JP6882375B2 - Mixed powder for dust core and powder magnetic core - Google Patents
Mixed powder for dust core and powder magnetic core Download PDFInfo
- Publication number
- JP6882375B2 JP6882375B2 JP2019106500A JP2019106500A JP6882375B2 JP 6882375 B2 JP6882375 B2 JP 6882375B2 JP 2019106500 A JP2019106500 A JP 2019106500A JP 2019106500 A JP2019106500 A JP 2019106500A JP 6882375 B2 JP6882375 B2 JP 6882375B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- lubricant
- magnetic
- density
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、表面に絶縁皮膜が形成された軟磁性粉末および潤滑剤が混合されてなる圧粉磁心用混合粉末と、その圧粉磁心用混合粉末を用いて圧縮成形されてなる圧粉磁心に関するものである。 The present invention relates to a powder magnetic core mixed powder in which a soft magnetic powder having an insulating film formed on the surface and a lubricant are mixed, and a powder magnetic core formed by compression molding using the powder magnetic core mixed powder. It is a thing.
ノイズフィルタ、リアクトルなど交流磁場で用いられる電磁機器の鉄心には、電磁鋼板、圧粉磁心およびソフトフェライトなどが使用されている。いずれも交流磁場で鉄心に発生する渦電流を抑制する必要があるが、電磁鋼板は板面に、圧粉磁心は粉末表面に、それぞれ絶縁皮膜が形成されることで渦電流を抑制している。また、ソフトフェライトは酸化物であるため材料そのものの電気抵抗が高く、絶縁皮膜を形成する必要がない。 Electromagnetic steel sheets, dust cores, soft ferrites, etc. are used for the iron cores of electromagnetic devices used in alternating magnetic fields such as noise filters and reactors. In both cases, it is necessary to suppress the eddy current generated in the iron core by the alternating magnetic field, but the eddy current is suppressed by forming an insulating film on the plate surface of the electromagnetic steel plate and on the powder surface of the dust core. .. Further, since soft ferrite is an oxide, the electrical resistance of the material itself is high, and it is not necessary to form an insulating film.
これらの中でも、軟磁性粉末を圧縮成形してなる圧粉磁心を、電磁機器の鉄心として用いることが、近年、特に多くなってきている。圧粉磁心は、表面に絶縁皮膜が形成された軟磁性粉末を圧縮成形してなるものであるが、その磁気特性は成形体密度に依存するところが大きく、高磁気特性を得るためには、粒子間の電気的絶縁を確保しつつ高密度に成形することが必要である。 Among these, in recent years, it has become particularly common to use a dust core formed by compression molding soft magnetic powder as an iron core of an electromagnetic device. The dust core is formed by compression molding a soft magnetic powder having an insulating film formed on its surface, but its magnetic properties largely depend on the density of the molded body, and in order to obtain high magnetic properties, particles It is necessary to mold at high density while ensuring electrical insulation between them.
ここで磁気特性とは、磁束密度、透磁率、鉄損等を指すものであるが、粒子間の電気的絶縁が確保されている場合は粒子間に発生する粒子間渦電流損は抑制され、渦電流損は粒子内部に発生する粒子内渦電流損のみとなり、渦電流損は最低限に抑制される。従って、絶縁皮膜で被覆された軟磁性粉末を圧縮成形した圧粉磁心の特性は、磁束密度と透磁率に代表される直流磁気特性が重要な特性となる。 Here, the magnetic characteristics refer to magnetic flux density, magnetic permeability, iron loss, etc., but when electrical insulation between particles is ensured, interparticle eddy current loss generated between particles is suppressed. The eddy current loss is only the intraparticle eddy current loss generated inside the particle, and the eddy current loss is suppressed to the minimum. Therefore, as for the characteristics of the dust core obtained by compression-molding the soft magnetic powder coated with the insulating film, the DC magnetic characteristics typified by the magnetic flux density and the magnetic permeability are important characteristics.
飽和磁束密度は鉄の量に比例するため成形体の密度に依存する。また、透磁率は初磁化曲線の傾きであって磁束の通りやすさを表す指標であるため、磁気抵抗となる空隙が少ない方が透磁率は高くなり、飽和磁束密度と同様に透磁率も成形体密度が高い方が高くなる。 Since the saturation magnetic flux density is proportional to the amount of iron, it depends on the density of the molded product. In addition, since the magnetic permeability is the slope of the initial magnetization curve and is an index indicating the ease of passage of the magnetic flux, the magnetic permeability increases as the number of voids serving as the reluctance decreases, and the magnetic permeability is formed in the same manner as the saturation magnetic flux density. The higher the body density, the higher the value.
また、透磁率が高いということは、ある励磁磁場での磁束密度が高いということであり、飽和磁束密度だけでなく磁束密度も、成形体密度を高くすることで向上する。よって、直流磁気特性を向上するためには成形体密度を高くすることが最重要である。 Further, a high magnetic permeability means that the magnetic flux density in a certain exciting magnetic field is high, and not only the saturated magnetic flux density but also the magnetic flux density is improved by increasing the molded body density. Therefore, in order to improve the DC magnetic characteristics, it is most important to increase the density of the molded product.
上記の通り、圧粉磁心は、絶縁皮膜が形成された軟磁性粉末を圧縮成形したもので、軟磁性粉末を金型内に充填し加圧圧縮することで得られる。成形の際には金型との焼き付きを防止するため、潤滑剤が用いられている。 As described above, the powder magnetic core is obtained by compression molding a soft magnetic powder on which an insulating film is formed, and is obtained by filling the soft magnetic powder in a mold and compressing it under pressure. A lubricant is used during molding to prevent seizure with the mold.
圧粉磁心を作製する際の潤滑剤の用い方としては大きく分けて2種類ある。一つめは、軟磁性粉末に潤滑剤を直接混合するか、或いは軟磁性粉末を潤滑剤で被覆する内部潤滑成形(混合潤滑成形)であり、もう一つは、金型内面に潤滑剤を塗布する型潤滑成形である。また、型潤滑成形には複雑形状の成形が困難であるという課題があるため、複雑形状の成形体を作製する場合は、軟磁性粉末に潤滑剤を混合する内部潤滑を併用する方法もある。 There are roughly two types of usage of lubricants when producing dust cores. The first is internal lubrication molding (mixed lubrication molding) in which a lubricant is directly mixed with the soft magnetic powder or the soft magnetic powder is coated with a lubricant, and the other is a lubricant applied to the inner surface of the mold. Mold lubrication molding. Further, since mold lubrication molding has a problem that it is difficult to form a complicated shape, there is also a method of using internal lubrication in which a lubricant is mixed with a soft magnetic powder when producing a molded body having a complicated shape.
型潤滑成形は、潤滑剤を成形体内部に含まないため高成形体密度が得られるという利点があるが、金型の内壁面に潤滑剤を塗布するために成形体の形状に制約があり、複雑な形状の成形には適した方法ではない。一方、内部潤滑成形には高成形体密度を得ることができないという課題が残る。このような実情もあり、複雑な形状の成形に適した内部潤滑成形を採用しても、成形体密度が高くなる技術の開発が待ち望まれていた。 Mold lubrication molding has the advantage of obtaining a high molded body density because it does not contain a lubricant inside the molded body, but there are restrictions on the shape of the molded body because the lubricant is applied to the inner wall surface of the mold. It is not a suitable method for molding complex shapes. On the other hand, internal lubrication molding has a problem that a high molded body density cannot be obtained. Under such circumstances, the development of a technique for increasing the density of molded bodies has been awaited even if internal lubrication molding suitable for molding complicated shapes is adopted.
圧粉成形体を製造する際に、潤滑剤を用いる事例としては、特許文献1や特許文献2に記載された技術が知られているが、これらの先行技術で用いられる潤滑剤は、有機系潤滑剤のみである。
The techniques described in
一方、バルブガイドなど高温で使用する摺動部品を製造する際に、有機系潤滑剤と固体潤滑剤を併用する事例が、特許文献3〜5などで開示されている。しかしながら、これらの技術は固体潤滑剤を焼結後も残すことがポイントとなっており、圧縮性を向上して成形体密度を向上させようというものではない。 On the other hand, Patent Documents 3 to 5 and the like disclose examples of using an organic lubricant and a solid lubricant in combination when manufacturing a sliding component used at a high temperature such as a valve guide. However, the point of these techniques is to leave the solid lubricant even after sintering, and it is not an attempt to improve the compressibility and the density of the molded product.
本発明は、上記従来の問題を解決せんとしてなされたもので、圧粉磁心の製造において内部潤滑成形を採用しても、成形体密度を高くすることができ、磁気特性に優れた圧粉磁心を製造することができる圧粉磁心用混合粉末、およびその圧粉磁心用混合粉末を用いて作製される圧粉磁心を提供することを課題とするものである。 The present invention has been made to solve the above-mentioned conventional problems, and even if internal lubrication molding is adopted in the production of the dust core, the powder density can be increased and the powder magnetic core having excellent magnetic properties can be used. It is an object of the present invention to provide a mixed powder for a powder magnetic core capable of producing the above, and a powder magnetic core produced by using the mixed powder for a powder magnetic core.
本発明の圧粉磁心用混合粉末は、絶縁皮膜で被覆された軟磁性粉末と、滑剤および固体潤滑剤が混合されてなる圧粉磁心用混合粉末であって、前記滑剤の含有量が、0.1質量%以上0.8質量%以下であり、前記固体潤滑剤の含有量が、0.01質量%以上0.2質量%以下であり、前記滑剤と前記固体潤滑剤との合計の含有量が、0.28質量%以上であり、前記滑剤は、密度が2.0g/cm3以下であって、炭素数12以上の直鎖構造を有する有機化合物でなる有機系潤滑剤であり、前記固体潤滑剤は、密度が4.0g/cm3以上の無機化合物であることを特徴とする圧粉磁心用混合粉末である。 The powder magnetic core mixed powder of the present invention is a powder magnetic core mixed powder in which a soft magnetic powder coated with an insulating film, a lubricant and a solid lubricant are mixed, and the content of the lubricant is 0. .1% by mass or more and 0.8% by mass or less, the content of the solid lubricant is 0.01% by mass or more and 0.2% by mass or less, and the total content of the lubricant and the solid lubricant is the amount is not less than 0.28 wt%, the lubricant is I density 2.0 g / cm 3 or less der, an organic-based lubricant comprising an organic compound having 12 or more of the linear structure of carbon The solid lubricant is a mixed powder for a dust core, which is an inorganic compound having a density of 4.0 g / cm 3 or more.
また、前記絶縁皮膜は、リン酸系皮膜であることが好ましい。 Further, the insulating film is preferably a phosphoric acid-based film.
また、前記固体潤滑剤は、粒子径が20nm以上20μm以下の粉末状であることが好ましい。 Further, the solid lubricant is preferably in the form of a powder having a particle size of 20 nm or more and 20 μm or less.
また、本発明の圧粉磁心は、前記圧粉磁心用混合粉末を圧縮成形した後、加熱焼鈍することで作製されていることを特徴とする圧粉磁心である。 Further, the powder magnetic core of the present invention is a powder magnetic core characterized in that it is produced by compression-molding the mixed powder for powder magnetic core and then heating and annealing.
本発明によると、圧粉磁心の製造において内部潤滑成形を採用しても、成形体密度を高くすることができ、磁気特性に優れた圧粉磁心を得ることができる。 According to the present invention, even if internal lubrication molding is adopted in the production of the dust core, the density of the molded body can be increased and the dust core having excellent magnetic characteristics can be obtained.
圧粉磁心の特性は磁束密度と透磁率に代表される直流磁気特性が重要な特性となると先に説明したが、圧粉磁心の直流磁気特性を向上するためには、単位体積当たりの磁性体の量を増やし、磁気抵抗となる空隙や非磁性の物質を減らすことが必要で、圧粉磁心を高密度に成形することが肝要である。 It was explained earlier that the characteristics of the dust core are the DC magnetic characteristics represented by the magnetic flux density and the magnetic permeability. However, in order to improve the DC magnetic characteristics of the dust core, the magnetic material per unit volume It is necessary to increase the amount of magnetic resistance and reduce the voids and non-magnetic substances that become magnetic resistance, and it is important to mold the dust core at high density.
潤滑剤は成形には必要な物質であるが、磁性体ではないため、高磁気特性を得るためには潤滑剤の量を極力減らすことが有用であり、潤滑剤の低減は成形体の高密度化、すなわち、高磁気特性につながる。尚、潤滑剤を低減せず、成形圧力を高くして空隙を減らすということも考えることができるが、金型にかかる負担が大きくなる等のプロセス上の問題が発生するため、採用することはできない。 Lubricants are necessary substances for molding, but they are not magnetic materials. Therefore, it is useful to reduce the amount of lubricant as much as possible in order to obtain high magnetic properties. That is, it leads to high magnetic properties. It is possible to consider increasing the molding pressure to reduce the voids without reducing the lubricant, but it will cause process problems such as an increase in the load on the mold, so it is not adopted. Can not.
このように、潤滑剤は成形時の金型との焼き付きを防止するために必要な材料であるため、低減できる量は限られており、成形性と潤滑剤量の低減を両立することが必要である。 As described above, since the lubricant is a material necessary for preventing seizure with the mold during molding, the amount that can be reduced is limited, and it is necessary to achieve both moldability and reduction of the amount of lubricant. Is.
本発明者らは、このような背景に鑑み、鋭意、研究、実験等の検討を行い、潤滑剤の体積に着目した。潤滑剤の体積を低減するためには、高密度の潤滑剤を用いることが有効であり、潤滑剤として使用される潤剤の一部を密度が高い固体潤滑剤に置換することで、成形性と潤滑剤量の低減を両立できることを見出し、本発明を完成させることに成功した。 In view of this background, the present inventors diligently studied research, experiments, and the like, and focused on the volume of the lubricant. In order to reduce the volume of the lubricant, it is effective to use a high-density lubricant, and by replacing a part of the lubricant used as the lubricant with a high-density solid lubricant, the moldability We have found that it is possible to reduce the amount of lubricant at the same time, and succeeded in completing the present invention.
また、軟磁性粉末の表面を被覆する絶縁皮膜についても検討を行った結果、無機系絶縁皮膜、特にリン酸系皮膜には潤滑性があることを知見し、リン酸系皮膜で被覆された軟磁性粉末を圧粉磁心の材料に採用することで、潤滑剤量の低減をより効果的に実現できることも併せて見出した。 In addition, as a result of examining the insulating film that covers the surface of the soft magnetic powder, it was found that the inorganic insulating film, especially the phosphoric acid-based film, has lubricity, and the soft film coated with the phosphoric acid-based film. It was also found that the amount of lubricant can be reduced more effectively by using magnetic powder as the material for the dust core.
本発明の圧粉磁心用混合粉末は、絶縁皮膜で被覆された軟磁性粉末と、潤滑剤として滑剤および固体潤滑剤が混合されて構成される。以下、軟磁性粉末、絶縁皮膜、滑剤、固体潤滑剤の順に、詳細に説明する。 The powder magnetic core mixed powder of the present invention is composed of a soft magnetic powder coated with an insulating film and a lubricant and a solid lubricant as lubricants. Hereinafter, the soft magnetic powder, the insulating film, the lubricant, and the solid lubricant will be described in detail in this order.
(軟磁性粉末)
軟磁性粉末としては鉄基軟磁性粉末を例示することができる。この鉄基軟磁性粉末は、強磁性体の金属粉末であり、具体的には、純鉄粉、鉄基合金粉末(Fe−Al合金、Fe−Si合金、センダスト、パーマロイなど)、アモルファス粉末などである。
(Soft magnetic powder)
As the soft magnetic powder, an iron-based soft magnetic powder can be exemplified. This iron-based soft magnetic powder is a ferromagnetic metal powder, and specifically, pure iron powder, iron-based alloy powder (Fe-Al alloy, Fe-Si alloy, Sendust, Permalloy, etc.), amorphous powder, etc. Is.
こうした軟磁性粉末は、例えば、アトマイズ法によって微粒子とした後に還元し、その後、粉砕すること等によって得ることができる。本発明においては、原理的に通常の粉末冶金に用いられる粒度であれば、粒度分布に依存せずその作用効果を発揮することが可能である。 Such soft magnetic powder can be obtained, for example, by forming fine particles by an atomizing method, reducing the powder, and then pulverizing the powder. In the present invention, in principle, any particle size used for ordinary powder metallurgy can exert its action and effect regardless of the particle size distribution.
但し、本発明は、所定の鉄損に抑えながら、同時に成形体に成形する際の圧縮性を向上させることを意図しているため、用いる鉄基軟磁性粉末は、粒度の大きな成分(例えば、粒度が250μm以上600μm以下)を通常より多少多く含んだ鉄基軟磁性粉末であることが好ましい。例えば、表1に示すような粒度分布の鉄基軟磁性粉末を例示することができる。 However, since the present invention is intended to improve the compressibility when molding into a molded product while suppressing a predetermined iron loss, the iron-based soft magnetic powder used has a large particle size component (for example, for example). It is preferable that the iron-based soft magnetic powder contains a slightly larger particle size (250 μm or more and 600 μm or less) than usual. For example, an iron-based soft magnetic powder having a particle size distribution as shown in Table 1 can be exemplified.
尚、表1に示す鉄基軟磁性粉末の粒度分布は、日本粉末冶金工業会で規定される「金属粉のふるい分析試験方法」(JPMA PO2−1992)に準拠して、篩い分けを実施することで得ることができる。具体的には、まず、目開き600μmの篩を用いて篩い分けした後、更に、表1に示す粒度に対応する目開き250μmから45μmの篩を順次用いて、篩い分けを実施すれば得ることができる。 The particle size distribution of the iron-based soft magnetic powder shown in Table 1 is screened in accordance with the "Metal powder sieving analysis test method" (JPMA PO2-1992) specified by the Japan Powder Metallurgical Industry Association. Can be obtained by Specifically, it can be obtained by first sieving using a sieve having a mesh size of 600 μm, and then sieving using a sieve having a mesh size of 250 μm to 45 μm corresponding to the particle size shown in Table 1. Can be done.
(絶縁皮膜)
軟磁性粉末の表面には渦電流抑制のために絶縁皮膜が形成される。この絶縁皮膜は、無機系絶縁皮膜であることが好ましく、代表的な無機系絶縁皮膜としては、リン酸系皮膜(リン酸系化成皮膜)、クロム系化成皮膜等を例示することができる。特に、リン酸系皮膜は、軟磁性粉末に対する濡れ性が良く、軟磁性粉末の表面を均一に被覆することが可能であり、また潤滑性があることから、本発明において、絶縁皮膜として用いることにより適している。
(Insulating film)
An insulating film is formed on the surface of the soft magnetic powder to suppress eddy currents. This insulating film is preferably an inorganic insulating film, and typical examples of the inorganic insulating film include a phosphoric acid-based film (phosphoric acid-based chemical conversion film) and a chromium-based chemical conversion film. In particular, the phosphoric acid-based film has good wettability to the soft magnetic powder, can uniformly coat the surface of the soft magnetic powder, and has lubricity. Therefore, the phosphoric acid-based film is used as an insulating film in the present invention. More suitable.
尚、絶縁皮膜はシリコーンなどの有機材料による有機系絶縁皮膜であっても良く、また、シリコーンなどの有機材料による有機系絶縁皮膜と、リン酸系皮膜などの無機系絶縁皮膜の、二重皮膜であっても良い。 The insulating film may be an organic insulating film made of an organic material such as silicone, or a double film consisting of an organic insulating film made of an organic material such as silicone and an inorganic insulating film such as a phosphoric acid film. It may be.
リン酸系皮膜は、例えば、水:1000質量部、H3PO4:193質量部、MgO:31質量部、H3BO3:30質量部を混合して、更に水で20倍に希釈してリン酸系皮膜用処理液とし、軟磁性粉末100質量部に対して、この処理液を5質量部混合し、大気中200℃で乾燥させることで、軟磁性粉末の表面に形成することができる。尚、このリン酸系皮膜の厚みは10〜100nmとなる。 For the phosphoric acid-based film, for example, water: 1000 parts by mass, H 3 PO 4 : 193 parts by mass, MgO: 31 parts by mass, and H 3 BO 3 : 30 parts by mass are mixed and further diluted 20 times with water. It is possible to form a treatment liquid for a phosphoric acid-based film on the surface of the soft magnetic powder by mixing 5 parts by mass of this treatment liquid with 100 parts by mass of the soft magnetic powder and drying at 200 ° C. in the air. it can. The thickness of this phosphoric acid-based film is 10 to 100 nm.
(滑剤)
圧粉成形の際に混合する潤滑剤のうち滑剤としては、例えば、炭素数12以上(−CH2−)の直鎖構造を有する有機化合物でなる有機系潤滑剤を挙げることができる。ステアリン酸亜鉛などステアリン酸金属塩のほか、炭化水素系、脂肪酸系、高級アルコール系、脂肪族アミド系、金属石鹸系、エステル系などの有機系潤滑剤などを例示することができ、具体的には、以下の有機系潤滑剤を挙げることができる。
(Glidant)
Among the lubricants mixed in the powder molding, examples of the lubricant include organic lubricants made of an organic compound having a linear structure having 12 or more carbon atoms (−CH 2−). In addition to metal stearic acid salts such as zinc stearate, organic lubricants such as hydrocarbon-based, fatty acid-based, higher alcohol-based, aliphatic amide-based, metal soap-based, and ester-based lubricants can be exemplified. Can include the following organic lubricants.
炭化水素系の潤滑剤としては、流動パラフィン、パラフィンワックス、合成ポリエチレンワックスなどを挙げることができ、脂肪酸系、高級アルコール系の潤滑剤としては、比較的安価且つ低毒の、ステアリン酸やステアリルアルコールなどを挙げることができる。 Examples of hydrocarbon-based lubricants include liquid paraffin, paraffin wax, and synthetic polyethylene wax. Examples of fatty acid-based and higher alcohol-based lubricants include stearic acid and stearyl alcohol, which are relatively inexpensive and low-toxic. And so on.
また、脂肪族アミド系の潤滑剤としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミドの脂肪酸アミドと、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドのアルキレン脂肪酸アミドなどを挙げることができる。 Examples of the aliphatic amide-based lubricant include fatty acid amides of stearic acid amides, oleic acid amides and erucic acid amides, and alkylene fatty acid amides of methylene bisstearic acid amides and ethylene bisstearic acid amides.
また、金属石鹸系の潤滑剤としては、金属石鹸のうち、主にステアリン酸金属塩が用いられ、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸リチウムなどを挙げることができる。 Further, as the metal soap-based lubricant, among metal soaps, metal stearate is mainly used, and zinc stearate, calcium stearate, lithium stearate and the like can be mentioned.
また、エステル系の潤滑剤としては、アルコールの脂肪酸エステルの、ステアリン酸モノグリセリドなどを挙げることができる。 Examples of the ester-based lubricant include stearic acid monoglyceride, which is a fatty acid ester of alcohol.
本発明では、滑剤として、前記したような有機系潤滑剤から1種以上を選択して用いることができる。 In the present invention, one or more of the above-mentioned organic lubricants can be selected and used as the lubricant.
本発明の圧粉磁心用混合粉末中に占める、これら滑剤の含有量は、0.1質量%以上0.8質量%以下とする。含有量が0.1質量%未満であると、圧粉成形時に金型との焼き付きが発生してしまう。一方、0.8質量%を超えると、成形体密度が低くなり、磁気特性に優れた圧粉磁心を得ることができなくなる。 The content of these lubricants in the powder magnetic core mixed powder of the present invention is 0.1% by mass or more and 0.8% by mass or less. If the content is less than 0.1% by mass, seizure with the mold will occur during compaction molding. On the other hand, if it exceeds 0.8% by mass, the density of the compact becomes low, and it becomes impossible to obtain a dust core having excellent magnetic characteristics.
(固体潤滑剤)
圧粉成形の際に滑剤と共に混合する固体潤滑剤としては、例えば、密度が4.0g/cm3以上の無機化合物でなる無機系潤滑剤を挙げることができる。具体例としては、二硫化モリブデン(MoS2)、酸化亜鉛(ZnO)などである。本発明では、固体潤滑剤として、前記したような無機系潤滑剤から1種以上を選択して用いることができる。
(Solid lubricant)
Examples of the solid lubricant to be mixed with the lubricant during powder compaction include an inorganic lubricant having a density of 4.0 g / cm 3 or more. Specific examples include molybdenum disulfide (MoS 2 ) and zinc oxide (ZnO). In the present invention, one or more of the above-mentioned inorganic lubricants can be selected and used as the solid lubricant.
潤滑剤のうち滑剤の密度は2.0g/cm3以下であるが、固体潤滑剤の密度が滑剤の2倍以上の密度でなければ、滑剤量の低減を有効に図ることができない。このような理由から、固体潤滑剤の密度は4.0g/cm3以上とする。 The density of the lubricant among the lubricants is 2.0 g / cm 3 or less, but the amount of the lubricant cannot be effectively reduced unless the density of the solid lubricant is twice or more that of the lubricant. For this reason, the density of the solid lubricant should be 4.0 g / cm 3 or more.
また、固体潤滑剤の粒子径は、20nm以上20μm以下であることが好ましい。固体潤滑剤の粒子径が20nm未満であると、固体潤滑剤が軟磁性粉末の表面の凹凸や軟磁性粉末間の隙間に入り込み、潤滑機能を発揮できなくなる。一方、固体潤滑剤の粒子径が20μmを超えると、固体潤滑剤の粒子の数が少なくなり、軟磁性粉末間の摩擦低減や、軟磁性粉末の金型との摩擦低減に寄与できなくなる。 The particle size of the solid lubricant is preferably 20 nm or more and 20 μm or less. If the particle size of the solid lubricant is less than 20 nm, the solid lubricant gets into the unevenness of the surface of the soft magnetic powder and the gaps between the soft magnetic powders, and cannot exert the lubricating function. On the other hand, if the particle size of the solid lubricant exceeds 20 μm, the number of particles of the solid lubricant is reduced, and it is not possible to contribute to the reduction of friction between the soft magnetic powders and the reduction of friction between the soft magnetic powders and the mold.
本発明の圧粉磁心用混合粉末中に占める、これら固体潤滑剤の含有量は、0.01質量%以上0.2質量%以下とする。含有量が0.01質量%未満であると、滑剤の固体潤滑剤への置換が不十分となり、直流磁気特性の向上を図れない。一方、0.2質量%を超えると、抜き出し性を維持するために添加する潤滑剤総量が多くなるため成形体密度が低下し、飽和磁束密度が低下する。 The content of these solid lubricants in the powder magnetic core mixed powder of the present invention is 0.01% by mass or more and 0.2% by mass or less. If the content is less than 0.01% by mass, the replacement of the lubricant with a solid lubricant becomes insufficient, and the DC magnetic characteristics cannot be improved. On the other hand, if it exceeds 0.2% by mass, the total amount of the lubricant added to maintain the extraction property increases, so that the density of the molded product decreases and the saturation magnetic flux density decreases.
(圧粉磁心)
また、本発明の圧粉磁心は、絶縁皮膜で被覆された軟磁性粉末と、滑剤および固体潤滑剤が混合されてなる圧粉磁心用混合粉末を用いて、金型内で圧縮成形した後、加熱焼鈍することで作製することができる。
(Powder magnetic core)
Further, the powder magnetic core of the present invention is compression-molded in a mold using a soft magnetic powder coated with an insulating film and a mixed powder for a powder magnetic core in which a lubricant and a solid lubricant are mixed. It can be produced by heating and annealing.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples as well as the present invention, and the present invention is carried out with appropriate modifications to the extent that it can be adapted to the gist of the present invention. It is also possible, all of which are within the technical scope of the invention.
軟磁性粉末として純鉄粉(神戸製鋼所製:マグメル(登録商標)ML35N)を用い、その表面に絶縁皮膜となるリン酸系皮膜を形成した。このリン酸系皮膜の形成には、リン酸系皮膜用処理液として、水:1000質量部、H3PO4:193質量部、MgO:31質量部、H3BO3:30質量部を混合して原液とし、電気抵抗を変化させるために水で20倍まで適宜希釈して濃度を変えた処理液を用いた。純鉄粉100質量部に対して前記処理液を5質量部混合して、大気中200℃で乾燥させることにより、純鉄粉の表面にリン酸系皮膜を形成した。 Pure iron powder (manufactured by Kobe Steel: Magmel (registered trademark) ML35N) was used as the soft magnetic powder, and a phosphoric acid-based film to be an insulating film was formed on the surface thereof. The formation of the phosphate coating, as a phosphate coating treatment liquid, water: 1000 parts by weight, H 3 PO 4: 193 parts by weight, MgO: 31 parts by mass, H 3 BO 3: mixing 30 parts by weight Then, it was used as a stock solution, and a treatment solution having a different concentration was used by appropriately diluting it with water up to 20 times in order to change the electric resistance. A phosphoric acid-based film was formed on the surface of the pure iron powder by mixing 5 parts by mass of the treatment liquid with 100 parts by mass of the pure iron powder and drying at 200 ° C. in the air.
この後、表面にリン酸系皮膜を形成した純鉄粉と、滑剤(ステアリン酸アミドまたはラウリン酸アミド)、そして発明例のみ固体潤滑剤(粒子径が0.5μmのZnOまたはMoS2)を、表2に示すように、含有量をそれぞれ変えて混合し、内部潤滑成形による圧粉成形を行うことで圧粉磁心を作製した。 After that, pure iron powder having a phosphoric acid-based film formed on the surface, a lubricant (stearic acid amide or lauric acid amide), and a solid lubricant (ZnO or MoS 2 having a particle size of 0.5 μm) only in the invention example were added. As shown in Table 2, a dust core was produced by mixing with different contents and performing dust molding by internal lubrication molding.
作製した様々な圧粉磁心の、成形体密度、抜き出し圧力、透磁率、磁束密度を測定により求めた。 The molded body density, extraction pressure, magnetic permeability, and magnetic flux density of the various powder magnetic cores produced were determined by measurement.
成形体密度は、成形まま(熱処理前)の直方体試験片の質量と寸法を測定し、体積と質量から算出した。直方体試験片のサイズは、12.7mm×31.75mm×厚さ約5mm、充填する粉末質量(単重量)は15gである。 The molded body density was calculated from the volume and mass by measuring the mass and dimensions of the rectangular parallelepiped test piece as it was molded (before heat treatment). The size of the rectangular parallelepiped test piece is 12.7 mm × 31.75 mm × thickness about 5 mm, and the mass of powder (single weight) to be filled is 15 g.
直方体試験片の厚さを「約」としたのは、成形圧力により厚さが変わってくるためであるが、表2に示す成形体密度は、成形圧力を900MPaとした時の成形体密度である。尚、以後説明する円柱状成形体の高さ、リング状試験片の厚さも「約」とするが同じ理由である。 The thickness of the rectangular parallelepiped test piece is set to "about" because the thickness changes depending on the molding pressure. The molded body density shown in Table 2 is the molded body density when the molding pressure is 900 MPa. is there. The height of the columnar molded body and the thickness of the ring-shaped test piece, which will be described later, are also referred to as "about" for the same reason.
抜き出し圧力は、直径25mm×高さ約25mm、単重量:83gの円柱状成形体を、成形圧力:588MPaで3個作製し、抜き出しを行った際の圧力を測定した時の平均値である。この抜き出し圧力は30MPa以下でなければならない。 The extraction pressure is an average value when three columnar compacts having a diameter of 25 mm and a height of about 25 mm and a unit weight of 83 g are produced at a molding pressure of 588 MPa and the pressure at the time of extraction is measured. This extraction pressure must be 30 MPa or less.
透磁率および磁束密度は、外径45mm×内径33mm×厚さ約5mm、単重量31gのリング状試験片を作製し、大気で350℃×20分保持後、空冷を行った後、メトロン技研製磁気測定器を用いて測定した。ここで示す透磁率とは最大透磁率のことであり、1次巻き線数200、2次巻き線数50、最大励磁磁場10000A/mで測定した。また、磁束密度とは励磁磁場10000A/mの時の磁束密度のことである。 For the magnetic permeability and magnetic flux density, a ring-shaped test piece having an outer diameter of 45 mm, an inner diameter of 33 mm, a thickness of about 5 mm, and a single weight of 31 g was prepared, held in the air at 350 ° C. for 20 minutes, air-cooled, and then manufactured by Metron Giken. It was measured using a magnetic measuring instrument. The magnetic permeability shown here is the maximum magnetic permeability, and was measured at a primary winding number of 200, a secondary winding number of 50, and a maximum exciting magnetic field of 10000 A / m. The magnetic flux density is the magnetic flux density when the exciting magnetic field is 10000 A / m.
これら測定により求めた成形体密度、抜き圧、透磁率、磁束密度を、表2および図1〜3に示す。尚、表2に示す成形体密度は、成形圧力を900MPaとした時の成形体密度である。また、表2に示す試験データと図1〜3に示す試験データは、試験のバッチが異なるため、多少のばらつきがある。 The molded body density, punching pressure, magnetic permeability, and magnetic flux density obtained by these measurements are shown in Table 2 and FIGS. 1 to 3. The molded body density shown in Table 2 is the molded body density when the molding pressure is 900 MPa. Further, the test data shown in Table 2 and the test data shown in FIGS. 1 to 3 have some variations because the test batches are different.
(成形体密度と、透磁率および磁束密度の関係)
表2および図1によると、潤滑剤の総質量が0.3質量%で同じ比較例4と発明例1を比較すると、潤滑剤の一部を、滑剤から密度が高い固体潤滑剤に置き換えた発明例1の方が、成形体密度が高くなっている。
(Relationship between molded body density, magnetic permeability and magnetic flux density)
According to Table 2 and FIG. 1, when comparing Comparative Example 4 and Invention Example 1 in which the total mass of the lubricant was 0.3% by mass, a part of the lubricant was replaced with a high-density solid lubricant. In the first invention example, the density of the molded body is higher.
また、表2および図2によると、潤滑剤の総質量が0.3質量%で同じ比較例4と発明例1を比較すると、潤滑剤の一部を、滑剤から密度が高い固体潤滑剤に置き換えた発明例1の方が、透磁率および磁束密度が高くなっている。この試験結果から、成形体密度を高くすると、透磁率および磁束密度が向上することが分かる。 Further, according to Table 2 and FIG. 2, when comparing Comparative Example 4 and Invention Example 1 in which the total mass of the lubricant is 0.3% by mass, a part of the lubricant is changed from a lubricant to a solid lubricant having a high density. The replaced invention example 1 has higher magnetic permeability and magnetic flux density. From this test result, it can be seen that increasing the molding density improves the magnetic permeability and the magnetic flux density.
(固体潤滑剤の粒子径の影響)
図3には、発明例1における固体潤滑剤(酸化亜鉛)の粒子径が成形体密度に及ぼす影響を示す。図3によると、潤滑剤の全てを滑剤とした比較例4と比べると、酸化亜鉛の粒子径が何れの場合も成形体密度が高くなっていることが分かる。
(Effect of particle size of solid lubricant)
FIG. 3 shows the effect of the particle size of the solid lubricant (zinc oxide) in Invention Example 1 on the molding density. According to FIG. 3, it can be seen that the density of the molded product is higher in any case of the particle size of zinc oxide as compared with Comparative Example 4 in which all the lubricants are used as lubricants.
特に、酸化亜鉛の粒子径が20nm(0.02μm)、0.5μm、11μmのものは、全ての成形圧力で、比較例4より成形体密度が高くなっており、それらの中でも、酸化亜鉛の粒子径が0.5μm程度のものが最も好ましいと言うことができる。 In particular, zinc oxide having a particle size of 20 nm (0.02 μm), 0.5 μm, and 11 μm has a higher molded body density than Comparative Example 4 at all molding pressures, and among them, zinc oxide It can be said that the one having a particle size of about 0.5 μm is the most preferable.
尚、酸化亜鉛の粒子径は、レーザー回析を用いた測定器(例えばマイクロトラック)で測定することができる。上記粒子径は生産度数で50%の粒子径D50を示す。 The particle size of zinc oxide can be measured with a measuring instrument using laser diffraction (for example, Microtrac). The particle size indicates a particle size D50 of 50% in terms of production frequency.
(リン酸系皮膜による抜き出し圧力低減効果)
軟磁性粉末と、潤滑剤としてステアリン酸アミドを0.3質量%混合し、600MPaの成形圧力で圧縮成形して直径25mm×高さ約25mmの円柱状成形体を作製し、成形体の抜き出し時の圧力と成形体密度を測定した。試験に用いた軟磁性粉末は、表面に皮膜を形成していないNo.1と、水処理を行い表面に酸化皮膜を形成したNo.2、表面にリン酸系皮膜を形成したNo.3の3種類である。試験結果を表3に示す。
(Effect of reducing extraction pressure by phosphoric acid-based film)
Soft magnetic powder and stearic acid amide as a lubricant are mixed in an amount of 0.3% by mass and compression molded at a molding pressure of 600 MPa to prepare a cylindrical molded body having a diameter of 25 mm and a height of about 25 mm. Pressure and compact density were measured. The soft magnetic powder used in the test had no film on the surface. No. 1 and No. 1 in which an oxide film was formed on the surface by water treatment. 2. No. 1 having a phosphoric acid-based film formed on the surface. There are three types of three. The test results are shown in Table 3.
表3によると、軟磁性粉末の表面に皮膜を形成していないNo.1の抜き出し圧力は30MPaであったのに対し、軟磁性粉末の表面に水処理により酸化皮膜を形成したNo.2は、抜き出し圧力を50MPaとしても成形体を抜き出すことができなかった。一方、表面にリン酸系皮膜を形成したNo.3の抜き出し圧力は21MPaであり、リン酸系皮膜を軟磁性粉末の表面に形成することで、抜き出し圧力の低減に効果があることが分かる。 According to Table 3, No. No. No film was formed on the surface of the soft magnetic powder. While the extraction pressure of No. 1 was 30 MPa, No. 1 in which an oxide film was formed on the surface of the soft magnetic powder by water treatment. In No. 2, the molded product could not be extracted even when the extraction pressure was set to 50 MPa. On the other hand, No. 1 having a phosphoric acid-based film formed on the surface. The extraction pressure of No. 3 is 21 MPa, and it can be seen that forming a phosphoric acid-based film on the surface of the soft magnetic powder is effective in reducing the extraction pressure.
一般に、焼結部品などの成形を行う際には、軟磁性粉末に、通常0.5質量%以上、好ましくは0.75質量%以上の潤滑剤を混合するが、リン酸系皮膜等の無機系絶縁皮膜には潤滑性があるため、潤滑剤を0.3質量%以下に低減しても抜き出し圧力は低く、成形体密度の向上が可能である。 Generally, when molding a sintered part or the like, a lubricant of 0.5% by mass or more, preferably 0.75% by mass or more is usually mixed with the soft magnetic powder, but an inorganic such as a phosphoric acid-based film or the like is used. Since the system insulating film has lubricity, the extraction pressure is low and the density of the molded body can be improved even if the lubricant is reduced to 0.3% by mass or less.
固体潤滑剤は、滑剤として用いられる有機系潤滑剤よりも融点が高く、圧縮成形時に溶融しないため潤滑性に劣ると考えられるが、リン酸系皮膜等の無機系絶縁皮膜には潤滑性があるため、表2の発明例4のように、潤滑性に劣る固体潤滑剤を0.2質量%添加しても抜き出し圧力の増加につながっていない。 Solid lubricants have a higher melting point than organic lubricants used as lubricants and are considered to be inferior in lubricity because they do not melt during compression molding, but inorganic insulating films such as phosphoric acid-based films have lubricity. Therefore, as shown in Invention Example 4 of Table 2, even if 0.2% by mass of a solid lubricant having poor lubricity is added, the extraction pressure does not increase.
(固体潤滑剤の含有量の影響)
表2によると、潤滑剤の総質量が0.28質量%で同じ比較例5と発明例5〜9を比較すると、0.01質量%を滑剤から固体潤滑剤に置き換えても、成形体密度、透磁率および磁束密度が向上していることが分かり、0.1質量%を固体潤滑剤に置き換えた場合も、抜き出し圧力は許容範囲の30MPa以下で、成形体密度、透磁率および磁束密度が向上していることが分かる。
(Effect of solid lubricant content)
According to Table 2, when the total mass of the lubricant is 0.28% by mass and the same Comparative Example 5 and Invention Examples 5 to 9 are compared, even if 0.01% by mass is replaced with the solid lubricant, the molded body density It was found that the magnetic permeability and magnetic flux density were improved, and even when 0.1% by mass was replaced with a solid lubricant, the extraction pressure was within the allowable range of 30 MPa or less, and the molded product density, magnetic permeability and magnetic flux density were high. You can see that it is improving.
成形体密度、透磁率および磁束密度の向上には、固体潤滑剤を0.2質量%添加しても効果がある。酸化亜鉛の密度は5.6g/cm3で、ステアリン酸アミド、ラウリン酸アミドなどの滑剤の密度である約1.2g/cm3の4〜5倍であるため、滑剤0.1質量%に対して少なくとも0.4質量%までは添加しても効果はあると考えられるが、既に説明したように潤滑剤の総質量は少ない方が良いため、0.2質量%以下の添加が望ましい。 Adding 0.2% by mass of a solid lubricant is also effective in improving the density of the molded body, the magnetic permeability, and the magnetic flux density. The density of zinc oxide is 5.6 g / cm 3 , which is 4 to 5 times the density of lubricants such as stearic acid amide and lauric acid amide, which is about 1.2 g / cm 3 , so the lubricant is 0.1% by mass. On the other hand, it is considered that addition of at least 0.4% by mass is effective, but as described above, it is preferable that the total mass of the lubricant is small, so it is desirable to add 0.2% by mass or less.
Claims (4)
前記滑剤の含有量が、0.1質量%以上0.8質量%以下であり、
前記固体潤滑剤の含有量が、0.01質量%以上0.2質量%以下であり、
前記滑剤と前記固体潤滑剤との合計の含有量が、0.28質量%以上であり、
前記滑剤は、密度が2.0g/cm3以下であって、炭素数12以上の直鎖構造を有する有機化合物でなる有機系潤滑剤であり、
前記固体潤滑剤は、密度が4.0g/cm3以上の無機化合物であることを特徴とする圧粉磁心用混合粉末。 A mixed powder for a dust core, which is a mixture of a soft magnetic powder coated with an insulating film and a lubricant and a solid lubricant.
The content of the lubricant is 0.1% by mass or more and 0.8% by mass or less.
The content of the solid lubricant is 0.01% by mass or more and 0.2% by mass or less.
The total content of the lubricant and the solid lubricant is 0.28% by mass or more.
The lubricant, I density 2.0 g / cm 3 or less der, an organic lubricant comprising an organic compound having 12 or more of the linear structure of carbon,
The solid lubricant is a mixed powder for a dust core, which is an inorganic compound having a density of 4.0 g / cm 3 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019106500A JP6882375B2 (en) | 2019-06-06 | 2019-06-06 | Mixed powder for dust core and powder magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019106500A JP6882375B2 (en) | 2019-06-06 | 2019-06-06 | Mixed powder for dust core and powder magnetic core |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015113915A Division JP2017004992A (en) | 2015-06-04 | 2015-06-04 | Mixed powder for powder magnetic core and powder magnetic core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019186558A JP2019186558A (en) | 2019-10-24 |
JP6882375B2 true JP6882375B2 (en) | 2021-06-02 |
Family
ID=68337637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019106500A Active JP6882375B2 (en) | 2019-06-06 | 2019-06-06 | Mixed powder for dust core and powder magnetic core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6882375B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7387456B2 (en) * | 2020-01-20 | 2023-11-28 | 株式会社神戸製鋼所 | Iron-based powder for powder magnetic core |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07254522A (en) * | 1994-03-15 | 1995-10-03 | Tdk Corp | Dust core and its manufacture |
JPH0845724A (en) * | 1994-07-28 | 1996-02-16 | Tdk Corp | Dust core |
US5518639A (en) * | 1994-08-12 | 1996-05-21 | Hoeganaes Corp. | Powder metallurgy lubricant composition and methods for using same |
SE0303580D0 (en) * | 2003-12-29 | 2003-12-29 | Hoeganaes Ab | Composition for producing soft magnetic composites by powder metallurgy |
JP4627023B2 (en) * | 2004-09-01 | 2011-02-09 | 住友電気工業株式会社 | Soft magnetic material, dust core, and method for manufacturing dust core |
JP4917355B2 (en) * | 2006-05-30 | 2012-04-18 | 住友電気工業株式会社 | Dust core |
JP5368686B2 (en) * | 2007-09-11 | 2013-12-18 | 住友電気工業株式会社 | Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core |
JP2013204063A (en) * | 2012-03-27 | 2013-10-07 | Ntn Corp | Method for manufacturing powder magnetic core and magnetic core powder |
JP5965190B2 (en) * | 2012-04-03 | 2016-08-03 | 住友電気工業株式会社 | Method for producing green compact and green compact |
CN105659337B (en) * | 2013-09-27 | 2018-04-10 | 日立化成株式会社 | The pressing mold and the lubricating composition of die device and compressed-core stamper for manufacturing that compressed-core, magnetic core are manufactured with the manufacture method of powder compact, compressed-core |
-
2019
- 2019-06-06 JP JP2019106500A patent/JP6882375B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019186558A (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4325950B2 (en) | Soft magnetic material and dust core | |
JP5368686B2 (en) | Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core | |
US8398879B2 (en) | Soft magnetic powdered core and method for producing same | |
EP2656359B1 (en) | Inductor material | |
JP4327214B2 (en) | Sintered soft magnetic powder compact | |
JP6501148B2 (en) | Magnetic sheet material using green compact and method of manufacturing the same | |
CN110997187B (en) | Method for manufacturing dust core and method for manufacturing electromagnetic component | |
JPS5846044B2 (en) | powder iron core | |
JP6882375B2 (en) | Mixed powder for dust core and powder magnetic core | |
CN107615411B (en) | Mixed powder for dust core and dust core | |
JP6423629B2 (en) | Powder core and coil parts | |
JP7332283B2 (en) | dust core | |
JP2011089190A (en) | Powder for powder compact | |
KR20130054238A (en) | Magnetic powder metallurgy materials | |
JP5431490B2 (en) | Manufacturing method of dust core | |
JPWO2020179377A1 (en) | Iron-based powder for dust core and powder core | |
JP2015109367A (en) | Magnetic sheet material, and method for manufacturing the same | |
JP7494608B2 (en) | Powder magnetic core and manufacturing method thereof | |
JP6940674B2 (en) | Manufacturing method of powder compact | |
WO2019044467A1 (en) | Method for manufacturing dust core and raw material powder for dust core | |
JP6174954B2 (en) | Method for producing a green compact | |
JP7387456B2 (en) | Iron-based powder for powder magnetic core | |
JP6702830B2 (en) | Dust core and coil parts | |
JP2015070077A (en) | Powder-compact magnetic core, producing method thereof, and coil part | |
JP2021185622A (en) | Powder compact and electromagnetic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190607 |
|
AA91 | Notification that invitation to amend document was cancelled |
Free format text: JAPANESE INTERMEDIATE CODE: A971091 Effective date: 20190618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210506 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6882375 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |