 1996-05-13 1997-11-20 The Presmet Corporation Method for preparing high performance ferrous materials
DE19735271C2 (en) * 1997-08-14 2000-05-04 Bosch Gmbh Robert Soft magnetic, mouldable composite material and process for its production
JP3882545B2 (en) * 2000-11-13 2007-02-21 住友金属鉱山株式会社 High weather-resistant magnet powder and magnet using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250825A (en) * 1985-04-30 1986-11-07 Sony Corp Magnetic recording medium
JPH04319515A (en) * 1991-04-18 1992-11-10 Fuji Photo Film Co Ltd Magnetic recording medium
JPH06260319A (en) * 1993-03-08 1994-09-16 Kobe Steel Ltd Dust core for high frequency and manufacture thereof
JPH09512388A (en) * 1994-04-25 1997-12-09 ホガナス アクチボラゲット Heat treatment of magnetic iron powder
JPH08236332A (en) * 1995-02-22 1996-09-13 Kobe Steel Ltd High-frequency dust core and its manufacture
JPH0974011A (en) * 1995-09-07 1997-03-18 Tdk Corp Dust core and manufacture thereof
JP2000504785A (en) * 1996-02-23 2000-04-18 ホガナス アクチボラゲット Phosphate-coated iron powder and method for producing the same
JP2001510286A (en) * 1997-07-18 2001-07-31 ホガナス アクチボラゲット Soft magnetic synthetic material and method for producing the same
JPH11354359A (en) * 1998-06-10 1999-12-24 Hitachi Ltd Method and device for manufacturing duct core
JP2000232014A (en) * 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd Manufacture of composite magnetic material
JP2003510460A (en) * 1999-09-23 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Press molding material and method for producing soft magnetic composite material using the press molding material
JP2003303711A (en) * 2001-03-27 2003-10-24 Jfe Steel Kk Iron base powder and dust core using the same, and method of manufacturing iron base powder
JP2002317204A (en) * 2001-04-20 2002-10-31 Kawasaki Steel Corp Highly compressive iron powder
JP2002329626A (en) * 2001-04-27 2002-11-15 Toyota Central Res & Dev Lab Inc Dust core and its manufacturing method
JP2003317224A (en) * 2002-04-25 2003-11-07 Hitachi Maxell Ltd Magnetic tape

Also Published As

Publication number Publication date
RU2326461C2 (en) 2008-06-10
TWI394178B (en) 2013-04-21
AU2004309770B2 (en) 2008-05-22
CA2552142C (en) 2011-09-20
ZA200605385B (en) 2007-11-28
WO2005064621A1 (en) 2005-07-14
EP1700319A1 (en) 2006-09-13
KR100775179B1 (en) 2007-11-12
DK1700319T3 (en) 2018-01-02
UA78954C2 (en) 2007-04-25
KR20060103539A (en) 2006-10-02
CA2552142A1 (en) 2005-07-14
BRPI0418274A (en) 2007-05-02
RU2006127438A (en) 2008-02-10
CN1902719A (en) 2007-01-24
EP1700319B1 (en) 2017-10-18
ES2655322T3 (en) 2018-02-19
JP5138227B2 (en) 2013-02-06
TW200534298A (en) 2005-10-16
CN100533610C (en) 2009-08-26
SE0303580D0 (en) 2003-12-29
PL1700319T3 (en) 2018-05-30
JP2007535134A (en) 2007-11-29
AU2004309770A1 (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP2010028131A (en) Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member
US8092615B2 (en) Composition for producing soft magnetic composites by powder metallurgy
US8398879B2 (en) Soft magnetic powdered core and method for producing same
KR101926100B1 (en) Soft magnetic powder
WO2008069749A2 (en) Soft magnetic powder
JP2006225766A (en) Heat treating of magnetic iron powder
JP2009070884A (en) Reactor core, manufacturing method therefor, and reactor
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
KR101436720B1 (en) Powder mixture for dust cores
JP2024016066A (en) Ferromagnetic powder composition
WO2006126553A1 (en) Low magnetostriction body and dust core using same
CN108698124B (en) Novel compositions and methods
KR101039514B1 (en) Method of improving the magnetic properties
JP2019186558A (en) Mixed powder for powder-compact magnetic core and powder-compact magnetic core
TWI526544B (en) Preparation of High Density Powder Metallurgy Metal Soft Magnetic Materials
JP5431490B2 (en) Manufacturing method of dust core
KR20130054238A (en) Magnetic powder metallurgy materials
MXPA06007461A (en) Powder composition, method for making soft magnetic components and soft magnetic composite component
JP2013206999A (en) Method of producing soft magnetic iron-based powder for dust core
WO2005035171A1 (en) Method of producing a soft magnetic composite component with high resistivity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120507

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120605

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120706

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130125