JP6423629B2 - Powder core and coil parts - Google Patents

Powder core and coil parts Download PDF

Info

Publication number
JP6423629B2
JP6423629B2 JP2014134395A JP2014134395A JP6423629B2 JP 6423629 B2 JP6423629 B2 JP 6423629B2 JP 2014134395 A JP2014134395 A JP 2014134395A JP 2014134395 A JP2014134395 A JP 2014134395A JP 6423629 B2 JP6423629 B2 JP 6423629B2
Authority
JP
Japan
Prior art keywords
powder
core
iron powder
mass
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014134395A
Other languages
Japanese (ja)
Other versions
JP2016012688A (en
Inventor
友之 上野
友之 上野
麻子 渡▲辺▼
麻子 渡▲辺▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2014134395A priority Critical patent/JP6423629B2/en
Publication of JP2016012688A publication Critical patent/JP2016012688A/en
Application granted granted Critical
Publication of JP6423629B2 publication Critical patent/JP6423629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コイル部品などに利用される圧粉磁心、及び圧粉磁心を備えるコイル部品に関する。特に、高い透磁率を有しながらコアロスが低く、製造性にも優れる圧粉磁心に関するものである。   The present invention relates to a dust core used for a coil component and the like, and a coil component including a dust core. In particular, the present invention relates to a dust core having a high magnetic permeability, a low core loss, and excellent manufacturability.

コイル部品などの磁心として、原料粉末を金型成形して製造される圧粉磁心がある。特許文献1は、絶縁被膜を有する被覆鉄合金粉と、鉄合金粉よりも粒径が大きく、絶縁被膜を有する被覆鉄粉とを混合して成形した後、脱型した圧縮物を500℃以上の高温で熱処理することで製造した圧粉磁心を開示している。   As a magnetic core for a coil component or the like, there is a powder magnetic core manufactured by molding raw material powder. In Patent Document 1, a coated iron alloy powder having an insulating film and a coated iron powder having a particle size larger than that of the iron alloy powder and mixed with an insulating film are molded and molded, and the demolded compressed material is 500 ° C. or higher. Discloses a dust core produced by heat treatment at a high temperature.

特開2005−303006号公報Japanese Patent Laying-Open No. 2005-303006

高い透磁率を有しながらコアロスが低く、製造性にも優れる圧粉磁心の開発が望まれる。   Development of a powder magnetic core having high magnetic permeability, low core loss and excellent manufacturability is desired.

圧粉磁心の透磁率は、構成する軟磁性粉末が大きいほど高められる。そのため、鉄合金粉よりも大きい鉄粉を含む特許文献1の圧粉磁心は、透磁率を高め易い。また、鉄粒子などの金属粒子間に絶縁被膜などの絶縁材が介在する圧粉磁心は、電気抵抗が高められて、渦電流損といったコアロスを低くできる。特許文献1の圧粉磁心は、高温の熱処理によって鉄粒子の絶縁被膜が熱劣化しても、絶縁被膜の熱劣化が進み難く絶縁被膜を保持し易い被覆鉄合金粉が大きな鉄粒子間に介在して、鉄粒子間の絶縁を保持し易いとしている。しかし、高温の熱処理を行うと、工程数が多く、圧粉磁心の製造性に劣る。また、高温の熱処理による絶縁被膜の損傷を防止できない。   The permeability of the powder magnetic core is increased as the soft magnetic powder constituting the powder becomes larger. Therefore, the dust core of Patent Document 1 containing iron powder larger than the iron alloy powder can easily increase the magnetic permeability. Further, a dust core in which an insulating material such as an insulating film is interposed between metal particles such as iron particles can increase electrical resistance and reduce core loss such as eddy current loss. In the powder magnetic core of Patent Document 1, even if the insulating coating of the iron particles is thermally deteriorated by high-temperature heat treatment, the coated iron alloy powder that is difficult to proceed with the thermal deterioration of the insulating coating and easily holds the insulating coating is interposed between the large iron particles. Thus, the insulation between the iron particles is easily maintained. However, when high-temperature heat treatment is performed, the number of steps is large and the productivity of the dust core is poor. In addition, damage to the insulating film due to high-temperature heat treatment cannot be prevented.

絶縁被膜の損傷は熱処理時だけでなく、熱処理前の成形時、粉末粒子同士の擦れ合いや圧縮物と金型との摩擦などによっても生じ得る。特許文献1では、原料粉末にシリコーン樹脂などの樹脂を添加すると、成形性を向上でき、成形時の絶縁被膜の損傷を抑制できるとしている。しかし、上記樹脂だけでは、成形時の潤滑性が十分とはいえず、成形時の絶縁被膜の損傷をより低減できることが望まれる。   Damage to the insulating coating can occur not only during heat treatment, but also due to friction between powder particles, friction between the compact and the mold, during molding before heat treatment. In patent document 1, when resin, such as a silicone resin, is added to raw material powder, moldability can be improved and damage to the insulation film at the time of shaping | molding can be suppressed. However, the resin alone does not provide sufficient lubricity at the time of molding, and it is desired that damage to the insulating coating at the time of molding can be further reduced.

そこで、本発明の目的の一つは、高い透磁率を有しながらコアロスが低く、更に製造性にも優れる圧粉磁心を提供することにある。また、本発明の他の目的は、高い透磁率を有しながらコアロスが低く、更に製造性にも優れる圧粉磁心を備えるコイル部品を提供することにある。   Accordingly, one of the objects of the present invention is to provide a dust core having a high magnetic permeability, a low core loss, and an excellent manufacturability. Another object of the present invention is to provide a coil component including a dust core having a high magnetic permeability, a low core loss, and an excellent manufacturability.

本発明の一態様に係る圧粉磁心は、絶縁被膜を備える被覆鉄粉と、潤滑剤とを含む。前記被覆鉄粉は、平均粒径が200μm以上450μm以下であり、粒径が75μm以下の粉末粒子の割合が10質量%以下である。前記潤滑剤は、含有量が0.3質量%以上0.8質量%以下であり、脂肪酸アミドを含む。   The powder magnetic core which concerns on 1 aspect of this invention contains the covering iron powder provided with an insulating film, and a lubricant. The coated iron powder has an average particle size of 200 μm or more and 450 μm or less, and a ratio of powder particles having a particle size of 75 μm or less is 10% by mass or less. The lubricant has a content of 0.3% by mass to 0.8% by mass and includes a fatty acid amide.

本発明の一態様に係るコイル部品は、コイルと、磁性コアとを備えるコイル部品であって、前記磁性コアの少なくとも一部に上記の圧粉磁心を備える。   The coil component which concerns on 1 aspect of this invention is a coil component provided with a coil and a magnetic core, Comprising: Said powder magnetic core is provided in at least one part of the said magnetic core.

上記の圧粉磁心及び上記のコイル部品は、高い透磁率を有しながらコアロスが低く、製造性にも優れる。   The dust core and the coil component have a high magnetic permeability, a low core loss, and an excellent manufacturability.

実施形態の圧粉磁心の組織を模式的に示す説明図である。It is explanatory drawing which shows typically the structure | tissue of the powder magnetic core of embodiment. 実施形態1のコイル部品を示す概略構成図である。FIG. 2 is a schematic configuration diagram illustrating a coil component according to the first embodiment. 実施形態2のコイル部品を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a coil component according to a second embodiment. 実施形態3のコイル部品を示す概略構成図である。FIG. 6 is a schematic configuration diagram illustrating a coil component according to a third embodiment. 実施形態4のコイル部品を示す概略構成図である。FIG. 6 is a schematic configuration diagram illustrating a coil component according to a fourth embodiment. 実施形態5のコイル部品を示す概略構成図である。FIG. 10 is a schematic configuration diagram illustrating a coil component according to a fifth embodiment. 実施形態6のコイル部品を示す概略構成図である。FIG. 10 is a schematic configuration diagram illustrating a coil component according to a sixth embodiment.

[本発明の実施の形態の説明]
本発明者らは、高い透磁率を有し、コアロスが低い圧粉磁心を製造するにあたり、被覆粉末を用いて種々検討した結果、以下の知見を得た。
・透磁率を高めるには、圧粉磁心を構成する軟磁性粉末は、磁束が通過し易いように、粉末粒子が多いことが好ましい。
・コアロスを低くするには、圧粉磁心の絶縁性を高めるために(電気抵抗を高めるために)、製造過程での絶縁被膜の損傷を低減することが効果的である。絶縁被膜の損傷を低減するには、変形能が高く、比較的大きな粒径の鉄粉を利用すること、熱処理を省略すること、原料粉末に潤滑性に優れる潤滑剤を十分に添加することが好ましい。
・上述の絶縁被膜の損傷を低減するための対策は、圧粉磁心の製造性を向上できる。
・熱処理の省略によって、原料粉末に添加した潤滑剤は、熱処理を行った場合とは異なり、実質的に熱変性せず、原料と同じ成分及び添加量を実質的に維持する。
[Description of Embodiment of the Present Invention]
As a result of various studies using the coating powder in producing a dust core having high magnetic permeability and low core loss, the present inventors have obtained the following knowledge.
In order to increase the magnetic permeability, it is preferable that the soft magnetic powder constituting the powder magnetic core has a large number of powder particles so that the magnetic flux can easily pass therethrough.
In order to reduce the core loss, it is effective to reduce the damage to the insulating film during the manufacturing process in order to increase the insulation of the dust core (in order to increase the electrical resistance). In order to reduce the damage to the insulating coating, it is necessary to use iron powder having a high deformability and a relatively large particle size, omitting heat treatment, and sufficiently adding a lubricant having excellent lubricity to the raw material powder. preferable.
-Measures for reducing the damage of the insulating coating described above can improve the manufacturability of the dust core.
-By omitting the heat treatment, the lubricant added to the raw material powder is substantially not thermally denatured, unlike the case where the heat treatment is performed, and substantially maintains the same components and addition amount as the raw material.

上述の知見に基づき、高い透磁率を有し、コアロスが低く、製造性にも優れる圧粉磁心として、比較的大きな被覆鉄粉を含み、かつ潤滑剤を特定の範囲で含むと共に潤滑剤に特定の成分を含むことを提案する。最初に本発明の実施形態の内容を列記して説明する。   Based on the above findings, the powder core has a high magnetic permeability, low core loss, and excellent manufacturability, including relatively large coated iron powder, including lubricant in a specific range and specified as a lubricant It is proposed to contain First, the contents of the embodiment of the present invention will be listed and described.

(1) 本発明の一態様に係る圧粉磁心は、絶縁被膜を備える被覆鉄粉と、潤滑剤とを含む。上記被覆鉄粉は、平均粒径が200μm以上450μm以下であり、粒径が75μm以下の粉末粒子の割合が10質量%以下である。上記潤滑剤は、含有量が0.3質量%以上0.8質量%以下であり、脂肪酸アミドを含む。   (1) The powder magnetic core which concerns on 1 aspect of this invention contains the covering iron powder provided with an insulating film, and a lubricant. The coated iron powder has an average particle size of 200 μm or more and 450 μm or less, and a ratio of powder particles having a particle size of 75 μm or less is 10% by mass or less. The lubricant has a content of 0.3% by mass to 0.8% by mass and includes a fatty acid amide.

上記の圧粉磁心は、比較的大きな鉄粉を含むため、高い透磁率を有する。また、上記の圧粉磁心は、小さな被覆鉄粉が少ないことで、これらの粉末粒子に備える絶縁被膜によって磁性成分の割合が低下することを低減できることからも、透磁率を高められる。かつ、上記の圧粉磁心は、以下の理由により、鉄粒子間に絶縁被膜や潤滑剤が介在して電気抵抗が高いため、コアロスを低くできる。   The dust core has a high magnetic permeability because it includes a relatively large iron powder. In addition, the above-described dust core has a small amount of small coated iron powder, so that the reduction in the ratio of the magnetic component due to the insulating coating provided on these powder particles can be reduced, so that the magnetic permeability can be increased. And since said powder magnetic core has high electrical resistance because an insulating film and a lubricant intervene between iron particles for the following reasons, core loss can be lowered.

上記の圧粉磁心は、比較的大きな鉄粉を含むこと、潤滑剤を比較的多く含むこと、特定成分の潤滑剤を含むことから、製造過程での絶縁被膜の損傷が効果的に低減、防止されて、原料粉末に用いた被覆鉄粉の絶縁被膜が健全な状態で存在するといえる。また、仮に損傷箇所が有っても、絶縁材である潤滑剤を十分に含むため、多くの鉄粒子間に潤滑剤が介在でき、これら鉄粒子間を絶縁できるといえる。従って、上記の圧粉磁心は、鉄粒子間に絶縁被膜や潤滑剤が介在して絶縁性に優れて、電気抵抗が高いといえる。渦電流損は、電気抵抗に反比例することから、電気抵抗が高い上記の圧粉磁心は、渦電流損が低く、ひいてはコアロスが低い。   The above-mentioned dust core contains relatively large iron powder, contains a relatively large amount of lubricant, and contains a specific component lubricant, thus effectively reducing and preventing damage to the insulation film during the manufacturing process. Thus, it can be said that the insulating coating of the coated iron powder used for the raw material powder exists in a healthy state. In addition, even if there is a damaged portion, it can be said that the lubricant, which is an insulating material, is sufficiently contained, so that the lubricant can be interposed between many iron particles, and these iron particles can be insulated. Therefore, it can be said that the above-mentioned powder magnetic core is excellent in insulating properties due to interposition of an insulating film or a lubricant between iron particles, and has high electric resistance. Since the eddy current loss is inversely proportional to the electric resistance, the above-described dust core having a high electric resistance has a low eddy current loss and consequently a low core loss.

更に、上記の圧粉磁心は、潤滑剤を十分に含むと共に、特定成分の潤滑剤を含むため、製造過程で用いた潤滑剤が残存している、即ち熱処理が省略されているといえ、この点から、製造性にも優れる。   Furthermore, since the above-mentioned dust core sufficiently contains the lubricant and contains the lubricant of the specific component, it can be said that the lubricant used in the manufacturing process remains, that is, the heat treatment is omitted. From this point, it is excellent in manufacturability.

その他、上記の圧粉磁心は、比較的大きな被覆鉄粉を含むため、原料粉末に比較的大きな被覆鉄粉を用いており、製造過程で(成形時に)粉末粒子同士が十分に噛み合うと共に緻密化しているといえ、強度に優れる上に、高い密度を有する。また、上記の圧粉磁心は、緻密化によっても、高い透磁率を有し易い。   In addition, since the above-mentioned dust core contains a relatively large coated iron powder, a relatively large coated iron powder is used as a raw material powder, and the powder particles are sufficiently meshed and densified (during molding) during the manufacturing process. However, it has excellent strength and high density. In addition, the above-described dust core is likely to have high magnetic permeability even by densification.

(2) 上記の圧粉磁心の一例として、絶縁被膜を備えていない裸鉄粉を含み、上記裸鉄粉は、平均粒径が40μm以上150μm以下であり、粒径が200μm以上の粉末粒子の割合が10質量%以下である形態が挙げられる。   (2) As an example of the above-mentioned powder magnetic core, it includes bare iron powder not provided with an insulating coating, and the bare iron powder has an average particle diameter of 40 μm or more and 150 μm or less, and is a powder particle having a particle diameter of 200 μm or more. The form whose ratio is 10 mass% or less is mentioned.

上記形態は、被覆鉄粉のみの場合と比較して、強度に優れる。裸鉄粉を含む上記形態は、原料粉末の裸鉄粉が変形し易い成分である上に絶縁被膜が無いために変形し易いことから、被覆鉄粒子間に塑性変形した裸鉄粒子が介在された場合には被覆鉄粒子同士を強固に接合できるからである。絶縁被膜が無い裸鉄粉の表面はあまり滑らかではないため、被覆鉄粒子に噛み合い易いことからも、強固に接合できると考えられる。また、被覆鉄粉よりも十分に小さい裸鉄粉が、大きな被覆鉄粒子がつくる隙間(三重点など)に介在して緻密化し易く密度を高め易い。上記隙間などで変形し易く、製造性にも優れる。更に、大きな被覆鉄粒子同士の結合状態の強化、緻密化、絶縁被膜による磁性成分の割合の低下抑制などの点から、上記形態は、比較的小さな裸鉄粉を含むものの透磁率を高められる。大き過ぎる裸鉄粒子による渦電流損の増大を抑制できること、裸鉄粒子の周囲に被覆鉄粉の絶縁被膜や潤滑剤が存在して裸鉄粒子同士が接触し難いため絶縁性にも優れることから、上記形態は、絶縁被膜を有していない裸鉄粉を含むもののコアロスが低い。その他、裸鉄粉の含有によって被覆鉄粉の使用量を低減でき、低コスト化が期待できる。   The said form is excellent in intensity | strength compared with the case where only coating | coated iron powder is used. The above-mentioned form containing bare iron powder is a component that is easily deformed because the bare iron powder of the raw material powder is easily deformed, and since there is no insulating film, the deformed bare iron particles are interposed between the coated iron particles. This is because the coated iron particles can be firmly bonded to each other. Since the surface of the bare iron powder without the insulating coating is not very smooth, it is considered that it can be firmly joined because it is easy to mesh with the coated iron particles. In addition, bare iron powder that is sufficiently smaller than the coated iron powder is interposed in a gap (such as a triple point) formed by the large coated iron particles, so that it is easy to densify and to increase the density. It is easy to deform in the gaps and the like, and is excellent in manufacturability. Furthermore, from the viewpoints of strengthening the bonding state between the large coated iron particles, densification, and suppressing the decrease in the ratio of the magnetic component due to the insulating coating, the above configuration can increase the magnetic permeability of the material containing relatively small bare iron powder. Because it is possible to suppress the increase in eddy current loss due to the bare iron particles that are too large, and because the insulation of the coated iron powder and lubricant are present around the bare iron particles, the bare iron particles are difficult to contact with each other, so the insulation is excellent. In the above-described embodiment, the core loss of the bare iron powder having no insulating coating is low. In addition, the amount of coated iron powder can be reduced by containing bare iron powder, and cost reduction can be expected.

(3) 上記の圧粉磁心の一例として、上記圧粉磁心の磁性成分における上記被覆鉄粉の含有量が50質量%以上100質量%以下である形態が挙げられる。   (3) As an example of said powder magnetic core, the form whose content of the said covered iron powder in the magnetic component of the said powder magnetic core is 50 to 100 mass% is mentioned.

上記形態は、磁性成分のうち、大きな被覆鉄粉が半分以上を占めるため、透磁率が高く、絶縁性にも優れてコアロスが低い。上述の裸鉄粉を含む場合(被覆鉄粉の含有量が100質量%未満の場合)には、上述のように高強度化、低コスト化などを図ることができる。被覆鉄粉のみ(被覆鉄粉の含有量が100質量%)であれば、透磁率が高く、絶縁被膜及び潤滑剤の介在によって絶縁性により優れて、コアロスがより低い。   In the above form, since the large coated iron powder occupies more than half of the magnetic component, the magnetic permeability is high, the insulation is excellent, and the core loss is low. When the above-mentioned bare iron powder is included (when the content of the coated iron powder is less than 100% by mass), it is possible to achieve high strength and low cost as described above. If only the coated iron powder (content of the coated iron powder is 100% by mass), the magnetic permeability is high, the insulation is superior due to the intervening insulating coating and lubricant, and the core loss is lower.

(4) 上記の裸鉄粉を含む圧粉磁心の一例として、上記圧粉磁心の磁性成分における上記裸鉄粉の含有量が10質量%以上45質量%以下である形態が挙げられる。   (4) As an example of the dust core including the bare iron powder, a form in which the content of the bare iron powder in the magnetic component of the dust core is 10% by mass or more and 45% by mass or less can be given.

上記形態は、磁性成分のうち、大きな被覆鉄粉が過半数を占めるため(55質量%以上)、透磁率が高く、コアロスも低い上に、裸鉄粉を特定の範囲で含むため、上述のように高強度化、低コスト化などを図ることができる。特に、上記形態は、裸鉄粉が多過ぎないため、裸鉄粒子同士の接触を低減又は抑制できて、裸鉄粉を含むものの絶縁性に優れる。上記範囲内では絶縁被膜が無く、比較的小さい裸鉄粉が多くても、透磁率が高く、コアロスが低くなり得る。   In the above-mentioned form, since the large coated iron powder occupies the majority (55% by mass or more) of the magnetic component, the magnetic permeability is high, the core loss is low, and the bare iron powder is included in a specific range. In addition, high strength and low cost can be achieved. In particular, since the above form does not have too many bare iron powders, the contact between the bare iron particles can be reduced or suppressed, and the insulation properties of those containing bare iron powders are excellent. Within the above range, there is no insulating coating, and even if there are many relatively small bare iron powders, the magnetic permeability can be high and the core loss can be low.

(5) 上記の圧粉磁心の一例として、上記脂肪酸アミドがステアリン酸アミドを含む形態が挙げられる。   (5) As an example of said powder magnetic core, the form in which the said fatty acid amide contains stearic acid amide is mentioned.

ステアリン酸アミドは、樹脂に比較して潤滑性に優れ、製造過程(特に脱型時)での絶縁被膜の損傷を良好に防止できる。従って、上記形態は、製造過程での絶縁被膜の損傷が効果的に低減、防止されて絶縁性に優れ、ひいてはコアロスが低い。   Stearamide is superior in lubricity compared to resin and can satisfactorily prevent damage to the insulating coating during the production process (particularly during demolding). Therefore, in the above-described embodiment, damage to the insulating film during the manufacturing process is effectively reduced and prevented, and the insulating property is excellent and the core loss is low.

(6) 本発明の一態様に係る圧粉磁心の一例として、上記潤滑剤が脂肪酸金属塩を含む形態が挙げられる。   (6) As an example of the powder magnetic core which concerns on 1 aspect of this invention, the form in which the said lubricant contains a fatty acid metal salt is mentioned.

脂肪酸金属塩は、潤滑性に優れており、絶縁被膜の損傷を良好に防止できる。上記形態は、潤滑剤に、潤滑性に優れる脂肪酸アミド及び脂肪酸金属塩の双方を含むことで、製造過程での絶縁被膜の損傷が効果的に低減、防止されて絶縁性に優れ、ひいてはコアロスが低い。   The fatty acid metal salt is excellent in lubricity and can satisfactorily prevent damage to the insulating coating. In the above-mentioned form, the lubricant contains both a fatty acid amide and a fatty acid metal salt that are excellent in lubricity, so that damage to the insulating coating in the production process is effectively reduced and prevented, and the insulation is excellent, and as a result, the core loss is reduced. Low.

(7) 本発明の一態様に係る圧粉磁心の一例として、ポリアミド系樹脂を0超0.5質量%以下含む形態が挙げられる。   (7) As an example of the dust core according to one embodiment of the present invention, a form containing a polyamide-based resin in an amount of more than 0 to 0.5% by mass or less can be given.

ポリアミド系樹脂は圧粉磁心を構成する粉末粒子同士の結着材として機能して、強度を高められる。従って、上記形態は、強度に優れる。   The polyamide-based resin functions as a binder for the powder particles constituting the powder magnetic core, and can increase the strength. Therefore, the said form is excellent in intensity | strength.

(8) 本発明の一態様に係るコイル部品は、コイルと、磁性コアとを備え、上記磁性コアの少なくとも一部に上記(1)〜(7)のいずれか1つに記載の圧粉磁心を備える。   (8) A coil component according to an aspect of the present invention includes a coil and a magnetic core, and the dust core according to any one of (1) to (7) above is provided on at least a part of the magnetic core. Is provided.

上記のコイル部品は、高い透磁率を有し、コアロスが低く、製造性にも優れる上記の圧粉磁心を磁性コアの少なくとも一部(好ましくは全部)に備えるため、高い透磁率を有し、コアロスが低く、製造性にも優れる。   The coil component has a high magnetic permeability because the powder core has the high magnetic permeability, the core loss is low, and the above-described dust core having excellent manufacturability is provided in at least a part (preferably all) of the magnetic core. Low core loss and excellent manufacturability.

[本発明の実施形態の詳細]
以下、適宜図面を参照して、本発明の実施形態に係る圧粉磁心、及びその製造方法、コイル部品を詳細に説明する。図1では、説明の便宜上、粉末粒子の大きさ、形状や、粉末の配合割合などを模式的に示しており、実際の大きさや形状、配合割合は異なる場合がある。
[Details of the embodiment of the present invention]
Hereinafter, a dust core, a manufacturing method thereof, and a coil component according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 1 schematically shows the size and shape of powder particles, the blending ratio of powder, and the like for convenience of explanation, and the actual size, shape, and blending ratio may differ.

[圧粉磁心]
実施形態の圧粉磁心1は、軟磁性粉末を主体とする成形体であり、図1に示すように鉄粒子12の外周が絶縁被膜14で覆われた被覆鉄粒子から構成される被覆鉄粉10を含む。圧粉磁心1は、代表的には、原料粉末Pが加圧圧縮されて、被覆鉄粉100を構成する各粉末粒子同士が塑性変形して相互に噛み合うなどして、形状が保持される。圧粉磁心1は、更に潤滑剤30を含む。また、圧粉磁心1は、被覆鉄粉10に加えて裸鉄粉20を含み得る。以下、各構成を詳細に説明する。
[Dust core]
The dust core 1 of the embodiment is a molded body mainly composed of soft magnetic powder, and is coated iron powder composed of coated iron particles in which the outer periphery of iron particles 12 is covered with an insulating coating 14 as shown in FIG. 10 is included. The powder core 1 typically retains its shape, for example, when the raw material powder P is compressed and compressed, and the powder particles constituting the coated iron powder 100 are plastically deformed and meshed with each other. The dust core 1 further includes a lubricant 30. Further, the dust core 1 can include bare iron powder 20 in addition to the coated iron powder 10. Hereinafter, each configuration will be described in detail.

・被覆鉄粉
・・鉄粉(鉄粒子)
実施形態の圧粉磁心1は、磁性成分を純鉄とすることを特徴の一つとする。主成分を純鉄にすることで、圧粉磁心1は、透磁率や飽和磁束密度が高い。また、主成分を純鉄にすることで、圧粉磁心1は、原料粉末Pの主成分も純鉄となるため、塑性変形性に優れて成形し易く製造性にも優れる、緻密化し易く磁気特性(特に透磁率)を高め易い、粉末粒子同士が十分に噛み合って機械的強度に優れる、という効果を奏する。従って、圧粉磁心1では、必須成分である被覆鉄粉10の鉄粒子12、及び任意成分である裸鉄粉20のいずれも純鉄とする。
・ Coated iron powder ・ ・ Iron powder (iron particles)
One feature of the dust core 1 of the embodiment is that the magnetic component is pure iron. By using pure iron as the main component, the dust core 1 has high permeability and saturation magnetic flux density. Moreover, since the main component of the raw material powder P is also pure iron because the main component is pure iron, the powder core 1 is excellent in plastic deformability, easy to mold, and excellent in manufacturability. The effect (especially magnetic permeability) is easily improved, and the powder particles are sufficiently meshed with each other to provide excellent mechanical strength. Therefore, in the powder magnetic core 1, both the iron particles 12 of the coated iron powder 10 that are essential components and the bare iron powder 20 that is an optional component are pure iron.

鉄粒子12及び裸鉄粉20を構成する純鉄はいずれも、99質量%以上がFeであり、残部は不可避不純物とする。純鉄中の不可避不純物が少ないほど、ヒステリシス損を低減でき、多ければ、電気抵抗が高められて渦電流損をある程度低減できると期待される。圧粉磁心1中の被覆鉄粉10の合計不純物量(裸鉄粉20を含む場合には、被覆鉄粉10と裸鉄粉20との合計量)は、例えば、2000質量ppm以上8000質量ppm以下が挙げられる。この範囲であれば、不純物の含有に起因する透磁率の低下を抑制でき、上記の合計不純物量がより少なければ(例えば、3000質量ppm以下)、上述のようにヒステリシス損を低減し易く、多ければ(例えば、3000質量ppm超、更に4000質量ppm以上)、渦電流損の低減に寄与すると期待される。上記の合計不純物量は、代表的には、圧粉磁心1を粉砕して、粉砕粉末とアセトンなどの有機溶剤との混合液から後述する潤滑剤30やその他の添加材を除去し、抽出した残部を分析することで測定できる(後述する試験例1の潤滑物量の測定方法参照)。有機溶剤に溶解しない成分が含まれ得る場合には、例えば、熱分析や赤外線分光分析などを行って、総合的に判断することが挙げられる。鉄粒子12と絶縁被膜14とを分離して厳密に成分分析することは困難である。そのため、被覆鉄粉10を含む状態で成分分析を行う。被覆鉄粉10と裸鉄粉20とを含む場合には、粉砕粉末を各粉末10,20に分離して、被覆鉄粉10と裸鉄粉20とをそれぞれ成分分析して、両者の不純物を合算する。裸鉄粉20の不可避不純物は、例えば、Mn,Cu,Ni,Cr,Mo,Zn,S,P,Si,炭素、酸素などが挙げられる。裸鉄粉20の不可避不純物の元素は、原料粉末Pの裸鉄粉200の成分に実質的に一致する。被覆鉄粉10の不純物は、代表的は、上記に列挙した元素が挙げられるが、絶縁被膜14の構成成分と考えられる成分(例えば、燐酸鉄であればP,酸素、シリコーン樹脂であればSi,酸素)は不純物としない。圧粉磁心1中の不純物は、被覆鉄粉10や裸鉄粉20に含まれるものの他、後述する潤滑剤30やその他の添加材にも不純物を含み得る。これらの不純物も、少ない方が透磁率の低下を低減できる。   As for the pure iron which comprises the iron particle 12 and the bare iron powder 20, 99 mass% or more is Fe, and the remainder makes an inevitable impurity. It is expected that the hysteresis loss can be reduced as the inevitable impurities in the pure iron are reduced, and that the electrical resistance is increased and the eddy current loss can be reduced to some extent as it is higher. The total impurity amount of the coated iron powder 10 in the dust core 1 (when the bare iron powder 20 is included, the total amount of the coated iron powder 10 and the bare iron powder 20) is, for example, 2000 mass ppm or more and 8000 mass ppm. The following are mentioned. If it is this range, the fall of the magnetic permeability resulting from inclusion of an impurity can be suppressed, and if the total amount of impurities is smaller (for example, 3000 mass ppm or less), the hysteresis loss can be easily reduced as described above. (For example, more than 3000 ppm by mass and more than 4000 ppm by mass) is expected to contribute to the reduction of eddy current loss. The total amount of impurities is typically extracted by pulverizing the powder magnetic core 1 and removing the lubricant 30 and other additives described later from the mixture of the pulverized powder and an organic solvent such as acetone. It can be measured by analyzing the remainder (see the method for measuring the amount of lubricant in Test Example 1 described later). In the case where a component that does not dissolve in the organic solvent can be contained, for example, a comprehensive analysis can be performed by performing thermal analysis or infrared spectroscopic analysis. It is difficult to separate the iron particles 12 and the insulating coating 14 and analyze the components precisely. Therefore, component analysis is performed in a state including the coated iron powder 10. When the coated iron powder 10 and the bare iron powder 20 are included, the pulverized powder is separated into the respective powders 10 and 20, and the components of the coated iron powder 10 and the bare iron powder 20 are analyzed, and impurities of both are analyzed. Add up. Examples of the inevitable impurities of the bare iron powder 20 include Mn, Cu, Ni, Cr, Mo, Zn, S, P, Si, carbon, oxygen, and the like. The element of inevitable impurities of the bare iron powder 20 substantially matches the component of the bare iron powder 200 of the raw material powder P. The impurities of the coated iron powder 10 typically include the elements listed above, but are considered to be constituents of the insulating coating 14 (for example, P for oxygen phosphate, oxygen, and Si for silicone resin). , Oxygen) is not an impurity. Impurities in the dust core 1 may include impurities in the lubricant 30 and other additives described later, in addition to those contained in the coated iron powder 10 and the bare iron powder 20. The lower the amount of these impurities, the lower the permeability can be reduced.

圧粉磁心1における被覆鉄粉10の組成、裸鉄粉20の組成、潤滑剤30の組成は、製造過程で圧縮後に熱処理を行わないことで、原料粉末P(被覆鉄粉100、裸鉄粉200、潤滑剤300)の組成を実質的に維持する。   The composition of the coated iron powder 10, the composition of the bare iron powder 20, and the composition of the lubricant 30 in the powder magnetic core 1 are not subjected to heat treatment after compression in the manufacturing process, so that the raw material powder P (coated iron powder 100, bare iron powder) 200, substantially the composition of the lubricant 300).

・・絶縁被膜
絶縁被膜14は、主として、鉄粒子12同士の直接接触を妨げて、圧粉磁心1の電気抵抗を高める絶縁材として機能する。実施形態の圧粉磁心1は、代表的には、後述するように原料粉末Pに潤滑剤300を特定量含むと共に特定成分を含み、かつ圧縮後に熱処理を行わないという特定の製造方法によって得られる。そのため、製造過程での絶縁被膜140の損傷が効果的に防止され、鉄粒子12は残存する絶縁被膜14によって十分に覆われた状態を維持できる。鉄粒子12の表面全体が絶縁被膜14で覆われていれば、渦電流損を低減し易く好ましい。鉄粒子12間や鉄粒子12と裸鉄粒子との間を絶縁できれば、絶縁被膜14は、鉄粒子12の全表面を覆っていなくてもよく、鉄粒子12の一部が露出されるような存在状態を許容する。
Insulating film The insulating film 14 mainly functions as an insulating material that prevents direct contact between the iron particles 12 and increases the electrical resistance of the dust core 1. The powder magnetic core 1 of the embodiment is typically obtained by a specific manufacturing method in which the raw material powder P includes a specific amount of the lubricant 300 and includes a specific component and does not perform heat treatment after compression, as will be described later. . Therefore, damage to the insulating coating 140 during the manufacturing process is effectively prevented, and the iron particles 12 can be maintained sufficiently covered with the remaining insulating coating 14. If the entire surface of the iron particles 12 is covered with the insulating coating 14, it is preferable to easily reduce eddy current loss. As long as it can insulate between the iron particles 12 or between the iron particles 12 and the bare iron particles, the insulating coating 14 may not cover the entire surface of the iron particles 12, and a part of the iron particles 12 may be exposed. Allow presence state.

絶縁被膜14の構成材料は、種々の絶縁材料をとり得る。例えば、金属元素を含む化合物や非金属元素を含む化合物が挙げられる。前者は、Fe,Al,Ca,Mn,Zn,Mg,V,Cr,Y,Ba,Sr,及び希土類元素(Yを除く)などから選択された1種以上の金属元素と、酸素、窒素、及び炭素から選択された1種以上の化合物(例えば、金属酸化物、金属窒化物、金属炭化物)、ジルコニウム化合物、アルミニウム化合物などが挙げられる。後者は、燐化合物、珪素化合物などが挙げられる。その他、燐酸金属塩化合物(代表的には、燐酸鉄や燐酸マンガン、燐酸亜鉛、燐酸カルシウムなど)、硼酸金属塩化合物、珪酸金属塩化合物、チタン酸金属塩化合物などの金属塩化合物が挙げられる。燐酸金属塩化合物を絶縁被膜14として備える圧粉磁心1は、絶縁被膜14を良好に備えて絶縁性に優れ、渦電流損が低く、ひいてはコアロスが低い。燐酸金属塩化合物は変形性に優れるため、燐酸金属塩化合物の絶縁被膜140を備える被覆鉄粉100を原料粉末Pに用いた場合、燐酸金属塩化合物は、成形時に鉄粒子120の変形に追従して容易に変形して損傷し難い上に、鉄に対する密着性が高いため、成形時などで鉄粒子120の表面から脱落し難いからである。一方、燐酸金属塩化合物に含まれるリンが鉄粒子12に拡散することで、コアロスが増大する恐れがある。そのため、圧粉磁心1全体に含まれるリンの含有量は1000質量ppm以下、更に600質量ppm以下が好ましいと考えられる。リン量が所望の値となるように鉄粒子120の成分や、絶縁被膜140の成分、厚さを調整するとよい。   The constituent material of the insulating coating 14 can take various insulating materials. For example, a compound containing a metal element or a compound containing a nonmetallic element can be given. The former includes one or more metal elements selected from Fe, Al, Ca, Mn, Zn, Mg, V, Cr, Y, Ba, Sr, and rare earth elements (excluding Y), oxygen, nitrogen, And one or more compounds selected from carbon (for example, metal oxides, metal nitrides, metal carbides), zirconium compounds, aluminum compounds, and the like. Examples of the latter include phosphorus compounds and silicon compounds. Other examples include metal phosphate compounds (typically iron phosphate, manganese phosphate, zinc phosphate, calcium phosphate, etc.), metal salt compounds such as borate metal salt compounds, silicate metal salt compounds, and titanate metal salt compounds. The dust core 1 including the metal phosphate compound as the insulating coating 14 has the insulating coating 14 in an excellent manner and has excellent insulation, low eddy current loss, and thus low core loss. Since the metal phosphate compound is excellent in deformability, when the coated iron powder 100 including the insulating coating 140 of the metal phosphate compound is used as the raw material powder P, the metal phosphate compound follows the deformation of the iron particles 120 during molding. This is because it easily deforms and is not easily damaged, and has high adhesion to iron, so that it is difficult to drop off from the surface of the iron particles 120 during molding or the like. On the other hand, phosphorus contained in the metal phosphate compound diffuses into the iron particles 12, which may increase core loss. Therefore, it is considered that the content of phosphorus contained in the entire powder magnetic core 1 is preferably 1000 mass ppm or less, and more preferably 600 mass ppm or less. The components of the iron particles 120, the components of the insulating coating 140, and the thickness may be adjusted so that the phosphorus amount becomes a desired value.

その他の絶縁被膜14の構成材料として、例えば、種々の樹脂や、高級脂肪酸塩などが挙げられる。具体的な樹脂は、ポリアミド系樹脂、シリコーン樹脂などが挙げられる。ポリアミド系樹脂は、ナイロン6、ナイロン66などが挙げられる。   Examples of other constituent materials of the insulating coating 14 include various resins and higher fatty acid salts. Specific examples of the resin include polyamide resins and silicone resins. Examples of polyamide resins include nylon 6 and nylon 66.

絶縁被膜14の厚さは、例えば、10nm以上1μm以下が挙げられる。上記厚さが10nm以上であれば、鉄粒子12間の絶縁を良好に確保できる。上記厚さが1μm以下であれば、絶縁被膜14が少なく、圧粉磁心1中の磁性成分の割合の低下を抑制でき、透磁率を高め易い。より好ましい厚さは20nm以上100nm以下である。圧粉磁心1中の絶縁被膜14の厚さは、組成分析(透過型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置(TEM−EDX))により得られる膜組成と、誘導結合プラズマ質量分析装置(ICP−MS)により得られる元素量とを鑑みて相当厚さを導出し、更に、TEM写真によって絶縁被膜14を直接観察して、先に導出された相当厚さのオーダーが適正な値であることを確認して決定される平均的な厚さとする。絶縁被膜14の厚さは、原料粉末Pの絶縁被膜140の厚さを概ね維持する。   Examples of the thickness of the insulating coating 14 include 10 nm or more and 1 μm or less. If the thickness is 10 nm or more, good insulation between the iron particles 12 can be secured. If the said thickness is 1 micrometer or less, there are few insulation films 14, the fall of the ratio of the magnetic component in the dust core 1 can be suppressed, and it is easy to raise a magnetic permeability. A more preferable thickness is 20 nm or more and 100 nm or less. The thickness of the insulating coating 14 in the dust core 1 depends on the composition of the film obtained by composition analysis (analyzer using transmission electron microscope and energy dispersive X-ray spectroscopy (TEM-EDX)), and inductively coupled plasma. Considering the amount of element obtained by the mass spectrometer (ICP-MS), the equivalent thickness is derived, and further, the insulating film 14 is directly observed by the TEM photograph, and the order of the equivalent thickness derived earlier is appropriate. The average thickness is determined by confirming that the value is correct. The thickness of the insulating coating 14 generally maintains the thickness of the insulating coating 140 of the raw material powder P.

・・大きさ
圧粉磁心1における被覆鉄粉10は、比較的大きい粉末粒子を含むことを特徴の一つとする。被覆鉄粉10が大きいことで、圧粉磁心1は、磁束の通路を十分に確保できて高い透磁率を有することができる。具体的には、被覆鉄粉10の平均粒径は200μm以上450μm以下が好ましい。被覆鉄粉10の平均粒径が200μm以上であれば、高透磁率に加えて、1.絶縁被膜14を良好に備えてコアロスを低くし易い、2.緻密化し易く製造性に優れる、3.粉末粒子同士が十分に噛み合って機械的強度に優れる、4.高密度化によっても透磁率を高め易い、といった効果を奏する。上記1.〜3.の効果を奏する理由は以下の通りである。被覆鉄粉10の平均粒径が上述の範囲である圧粉磁心1は、代表的には、平均粒径が上記の範囲を満たす被覆鉄粉100を原料粉末Pに用いることで製造できる。原料粉末Pの被覆鉄粉100の平均粒径が200μm以上であれば、圧縮成形性に優れるため、比較的低圧でも緻密化し易い。成形圧力を小さくすれば、成形時の絶縁被膜140の損傷を抑制でき、絶縁被膜14が健全な状態で存在し易い。原料粉末Pの被覆鉄粉100の平均粒径が大きいほど粉末粒子同士が噛み合い易く圧縮成形性に優れる、流動性に優れて金型に充填し易い、成形圧力を低減しても緻密化できるなどの点から製造性に優れる。上述の効果はいずれも、平均粒径が大きいほど得易いことから、圧粉磁心1における被覆鉄粉10の平均粒径は、220μm以上、更に235μm以上、更には300μm以上とすることができる。
-Size The coated iron powder 10 in the powder magnetic core 1 is characterized by containing relatively large powder particles. Since the coated iron powder 10 is large, the dust core 1 can sufficiently secure a magnetic flux path and have high magnetic permeability. Specifically, the average particle diameter of the coated iron powder 10 is preferably 200 μm or more and 450 μm or less. If the average particle size of the coated iron powder 10 is 200 μm or more, in addition to high permeability, 1. It is easy to reduce the core loss by providing the insulating coating 14 well. 2. It is easily densified and has excellent manufacturability. 3. Powder particles are sufficiently meshed with each other and have excellent mechanical strength. There is an effect that the magnetic permeability can be easily increased by increasing the density. Above 1. ~ 3. The reason for the effect is as follows. The powder magnetic core 1 in which the average particle diameter of the coated iron powder 10 is in the above range can be typically manufactured by using the coated iron powder 100 whose average particle diameter satisfies the above range as the raw material powder P. If the average particle diameter of the coated iron powder 100 of the raw material powder P is 200 μm or more, it is excellent in compression moldability, and is therefore easily densified even at a relatively low pressure. If the molding pressure is reduced, damage to the insulating coating 140 during molding can be suppressed, and the insulating coating 14 tends to exist in a healthy state. As the average particle size of the coated iron powder 100 of the raw material powder P is larger, the powder particles are more likely to mesh with each other and more excellent in compression moldability, excellent in fluidity and easy to fill into a mold, and can be densified even when the molding pressure is reduced. From this point, it is excellent in manufacturability. Since all of the above effects are more easily obtained as the average particle size is larger, the average particle size of the coated iron powder 10 in the dust core 1 can be 220 μm or more, further 235 μm or more, and further 300 μm or more.

圧粉磁心1における被覆鉄粉10の平均粒径が450μm以下であれば、鉄粒子12の大径化による鉄粒子12内に生じる渦電流損の増大を招き難く、コアロスを低くできる。この点から、圧粉磁心1における被覆鉄粉10の平均粒径は、425μm以下、更に400μm以下とすることができる。   If the average particle diameter of the coated iron powder 10 in the dust core 1 is 450 μm or less, it is difficult to increase the eddy current loss generated in the iron particles 12 due to the increase in the diameter of the iron particles 12, and the core loss can be reduced. From this point, the average particle diameter of the coated iron powder 10 in the dust core 1 can be 425 μm or less, and further 400 μm or less.

圧粉磁心1における被覆鉄粉10は、微細な粉末粒子が少ないことが好ましい。具体的には、被覆鉄粉10を100質量%として、粒径が75μm以下である粉末粒子(被覆鉄粒子)の割合が10質量%以下であることが好ましい。更に、被覆鉄粉10のうち、粒径が100μm以下である粉末粒子の割合が10質量%以下、更には粒径が120μm以下である粉末粒子の割合が10質量%以下であることがより好ましい。即ち、被覆鉄粉10の90質量%以上が75μm超の粉末粒子、更に100μm超の粉末粒子、更には120μm超の粉末粒子であることが好ましい。上記の微細な粉末粒子が少ない圧粉磁心1は、粒径が大きな粉末粒子が多いため透磁率が高く、所定の磁界が印加された場合には磁束密度が高い。また、上記微細な粉末粒子が少ない圧粉磁心1は、以下の理由により、コアロスを低くし易い。上記微細な粉末粒子が少ない圧粉磁心1は、代表的には、粒径が75μm以下の粉末粒子が少ない被覆鉄粉100を原料粉末Pに用いることで製造できる。微細な粉末粒子が少なく、大きな粉末粒子が多い原料粉末Pは、圧縮変形し易い上に、平均粒径と相俟って粉末粒子が均一的な大きさになり易いため(粒度分布の幅が狭くなるため)、原料粉末Pの圧縮変形を均一的に行えて、不均一な圧縮に起因する成形時の絶縁被膜の損傷を抑制できる。上記の微細な粉末粒子が少ないほど大きな粉末粒子の絶縁被膜140の損傷が抑制され易く、絶縁被膜14を良好に備えて絶縁性に優れる圧粉磁心1となる。更に、微細な粉末粒子の絶縁被膜14は、磁性成分の低下を招き、ひいては透磁率の低下を招く原因となる。そのため、圧粉磁心1における被覆鉄粉10のうち、粒径が75μm以下(好ましくは100μm以下、更には120μm以下)である粉末粒子の割合は、9質量%以下、更に7質量%以下、5質量%以下、3質量%以下、更には1.5質量%以下とすることができる。   The coated iron powder 10 in the dust core 1 preferably has few fine powder particles. Specifically, it is preferable that the ratio of powder particles (coated iron particles) having a particle diameter of 75 μm or less is 10% by mass or less, with the coated iron powder 10 being 100% by mass. Furthermore, in the coated iron powder 10, the ratio of the powder particles having a particle size of 100 μm or less is more preferably 10% by mass or less, and the ratio of the powder particles having a particle size of 120 μm or less is more preferably 10% by mass or less. . That is, 90% by mass or more of the coated iron powder 10 is preferably powder particles exceeding 75 μm, further powder particles exceeding 100 μm, and further powder particles exceeding 120 μm. The dust core 1 having a small number of fine powder particles has a high magnetic permeability because of a large number of powder particles having a large particle diameter, and has a high magnetic flux density when a predetermined magnetic field is applied. Moreover, the powder magnetic core 1 with few said fine powder particles is easy to make a core loss low for the following reasons. The powder magnetic core 1 having a small number of fine powder particles can be typically produced by using the coated iron powder 100 having a small particle size of 75 μm or less as the raw material powder P. The raw material powder P with a small number of fine powder particles and a large number of large powder particles is easily compressed and deformed, and in addition to the average particle size, the powder particles tend to have a uniform size (the width of the particle size distribution is wide). Therefore, the material powder P can be uniformly compressed and deformed, and damage to the insulating coating during molding due to non-uniform compression can be suppressed. The smaller the fine powder particles, the more easily the damage of the insulating coating 140 of the larger powder particles is suppressed, and the dust core 1 having the insulating coating 14 and having excellent insulating properties is obtained. Further, the insulating coating 14 of fine powder particles causes a decrease in the magnetic component, which in turn causes a decrease in the magnetic permeability. Therefore, in the coated iron powder 10 in the powder magnetic core 1, the proportion of powder particles having a particle size of 75 μm or less (preferably 100 μm or less, more preferably 120 μm or less) is 9% by mass or less, and further 7% by mass or less, 5 It can be set to not more than mass%, not more than 3 mass%, and further not more than 1.5 mass%.

圧粉磁心1における被覆鉄粉10は、大き過ぎる粉末粒子が少ないことが好ましい。具体的には、被覆鉄粉10を100質量%として、粒径が500μm以上である粉末粒子(被覆鉄粒子)の割合が1質量%以下であることが好ましい。上記の大き過ぎる粉末粒子が少ない圧粉磁心1は、粗大粒の存在に伴う渦電流損の増大を防止でき、コアロスが低い。また、大き過ぎる粉末粒子は、三重点などの粉末粒子がつくる隙間が大きくなるため、空孔が生じ易くなる結果、磁性成分の低下を招き、ひいては透磁率の低下を招く。この点から、圧粉磁心1における被覆鉄粉10のうち、粒径が500μm以上である粉末粒子の割合は、0.5質量%以下、更に0.1質量%以下、特に実質的に存在しないことが好ましい。なお、上記の大き過ぎる粉末粒子が少ない圧粉磁心1は、代表的には、粒径が500μm以上の粉末粒子が少ない被覆鉄粉100を原料粉末Pに用いることで製造できる。この原料粉末Pも、上述のように粒度分布の幅が狭くなるため、均一的に圧縮変形でき、成形時の絶縁被膜140の損傷を抑制できる。この点からも、上記の大き過ぎる粉末粒子が少ない圧粉磁心1は、絶縁性に優れて渦電流損を低くして、コアロスが低い。   The coated iron powder 10 in the dust core 1 preferably has few powder particles that are too large. Specifically, the ratio of powder particles (coated iron particles) having a particle diameter of 500 μm or more is preferably 1% by mass or less, with the coated iron powder 10 being 100% by mass. The dust core 1 having a small number of powder particles that are too large can prevent an increase in eddy current loss due to the presence of coarse particles, and has a low core loss. On the other hand, too large powder particles have large gaps formed by powder particles such as triple points, and as a result, vacancies are easily generated. As a result, the magnetic component is lowered, and the permeability is lowered. From this point, the ratio of the powder particles having a particle diameter of 500 μm or more in the coated iron powder 10 in the powder magnetic core 1 is 0.5% by mass or less, further 0.1% by mass or less, particularly not substantially present. It is preferable. Note that the above-described powder magnetic core 1 with few powder particles that are too large can be typically produced by using the coated iron powder 100 with few powder particles having a particle size of 500 μm or more as the raw material powder P. Since the raw material powder P also has a narrow particle size distribution as described above, it can be uniformly compressed and deformed, and damage to the insulating coating 140 during molding can be suppressed. Also from this point, the above-described powder magnetic core 1 having few powder particles that are too large has excellent insulating properties, lowers eddy current loss, and has low core loss.

更に、圧粉磁心1における被覆鉄粉10は、上述の微細な粉末粒子が少ないことと、上述の大き過ぎる粉末粒子が少ないこととの双方を満たすことが好ましい。   Furthermore, it is preferable that the coated iron powder 10 in the powder magnetic core 1 satisfies both the above-described small amount of fine powder particles and the above-described small amount of powder particles that are too large.

圧粉磁心1における被覆鉄粉10の大きさ、後述する裸鉄粉20の大きさは、上述のように原料粉末Pの大きさに依存する。原料粉末Pは、成形時の塑性変形によって偏平になるなど形状が変化するものの、この形状変化に起因する粒径の変化量はさほど大きくないと考えられる。従って、圧粉磁心1における被覆鉄粉10の大きさ、裸鉄粉20の大きさは、原料粉末Pの被覆鉄粉100の大きさ、裸鉄粉200の大きさと概ね等価として扱える。圧粉磁心1における被覆鉄粉10の平均粒径、裸鉄粉20の平均粒径、特定の粒径の粉末粒子の割合の測定方法は後述する。   The size of the coated iron powder 10 in the dust core 1 and the size of the bare iron powder 20 described later depend on the size of the raw material powder P as described above. Although the raw material powder P changes its shape such as flattening due to plastic deformation at the time of molding, it is considered that the amount of change in particle size due to this shape change is not so large. Therefore, the size of the coated iron powder 10 and the size of the bare iron powder 20 in the dust core 1 can be treated as being substantially equivalent to the size of the coated iron powder 100 of the raw material powder P and the size of the bare iron powder 200. A method for measuring the average particle diameter of the coated iron powder 10, the average particle diameter of the bare iron powder 20, and the ratio of powder particles having a specific particle diameter in the dust core 1 will be described later.

・・含有量
圧粉磁心1の磁性成分における被覆鉄粉10の含有量が高いほど、特に高透磁率、低コアロスといった効果を得易い。従って、被覆鉄粉10の含有量は、圧粉磁心1の磁性成分を100質量%として、50質量%以上、50質量%超、更に55質量%以上、更には60質量%以上とすることができる。被覆鉄粉10の含有量が100質量%未満の場合、磁性成分の残部は、後述する裸鉄粉20が好ましい。被覆鉄粉10の含有量が100質量%の場合には、更に高透磁率及び低コアロスとし易い。圧粉磁心1の磁性成分の質量は、圧粉磁心の質量から潤滑剤の質量(後述の添加材を含む場合には潤滑剤及び添加材の合計質量)を除した値とする。
-Content As the content of the coated iron powder 10 in the magnetic component of the powder magnetic core 1 is higher, it is easier to obtain effects such as high magnetic permeability and low core loss. Therefore, the content of the coated iron powder 10 is 50% by mass or more, more than 50% by mass, further 55% by mass or more, and further 60% by mass or more, with the magnetic component of the dust core 1 being 100% by mass. it can. When the content of the coated iron powder 10 is less than 100% by mass, the remainder of the magnetic component is preferably a bare iron powder 20 described later. When the content of the coated iron powder 10 is 100% by mass, the magnetic permeability and the low core loss are easily obtained. The mass of the magnetic component of the dust core 1 is a value obtained by dividing the mass of the dust core by the mass of the lubricant (the total mass of the lubricant and the additive when an additive described later is included).

・潤滑剤
実施形態の圧粉磁心1は、特定量の潤滑剤30を含むと共に、潤滑剤30に特定成分を含むことを特徴の一つとする。圧粉磁心1における潤滑剤30は、主として、製造過程における原料粉末Pの粉末粒子同士の擦れ合い、脱型時の圧縮物と金型との擦れ合い(摩擦)などを低減する機能を有する。更に、潤滑剤30は、絶縁体であることから、上述のように鉄粒子12が露出した箇所がある場合に、鉄粒子12,12間や鉄粒子12と裸鉄粒子間に介在して絶縁材としても機能する。
Lubricant The powder magnetic core 1 of the embodiment includes a specific amount of the lubricant 30 and the lubricant 30 includes a specific component. The lubricant 30 in the dust core 1 mainly has a function of reducing friction between the powder particles of the raw material powder P in the manufacturing process, friction between the compressed product and the mold during demolding, and the like. Furthermore, since the lubricant 30 is an insulator, when there is a portion where the iron particles 12 are exposed as described above, the lubricant 30 is interposed between the iron particles 12 and 12 or between the iron particles 12 and the bare iron particles for insulation. Also functions as a material.

・・含有量
実施形態の圧粉磁心1は、圧粉磁心1を100質量%として、潤滑剤30を0.3質量%以上0.8質量%以下含む。潤滑剤30を0.3質量%以上含むことで、上述の製造過程での擦れ合いなどを効果的に低減できて絶縁被膜140の損傷を低減できる上に、鉄粒子12,12間や鉄粒子12と裸鉄粒子間に十分に介在できる。従って、潤滑剤30を0.3質量%以上含む圧粉磁心1は、絶縁被膜14を良好に備えて絶縁性に優れ、コアロスが低い。圧粉磁心1における潤滑剤30の含有量は、0.36質量%以上、更に0.40質量%以上とすることができる。
-Content The powder magnetic core 1 of embodiment contains the lubricant 30 by 0.3 mass% or more and 0.8 mass% or less by making the powder magnetic core 1 into 100 mass%. By containing 0.3% by mass or more of the lubricant 30, it is possible to effectively reduce the rubbing in the manufacturing process described above and reduce the damage to the insulating coating 140, and between the iron particles 12 and 12, or between the iron particles. 12 can be sufficiently interposed between the bare iron particles. Therefore, the powder magnetic core 1 containing 0.3% by mass or more of the lubricant 30 is provided with the insulating coating 14 and has excellent insulating properties and low core loss. The content of the lubricant 30 in the dust core 1 can be 0.36% by mass or more, and further 0.40% by mass or more.

圧粉磁心1における潤滑剤30の含有量が0.8質量%以下であれば、潤滑剤30の過多による磁性成分の割合の低下や、製造過程での粉末粒子同士の噛み合いの阻害を抑制できる。即ち、磁気特性の低下や強度の低下を抑制できる。また、原料粉末Pの被覆鉄粉100が比較的大きいため、潤滑剤300を過度に含まなくても、緻密化・高密度化が可能である。従って、潤滑剤30を0.8質量%以下含む圧粉磁心1は、密度や強度が高くなり易い。また、圧粉磁心1は、比較的大きな粉末粒子を含有するため、潤滑剤30は、上述の大きな粉末粒子がつくる隙間などに存在し得る。即ち、潤滑剤30は、粉末粒子に対して、その周囲に均一的に存在するのではなく、局所的に存在し得る。そのため、潤滑剤30の含有による透磁率の低下を防止し易く、圧粉磁心1は、高い透磁率を有することができると考えられる。圧粉磁心1における潤滑剤30の含有量は、0.75質量%以下、更に0.70質量%以下とすることができる。   If the content of the lubricant 30 in the dust core 1 is 0.8% by mass or less, it is possible to suppress a decrease in the proportion of the magnetic component due to an excess of the lubricant 30 and an inhibition of the meshing of the powder particles during the manufacturing process. . That is, a decrease in magnetic characteristics and a decrease in strength can be suppressed. Further, since the coated iron powder 100 of the raw material powder P is relatively large, even if the lubricant 300 is not excessively contained, the densification and the high density can be achieved. Therefore, the dust core 1 containing the lubricant 30 in an amount of 0.8% by mass or less tends to have a high density and strength. Moreover, since the powder magnetic core 1 contains relatively large powder particles, the lubricant 30 may be present in a gap formed by the above-described large powder particles. That is, the lubricant 30 may be present locally rather than uniformly around the powder particles. Therefore, it is easy to prevent a decrease in magnetic permeability due to the inclusion of the lubricant 30, and the dust core 1 is considered to have a high magnetic permeability. The content of the lubricant 30 in the dust core 1 can be 0.75% by mass or less, and further 0.70% by mass or less.

圧粉磁心1における潤滑剤30の含有量が上記の範囲を満たすように、原料粉末Pにおける潤滑剤300の添加量を調整するとよい。   The addition amount of the lubricant 300 in the raw material powder P may be adjusted so that the content of the lubricant 30 in the dust core 1 satisfies the above range.

・・成分
実施形態の圧粉磁心1は、潤滑剤30に脂肪酸アミドを含むことを特徴の一つとする。脂肪酸アミドは、代表的には融点が70℃以上150℃以下程度、更に90℃以上120℃以下程度であり、比較的融点が高い。そのため、製造過程では、(1)融点以下の使用環境(例えば、20℃〜25℃程度の室温)であれば、原料粉末Pが流動性に優れて金型に均一的に充填し易い、(2)液状化した潤滑剤が金型に滞留し、この滞留物を原料粉末Pが巻き込むことによる圧縮物の低密度化を抑制できる、(3)脱型性に優れて絶縁被膜140の損傷を低減し易い、(4)原料粉末Pを取り扱い易く作業性に優れる、という効果を奏する。また、圧粉磁心1の使用温度が室温(気温)程度〜融点以下であれば、液状化を抑制でき、液状化に伴う潤滑剤30の過度の流出を防止して、潤滑剤30を絶縁材として機能できる。
.. Ingredient The powder magnetic core 1 of the embodiment is characterized in that the lubricant 30 contains a fatty acid amide. The fatty acid amide typically has a melting point of about 70 ° C. or higher and 150 ° C. or lower, more preferably about 90 ° C. or higher and 120 ° C. or lower, and has a relatively high melting point. For this reason, in the manufacturing process, (1) if the usage environment is lower than the melting point (for example, room temperature of about 20 ° C. to 25 ° C.), the raw material powder P is excellent in fluidity and easily filled into the mold. 2) The liquefied lubricant is retained in the mold, and the density of the compressed material can be suppressed due to the raw material powder P being entrained in the retained material. (3) Excellent in demoldability and damage to the insulating coating 140. It is easy to reduce, and (4) it is easy to handle the raw material powder P and has excellent workability. Moreover, if the operating temperature of the powder magnetic core 1 is about room temperature (air temperature) to the melting point or less, liquefaction can be suppressed and excessive outflow of the lubricant 30 accompanying liquefaction can be prevented, so that the lubricant 30 is insulated. Can function as.

具体的な脂肪酸アミドは、ステアリン酸アミド(融点100℃前後)、パルミチン酸アミドなどが挙げられる。市販のステアリン酸アミドは、一部にパルミチン酸アミドを含む場合がある。パルミチン酸アミドとステアリン酸アミドとは、物理特性が概ね同等程度であるため、ステアリン酸アミドとパルミチン酸アミドとの双方を含んでいてもよい。脂肪酸アミド中のパルミチン酸アミドの質量割合は、適宜選択できるが、例えば、55%以下程度が挙げられる。   Specific fatty acid amides include stearic acid amide (melting point around 100 ° C.), palmitic acid amide and the like. Commercial stearic acid amide may contain palmitic acid amide in part. Since palmitic acid amide and stearic acid amide have substantially the same physical properties, both stearic acid amide and palmitic acid amide may be included. Although the mass ratio of palmitic acid amide in the fatty acid amide can be appropriately selected, for example, it is about 55% or less.

潤滑剤30として、更に、脂肪酸金属塩を含むことができる。脂肪酸金属塩は、代表的には融点が100℃以上であるため、上述の脂肪酸アミドと同様に上述の(1)〜(4)の効果を奏する上に、絶縁材としても機能する。具体的な脂肪酸金属塩は、ステアリン酸亜鉛、ステアリン酸リチウムなどが挙げられ、一種又は複数種含むことができる。   The lubricant 30 can further contain a fatty acid metal salt. Since the fatty acid metal salt typically has a melting point of 100 ° C. or higher, the fatty acid metal salt functions as an insulating material in addition to the effects (1) to (4) as in the case of the fatty acid amide. Specific fatty acid metal salts include zinc stearate, lithium stearate, and the like, and may include one or more.

潤滑剤30は、脂肪酸アミドの含有割合(脂肪酸金属塩を含む場合には、脂肪酸アミドと脂肪酸金属塩との合計含有割合)が高い方が潤滑性に優れて好ましく、実質的に脂肪酸アミドのみ、又は、脂肪酸アミド及び脂肪酸金属塩のみとすることが好ましい。脂肪酸アミド及び脂肪酸金属塩の双方を含む場合には、両者の配合割合は、両者の合計を100質量%として、脂肪酸金属塩の含有量は0超70質量%以下が挙げられる。   The lubricant 30 preferably has a higher fatty acid amide content (when the fatty acid metal salt is included, the total content of the fatty acid amide and the fatty acid metal salt) is preferably superior in lubricity, and substantially contains only the fatty acid amide. Or it is preferable to use only fatty acid amides and fatty acid metal salts. When both the fatty acid amide and the fatty acid metal salt are included, the blending ratio of both is 100% by mass in total, and the content of the fatty acid metal salt is more than 0 and 70% by mass or less.

圧粉磁心1における潤滑剤30が特定の成分となるように、原料粉末Pにおける潤滑剤300の成分を調整するとよい。   The components of the lubricant 300 in the raw material powder P may be adjusted so that the lubricant 30 in the dust core 1 becomes a specific component.

・・形状
潤滑剤30の存在形状として、例えば、粉末状が挙げられる。原料粉末Pの潤滑剤300として粉末状のものを利用すれば、圧縮成形後にも粉末状で存在し得る。その他、成形時に変形して、潤滑剤30は被覆鉄粒子や裸鉄粒子に沿った任意の形状で存在したり、より小さな粉末状やより大きな粉末状になって存在したりする。
-Shape The powder 30 is an example of the presence shape of the lubricant 30. If a powdery material is used as the lubricant 300 of the raw material powder P, it may exist in a powdery state even after compression molding. In addition, the lubricant 30 is deformed at the time of molding, and the lubricant 30 exists in an arbitrary shape along the coated iron particles or bare iron particles, or exists in a smaller powder form or a larger powder form.

・裸鉄粉
実施形態の圧粉磁心1は、磁性成分が被覆鉄粉10のみである形態の他、絶縁被膜14を備える被覆鉄粉10と、絶縁被膜を備えていない裸鉄粉20との双方を含む形態(図1)とすることができる。裸鉄粉20の成分は上述の鉄粒子12と同様である。裸鉄粉20を含む形態は、特に強度に優れることが期待できる。裸鉄粉20は成分及び構造(絶縁被膜無し)から塑性変形性により優れるため、被覆鉄粒子間に変形して介在する場合には、裸鉄粉20によって被覆鉄粒子同士を強固に結合できるからである。また、裸鉄粉20は、絶縁被膜を有さず、表面が比較的凹凸している傾向にあることからも、被覆鉄粒子に噛み合い易いと考えられるからである。
Bare iron powder The powder magnetic core 1 of the embodiment includes a coated iron powder 10 having an insulating coating 14 and a bare iron powder 20 not having an insulating coating, in addition to a form in which the magnetic component is only the coated iron powder 10. It can be set as the form (FIG. 1) including both. The components of the bare iron powder 20 are the same as those of the iron particles 12 described above. The form including the bare iron powder 20 can be expected to be particularly excellent in strength. Since the bare iron powder 20 is superior in plastic deformability due to its component and structure (no insulating coating), the coated iron particles 20 can be firmly bonded to each other when deformed and interposed between the coated iron particles. It is. In addition, the bare iron powder 20 does not have an insulating coating, and the surface tends to be relatively uneven, and therefore, it is considered that the bare iron powder 20 is easily meshed with the coated iron particles.

・・大きさ
裸鉄粉20を含む場合には、裸鉄粉20は、被覆鉄粉10よりも小さいことが好ましい。裸鉄粒子が小さければ、大きい被覆鉄粒子がつくる隙間に介在して緻密化、高密度化を図れる。その結果、小さい裸鉄粉20を含む圧粉磁心1は、絶縁被膜による磁性成分の割合の低下を抑制しつつ、高密度化によって透磁率を高められると期待される。また、裸鉄粒子が小さければ、裸鉄粒子間に介在する潤滑剤30によって裸鉄粒子間の絶縁を確保し易い。その結果、圧粉磁心1は、裸鉄粉20を含むものの、絶縁性に優れると考えられる。更に、裸鉄粒子が小さければ、粒子内に生じる渦電流を低減し易い。この点から、裸鉄粉20を含んでいながら、低コアロスの圧粉磁心1とすることができる。
.. Size When the bare iron powder 20 is included, the bare iron powder 20 is preferably smaller than the coated iron powder 10. If the bare iron particles are small, they can be densified and densified by interposing in the gaps formed by the large coated iron particles. As a result, the powder magnetic core 1 containing the small bare iron powder 20 is expected to increase the magnetic permeability by increasing the density while suppressing the decrease in the ratio of the magnetic component due to the insulating coating. Further, if the bare iron particles are small, it is easy to ensure insulation between the bare iron particles by the lubricant 30 interposed between the bare iron particles. As a result, although the powder magnetic core 1 contains the bare iron powder 20, it is considered that it is excellent in insulation. Furthermore, if the bare iron particles are small, it is easy to reduce eddy currents generated in the particles. From this point, it can be set as the powder core 1 of the low core loss, including the bare iron powder 20.

具体的には、圧粉磁心1における裸鉄粉20の平均粒径は40μm以上150μm以下が好ましい。裸鉄粉20の平均粒径が40μm以上であれば、製造過程で裸鉄粉200を取り扱い易く流動性に優れる上に変形性に優れる。そのため、変形によって強度を高め易い上に、製造性にも優れる。この効果は上記平均粒径が大きいほど得易いため、圧粉磁心1における裸鉄粉20の平均粒径は、50μm以上、更に60μm以上、更には70μm以上とすることができる。   Specifically, the average particle diameter of the bare iron powder 20 in the dust core 1 is preferably 40 μm or more and 150 μm or less. If the average particle diameter of the bare iron powder 20 is 40 μm or more, the bare iron powder 200 is easy to handle in the manufacturing process and excellent in fluidity and excellent in deformability. Therefore, it is easy to increase the strength by deformation, and it is excellent in manufacturability. Since this effect is more easily obtained as the average particle size is larger, the average particle size of the bare iron powder 20 in the dust core 1 can be 50 μm or more, further 60 μm or more, and further 70 μm or more.

圧粉磁心1における裸鉄粉20の平均粒径が150μm以下であれば、被覆鉄粒子がつくる隙間に裸鉄粒子が介在して緻密化し易い。また、裸鉄粒子の大径化による裸鉄粒子内に生じる渦電流の増大を招き難く、コアロスを低くできる。更に、裸鉄粒子間に介在する潤滑剤30によって絶縁性を高め易いことからも、コアロスを低くできる。加えて、裸鉄粒子が小さければ、裸鉄粒子が大き過ぎると塑性変形によって裸鉄粒子同士が結合して大きな導通部分が生じるという不具合を低減できることからも、コアロスを低くできる。これらの点から、圧粉磁心1における裸鉄粉20の平均粒径は、120μm以下、更に100μm以下、更には95μm以下とすることができる。   If the average particle diameter of the bare iron powder 20 in the powder magnetic core 1 is 150 μm or less, the bare iron particles are easily interposed between the gaps formed by the coated iron particles and are easily densified. Further, it is difficult to increase the eddy current generated in the bare iron particles due to the increase in the diameter of the bare iron particles, and the core loss can be reduced. Furthermore, since the insulating property can be easily improved by the lubricant 30 interposed between the bare iron particles, the core loss can be reduced. In addition, if the bare iron particles are small, it is possible to reduce the problem that the bare iron particles are bonded to each other by plastic deformation and a large conductive portion is formed due to plastic deformation, so that the core loss can be reduced. From these points, the average particle diameter of the bare iron powder 20 in the powder magnetic core 1 can be 120 μm or less, further 100 μm or less, and further 95 μm or less.

圧粉磁心1における裸鉄粉20は、大き過ぎる粉末粒子が少ないことが好ましい。具体的には、裸鉄粉20を100質量%として、粒径が200μm以上である粉末粒子(裸鉄粒子)の割合が10質量%以下であることが好ましい。上記の大き過ぎる粉末粒子が少ない圧粉磁心1は、粗大粒の存在に伴う渦電流損の増大を防止でき、コアロスが低い。この点から、圧粉磁心1における裸鉄粉20のうち、粒径が200μm以上である粉末粒子の割合は、5質量%以下、更に3質量%以下、2質量%以下、1質量%以下、特に実質的に存在しないことが好ましい。なお、上記の大き過ぎる粉末粒子が少ない圧粉磁心1は、代表的には、粒径が200μm以上の粉末粒子が少ない裸鉄粉200を原料粉末Pに用いることで製造できる。このような裸鉄粉200は、粒度分布の幅が狭くなるため、製造過程で金型内における裸鉄粉200の移動や原料粉末Pの圧縮を均一的に行えて、不均一な圧縮に起因する絶縁被膜140の損傷を抑制できると期待される。   The bare iron powder 20 in the dust core 1 preferably has few powder particles that are too large. Specifically, it is preferable that the ratio of powder particles (bare iron particles) having a particle diameter of 200 μm or more is 10% by mass or less, with the bare iron powder 20 being 100% by mass. The dust core 1 having a small number of powder particles that are too large can prevent an increase in eddy current loss due to the presence of coarse particles, and has a low core loss. From this point, the ratio of the powder particles having a particle diameter of 200 μm or more in the bare iron powder 20 in the dust core 1 is 5% by mass or less, further 3% by mass or less, 2% by mass or less, 1% by mass or less, In particular, it is preferably substantially absent. The powder magnetic core 1 having a small number of powder particles that are too large can be manufactured by using, as the raw material powder P, the bare iron powder 200 having a small number of powder particles having a particle size of 200 μm or more. Since such a bare iron powder 200 has a narrow particle size distribution, it is possible to uniformly move the bare iron powder 200 in the mold and compress the raw material powder P during the manufacturing process, resulting in non-uniform compression. It is expected that damage to the insulating coating 140 can be suppressed.

・・含有量
圧粉磁心1の磁性成分における裸鉄粉20の含有量は、圧粉磁心1の磁性成分を100質量%として、10質量%以上であれば、裸鉄粉20を含む効果(緻密化、高強度、優れた変形性など)が得られる。また、被覆鉄粉100の使用量を低減でき、低コスト化に寄与できる。裸鉄粉20の含有量が15質量%以上、更に20質量%以上、更には30質量%以上であれば、上記の効果を得易い上に、透磁率がより高くなったり、コアロスがより低くなったりすることがある。一方、裸鉄粉20の含有量が45質量%以下であれば、圧粉磁心1は、大きな被覆鉄粉10を十分に含むことから、絶縁性を高め易い。裸鉄粉20の含有量は、35質量%以下、更に30質量%以下とすることができる。
.. Content If the content of the bare iron powder 20 in the magnetic component of the dust core 1 is 10% by mass or more when the magnetic component of the dust core 1 is 100% by mass, the effect of including the bare iron powder 20 ( Densification, high strength, excellent deformability, etc.) can be obtained. Moreover, the usage-amount of the covering iron powder 100 can be reduced and it can contribute to cost reduction. If the content of the bare iron powder 20 is 15% by mass or more, further 20% by mass or more, and further 30% by mass or more, it is easy to obtain the above effect, and the magnetic permeability is higher or the core loss is lower. Sometimes it becomes. On the other hand, if the content of the bare iron powder 20 is 45% by mass or less, the dust core 1 sufficiently includes the large coated iron powder 10, and thus it is easy to improve the insulation. The content of the bare iron powder 20 can be 35% by mass or less, and further 30% by mass or less.

・その他の含有物
圧粉磁心1は、その他の添加材として、樹脂などを含有することができる。具体的には、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、変性ポリフェニレンエーテル(m−PPE)、ポリフェニレンスルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)などのエンジニアリングプラスチックが挙げられる。添加材の含有量は、圧粉磁心1を100質量%として、0超0.5質量%以下が好ましい。この範囲で樹脂などを含むことで、成形性や保形性を高められ、かつ樹脂の含有による磁性成分の割合の低下を防止できる。特に、ポリアミド系樹脂は、成形強度を高められて好ましい。ポリアミド系樹脂は、上述のように絶縁被膜14として存在する形態、粉末状に存在する形態などが挙げられる。粉末の場合には、原料粉末Pに樹脂粉末を混合するとよい。
-Other inclusions The powder magnetic core 1 can contain resin etc. as another additive. Specifically, polyacetal (POM), polyamide (PA), polycarbonate (PC), polybutylene terephthalate (PBT), modified polyphenylene ether (m-PPE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK) Engineering plastics such as polyetherimide (PEI). The content of the additive is preferably more than 0 and 0.5% by mass or less, with the dust core 1 being 100% by mass. By including a resin or the like within this range, the moldability and shape retention can be improved, and a decrease in the proportion of the magnetic component due to the resin content can be prevented. In particular, a polyamide-based resin is preferable because the molding strength is increased. Examples of the polyamide-based resin include a form that exists as the insulating coating 14 and a form that exists as a powder as described above. In the case of powder, resin powder may be mixed with the raw material powder P.

・形状
実施形態の圧粉磁心1は、種々の形状の金型を用いることで、種々の形状をとり得る。代表的には、対向する二面を端面とする柱状体、両端面を貫通する貫通孔を有する筒状体が挙げられる。より具体的には、円柱、円筒、円環(厚さが薄いもの)、直方体などの角柱、端面が矩形枠状の角筒などが挙げられる。その他、一つ又は複数の段差を有する形状や、端部に一つ又は複数のフランジ部を備える形状といった外形が凹凸形状の異形の柱状体や筒状体などとすることができる。
-Shape The powder magnetic core 1 of the embodiment can take various shapes by using various shapes of molds. Typically, a columnar body having two opposing surfaces as end faces and a cylindrical body having through holes penetrating both end faces are exemplified. More specifically, a cylinder, a cylinder, a ring (thickness), a rectangular column such as a rectangular parallelepiped, a square cylinder whose end face is a rectangular frame, and the like can be given. In addition, the outer shape such as a shape having one or a plurality of steps or a shape including one or a plurality of flange portions at the end portion may be an irregular columnar body or cylindrical body having an uneven shape.

具体的な形状として、圧粉磁心の圧縮方向の断面をとり、上記圧縮方向の長さL(以下、高さLと呼ぶことがある)と、上記圧縮方向に直交方向の長さD(以下、直径Dと呼ぶことがある)との比L/Dが2.5超であるものが挙げられる。即ち、高さLが直径Dに対して大きい柱状体である。端的に言うと、側面の大きさ(高さL)が端面の大きさ(直径D)に対して大きい細長い立体である(例えば、後述する図2、図4、図7のI字状のコア片10iを参照)。円柱では、その外径が直径Dに該当し、角柱では、端面の包絡円の直径が直径Dに該当する。具体的な大きさとして、例えば、高さLは、5mm以上100mm以下、更に5mm以上50mm以下、10mm以上30mm以下、10mm以上25mm以下が挙げられる。より具体的な形状として、直径Dが10mm、高さLが25mm超の円柱、端面の多角形の包絡円の直径Dが10mm、高さLが25mm超の角柱などが挙げられる。又は、上記長さDを肉厚とする円筒や角筒といった薄肉の筒体が挙げられる。具体的な肉厚Dは、2mm以上5mm以下が挙げられる。   As a specific shape, a cross section in the compression direction of the dust core is taken, the length L in the compression direction (hereinafter sometimes referred to as height L), and the length D in the direction orthogonal to the compression direction (hereinafter referred to as height L). , Which may be referred to as diameter D). That is, the columnar body has a height L greater than the diameter D. To put it simply, it is an elongated solid whose side surface (height L) is larger than the end surface (diameter D) (for example, the I-shaped core of FIGS. 2, 4, and 7 described later). See fragment 10i). In the cylinder, the outer diameter corresponds to the diameter D, and in the prism, the diameter of the envelope circle on the end surface corresponds to the diameter D. As a specific size, for example, the height L may be 5 mm to 100 mm, 5 mm to 50 mm, 10 mm to 30 mm, 10 mm to 25 mm. More specific shapes include a cylinder having a diameter D of 10 mm and a height L of more than 25 mm, and a prismatic cylinder having a polygon envelope circle having a diameter D of 10 mm and a height L of more than 25 mm. Alternatively, a thin cylindrical body such as a cylinder or a square cylinder having a thickness of the length D may be used. Specific thickness D is 2 mm or more and 5 mm or less.

上述のような細長い圧粉磁心や薄肉筒の圧粉磁心は、一般に製造し難い形状といえる。しかし、実施形態の圧粉磁心1は、上述のように圧縮成形性に優れる大きさ・材質である被覆鉄粉100及び適宜裸鉄粉200と、脱型性に優れる成分を含む潤滑剤300とを原料粉末Pに用いることで、このような形状であっても、良好に製造でき、製造性に優れる。また、このような細長い形状などであっても、上述のように成形性に優れる原料粉末Pを用いて製造されることで、均一的に圧縮されて圧縮状態のばらつきや密度のばらつきが小さく、圧粉磁心1は、磁気特性や機械的強度、形状精度や寸法精度にも優れる。   It can be said that the elongated powder magnetic core and the thin-walled powder magnetic core as described above are generally difficult to manufacture. However, the dust core 1 according to the embodiment includes the coated iron powder 100 and the bare iron powder 200 as appropriate, which are excellent in size and material as described above, and the lubricant 300 including a component excellent in demoldability. Even if it is such a shape, it can manufacture favorably and is excellent in manufacturability. In addition, even with such an elongated shape, by using the raw material powder P that is excellent in moldability as described above, it is uniformly compressed and small in variation in compressed state and variation in density, The dust core 1 is excellent in magnetic characteristics, mechanical strength, shape accuracy, and dimensional accuracy.

なお、圧粉磁心1の圧縮方向を判別する指標の一つとして、圧粉磁心1の断面をとり、断面に存在する粉末粒子の伸び方向、が挙げられる。圧粉磁心1は、原料粉末Pを加圧圧縮することから、原料粉末Pを構成する各粉末粒子は圧縮方向に押し潰されて(塑性変形して)、代表的には、圧縮方向と直交方向に伸びた形状になる。従って、断面に存在する粉末粒子の伸び方向に対して直交する方向が圧縮方向であると予想できる。上記判別する指標の別の一つとして、外形が挙げられる。圧粉磁心1は、代表的には一軸型の金型を用いた成形体であることから、その外形は、上記金型から抜出可能な形状に限られる。例えば、貫通孔を有する圧粉磁心(図7のコア片10fなど)であれは、貫通孔の軸方向が圧縮方向であると予想できる。上記判別する指標の別の一つとして、例えば、摺接痕の有無が挙げられる。圧粉磁心1の外周面を形成するダイとの接触面や、貫通孔を有する場合には圧粉磁心の内周面を形成するロッドとの接触面に、ダイからの圧縮物の抜き取り時やロッドの抜き取り時に圧縮物とダイやロッドとが摺接して、摺接痕が残存し得る。つまり、摺接痕がある面は、ダイやロッドによって形成された面、摺接痕が無い面がパンチによって形成された端面、と予想できる。そして、対向配置される一対の端面に直交する方向が圧縮方向であると予想できる。   In addition, as one of the indexes for determining the compression direction of the powder magnetic core 1, there is a cross section of the powder magnetic core 1 and the elongation direction of the powder particles existing in the cross section. Since the powder magnetic core 1 compresses and compresses the raw material powder P, each powder particle constituting the raw material powder P is crushed (plastically deformed) in the compression direction, and is typically orthogonal to the compression direction. It becomes the shape extended in the direction. Therefore, it can be expected that the direction perpendicular to the elongation direction of the powder particles present in the cross section is the compression direction. Another example of the index to be discriminated is an outer shape. Since the dust core 1 is typically a molded body using a uniaxial mold, its outer shape is limited to a shape that can be extracted from the mold. For example, in the case of a dust core having a through hole (such as the core piece 10f in FIG. 7), the axial direction of the through hole can be expected to be the compression direction. Another example of the index to be discriminated is the presence or absence of a sliding contact mark. At the time of extracting the compressed material from the die on the contact surface with the die that forms the outer peripheral surface of the dust core 1 or the contact surface with the rod that forms the inner peripheral surface of the dust core when there is a through hole, When the rod is withdrawn, the compressed product and the die or the rod are in sliding contact, and a sliding contact mark may remain. That is, it can be expected that the surface having the sliding contact mark is a surface formed by a die or a rod, and the surface having no sliding contact mark is an end surface formed by a punch. Then, it can be expected that the direction orthogonal to the pair of end faces opposed to each other is the compression direction.

・密度
実施形態の圧粉磁心1の一例として、密度が7.3g/cm以上7.7g/cm以下を満たすものが挙げられる。密度が7.3g/cm以上であれば、相対密度((見掛け密度/真密度)×100。真密度=純鉄粉の密度)が92%以上と緻密であり、透磁率が高く、強度に優れる。密度が高いほど、透磁率や強度が高まることから、圧粉磁心1の密度は、7.35g/cm以上、更に7.4g/cm以上を満たすことが好ましい。一方、圧粉磁心1の密度が7.7g/cm以下であれば、比較的低い成形圧力で製造されて、成形時の絶縁被膜の損傷が低減されているといえ、コアロスを低くできる。従って、圧粉磁心1の密度は、7.65g/cm以下、更に7.6g/cm以下とすることができる。
- An example of a dust core 1 density embodiment include those having a density satisfies the 7.3 g / cm 3 or more 7.7 g / cm 3 or less. If the density is 7.3 g / cm 3 or more, the relative density ((apparent density / true density) × 100. The true density = the density of the pure iron powder) is 92% or more, the magnetic permeability is high, and the strength is high. Excellent. Since the magnetic permeability and strength increase as the density increases, the density of the dust core 1 preferably satisfies 7.35 g / cm 3 or more, and more preferably 7.4 g / cm 3 or more. On the other hand, if the density of the powder magnetic core 1 is 7.7 g / cm 3 or less, it can be said that the core loss can be reduced because it is manufactured at a relatively low molding pressure and damage to the insulating coating during molding is reduced. Thus, the density of the dust core 1, 7.65 g / cm 3 or less, it is possible to further 7.6 g / cm 3 or less.

・特性
実施形態の圧粉磁心1は、高い透磁率を有する。例えば、圧粉磁心1の交流透磁率は、測定条件を0.1T/10kHzとするとき、150以上、更に160以上、更には170以上が挙げられる。
-Property The dust core 1 of the embodiment has a high magnetic permeability. For example, the AC magnetic permeability of the dust core 1 is 150 or more, further 160 or more, and further 170 or more when the measurement condition is 0.1 T / 10 kHz.

[コイル部品(圧粉磁心の使用例)]
実施形態の圧粉磁心1は、磁路の構成部材として利用できる。例えば、巻線を螺旋状に巻回してなるコイルと、このコイルが配置されて磁路を構成する磁性コアとを備えるコイル部品において、磁性コアの少なくとも一部に圧粉磁心1を利用できる。図2〜図7は、コイル部品の一例を示す。図中、同一符号は同一名称物を示す。
[Coil parts (use example of dust core)]
The dust core 1 of the embodiment can be used as a constituent member of a magnetic path. For example, in a coil component including a coil formed by winding a winding in a spiral shape and a magnetic core in which the coil is arranged to form a magnetic path, the dust core 1 can be used for at least a part of the magnetic core. 2-7 shows an example of a coil component. In the figure, the same reference numerals indicate the same names.

図2に示す実施形態1のコイル部品1Aは、磁性コア10Aとして、I字状のコア片10iと、Π字状のコア片10pとを備える(図2の右図)。この磁性コア10Aは、両コア片10i,10pを組み合わせて矩形枠状の閉磁路を構成するO字型の磁性コアである(図2の左図)。ここでは、両コア片10i,10p間にギャップGを備えると共に、I字状のコア片10iにコイルCが配置される例を示す。   A coil component 1A according to Embodiment 1 shown in FIG. 2 includes an I-shaped core piece 10i and a bowl-shaped core piece 10p as a magnetic core 10A (the right diagram in FIG. 2). This magnetic core 10A is an O-shaped magnetic core that constitutes a rectangular frame-shaped closed magnetic path by combining both core pieces 10i and 10p (the left diagram in FIG. 2). Here, an example is shown in which a gap G is provided between both core pieces 10i and 10p, and a coil C is arranged on the I-shaped core piece 10i.

図3に示す実施形態2のコイル部品1Bは、磁性コア10Bとして、一対のΠ字状のコア片10p,10pを備える(図3の右図)。磁性コア10Bは、両コア片10p,10pを組み合わせて矩形枠状の閉磁路を構成するO字型の磁性コアである(図3の左図)。ここでは、両コア片10p,10p間にギャップGを備えると共に、両コア片10p,10pのうち、ギャップGを介して接合されて構成される二つの接続脚部にコイルC,Cがそれぞれ配置される例を示す。実施形態1のコイル部品1Aのように、いずれか一方の接続脚部にのみコイルCを備えることができる。   The coil component 1B of Embodiment 2 shown in FIG. 3 includes a pair of hook-shaped core pieces 10p, 10p as the magnetic core 10B (the right view of FIG. 3). The magnetic core 10B is an O-shaped magnetic core that constitutes a rectangular frame-shaped closed magnetic path by combining both the core pieces 10p and 10p (the left diagram in FIG. 3). Here, a gap G is provided between both core pieces 10p and 10p, and coils C and C are respectively arranged on two connecting legs formed by joining via the gap G between the core pieces 10p and 10p. An example is shown. Like the coil component 1 </ b> A of the first embodiment, the coil C can be provided only on one of the connection legs.

図4に示す実施形態3のコイル部品1Cは、磁性コア10Cとして、四つのI字状のコア片10i〜10iを備える(図4の右図)。磁性コア10Cは、これら四つのコア片10i〜10iを組み合わせて矩形枠状の閉磁路を構成するO字型の磁性コアである(図4の左図)。ここでは、並列される二つのコア片10i,10iと、これら二つのコア片10i,10iを連結する別の一つのコア片10iとの間にギャップGを備えると共に、上述の並列される二つのコア片10i,10iにコイルC,Cがそれぞれ配置される例を示す。実施形態1のコイル部品1Aのように、いずれか一つのコア片10iにのみコイルCを備えることができる。   The coil component 1C of the third embodiment shown in FIG. 4 includes four I-shaped core pieces 10i to 10i as the magnetic core 10C (the right diagram in FIG. 4). The magnetic core 10C is an O-shaped magnetic core that combines these four core pieces 10i to 10i to form a rectangular frame-shaped closed magnetic circuit (the left diagram in FIG. 4). Here, a gap G is provided between two parallel core pieces 10i, 10i and another core piece 10i connecting the two core pieces 10i, 10i, and the two parallel pieces described above are provided. An example in which coils C and C are respectively disposed on the core pieces 10i and 10i is shown. As in the coil component 1A of the first embodiment, the coil C can be provided only in any one of the core pieces 10i.

図5に示す実施形態4のコイル部品1Dは、磁性コア10Dとして、E字状のコア片10eと、I字状のコア片10iとを備える(図5の右図)。磁性コア10Dは、両コア片10e,10iを組み合わせて、図5の左図に二点鎖線で示すような閉磁路を構成するE−I型の磁性コアである。ここでは、E字状のコア片10eの中央の脚部にコイルCが配置されると共に、この脚部とコア片10iとの間にギャップGを備える例を示す。中央の脚部の両側にそれぞれ配置される外側の脚部の少なくとも一方にコイルCを備えることができる。   Coil component 1D of Embodiment 4 shown in FIG. 5 is provided with E-shaped core piece 10e and I-shaped core piece 10i as magnetic core 10D (the right figure of FIG. 5). The magnetic core 10D is an EI type magnetic core that forms a closed magnetic path as shown by a two-dot chain line in the left diagram of FIG. 5 by combining both core pieces 10e and 10i. Here, an example is shown in which the coil C is disposed at the center leg of the E-shaped core piece 10e and a gap G is provided between the leg and the core piece 10i. Coils C can be provided on at least one of the outer legs disposed on both sides of the central leg.

図6に示す実施形態5のコイル部品1Eは、磁性コア10Eとして、一対のE字状のコア片10e,10eを備える(図6の右図)。磁性コア10Eは、両コア片10e,10eを組み合わせて、図6の左図に二点鎖線で示すような閉磁路を構成するE−E型の磁性コア又はE−R型の磁性コアである。ここでは、両コア片10e,10eの中央の脚部間にギャップGを備えると共に、両コア片10e,10eの中央の脚部がギャップGを介して接合されて構成される接続脚部にコイルCが配置される例を示す。この中央の接続脚部の両側にそれぞれ配置される外側の接続脚部の少なくとも一方にコイルCを備えることができる。   The coil component 1E of Embodiment 5 shown in FIG. 6 includes a pair of E-shaped core pieces 10e and 10e as the magnetic core 10E (the right diagram in FIG. 6). The magnetic core 10E is an EE type magnetic core or an ER type magnetic core that forms a closed magnetic circuit as shown by a two-dot chain line in the left diagram of FIG. 6 by combining both the core pieces 10e and 10e. . Here, a gap G is provided between the central leg portions of both core pieces 10e, 10e, and a coil is connected to the connecting leg portion formed by joining the central leg portions of both core pieces 10e, 10e via the gap G. An example in which C is arranged is shown. Coils C can be provided on at least one of the outer connecting legs arranged on both sides of the central connecting leg.

図7に示す実施形態6のコイル部品1Fは、磁性コア10Fとして、貫通孔10hを有する矩形枠状のコア片10fと、このコア片10fの内側に配置されるI字状のコア片10iとを備える。磁性コア10Fは、I字状のコア片10iの各端面が、矩形枠状のコア片10fの対向する二つの内面に対向するように組み合せて、図7の左図に二点鎖線で示すような閉磁路を構成する。ここでは、I字状のコア片10iの端面と、矩形枠状のコア片10fの内周面との間にギャップGを備えると共に、I字状のコア片10iにコイルCが配置される例を示す。矩形枠状のコア片10fにおけるI字状のコア片10iに平行する外側の脚部の少なくとも一方にコイルCを備えることができる。   The coil component 1F of the sixth embodiment shown in FIG. 7 includes a rectangular frame-shaped core piece 10f having a through hole 10h as a magnetic core 10F, and an I-shaped core piece 10i disposed inside the core piece 10f. Is provided. The magnetic core 10F is combined so that each end face of the I-shaped core piece 10i faces two opposing inner faces of the rectangular frame-shaped core piece 10f, as shown by a two-dot chain line in the left diagram of FIG. A closed magnetic circuit. Here, the gap G is provided between the end surface of the I-shaped core piece 10i and the inner peripheral surface of the rectangular frame-shaped core piece 10f, and the coil C is disposed on the I-shaped core piece 10i. Indicates. The coil C can be provided on at least one of the outer legs parallel to the I-shaped core piece 10i in the rectangular frame-shaped core piece 10f.

例えば、磁性コア10A〜10Fにおける磁性成分(ここではコア片10i,10p,10e,10f)を全て、実施形態の圧粉磁心1とすることができる。又は、磁性コア10A〜10Fにおける磁性成分の一部、例えばコイルCが配置される部分を含むコア片を実施形態の圧粉磁心1とすることができる。   For example, all the magnetic components (here, the core pieces 10i, 10p, 10e, and 10f) in the magnetic cores 10A to 10F can be the dust core 1 of the embodiment. Alternatively, a core piece including a part of the magnetic component in the magnetic cores 10 </ b> A to 10 </ b> F, for example, a part where the coil C is disposed can be used as the dust core 1 of the embodiment.

図2〜図7に示す磁性コア10A〜10F、コア片10i,10p,10e,10fの形状は例示であり、公知の形状に適宜変更できる。例えば、角部を丸めた湾曲面を有する形状などが挙げられる。また、図2〜図7に示すような単純な形状ではなく、一つ又は複数の段差を有する形状や、端部に一つ又は複数のフランジ部を備える形状、などのように凹凸のある外形を有する異形の立体とすることができる。コイル部品に備えるコア片数は適宜変更でき、図2〜図7は例示である。   The shapes of the magnetic cores 10A to 10F and the core pieces 10i, 10p, 10e, and 10f shown in FIGS. 2 to 7 are examples, and can be appropriately changed to known shapes. For example, the shape etc. which have the curved surface which rounded the corner | angular part are mentioned. Also, it is not a simple shape as shown in FIG. 2 to FIG. 7, but an outer shape with irregularities such as a shape having one or a plurality of steps, a shape having one or a plurality of flanges at the end, etc. It can be an irregular solid having The number of core pieces provided in the coil component can be appropriately changed, and FIGS. 2 to 7 are examples.

コイル20を構成する巻線は、導体の外周に絶縁層を備える被覆線が挙げられる。導体は、銅、銅合金、アルミニウム、アルミニウム合金などの導電性材料から構成される線材が挙げられる。線材は、断面円形状の丸線や断面矩形状の平角線などが挙げられる。絶縁層の構成材料は、エナメルや、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、シリコーンゴムなどが挙げられる。公知の巻線を利用できる。コイル部品に備えるコイルCの数は適宜変更でき、図2〜図7は例示である。   As for the coil | winding which comprises the coil 20, the covered wire | wire which equips the outer periphery of a conductor with an insulating layer is mentioned. Examples of the conductor include a wire made of a conductive material such as copper, copper alloy, aluminum, and aluminum alloy. Examples of the wire include a round wire having a circular cross section and a rectangular wire having a rectangular cross section. Examples of the constituent material of the insulating layer include enamel, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, polytetrafluoroethylene (PTFE) resin, and silicone rubber. Known windings can be used. The number of coils C included in the coil component can be changed as appropriate, and FIGS. 2 to 7 are examples.

ギャップGは、所望の磁気特性が得られるように、適宜設けることができる。例えば、ギャップGを備えていない形態とすることができる。また、ギャップGは、非磁性材料からなるギャップ材を用いた形態の他、エアギャップとすることができる。   The gap G can be appropriately provided so as to obtain desired magnetic characteristics. For example, it can be set as the form which is not provided with the gap G. The gap G can be an air gap in addition to a form using a gap material made of a nonmagnetic material.

[圧粉磁心の製造方法]
実施形態の圧粉磁心1は、例えば、以下の準備工程と、成形工程とを備え、成形工程後に熱処理を行わない製造方法によって製造できる。
(準備工程) 平均粒径が200μm以上450μm以下であり、粒径が75μm以下の粉末粒子の割合が10質量%以下である被覆鉄粉と、脂肪酸アミドを含み、0.3質量%以上0.8質量%以下の潤滑剤とを含む原料粉末を準備する工程
(成形工程) 上記原料粉末を金型に充填して加圧圧縮し、圧粉磁心を製造する工程
裸鉄粉20を含む圧粉磁心1を製造する場合には、上記準備工程では、上記被覆鉄粉と、上記潤滑剤と、平均粒径が40μm以上150μm以下であり、粒径が200μm以上の粉末粒子の割合が10質量%以下である裸鉄粉とを含む原料粉末を準備する。
[Production method of dust core]
The powder magnetic core 1 of the embodiment can be manufactured by a manufacturing method that includes, for example, the following preparation process and a molding process and does not perform heat treatment after the molding process.
(Preparation step) The coated iron powder having an average particle diameter of 200 μm or more and 450 μm or less and a ratio of powder particles having a particle diameter of 75 μm or less is 10% by mass or less, and 0.3% by mass or more and 0.0. A step of preparing a raw material powder containing 8% by mass or less of a lubricant (molding step) A step of filling the raw material powder into a mold and pressurizing and compressing it to produce a dust core. A dust containing bare iron powder 20 When the magnetic core 1 is manufactured, in the preparation step, the ratio of the coated iron powder, the lubricant, and the powder particles having an average particle size of 40 μm to 150 μm and a particle size of 200 μm or more is 10% by mass. A raw material powder containing the following bare iron powder is prepared.

上記の製造方法によれば、成形された圧縮物に対して、熱処理を行わないことで、絶縁被膜の熱損傷を効果的に防止できる。また、脱型性に優れる脂肪酸アミドを含む上に、潤滑剤を特定量含むことで、粉末粒子間の摩擦や圧縮物と金型との間の摩擦を低減して、成形時における絶縁被膜の損傷を効果的に防止できる。更に、変形能に優れる純鉄を主成分とする上に、比較的大きな被覆鉄粉を含むことで原料粉末が圧縮成形性に極めて優れるため、成形圧力を低くしても、緻密化し易い。成形圧力を低くすると、上述の摩擦を低減し易く、この点からも絶縁被膜の損傷を効果的に防止できる。従って、上記の製造方法によれば、絶縁被膜が健全な状態で存在して絶縁性に優れ、電気抵抗が高く、コアロスが低い圧粉磁心を製造できる。特定の大きさの原料粉末を用いることで、圧粉磁心を構成する被覆鉄粉が大き過ぎず、粗大な粉末粒子の存在に起因する渦電流損の増大を抑制できることからも、上述の製造方法は、コアロスが低い圧粉磁心を製造できる。かつ、上記の製造方法は、熱処理の省略、原料粉末が流動性に優れることによる金型充填の容易性、成形性に優れる原料粉末の使用、成形圧力の低減などによって、圧粉磁心を生産性よく製造できる。   According to said manufacturing method, the heat damage of an insulating film can be effectively prevented by not heat-processing with respect to the shape | molded compressed object. In addition to containing fatty acid amides with excellent mold release properties, the inclusion of a specific amount of lubricant reduces the friction between the powder particles and the friction between the compressed material and the mold, and the insulating coating at the time of molding Damage can be effectively prevented. Furthermore, since the raw material powder is extremely excellent in compression moldability by containing pure iron having excellent deformability as a main component and containing a relatively large coated iron powder, it is easily densified even if the molding pressure is lowered. If the molding pressure is lowered, it is easy to reduce the above-mentioned friction, and from this point, it is possible to effectively prevent damage to the insulating coating. Therefore, according to the above manufacturing method, it is possible to manufacture a dust core in which the insulating coating exists in a healthy state and has excellent insulation, high electrical resistance, and low core loss. By using the raw material powder of a specific size, the coated iron powder constituting the dust core is not too large, and the increase in eddy current loss due to the presence of coarse powder particles can also be suppressed. Can produce a dust core with low core loss. In addition, the above manufacturing method can reduce the production of dust cores by omitting heat treatment, ease of mold filling due to excellent flowability of raw material powder, use of raw material powder with excellent moldability, reduction of molding pressure, etc. Can be manufactured well.

上記の製造方法では成形後に熱処理を行わないため、得られた圧縮物(圧粉磁心1)の構成成分は、上述のように原料粉末Pの構成成分を実質的に維持する。また、原料粉末Pは成形によって若干変形するものの、圧粉磁心1を構成する粉末粒子の大きさ及び配合割合は、原料粉末Pに含まれる粉末粒子の大きさ及び配合割合に依存し、概ね維持する傾向にある。そのため、原料粉末Pの成分、大きさ、配合割合などの詳細な説明は省略する。圧粉磁心1に含む被覆鉄粉10、潤滑剤30、裸鉄粉20について述べた各事項は、原料粉末Pに含む被覆鉄粉100、潤滑剤300、裸鉄粉200にそれぞれ適用できる。その他の事項を以下に述べる。   In the above manufacturing method, since heat treatment is not performed after molding, the constituents of the obtained compressed product (dust core 1) substantially maintain the constituents of the raw material powder P as described above. In addition, although the raw material powder P is slightly deformed by molding, the size and the mixing ratio of the powder particles constituting the powder magnetic core 1 depend on the size and the mixing ratio of the powder particles included in the raw material powder P and are generally maintained. Tend to. Therefore, detailed description of the component, size, blending ratio, etc. of the raw material powder P is omitted. The matters described regarding the coated iron powder 10, the lubricant 30, and the bare iron powder 20 included in the dust core 1 can be applied to the coated iron powder 100, the lubricant 300, and the bare iron powder 200 included in the raw material powder P, respectively. Other matters are described below.

・準備工程
原料粉末Pに用いる被覆鉄粉100は、純鉄粉に絶縁被膜140を形成することで製造できる。被覆鉄粉100及び裸鉄粉200に用いる純鉄粉は、ガスアトマイズ法や水アトマイズ法といったアトマイズ法などの公知の方法によって製造できる。絶縁被膜140の形成には、例えば、燐酸塩化成処理といった化成処理、溶剤の吹きつけ、前駆体を用いたゾルゲル処理などが利用できる。シリコーン系有機化合物の被覆を形成する場合、有機溶剤を用いた湿式被覆処理や、ミキサーによる直接被覆処理などを利用できる。被覆鉄粉100として、市販の被覆鉄粉を利用できる。被覆鉄粉100の大きさや裸鉄粉200の大きさは、純鉄粉を粉砕するなどしてその大きさを調整したり、被覆鉄粉100や裸鉄粉200を篩法などによって分級したりすることで調整できる。
-Preparation process The covering iron powder 100 used for the raw material powder P can be manufactured by forming the insulating coating 140 in a pure iron powder. The pure iron powder used for the coated iron powder 100 and the bare iron powder 200 can be manufactured by a known method such as an atomizing method such as a gas atomizing method or a water atomizing method. For the formation of the insulating coating 140, for example, chemical conversion treatment such as phosphate chemical conversion treatment, spraying of a solvent, sol-gel treatment using a precursor, or the like can be used. When forming a coating of a silicone organic compound, wet coating using an organic solvent, direct coating using a mixer, or the like can be used. As the coated iron powder 100, commercially available coated iron powder can be used. The size of the coated iron powder 100 and the size of the bare iron powder 200 can be adjusted by pulverizing pure iron powder, or the coated iron powder 100 or the bare iron powder 200 can be classified by a sieving method or the like. You can adjust it.

原料粉末Pにおける被覆鉄粉100及び裸鉄粉200について、大きさや特定の粒径の質量割合は、市販の粒度測定装置を用いることで測定できる。簡易的な測定として、特定の粒径の質量割合は、篩を用いて分級すると共に、選別した特定の粒径の粉末粒子の質量を測定することが挙げられる。   About the covering iron powder 100 and the bare iron powder 200 in the raw material powder P, a mass ratio of a magnitude | size and a specific particle size can be measured by using a commercially available particle size measuring apparatus. As a simple measurement, the mass ratio of the specific particle size is classified using a sieve and the mass of the selected powder particles having the specific particle size is measured.

原料粉末Pにおける潤滑剤300は、粉末状とすると、被覆鉄粉100や裸鉄粉200と混合し易く好ましい。この潤滑剤粉末の平均粒径は、絶縁被膜140の損傷を抑制するために、少なくとも被覆鉄粒子に付着し易いように、被覆鉄粉100の平均粒径よりも小さいことが好ましい。例えば、潤滑剤粉末の平均粒径は、1μm以上100μm以下、更に3μm以上50μm以下が挙げられる。なお、脱型時に圧縮物の表面から染み出た潤滑剤が金型と擦れ合って除去されることがある。この結果、圧粉磁心1の潤滑剤30の含有量が、原料粉末Pの潤滑剤300の含有量よりも少なくなり得る。例えば、減少量は、質量割合で3%以上25%以下程度が挙げられる。圧粉磁心1の潤滑剤30の含有量が上述の範囲を満たすように、原料粉末Pの潤滑剤300の含有量を調整するとよい。   The lubricant 300 in the raw material powder P is preferably in a powder form because it is easy to mix with the coated iron powder 100 and the bare iron powder 200. The average particle size of the lubricant powder is preferably smaller than the average particle size of the coated iron powder 100 so as to be easily attached to the coated iron particles in order to suppress damage to the insulating coating 140. For example, the average particle diameter of the lubricant powder is 1 μm or more and 100 μm or less, and further 3 μm or more and 50 μm or less. In addition, the lubricant that oozes from the surface of the compressed product at the time of demolding may be removed by rubbing against the mold. As a result, the content of the lubricant 30 in the dust core 1 can be smaller than the content of the lubricant 300 in the raw material powder P. For example, the amount of decrease may be about 3% to 25% by mass ratio. The content of the lubricant 300 in the raw material powder P may be adjusted so that the content of the lubricant 30 in the dust core 1 satisfies the above range.

原料粉末Pの混合には、V型ミキサーやダブルコーンミキサーといった適宜な混合機を利用できる。この混合は、被覆鉄粉100の絶縁被膜140を損傷しない程度に行うことが好ましい。その他、溶媒に溶かした潤滑剤300を被覆鉄粉100や裸鉄粉200の表面に被覆するように噴霧することでも、混合粉末が得られる。   For mixing the raw material powder P, an appropriate mixer such as a V-type mixer or a double cone mixer can be used. This mixing is preferably performed to such an extent that the insulating coating 140 of the coated iron powder 100 is not damaged. In addition, the mixed powder can be obtained by spraying the lubricant 300 dissolved in the solvent so as to cover the surface of the coated iron powder 100 or the bare iron powder 200.

・成形工程
準備した原料粉末P(混合粉末)を加圧圧縮する金型は、代表的には、貫通孔を有するダイと、原料粉末Pを加圧圧縮する一対のパンチとを備えるものが挙げられる。詳しくは、ダイの内周面の一部と、一方のパンチの一面(他方のパンチとの対向面)とで有底筒状の成形空間を形成し、この成形空間に原料粉末Pを充填して両パンチによって加圧圧縮して、所望の形状に成形する。そして、ダイから抜き出した圧縮物が圧粉磁心1である。貫通孔を有する筒状や環状の圧粉磁心(図7のコア片10fなど)を製造する場合には、金型として、ダイの貫通孔に挿通配置されて、圧縮物の貫通孔を形成するロッドを備えるものを利用するとよい。段差を有する形状の圧縮物を成形する場合には、一対のパンチをそれぞれ、複数に分割した組物を利用することができる。金型の構成は、公知の構成を利用できる。
-Molding step Typically, the mold for compressing and compressing the prepared raw material powder P (mixed powder) typically includes a die having a through hole and a pair of punches for compressing and compressing the raw material powder P. It is done. Specifically, a bottomed cylindrical molding space is formed by a part of the inner peripheral surface of the die and one surface of one punch (the surface facing the other punch), and the raw powder P is filled in this molding space. Then press and compress with both punches to form the desired shape. The compressed product extracted from the die is the dust core 1. In the case of manufacturing a cylindrical or annular dust core having a through hole (such as the core piece 10f in FIG. 7), the through hole of the compressed material is formed by being inserted into the through hole of the die as a mold. A thing provided with a rod should be used. When molding a compressed product having a step, a pair of punches each divided into a plurality of punches can be used. A known configuration can be used as the configuration of the mold.

成形圧力は、例えば、1200MPa未満、更に1000MPa以下、更には800MPa以下とすることができる。このような低圧で成形することで、絶縁被膜の損傷を良好に防止できる。上述のように原料粉末Pが圧縮変形性に優れるため、成形圧力を500MPa以上、更に550MPa以上、更には600MPa以上とすることで、絶縁被膜の損傷を抑制しつつ、緻密化、高密度化を図れる。   The molding pressure can be, for example, less than 1200 MPa, further 1000 MPa or less, and further 800 MPa or less. By molding at such a low pressure, damage to the insulating coating can be satisfactorily prevented. Since the raw material powder P is excellent in compressive deformability as described above, the molding pressure is set to 500 MPa or more, further 550 MPa or more, and further 600 MPa or more, so that the insulating film is prevented from being damaged and densified and densified. I can plan.

金型をある程度加熱した状態(連続成形に起因する加工熱でもよい)で成形することができる。この場合、被覆鉄粉100や裸鉄粉200の成形性を高めたり、潤滑剤300をある程度軟化して流動し易くしたりして、圧縮成形性を高められる。そのため、成形圧力をより低くできる。金型を加熱する場合には、金型温度は、潤滑剤の融点をTとするとき、例えば、(T/2)℃以上T℃以下が挙げられる。例えば、融点Tが90℃〜120℃であれば、45℃〜60℃程度が挙げられる。この範囲であれば、成形性に優れる上に、潤滑剤300の過度の軟化を抑制して(液状化による染み出しを抑制して)、圧粉磁心1の潤滑剤30が少なくなり過ぎることを抑制できる。 Molding can be performed in a state in which the mold is heated to some extent (the processing heat resulting from continuous molding may be sufficient). In this case, the moldability of the coated iron powder 100 or the bare iron powder 200 can be improved, or the lubricant 300 can be softened to some extent to facilitate flow, thereby improving the compression moldability. Therefore, the molding pressure can be further reduced. In the case of heating the mold, the mold temperature is, for example, (T M / 2) ° C. or higher and T M ° C or lower when the melting point of the lubricant is T M. For example, the melting point T M is if 90 ° C. to 120 ° C., include about 45 ° C. to 60 ° C.. If it is this range, it is excellent in a moldability, and also suppresses excessive softening of the lubricant 300 (suppresses seepage due to liquefaction), and the lubricant 30 of the dust core 1 becomes too small. Can be suppressed.

水冷装置などを用いて金型をより低い温度(例えば、室温以下)に保持することができる。この場合、寸法精度に優れる圧縮物を得易い。   The mold can be held at a lower temperature (for example, room temperature or lower) using a water cooling device or the like. In this case, it is easy to obtain a compressed product with excellent dimensional accuracy.

成形時の雰囲気は、例えば、大気雰囲気が挙げられる。被覆鉄粉100は絶縁被膜を備えることで、裸鉄粉200は潤滑剤300に接することで、酸素を含む雰囲気としても、鉄成分の酸化を防止できる。大気雰囲気は、制御が容易であるため、作業性に優れる。   The atmosphere at the time of molding includes, for example, an air atmosphere. The coated iron powder 100 is provided with an insulating coating, and the bare iron powder 200 is in contact with the lubricant 300, so that oxidation of the iron component can be prevented even in an atmosphere containing oxygen. The atmosphere is excellent in workability because it is easy to control.

金型において、原料粉末Pや圧縮物と接触する領域に離型コーティングを施すことができる。離型コーティングは、例えば、DLC、TiN、TiC、CrN、及びTi−X−N(但しXは、C,Al,Cr,Mo,及びWから選択される少なくとも1種の元素)から選択される少なくとも1種が挙げられる。離型コーティングの形成には、公知の物理蒸着法、化学蒸着法、アーク法などを利用でき、特にスパッタリング法を好適に利用できる。離型コーティングを行うことで、脱型性をより向上でき、絶縁被膜140の損傷を防止し易い。   In the mold, a release coating can be applied to a region in contact with the raw material powder P or the compressed material. The release coating is selected from, for example, DLC, TiN, TiC, CrN, and Ti-XN (where X is at least one element selected from C, Al, Cr, Mo, and W). There is at least one kind. For forming the release coating, a known physical vapor deposition method, chemical vapor deposition method, arc method or the like can be used, and in particular, a sputtering method can be suitably used. By performing the release coating, it is possible to further improve the demolding property and easily prevent the insulating coating 140 from being damaged.

上述の細長い形状の圧粉磁心を成形する場合には、ダイとして、貫通孔の開口径D(円孔の場合には直径、多角形を含む非円形孔の場合には、その形状の包絡円の直径)に対して貫通孔の軸方向の長さが十分に長いものを用いるとよい。具体的にはダイとパンチとで形成する成形空間における開口径Dに対する深さLの比L/Dが2.5超を構築可能なものを用いるとよい。このような長い貫通孔を有するダイは、例えば、複数の環状の分割片を組み合わせて構成される組物であって、これらの分割片を貫通孔の軸方向に積み重ねて、連通する一つの貫通孔を形成するものを利用できる。上述の薄肉筒の圧粉磁心についても同様にして成形できる。   In the case of molding the above-described elongated magnetic core, the die has an opening diameter D (diameter in the case of a circular hole, an envelope circle of the shape in the case of a non-circular hole including a polygon). The diameter of the through hole may be sufficiently long with respect to the diameter of the through hole. Specifically, it is preferable to use a material in which the ratio L / D of the depth L to the opening diameter D in the molding space formed by the die and the punch can be more than 2.5. A die having such a long through-hole is, for example, an assembly formed by combining a plurality of annular divided pieces, and these divided pieces are stacked in the axial direction of the through-hole to communicate with each other. Those that form holes can be used. The above-described thin cylindrical powder magnetic core can be formed in the same manner.

[試験例1]
種々の条件で圧粉磁心を製造し、透磁率とコアロスとを調べた。
[Test Example 1]
The dust core was manufactured under various conditions, and the permeability and core loss were examined.

ここでは、原料粉末として、被覆鉄粉と、潤滑剤と、適宜裸鉄粉(絶縁被膜の無い純鉄粉)とを含む混合粉末を用意した。
・試料No.1−1,1−110は、被覆鉄粉(後述する被覆鉄粉2)と潤滑剤とを含み、裸鉄粉を含まない混合粉末を用いた試料である。
・試料No.1−2,1−120,1−3,1−130は、被覆鉄粉(後述する被覆鉄粉1)と潤滑剤と裸鉄粉とを含む混合粉末を用いた試料である。被覆鉄粉と裸鉄粉との配合割合は、両粉末の合計量(磁性成分の全量)を100質量%とした場合に、試料No.1−2,1−120は、被覆鉄粉を90質量%、裸鉄粉を10質量%とし、試料No.1−3,1−130は、被覆鉄粉を60質量%、裸鉄粉を40質量%とした。
・試料No.1−200は、微細な被覆鉄粉を用いた比較試料である。この微粒被覆鉄粉は、市販品である(平均粒径:55μm、絶縁被膜:燐酸鉄)。
Here, a mixed powder containing coated iron powder, a lubricant, and bare iron powder (pure iron powder without an insulating coating) as appropriate was prepared as a raw material powder.
・ Sample No. 1-1 and 1-110 are samples using a mixed powder containing coated iron powder (coated iron powder 2 to be described later) and a lubricant and not containing bare iron powder.
・ Sample No. 1-2, 1-120, 1-3, 1-130 are samples using mixed powder containing coated iron powder (coated iron powder 1 described later), a lubricant, and bare iron powder. The blending ratio of the coated iron powder and the bare iron powder is such that the total amount of both powders (total amount of magnetic components) is 100% by mass. 1-2 and 1-120 are 90% by mass of coated iron powder and 10% by mass of bare iron powder. In 1-3 and 1-130, the coated iron powder was 60% by mass, and the bare iron powder was 40% by mass.
・ Sample No. 1-200 is a comparative sample using fine coated iron powder. This fine coated iron powder is a commercial product (average particle size: 55 μm, insulating coating: iron phosphate).

被覆鉄粉は、粒度分布が異なる2種類のもの(被覆鉄粉1,2)を用意した。被覆鉄粉1,2はいずれも、純鉄から構成される鉄粒子(Feが99質量%以上、残部不可避不純物)の周囲に、燐酸鉄から構成される絶縁被膜(平均厚さ約20nm〜100nm)を備える被覆鉄粒子の集まりである。用意した被覆鉄粉1,2はそれぞれ分級した。被覆鉄粉1,2について、平均粒径(μm)、粒径が75μm以下の粉末粒子の割合(質量%)、粒径が100μm以下の粉末粒子の割合(質量%)、粒径が500μm以上の粉末粒子の割合(質量%)を表1に示す。特定の粒径の粉末粒子の割合は、分級前の被覆鉄粉の総重量を100質量%とした場合の各粒度の割合を示す。粒度分布は、市販のレーザ回折・散乱式粒子径・粒度分布測定装置を用いて測定した。用意した被覆鉄粉1,2の平均粒径はいずれも、上記粒度分布測定装置で測定し、積算重量(質量)が50%となる粒径、即ち、50%粒径(質量)とする。   Two types of coated iron powders (coated iron powders 1 and 2) having different particle size distributions were prepared. Each of the coated iron powders 1 and 2 is an insulating film (average thickness of about 20 nm to 100 nm) made of iron phosphate around iron particles made of pure iron (Fe is 99% by mass or more, the remainder is inevitable impurities). ). The prepared coated iron powders 1 and 2 were classified. For coated iron powders 1 and 2, the average particle size (μm), the proportion of powder particles with a particle size of 75 μm or less (mass%), the proportion of powder particles with a particle size of 100 μm or less (mass%), the particle size of 500 μm or more Table 1 shows the ratio (% by mass) of the powder particles. The ratio of the powder particles having a specific particle size indicates the ratio of each particle size when the total weight of the coated iron powder before classification is 100% by mass. The particle size distribution was measured using a commercially available laser diffraction / scattering particle size / particle size distribution measuring apparatus. The average particle diameters of the prepared coated iron powders 1 and 2 are both measured by the particle size distribution measuring apparatus, and are set to a particle diameter at which the integrated weight (mass) is 50%, that is, 50% particle diameter (mass).

裸鉄粉は、純鉄から構成される鉄粒子(Feが99質量%以上、残部不可避不純物(合計1500質量ppm以上3500質量ppm以下))の集まりである。用意した裸鉄粉も、上述の被覆鉄粉と同様に分級すると共に、平均粒径、粒度分布を測定した。裸鉄粉について、平均粒径(μm)、分級前の裸鉄粉の総重量を100質量%とした場合の粒径が200μm以上の粉末粒子の割合(質量%)を表1に示す。   Bare iron powder is a collection of iron particles composed of pure iron (Fe 99% by mass or more and the balance inevitable impurities (total 1500 ppm to 3500 ppm by mass)). The prepared bare iron powder was classified in the same manner as the above coated iron powder, and the average particle size and particle size distribution were measured. Regarding the bare iron powder, Table 1 shows the average particle diameter (μm) and the ratio (mass%) of powder particles having a particle diameter of 200 μm or more when the total weight of the bare iron powder before classification is 100 mass%.

Figure 0006423629
Figure 0006423629

いずれの試料も、各試料に用いた混合粉末を100質量%とするとき、潤滑剤の含有量を0.4質量%とした。いずれの試料の潤滑剤も、ステアリン酸アミド(融点:約100℃)を含む粉末とした。被覆鉄粉2を用いる試料No.1−1,1−110の潤滑剤は、ステアリン酸アミド及びステアリン酸亜鉛とした。ステアリン酸アミドとステアリン酸亜鉛との配合割合は、これらの合計量を100質量%とした場合に、ステアリン酸亜鉛の含有量を45質量%程度とした。それ以外の試料の潤滑剤はステアリン酸アミドとした。用いたステアリン酸アミド(市販品)を分析したところ、ステアリン酸アミドとパルミチン酸アミドとを含んでいた。潤滑剤粉末の平均粒径は1μm以上100μm以下の範囲から選択した。   In any sample, when the mixed powder used in each sample was 100% by mass, the content of the lubricant was 0.4% by mass. The lubricant of each sample was a powder containing stearamide (melting point: about 100 ° C.). Sample No. using the coated iron powder 2 The lubricants 1-1 and 1-110 were stearamide and zinc stearate. The blending ratio of stearic acid amide and zinc stearate was such that the content of zinc stearate was about 45% by mass when the total amount was 100% by mass. The other lubricants were stearamide. The stearamide (commercial product) used was analyzed and found to contain stearamide and palmitic acid amide. The average particle size of the lubricant powder was selected from the range of 1 μm to 100 μm.

金型に混合粉末を充填して加圧圧縮し、円柱状の圧縮物を成形した。いずれの試料も、直径Dが10mm(1cm)、高さLが30mm(3.0cm)の圧縮物を成形した。
いずれの試料も成形条件は、雰囲気を大気雰囲気とし、成形圧力は686MPa〜882MPa(7ton/cm〜9ton/cm)から選択し、金型温度(℃)は50℃〜60℃から選択した。特に、試料No.1−1〜1−3,1−110〜1−130については、密度が概ね等しくなるように成形圧力を上記の範囲から選択した。
The mold was filled with the mixed powder and pressed and compressed to form a cylindrical compact. In each sample, a compact having a diameter D of 10 mm (1 cm) and a height L of 30 mm (3.0 cm) was molded.
For all samples, the molding conditions were an atmospheric atmosphere, the molding pressure was selected from 686 MPa to 882 MPa ( 7 ton / cm 2 to 9 ton / cm 2 ), and the mold temperature (° C.) was selected from 50 ° C. to 60 ° C. . In particular, sample no. For 1-1 to 1-3 and 1-110 to 1-130, the molding pressure was selected from the above range so that the densities were approximately equal.

試料No.1−110〜1−130,No.1−200の圧縮物には、熱処理を施した。熱処理条件は、雰囲気を大気フロー雰囲気とし、加熱温度を表2に示す温度(℃)、保持時間を30分とした。試料No.1−1〜1−3の圧縮物には、熱処理を施していない。   Sample No. 1-110 to 1-130, no. The 1-200 compact was heat treated. As heat treatment conditions, the atmosphere was an air flow atmosphere, the heating temperature was the temperature (° C.) shown in Table 2, and the holding time was 30 minutes. Sample No. The compressed product of 1-1 to 1-3 is not subjected to heat treatment.

作製した試料No.1−1〜1−3の圧縮物(圧粉磁心)と、試料No.1−110〜1−130の熱処理物とについて、潤滑剤量を以下のようにして測定した。圧縮物、熱処理物をそれぞれ、粉砕機によって粉砕し(大気雰囲気)、原料に用いた粉末程度の大きさにした粉末を1g秤量する。秤量した1gの粉末にアセトンを添加した混合液を得る。この混合液から、超音波抽出によって潤滑剤(ここではステアリン酸アミド、パルチミン酸アミド)を溶解して回収する。回収した潤滑剤をガスクロマトグラフによって、定性・定量を行った。即ち、粉砕粉末1gあたりの潤滑剤量x(g)を求め、圧縮物の質量y(g)を用いて、圧縮物の質量に占める潤滑剤の質量割合((x×y)/y)×100を求めた。この潤滑剤量は、圧縮物又は熱処理物を100質量%とする割合である。測定結果を表2に示す。ステアリン酸亜鉛を含む試料No.1−1については、熱分析などを合せて行って総合的に判断した。また、回収した磁性成分について、不純物を分析したところ、試料No.1−1〜1−3はいずれも、合計不純物量が、5000質量ppm以上8000質量ppm以下であった(試料No.1−1の合計不純物量は、熱分析などしてステアリン酸亜鉛の成分を除去した量)。   The prepared sample No. 1-1 to 1-3 compressed product (dust core) and sample No. With respect to the heat-treated products 1-110 to 1-130, the amount of lubricant was measured as follows. Each of the compressed product and the heat-treated product is pulverized by a pulverizer (atmosphere), and 1 g of the powder having the same size as that of the raw material is weighed. A liquid mixture obtained by adding acetone to 1 g of the weighed powder is obtained. The lubricant (here, stearamide, palmitic amide) is dissolved and recovered from this mixture by ultrasonic extraction. The recovered lubricant was qualitatively and quantitatively analyzed by gas chromatography. That is, the amount x (g) of lubricant per 1 g of the pulverized powder is obtained, and the mass ratio of the lubricant to the mass of the compressed product ((xx) / y) × using the mass y (g) of the compressed product. 100 was determined. The amount of the lubricant is a ratio in which the compressed product or the heat-treated product is 100% by mass. The measurement results are shown in Table 2. Sample No. containing zinc stearate 1-1 was comprehensively judged by performing thermal analysis and the like together. The recovered magnetic component was analyzed for impurities. 1-1 to 1-3 each had a total impurity amount of 5000 ppm to 8000 ppm by mass (the total impurity amount of Sample No. 1-1 was a component of zinc stearate by thermal analysis or the like. Removed amount).

試料No.1−1〜1−3,No.1−110〜1−130の原料粉末を用いて、同様の条件でトロイダル形状のテストピース(外径34mmφ、内径20mmφ、厚さ7mm)を作製し、各試料のテストピースを用いて、以下のようにして、交流透磁率及びコアロス(W/kg)(いずれも測定条件:0.1T/10kHz)を測定した。測定結果を表2に示す。   Sample No. 1-1 to 1-3, no. A toroidal test piece (outer diameter 34 mmφ, inner diameter 20 mmφ, thickness 7 mm) was produced under the same conditions using the raw material powders 1-110 to 1-130, and the following test pieces were used. Thus, AC magnetic permeability and core loss (W / kg) (both measurement conditions: 0.1 T / 10 kHz) were measured. The measurement results are shown in Table 2.

各試料のテストピースにそれぞれ銅線を巻回して、一次巻きコイル:300ターン、二次巻きコイル:20ターンを備える測定用部材(コイル部品)を作製する。作製した測定用部材及びAC−BHカーブトレーサを用いて、励起磁束密度Bmを1kG(=0.1T)、測定周波数を10kHzとしたときについて、AC−BHカーブの傾きから試料の交流透磁率を求めると共に、試料の渦電流損(渦損)とヒステリシス損(ヒス損)とを求めた。渦損とヒス損との合計である鉄損をコアロスとする。   A copper wire is wound around the test piece of each sample to produce a measurement member (coil component) having a primary winding coil: 300 turns and a secondary winding coil: 20 turns. Using the produced measurement member and AC-BH curve tracer, the AC magnetic permeability of the sample is determined from the slope of the AC-BH curve when the excitation magnetic flux density Bm is 1 kG (= 0.1 T) and the measurement frequency is 10 kHz. At the same time, eddy current loss (eddy loss) and hysteresis loss (his loss) of the sample were obtained. The core loss, which is the sum of eddy loss and hiss loss, is defined as core loss.

Figure 0006423629
Figure 0006423629

表2に示すように、熱処理を行っていない試料No.1−1〜1−3の圧縮物(圧粉磁心)の潤滑剤量は、若干の減量が認められたが(質量割合で15%以下程度)、原料粉末における潤滑剤量を実質的に維持していることが分かる。一方、熱処理を行った試料No.1−110〜1−130は、原料粉末に添加した潤滑剤が実質的に存在していないことが分かる。この理由は、熱処理によって潤滑剤が揮発して除去されたり、熱変性して他の物質(ススなど)になったりしたため、と考えられる。   As shown in Table 2, the sample No. which was not heat-treated. Although the amount of lubricant in the compressed materials (dust cores) 1-1 to 1-3 was slightly reduced (by mass ratio of about 15% or less), the amount of lubricant in the raw material powder was substantially maintained. You can see that On the other hand, the heat-treated sample No. 1-110 to 1-130 show that the lubricant added to the raw material powder is substantially absent. This is considered to be because the lubricant was volatilized and removed by the heat treatment, or was thermally denatured to become another substance (soot, etc.).

表2に示すように、試料No.1−1〜1−3の圧縮物(圧粉磁心)は、微細な粉末を用いた試料No.1−200に比較して、高い透磁率を有することが分かる。この理由は、原料粉末に、比較的大きく、かつ微細な粉末粒子が少ない被覆鉄粉(ここで平均粒径220μm以上、粒径100μm以下の割合が8質量%以下)を用いたことで、圧粉磁心自体も比較的大きな粉末粒子が多く、かつ微細な粉末粒子が少ない被覆鉄粉を主体とするため、と考えられる。また、潤滑剤を含有するものの、潤滑剤が比較的不均一に存在することで、大きな粉末粒子同士の接触による磁束の通過が良好に行えるため、と考えられる。   As shown in Table 2, sample no. The compacts 1-1 to 1-3 (dust cores) are sample Nos. 1 and 2 using fine powder. It can be seen that it has a higher magnetic permeability than 1-200. The reason for this is that, as the raw material powder, a coated iron powder (where the average particle size is 220 μm or more and the particle size of 100 μm or less is 8% by mass or less) is relatively large and contains few fine powder particles. This is probably because the powder magnetic core itself is mainly composed of coated iron powder with many relatively large powder particles and few fine powder particles. In addition, although it contains a lubricant, it is considered that the presence of the lubricant relatively non-uniformly allows a magnetic flux to pass through by contact between large powder particles.

大きな被覆鉄粉のみを用いた試料No.1−1の圧縮物(圧粉磁心)は、透磁率がより高いことが分かる。一方、原料粉末に被覆鉄粉よりも微細な裸鉄粉を用いた試料No.1−2,1−3も、試料No.1−1よりも低いもの、高い透磁率を有している。この理由は、微細な裸鉄粉によって緻密化できたこと、絶縁被膜の割合を低減して絶縁被膜に起因する磁性成分の割合の低下を防止できたこと、300μm以上の大きな被覆鉄粒子を含むこと、にあると考えられる。   Sample No. using only large coated iron powder. It can be seen that the compressed product (dust core) of 1-1 has a higher magnetic permeability. On the other hand, Sample No. using bare iron powder finer than the coated iron powder as the raw material powder. 1-2 and 1-3 are also sample Nos. It is lower than 1-1 and has a high magnetic permeability. The reason for this is that it can be densified with fine bare iron powder, the proportion of the insulating coating can be reduced to prevent a reduction in the proportion of the magnetic component due to the insulating coating, and large coated iron particles of 300 μm or more are included. It is thought that there is.

表2に示すように、熱処理を行っていない試料No.1−1〜1−3の圧縮物(圧粉磁心)は、熱処理を行った試料No.1−110〜1−130に比較して、磁性成分が同じ試料同士で比較すると、渦電流損が低く、コアロスが低いことが分かる。この理由は、試料No.1−110〜1−130は、熱処理を行うことで絶縁被膜を損傷すると共に、絶縁材である潤滑剤が除去されたことで、鉄粒子同士が直接接触する導通部分が生じて電気抵抗が低くなったため、と考えられる。裸鉄粉を含む試料No.1−120,1−130は特に渦電流損が大きくなっており、導通部分が多いと考えられる。   As shown in Table 2, the sample No. which was not heat-treated. 1-1 to 1-3 compacts (dust cores) were subjected to heat treatment on sample Nos. Compared to 1-110 to 1-130, it can be seen that when samples having the same magnetic component are compared, eddy current loss is low and core loss is low. This is because sample no. In 1-110 to 1-130, the insulating film is damaged by the heat treatment, and the lubricant as the insulating material is removed, so that a conductive portion in which the iron particles are in direct contact with each other is generated and the electric resistance is low. It is thought that it became. Sample No. containing bare iron powder 1-120 and 1-130 have particularly large eddy current loss, and it is considered that there are many conductive portions.

大きな被覆鉄粉のみを用いた試料No.1−1の圧縮物(圧粉磁心)は、構成粉末の全体が絶縁被膜を備えることで絶縁性により優れて、コアロスがより低いことが分かる。この理由は、試料No.1−1は、500μm以上といった大きな鉄粒子を含まないため、粗大鉄粒子に起因する渦電流損の増大を抑制できたため、と考えられる。一方、原料粉末に被覆鉄粉よりも微細な裸鉄粉を用いた試料No.1−2,1−3も、試料No.1−1よりも高いものの、熱処理を施した場合に比較してコアロスが低い。この理由は、熱処理を行っていないことで、微細な裸鉄粒子間に潤滑剤が介在したり、被覆鉄粉の絶縁被膜が介在したりすることができ、裸鉄粒子間の絶縁性を高められたため、と考えられる。また、裸鉄粉が小さいことで、裸鉄粒子の大きさに起因する渦電流損の増大を抑制できたため、と考えられる。   Sample No. using only large coated iron powder. It can be seen that the compressed product (powder magnetic core) 1-1 is superior in insulation properties and has a lower core loss because the entire constituent powder has an insulating coating. This is because sample no. 1-1 is considered to be because an increase in eddy current loss due to coarse iron particles could be suppressed because large iron particles of 500 μm or more were not included. On the other hand, Sample No. using bare iron powder finer than the coated iron powder as the raw material powder. 1-2 and 1-3 are also sample Nos. Although higher than 1-1, the core loss is lower than when heat treatment is performed. The reason for this is that heat treatment is not performed, so that a lubricant can be interposed between fine bare iron particles, or an insulating coating of coated iron powder can be interposed, thereby improving the insulation between the bare iron particles. It is thought that it was because In addition, it is considered that the increase in eddy current loss due to the size of the bare iron particles could be suppressed because the bare iron powder was small.

その他、試料No.1−1〜1−3の圧縮物(圧粉磁心)について、密度を測定したところ、表1に示すように7.4g/cm以上であった(相対密度:94%以上)。密度は、アルキメデス法を用いて圧縮物の質量(g)を測定し、測定した質量を圧縮物の体積で除して求めた(密度=質量/体積)。試料No.1−1〜1−3は、原料粉末に比較的大きな粉末を用いると共に変形能の高い純鉄を主体とするため、成形圧力が1200MPa未満(ここでは更に1000MPa以下)といった比較的低圧であっても高密度化ができたと考えられる。また、高密度化によって磁気特性を高められ、強度にも優れると考えられる。 In addition, Sample No. Compression of 11 to 13 for (dust core) was measured density was in 7.4 g / cm 3 or more as shown in Table 1 (relative density: 94% or more). The density was determined by measuring the mass (g) of the compressed product using the Archimedes method and dividing the measured mass by the volume of the compressed product (density = mass / volume). Sample No. 1-1 to 1-3 use a relatively large powder as the raw material powder and mainly consist of pure iron having a high deformability, so that the molding pressure is relatively low, such as less than 1200 MPa (here, 1000 MPa or less). It is thought that the density was also increased. In addition, it is considered that the magnetic properties can be enhanced by increasing the density and the strength is also excellent.

試料No.1−1〜1−3の圧縮物(圧粉磁心)について、目視にて確認したところ、圧縮物におけるダイとの接触面(円柱における側面)に擦り痕が少なく、この面を構成する被覆鉄粉の絶縁被膜の損傷が抑制されていることが確認できた。   Sample No. As for the compressed product (powder magnetic core) of 1-1 to 1-3, when visually confirmed, the contact surface (side surface of the cylinder) with the die in the compressed product has few scratch marks, and the coated iron constituting this surface It was confirmed that damage to the insulating coating of the powder was suppressed.

得られた試料No.1−1の圧縮物(圧粉磁心)を構成する被覆鉄粉の平均粒径、試料No.1−2,1−3の圧縮物(圧粉磁心)を構成する被覆鉄粉の平均粒径及び裸鉄粉の平均粒径を以下のようにして測定した。   The obtained sample No. 1-1, the average particle diameter of the coated iron powder constituting the compressed product (dust core), Sample No. The average particle diameter of the coated iron powder and the average particle diameter of the bare iron powder constituting the compressed product (powder magnetic core) of 1-2 and 1-3 were measured as follows.

圧縮物(圧粉磁心)の外表面のうち、対向する二平面(ここでは円形の端面)に平行な断面をとり、この断面を顕微鏡観察して、観察像に視野をとり、視野中に存在する被覆鉄粒子(試料No.1−2,1−3では被覆鉄粒子と裸鉄粒子)を抽出する。観察像において、絶縁被膜を有する粒子を被覆鉄粒子、絶縁被膜を有しない粒子を裸鉄粒子として抽出する。抽出した被覆鉄粒子、裸鉄粒子の面積をそれぞれ測定し、この面積に等しい円(等価面積円)の直径をこの被覆鉄粒子の直径、裸鉄粒子の直径とする。視野中に存在する100個以上の被覆鉄粒子の直径、100個以上の裸鉄粒子の直径をそれぞれ測定し、それぞれの平均を圧粉磁心における被覆鉄粉の平均粒径、裸鉄粉の平均粒径とする。被覆鉄粒子や裸鉄粒子の抽出、直径の算出は、上記観察像を画像処理して、二値化などすることで容易に行える。画像処理には、市販の画像処理装置を用いると容易に行える。   Take a cross-section parallel to two opposing flat surfaces (here, circular end faces) of the outer surface of the compact (dust core), and observe this cross-section with a microscope to take a field of view in the observed image and exist in the field of view The coated iron particles to be extracted (coated iron particles and bare iron particles in sample Nos. 1-2 and 1-3) are extracted. In the observed image, particles having an insulating coating are extracted as coated iron particles, and particles having no insulating coating are extracted as bare iron particles. The areas of the extracted coated iron particles and bare iron particles are measured, and the diameter of a circle (equivalent area circle) equal to the area is defined as the diameter of the coated iron particles and the diameter of the bare iron particles. The diameter of 100 or more coated iron particles and the diameter of 100 or more bare iron particles present in the field of view are measured, and the average of each is the average particle diameter of the coated iron powder in the dust core and the average of the bare iron powder. The particle size. Extraction of the coated iron particles and bare iron particles and calculation of the diameter can be easily performed by performing image processing on the observed image and binarization. The image processing can be easily performed by using a commercially available image processing apparatus.

得られた試料No.1−1の圧縮物(圧粉磁心)を構成する被覆鉄粉、試料No.1−2,1−3の圧縮物(圧粉磁心)を構成する被覆鉄粉において、粒径が75μm以下の粉末粒子の質量割合、粒径が100μm以下の粉末粒子の質量割合、粒径が500μm以上の粉末粒子の質量割合を以下のようにして測定した。また、試料No.1−2,1−3の圧縮物(圧粉磁心)を構成する裸鉄粉において、粒径が200μm以上の粉末粒子の質量割合を以下のようにして測定した。   The obtained sample No. 1-1, the coated iron powder constituting the compressed product (dust core), Sample No. In the coated iron powder constituting the compressed product (powder magnetic core) of 1-2, 1-3, the mass ratio of powder particles having a particle diameter of 75 μm or less, the mass ratio of powder particles having a particle diameter of 100 μm or less, and the particle diameter are The mass ratio of powder particles of 500 μm or more was measured as follows. Sample No. In the bare iron powder constituting the compressed product (powder magnetic core) of 1-2 and 1-3, the mass ratio of powder particles having a particle size of 200 μm or more was measured as follows.

上述の断面における被覆鉄粒子の面積割合を体積割合に換算し(例えば、体積割合=面積割合の1.5乗)、この体積割合と被覆鉄粒子の密度とを用いて、各質量割合を算出する。裸鉄粉についても同様に、面積割合から換算した体積割合と裸鉄粒子の密度とを用いて、200μm以上の粉末粒子の質量割合を算出する。被覆鉄粒子の密度、裸鉄粒子の密度は、上述の組成分析を行い、組成に基づいて算出できる。   The area ratio of the coated iron particles in the above-mentioned cross section is converted into a volume ratio (for example, volume ratio = area ratio to the power of 1.5), and each mass ratio is calculated using the volume ratio and the density of the coated iron particles. To do. Similarly, for the bare iron powder, the mass ratio of the powder particles of 200 μm or more is calculated using the volume ratio converted from the area ratio and the density of the bare iron particles. The density of the coated iron particles and the density of the bare iron particles can be calculated based on the composition by performing the composition analysis described above.

測定の結果、試料No.1−1の圧粉磁心における被覆鉄粉の平均粒径、粒径が75μm以下の粉末粒子の質量割合、粒径が100μm以下の粉末粒子の質量割合、粒径が500μm以上の粉末粒子の質量割合は、原料粉末の各値を実質的に維持していた。試料No.1−2,1−3の圧粉磁心における被覆鉄粉の平均粒径、粒径が75μm以下の粉末粒子の質量割合、粒径が100μm以下の粉末粒子の質量割合、粒径が500μm以上の粉末粒子の質量割合、及び裸鉄粉の平均粒径、粒径が200μm以上の粉末粒子の質量割合は、原料粉末の各値を実質的に維持していた。   As a result of the measurement, sample No. The average particle diameter of the coated iron powder in the 1-1 dust core, the mass ratio of powder particles having a particle diameter of 75 μm or less, the mass ratio of powder particles having a particle diameter of 100 μm or less, and the mass of powder particles having a particle diameter of 500 μm or more The ratio substantially maintained each value of the raw material powder. Sample No. The average particle diameter of the coated iron powder in the powder core of 1-2, 1-3, the mass ratio of powder particles having a particle diameter of 75 μm or less, the mass ratio of powder particles having a particle diameter of 100 μm or less, and the particle diameter of 500 μm or more The mass ratio of the powder particles, the average particle diameter of the bare iron powder, and the mass ratio of the powder particles having a particle diameter of 200 μm or more substantially maintained the respective values of the raw material powder.

得られた試料No.1−2,1−3の圧縮物(圧粉磁心)において、被覆鉄粉と純鉄粉との配合割合を上述の体積割合と密度とを用いて算出したところ、原料粉末の配合割合を実質的に維持していた。   The obtained sample No. In the compressed product (powder magnetic core) of 1-2 and 1-3, the blending ratio of the coated iron powder and the pure iron powder was calculated using the volume ratio and the density described above. Maintained.

この試験から、原料粉末として、特定の大きさの被覆鉄粉と、特定量の潤滑剤であって特定成分を含むものと、適宜特定の大きさの裸鉄粉とを含有する混合粉末を圧縮成形することで、透磁率が高く、コアロスが低い圧粉磁心が製造できることが確認できた。また、熱処理を施すことなく、上記圧粉磁心が製造可能なことが確認できた。   From this test, a mixed powder containing a specific size of coated iron powder, a specific amount of a lubricant containing a specific component, and a specific size of bare iron powder is compressed as a raw material powder. It was confirmed that by molding, a dust core having high magnetic permeability and low core loss can be produced. Moreover, it has confirmed that the said powder magnetic core was manufacturable, without performing heat processing.

[試験例2]
原料粉末として、試験例1で述べた試料No.1−2の混合粉末(被覆鉄粉1(310μm)+裸鉄粉(配合割合10質量%)+潤滑剤)と、裸鉄粉を含まない混合粉末(被覆鉄粉1(310μm)+潤滑剤)とを用いて、試験例1と同様の密度になる条件で圧縮成形した後、熱処理を施していない圧粉磁心(試料No.2−1:裸鉄粉無し、試料No.2−2:裸鉄粉有り)を製造し、強度を調べた。
[Test Example 2]
As the raw material powder, the sample No. described in Test Example 1 was used. 1-2 mixed powder (coated iron powder 1 (310 μm) + bare iron powder (mixing ratio 10 mass%) + lubricant) and mixed powder not containing bare iron powder (coated iron powder 1 (310 μm) + lubricant) ) And a powder magnetic core not subjected to heat treatment (sample No. 2-1: no bare iron powder, sample No. 2-2: Manufactured with bare iron powder) and examined its strength.

作製した試料No.2−1,2−2の圧縮物(圧粉磁心、長さ55mmL、幅10mmW、厚さ5mmtの抗折試験片)を用いて、三点曲げ試験を行って抗折力を求めた。具体的には、試験片の両側をそれぞれ背面支持した状態で(抗折スパン40mmL)、試験片の表面中央部に上方から荷重を加えて、試験片が折れたときの最大荷重を求める。この最大荷重(n=5の平均)を抗折力(MPa)として、強度を評価した。   The prepared sample No. Using the compressed materials of 2-1 and 2-2 (powder magnetic core, 55 mmL long, 10 mmW wide, 5 mm thick bending test piece), a three-point bending test was performed to determine the bending strength. Specifically, in a state where both sides of the test piece are supported on the back surface (anti-bending span 40 mmL), a load is applied from above to the center of the surface of the test piece, and the maximum load when the test piece is broken is obtained. The maximum load (average of n = 5) was taken as the bending strength (MPa), and the strength was evaluated.

その結果、裸鉄粉を含まない混合粉末を用いた試料No.2−1の抗折力は、13.9MPaであり、被覆鉄粉と裸鉄粉とを含む混合粉末を用いた試料No.2−2の抗折力は、15.6MPaであり、いずれも高強度であった。この理由は、被覆鉄粒子同士が十分に噛み合うと共に、潤滑剤が比較的不均一に存在することで、粉末粒子同士の直接結合を阻害し難くなったため、と考えられる。特に、裸鉄粉を用いた試料No.2−2は、試料No.2−1よりも高強度である。この理由は、塑性変形した裸鉄粉が被覆鉄粒子間を強固に結合できたためと考えられる。この試験から、成形後に熱処理を行っておらず、潤滑剤を含有していながらも、緻密で高強度な圧粉磁心が得られることが確認できた。また、微細な裸鉄粉を含むことで、同じ密度であっても、強度により優れる圧粉磁心が得られることが確認できた。   As a result, Sample No. using a mixed powder containing no bare iron powder. The bending strength of 2-1 is 13.9 MPa, and sample No. using a mixed powder containing coated iron powder and bare iron powder. The bending strength of 2-2 was 15.6 MPa, both of which were high strength. The reason for this is considered that the coated iron particles are sufficiently meshed with each other and the lubricant is relatively non-uniform so that it is difficult to inhibit the direct bonding between the powder particles. In particular, Sample No. using bare iron powder. 2-2 is Sample No. It is stronger than 2-1. The reason for this is considered that the bare iron powder that was plastically deformed could firmly bond the coated iron particles. From this test, it was confirmed that a compact and high-strength powder magnetic core was obtained even though it was not heat-treated after molding and contained a lubricant. Moreover, it has confirmed that the powder magnetic core which is excellent in intensity | strength is obtained even if it is the same density by containing fine bare iron powder.

なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、試験例において、被覆鉄粉の平均粒径・粒度分布、絶縁被膜の成分・厚さ、潤滑剤の成分・含有量、裸鉄粉の平均粒径・粒度分布、被覆鉄粉と裸鉄粉との配合割合、成形条件(金型温度、成形圧力、雰囲気など)を適宜変更することができる。また、磁性成分として、純鉄の少なくとも一部をFe−Si、Fe−Si−Alなどの鉄基合金に置換した形態などが考えられる。   In addition, this invention is not limited to these illustrations, is shown by the claim, and is intended that all the changes within the meaning and range equivalent to the claim are included. For example, in the test example, the average particle size / particle size distribution of the coated iron powder, the component / thickness of the insulating coating, the component / content of the lubricant, the average particle size / particle size distribution of the bare iron powder, the coated iron powder and the bare iron The blending ratio with the powder and the molding conditions (mold temperature, molding pressure, atmosphere, etc.) can be changed as appropriate. Further, as a magnetic component, a form in which at least a part of pure iron is replaced with an iron-based alloy such as Fe—Si or Fe—Si—Al can be considered.

本発明の圧粉磁心は、各種のコイル部品(例えば、リアクトル、トランス、モータ、チョークコイル、アンテナ、燃料インジェクタ、点火コイルなど)の磁性コアに利用することができる。本発明のコイル部品は、リアクトル、トランス、モータ、チョークコイル、アンテナ、燃料インジェクタ、点火コイルなどに利用することができる。   The dust core of the present invention can be used for a magnetic core of various coil components (for example, a reactor, a transformer, a motor, a choke coil, an antenna, a fuel injector, an ignition coil, etc.). The coil component of the present invention can be used for a reactor, a transformer, a motor, a choke coil, an antenna, a fuel injector, an ignition coil, and the like.

1 圧粉磁心
10 被覆鉄粉 12 鉄粒子 14 絶縁被膜 20 裸鉄粉
30 潤滑剤
P 原料粉末
100 被覆鉄粉 120 鉄粒子 140 絶縁被膜 200 裸鉄粉
300 潤滑剤
1A,1B,1C,1D,1E,1F コイル部品
10A,10B,10C,10D,10E,10F 磁性コア
10i I字状のコア片 10p Π字状のコア片 10e E字状のコア片
10f 矩形枠状のコア片 10h 貫通孔
G ギャップ C コイル
DESCRIPTION OF SYMBOLS 1 Powder magnetic core 10 Coated iron powder 12 Iron particle 14 Insulating coating 20 Bare iron powder 30 Lubricant P Raw material powder 100 Coated iron powder 120 Iron particle 140 Insulating coating 200 Bare iron powder 300 Lubricant 1A, 1B, 1C, 1D, 1E , 1F Coil parts 10A, 10B, 10C, 10D, 10E, 10F Magnetic core 10i I-shaped core piece 10p U-shaped core piece 10e E-shaped core piece 10f Rectangular frame-shaped core piece 10h Through hole G Gap C coil

Claims (7)

絶縁被膜を備える被覆鉄粉と、絶縁被膜を備えていない裸鉄粉と、潤滑剤とを含み、
前記被覆鉄粉は、平均粒径が200μm以上450μm以下であり、粒径が75μm以下の粉末粒子の割合が10質量%以下であり、
前記裸鉄粉は、平均粒径が40μm以上150μm以下であり、粒径が200μm以上の粉末粒子の割合が10質量%以下であり、
前記潤滑剤は、含有量が0.36質量%以上0.8質量%以下であり、脂肪酸アミドを含む圧粉磁心。
Including coated iron powder with an insulating coating, bare iron powder without an insulating coating, and a lubricant,
The coated iron powder has an average particle size of 200 μm or more and 450 μm or less, and a ratio of powder particles having a particle size of 75 μm or less is 10% by mass or less,
The bare iron powder has an average particle size of 40 μm or more and 150 μm or less, and the proportion of powder particles having a particle size of 200 μm or more is 10% by mass or less,
The lubricant is a dust core having a content of 0.36% by mass to 0.8% by mass and containing a fatty acid amide.
前記圧粉磁心の磁性成分における前記被覆鉄粉の含有量が50質量%以上100質量%未満である請求項に記載の圧粉磁心。 The dust core according to claim 1 , wherein the content of the coated iron powder in the magnetic component of the dust core is 50% by mass or more and less than 100% by mass. 前記圧粉磁心の磁性成分における前記裸鉄粉の含有量が10質量%以上45質量%以下である請求項1又は請求項2に記載の圧粉磁心。 The dust core according to claim 1 or 2, wherein a content of the bare iron powder in a magnetic component of the dust core is 10 mass% or more and 45 mass% or less. 前記脂肪酸アミドは、ステアリン酸アミドを含む請求項1〜請求項のいずれか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 3 , wherein the fatty acid amide includes stearic acid amide. 前記潤滑剤は、脂肪酸金属塩を含む請求項1〜請求項のいずれか1項に記載の圧粉磁心。 The lubricant is a dust core according to any one of claims 1 to 4, which comprises a fatty acid metal salt. ポリアミド系樹脂を0超0.5質量%以下含む請求項1〜請求項のいずれか1項に記載の圧粉磁心。 The powder magnetic core according to any one of claims 1 to 5 , comprising a polyamide-based resin in an amount of more than 0 and 0.5% by mass or less. コイルと、磁性コアとを備えるコイル部品であって、
前記磁性コアの少なくとも一部に請求項1〜請求項のいずれか1項に記載の圧粉磁心を備えるコイル部品。
A coil component comprising a coil and a magnetic core,
A coil component comprising the dust core according to any one of claims 1 to 6 in at least a part of the magnetic core.
JP2014134395A 2014-06-30 2014-06-30 Powder core and coil parts Active JP6423629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014134395A JP6423629B2 (en) 2014-06-30 2014-06-30 Powder core and coil parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134395A JP6423629B2 (en) 2014-06-30 2014-06-30 Powder core and coil parts

Publications (2)

Publication Number Publication Date
JP2016012688A JP2016012688A (en) 2016-01-21
JP6423629B2 true JP6423629B2 (en) 2018-11-14

Family

ID=55229206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134395A Active JP6423629B2 (en) 2014-06-30 2014-06-30 Powder core and coil parts

Country Status (1)

Country Link
JP (1) JP6423629B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620643B2 (en) * 2016-03-31 2019-12-18 Tdk株式会社 Compacted magnetic body, magnetic core and coil type electronic parts
JP6683544B2 (en) * 2016-06-15 2020-04-22 Tdk株式会社 Soft magnetic metal fired body and coil type electronic component
WO2019044467A1 (en) 2017-09-04 2019-03-07 住友電気工業株式会社 Method for manufacturing dust core and raw material powder for dust core

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197212A (en) * 2002-10-21 2004-07-15 Aisin Seiki Co Ltd Soft magnetic molding, method of producing soft magnetic molding, and soft magnetic powder material
SE0303580D0 (en) * 2003-12-29 2003-12-29 Hoeganaes Ab Composition for producing soft magnetic composites by powder metallurgy
JP2009295613A (en) * 2008-06-02 2009-12-17 Fuji Electric Device Technology Co Ltd Method of manufacturing dust core
JP5417074B2 (en) * 2009-07-23 2014-02-12 日立粉末冶金株式会社 Powder magnetic core and manufacturing method thereof
US20140286814A1 (en) * 2011-11-18 2014-09-25 Panasonic Corporation Composite magnetic material, buried-coil magnetic element using same, and method for producing same
CN104335300A (en) * 2012-05-25 2015-02-04 Ntn株式会社 Powder core, powder core manufacturing method, and method for estimating eddy current loss in powder core
JP5732027B2 (en) * 2012-12-10 2015-06-10 住友電気工業株式会社 Compressed green body, manufacturing method of compacted body, heat treatment body and coil component
JP2015070077A (en) * 2013-09-27 2015-04-13 住友電気工業株式会社 Powder-compact magnetic core, producing method thereof, and coil part

Also Published As

Publication number Publication date
JP2016012688A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5368686B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP5650928B2 (en) SOFT MAGNETIC MATERIAL, MOLDED BODY, DUST CORE, ELECTRONIC COMPONENT, SOFT MAGNETIC MATERIAL MANUFACTURING METHOD, AND DUST CORE MANUFACTURING METHOD
KR101840083B1 (en) Compact, reactor core and magnetic circuit component
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
KR101418690B1 (en) Method for manufacturing outer core, outer core, and reactor
JPWO2005096324A1 (en) Soft magnetic material and dust core
CN106663513A (en) Magnetic core, method for producing magnetic core, and coil component
JP6423629B2 (en) Powder core and coil parts
JP5445801B2 (en) Reactor and booster circuit
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
WO2017082027A1 (en) Pressed powder formed body, electromagnetic component, and pressed powder formed body production method
CN107615411B (en) Mixed powder for dust core and dust core
JP6702830B2 (en) Dust core and coil parts
JP6882375B2 (en) Mixed powder for dust core and powder magnetic core
WO2015045561A1 (en) Dust core, method for producing dust core and coil component
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
JP5845022B2 (en) Magnetic circuit parts
JPWO2019044467A1 (en) Manufacturing method of dust core and raw material powder for dust core
JP6174954B2 (en) Method for producing a green compact
JP5845141B2 (en) Compact body, reactor core, and magnetic circuit component
JP7254449B2 (en) Soft magnetic materials, dust cores, and inductors
JP7386832B2 (en) Powder compacts and electromagnetic parts
JP4284042B2 (en) Dust core
JP2018021224A (en) Manufacturing method of powder compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250