JP5845022B2 - Magnetic circuit parts - Google Patents

Magnetic circuit parts Download PDF

Info

Publication number
JP5845022B2
JP5845022B2 JP2011171279A JP2011171279A JP5845022B2 JP 5845022 B2 JP5845022 B2 JP 5845022B2 JP 2011171279 A JP2011171279 A JP 2011171279A JP 2011171279 A JP2011171279 A JP 2011171279A JP 5845022 B2 JP5845022 B2 JP 5845022B2
Authority
JP
Japan
Prior art keywords
core piece
exposed
inner core
average particle
exposed core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011171279A
Other languages
Japanese (ja)
Other versions
JP2013038133A (en
Inventor
佐藤 淳
佐藤  淳
真人 魚住
真人 魚住
山口 浩司
浩司 山口
和嗣 草別
和嗣 草別
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2011171279A priority Critical patent/JP5845022B2/en
Publication of JP2013038133A publication Critical patent/JP2013038133A/en
Application granted granted Critical
Publication of JP5845022B2 publication Critical patent/JP5845022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、ハイブリッド自動車などの車両に載置される車載用DC-DCコンバータの構成部品などに利用されるリアクトルといった磁気回路部品に関する。特に、生産性に優れる磁気回路部品に関する。   The present invention relates to a magnetic circuit component such as a reactor used as a component of an in-vehicle DC-DC converter mounted on a vehicle such as a hybrid vehicle. In particular, the present invention relates to a magnetic circuit component having excellent productivity.

コイルと、このコイルが配置され、コイルがつくる磁束の通路(磁路)を形成する磁心とを具える磁気回路部品が種々の分野で利用されている。例えば、電圧の昇圧動作や降圧動作を行う磁気回路部品の一つに、リアクトルがある。ハイブリッド自動車などの車両に載置されるコンバータの回路部品に利用されるリアクトルとして、筒状のコイルと、このコイル内に配置される内側コア部と、このコイルから露出された露出コア部とによって閉磁路を形成する磁心とを具えるものが挙げられる。代表的には、筒状のコイルを二つ具える形態、筒状のコイルを一つ具える形態がある。   2. Description of the Related Art Magnetic circuit components including a coil and a magnetic core in which the coil is arranged and forming a magnetic flux path (magnetic path) created by the coil are used in various fields. For example, a reactor is one of magnetic circuit components that perform voltage step-up and voltage step-down operations. As a reactor used for a circuit component of a converter mounted on a vehicle such as a hybrid vehicle, a cylindrical coil, an inner core portion disposed in the coil, and an exposed core portion exposed from the coil Examples thereof include a magnetic core that forms a closed magnetic circuit. Typically, there are a form having two cylindrical coils and a form having one cylindrical coil.

特許文献1は、一対の筒状のコイル素子を互いの軸が平行するように横並びに具えるコイルと、このコイルが配置される環状の磁心とを具える形態を開示している。また、特許文献1は、上記環状の磁心として、軟磁性粉末を圧縮成形した圧粉成形体からなる複数のコア片を組み合せた形態を開示している(特に、特許文献1の図3)。この磁心は、各コイル素子内にそれぞれ配置される一対の柱状の内側コア部と、上記コイル素子が配置されず、コイルから露出された一対の露出コア部とを具える。各内側コア部はそれぞれ、複数のコア片を具え、各露出コア部はそれぞれ、一つの柱状のコア片から構成される。   Patent Document 1 discloses a form including a coil including a pair of cylindrical coil elements arranged side by side so that their axes are parallel to each other, and an annular magnetic core on which the coils are arranged. Patent Document 1 discloses a form in which a plurality of core pieces made of a compacted body obtained by compression-molding soft magnetic powder are combined as the annular magnetic core (particularly, FIG. 3 of Patent Document 1). The magnetic core includes a pair of columnar inner core portions respectively disposed in each coil element, and a pair of exposed core portions exposed from the coil without the coil element being disposed. Each inner core portion includes a plurality of core pieces, and each exposed core portion includes a single columnar core piece.

一方、一つの筒状のコイルを具える形態では、磁心として、このコイル内に配置される柱状の内側コア部と、上記コイルから露出され、コイルの外周及び端面の少なくとも一部を覆うように配置される露出コア部とを具える。この磁心は、代表的には、ER型コア、E型コア、I型コアを組み合せて構成されるE-I形態、E-E形態、ポット形態などと呼ばれる形態が利用される。この形態は、例えば、内側コア部が少なくとも一つの柱状のコア片から構成され、露出コア部が、筒状のコア片や板状のコア片から構成された形態や、筒状部と板状部とが一体に成形されたコア片を具える形態が挙げられる。   On the other hand, in the form having a single cylindrical coil, as the magnetic core, the columnar inner core portion disposed in the coil and the coil are exposed so as to cover at least a part of the outer periphery and end face of the coil. And an exposed core portion to be disposed. Typically, the magnetic core uses a form called an E-I form, an E-E form, a pot form, or the like configured by combining an ER type core, an E type core, and an I type core. In this form, for example, the inner core part is constituted by at least one columnar core piece, and the exposed core part is constituted by a cylindrical core piece or a plate-like core piece. The form which comprises the core piece by which the part was shape | molded integrally is mentioned.

特開2009-246222号公報JP 2009-246222

リアクトルといった磁気回路部品の生産性の向上が望まれている。   Improvement of productivity of magnetic circuit parts such as reactors is desired.

圧粉コア片を利用する場合、成形スピード(単位時間当たりに成形可能なコア片の個数)を速めることで、磁心の製造時間を短縮でき、ひいてはリアクトルなどの磁気回路部品の生産性の向上に寄与することができる。特に、上述の一対のコイル素子を具える形態では、露出コア部を構成するコア片(以下、露出コア片と呼ぶ)は、一方の内側コア部から他方の内側コア部に磁束を通過させるため、通常、内側コア部を構成する各コア片(以下、内コア片と呼ぶ)よりも体積が大きい。上述のE-I形態などに具える露出コア片も、コイルの外部に配置されるため、コイルの内部に配置される内側コア部よりも、外形が大きくなり易く、体積が大きくなり易い。従って、一つの露出コア片を成形する時間は、一つの内コア片を成形する時間よりも長く掛かる傾向にあり、露出コア片の成形スピードの向上が望まれる。   When using powdered core pieces, increasing the molding speed (the number of core pieces that can be molded per unit time) can shorten the manufacturing time of the magnetic core, which in turn improves the productivity of magnetic circuit components such as reactors. Can contribute. In particular, in the form including the above-described pair of coil elements, the core piece constituting the exposed core part (hereinafter referred to as the exposed core piece) passes magnetic flux from one inner core part to the other inner core part. Usually, the volume is larger than each core piece constituting the inner core portion (hereinafter referred to as an inner core piece). Since the exposed core piece provided in the above-described E-I form is also arranged outside the coil, the outer shape tends to be larger and the volume tends to be larger than the inner core portion arranged inside the coil. Therefore, the time for forming one exposed core piece tends to take longer than the time for forming one inner core piece, and it is desired to improve the forming speed of the exposed core piece.

また、露出コア片は、内コア片よりも体積が大きいことで、成形時のスプリングバックが大きく、このスプリングバックによって成形用金型との摩擦が大きくなり、成形用金型が摩耗し易い。このことも、リアクトルなどの磁気回路部品の生産性の低下を招く。   Further, since the exposed core piece has a larger volume than the inner core piece, the spring back at the time of molding is large, and this spring back increases the friction with the molding die, and the molding die is easily worn. This also leads to a decrease in productivity of magnetic circuit components such as a reactor.

そこで、本発明の目的は、生産性に優れる磁気回路部品を提供することにある。   Therefore, an object of the present invention is to provide a magnetic circuit component having excellent productivity.

一つの磁心に利用される複数のコア片はそれぞれ、上述のような大きさの差異はあるものの、通常、その素材である圧粉成形体が同じ仕様(組成、密度、粒径、磁気特性など)となるように製造する。具体的には、各コア片の製造にあたり、同じ材質からなり、同じ粒径を有する原料粉末を用い、同じ製造条件(成形圧力、雰囲気、温度など)で製造する。この理由の一つとして、一つの磁心に用いる各コア片の仕様を同じにすると、原料粉末の準備や製造条件の制御などを行い易いことが挙げられる。同じ原料粉末を用い、同じ製造条件で製造した圧粉成形体からなるコア片を具える従来のリアクトルは、通常、内側コア部を構成するコア片:内コア片を構成する粒子の粒径と露出コア部を構成するコア片:露出コア片を構成する粒子の粒径とが同じである。   Although the core pieces used in one magnetic core are different in size as described above, usually the green compact that is the material has the same specifications (composition, density, particle size, magnetic properties, etc.) ) To produce. Specifically, in the production of each core piece, raw material powder made of the same material and having the same particle size is used and produced under the same production conditions (molding pressure, atmosphere, temperature, etc.). One reason for this is that if the specifications of the core pieces used in one magnetic core are the same, preparation of raw material powder and control of manufacturing conditions can be easily performed. A conventional reactor including a core piece made of a compacted body manufactured using the same raw material powder under the same manufacturing conditions is usually a core piece constituting the inner core portion: a particle size of particles constituting the inner core piece and Core piece constituting the exposed core portion: The particle diameter of the particles constituting the exposed core piece is the same.

ここで、圧粉成形体の原料粉末に、粗粒粉末を用いる場合は、微粒粉末を用いる場合と比較して、(1)成形用金型の成形空間に原料粉末を充填し易い(給粉時間が短い)、(2)原料粉末を押し潰し易く、成形スピードを向上できる、(3)原料粉末を押し潰し易く、成形圧力を小さくし易い、といった利点がある。従って、原料粉末に粗粒粉末を用いると、加圧時間の短縮や成形圧力の低減による成形用金型の摩耗の低減によって、圧粉成形体からなるコア片の生産性の向上、ひいてはリアクトルなどの磁気回路部品の生産性の向上を図ることができる。   Here, in the case of using coarse powder as the raw powder of the green compact, compared with the case of using fine powder, (1) it is easier to fill the raw powder into the molding space of the molding die (powder feeding). The time is short), (2) the raw material powder is easily crushed and the molding speed can be improved, and (3) the raw material powder is easily crushed and the molding pressure is easily reduced. Therefore, when coarse powder is used as the raw material powder, the productivity of core pieces made of compacted compacts can be improved by reducing the pressing time and reducing the molding die wear by reducing the molding pressure. The productivity of the magnetic circuit component can be improved.

しかし、圧粉成形体を構成する粒子の大きさは、原料粉末の大きさに影響を受ける。例えば、大きな粒径の原料粉末を用いた場合、圧粉成形体を構成する各粒子も大きくなる。圧粉成形体を構成する粒子の粗大化は、渦電流損の増大を招く傾向にある。そのため、従来は、損失の低減を主目的として、原料粉末の粒径を設定し、内コア片及び露出コア片の双方に、同じ粒径(好ましくは微粒)の原料粉末を用いていた。そして、上述のように同一条件で製造することで、従来のリアクトルに具える磁心を構成する複数のコア片はいずれも、実質的に同一粒径の粒子によって構成されていた。このように従来は、全てのコア片が均一的な粒径を有することが好ましいと考えられていた。   However, the size of the particles constituting the green compact is affected by the size of the raw material powder. For example, when a raw material powder having a large particle size is used, each particle constituting the green compact is also large. The coarsening of the particles constituting the green compact tends to increase eddy current loss. Therefore, conventionally, the particle size of the raw material powder is set mainly for the purpose of reducing the loss, and the raw material powder having the same particle size (preferably fine particles) is used for both the inner core piece and the exposed core piece. And by manufacturing on the same conditions as mentioned above, all the several core pieces which comprise the magnetic core with which the conventional reactor is provided were comprised by the particle | grains of the substantially same particle diameter. Thus, conventionally, it has been considered that all core pieces preferably have a uniform particle size.

本発明者らが調べたところ、コイル内に配置されて、渦電流損が生じ易い内コア片に微粒の原料粉末を用い、コイルから露出される露出コア片に粗粒の原料粉末を用いても、上記微粒の原料粉末を用いて内コア片及び露出コア片を作製した場合(内コア片の平均粒径と露出コア片の平均粒径とが同じ場合)と遜色ない性能を有しており、十分に利用できる、との知見を得た。上記原料粉末を用いて得られたコア片は、当該コア片を構成する粒子の粒径が原料粉末の粒径によって異なる。本発明は、上記知見に基づくものである。   As a result of investigations by the present inventors, a fine raw material powder is used for the inner core piece that is placed in the coil and easily causes eddy current loss, and a coarse raw material powder is used for the exposed core piece exposed from the coil. Also, when the inner core piece and the exposed core piece are prepared using the fine raw material powder (when the average particle diameter of the inner core piece and the average particle diameter of the exposed core piece are the same), the performance is comparable. And obtained knowledge that it can be used sufficiently. In the core piece obtained using the raw material powder, the particle size of the particles constituting the core piece differs depending on the particle size of the raw material powder. The present invention is based on the above findings.

本発明の磁気回路部品は、筒状のコイルと、このコイルが配置される磁心とを具える。上記磁心は、上記コイル内に配置される内側コア部と、上記コイルから露出された露出コア部とによって閉磁路を形成する。また、上記磁心は、軟磁性粉末を圧縮成形した圧粉成形体から構成される複数のコア片を具える。そして、本発明磁気回路部品は、上記露出コア部を構成するコア片を露出コア片、上記内側コア部を構成するコア片を内コア片とするとき、上記露出コア部を構成する少なくとも一つの露出コア片の平均粒径dSが、上記内側コア部を構成する少なくとも一つの内コア片の平均粒径dMよりも大きい。平均粒径dM,dSの測定方法は、後述する。 The magnetic circuit component of the present invention includes a cylindrical coil and a magnetic core on which the coil is disposed. The magnetic core forms a closed magnetic path by an inner core portion disposed in the coil and an exposed core portion exposed from the coil. The magnetic core includes a plurality of core pieces formed of a compacted body obtained by compression-molding soft magnetic powder. The magnetic circuit component of the present invention is configured such that when the core piece constituting the exposed core portion is an exposed core piece and the core piece constituting the inner core portion is an inner core piece, at least one of the exposed core portions is constituted. The average particle diameter d S of the exposed core piece is larger than the average particle diameter d M of at least one inner core piece constituting the inner core portion. A method for measuring the average particle diameters d M and d S will be described later.

本発明磁気回路部品は、磁心の主要構成部材である圧粉成形体からなる各コア片の平均粒径が一様ではなく、磁心の一部において平均粒径が異なる。具体的には、上述のように少なくとも一つの露出コア片の平均粒径dSが、少なくとも一つの内コア片の平均粒径dMよりも大きい。この構成によって、本発明磁気回路部品は、露出コア片の製造にあたり、原料粉末として、粒径が大きなもの:粗粒粉末を利用することができる。従って、本発明磁気回路部品は、露出コア片の製造にあたり、成形用金型への給粉時間の短縮や加圧時間の短縮などができることで、ひいては成形スピードを向上することができる。また、本発明磁気回路部品は、露出コア片の製造にあたり、粗粒粉末を利用することで、成形圧力を小さくすることができるため、このことからも加圧時間の短縮を図ることができる。更に、成形圧力を小さくすることができるため、スプリングバックを低減することができ、ひいては成形用金型の摩耗を低減できる。これらのことから、本発明磁気回路部品は、生産性に優れる。 In the magnetic circuit component of the present invention, the average particle diameter of each core piece made of a compacted body, which is a main component of the magnetic core, is not uniform, and the average particle diameter is different in a part of the magnetic core. Specifically, as described above, the average particle diameter d S of at least one exposed core piece is larger than the average particle diameter d M of at least one inner core piece. With this configuration, the magnetic circuit component of the present invention can use a coarse particle powder having a large particle size as the raw material powder in the production of the exposed core piece. Therefore, the magnetic circuit component of the present invention can reduce the time for supplying powder to the molding die and the pressurizing time when manufacturing the exposed core piece, thereby improving the molding speed. In addition, since the magnetic circuit component of the present invention can reduce the molding pressure by using coarse powder in the production of the exposed core piece, the pressurization time can also be shortened. Furthermore, since the molding pressure can be reduced, the springback can be reduced, and consequently the wear of the molding die can be reduced. For these reasons, the magnetic circuit component of the present invention is excellent in productivity.

本発明の一形態として、上記内コア片の平均粒径dMに対する上記露出コア片の平均粒径dSの比をdS/dMとするとき、dS/dMが1超10以下である形態が挙げられる。 As one aspect of the present invention, when the ratio of the average particle diameter d S of the exposed core piece to the average particle diameter d M of the inner core piece is d S / d M , d S / d M is more than 1 and 10 or less. The form which is is mentioned.

上記形態は、dS/dMが1超であることで、露出コア片の製造にあたり、内コア片の製造に用いる原料粉末よりも粒径が十分に大きなものを利用できる。従って、上記形態は、給粉時間や加圧時間などを短縮したり、成形圧力を小さくしたりできるため、露出コア片の成形スピードの向上、成形用金型の摩耗の低減を図ることができる。また、上記形態は、dS/dMが10以下であることで、露出コア片を構成する粒子が大きくなり過ぎず、低損失である。 In the above-mentioned form, since d S / d M is more than 1, in the production of the exposed core piece, one having a sufficiently larger particle diameter than the raw material powder used for the production of the inner core piece can be used. Therefore, the above-mentioned form can shorten the powder supply time, pressurization time, etc., or reduce the molding pressure, so that it is possible to improve the molding speed of the exposed core piece and reduce the wear of the molding die. . Further, in the above embodiment, since d S / d M is 10 or less, the particles constituting the exposed core piece do not become too large and the loss is low.

本発明の一形態として、上記内コア片の平均粒径dMが20μm以上100μm以下であり、上記露出コア片の平均粒径dSが100μm以上200μm以下である形態が挙げられる。 As one mode of the present invention, the average particle diameter d M of the inner core piece is at 20μm or 100μm or less, an average particle diameter d S of the exposed core pieces include forms is 100μm or more 200μm or less.

上記形態は、露出コア片の製造にあたり、内コア片の製造に用いる原料粉末よりも粒径が十分に大きなものを利用できる。従って、上記形態は、給粉時間や加圧時間などを短縮したり、成形圧力を小さくしたりできるため、露出コア片の成形スピードの向上、成形用金型の摩耗の低減を図ることができる。また、上記形態は、露出コア片を構成する粒子(以下、外粒子と呼ぶ)の平均粒径dSが200μm以下、内コア片を構成する粒子(以下、内粒子と呼ぶ)の平均粒径dMが100μm以下であることで、外粒子が大きくなり過ぎず、かつ内粒子も十分に小さいため、低損失である。更に、内粒子の平均粒径dMが20μm以上であることで、内コア片の製造に用いる原料粉末として、微粒になり過ぎず、取り扱い易い大きさのものを利用できる。この点から、上記形態は、生産性に優れる。 The said form can utilize what has a particle size sufficiently larger than the raw material powder used for manufacture of an inner core piece in manufacture of an exposed core piece. Therefore, the above-mentioned form can shorten the powder supply time, pressurization time, etc., or reduce the molding pressure, so that it is possible to improve the molding speed of the exposed core piece and reduce the wear of the molding die. . Further, in the above embodiment, the average particle diameter d S of particles constituting the exposed core piece (hereinafter referred to as outer particles) is 200 μm or less, and the average particle diameter of the particles constituting the inner core piece (hereinafter referred to as inner particles). by d M is 100μm or less, the outer particles does not become too large, and because the inner particles also sufficiently small, low loss. Furthermore, since the average particle diameter d M of the inner particles is 20μm or more, as the raw material powder used in the production of the inner core piece, not too fine, available ones easy to handle size. From this point, the said form is excellent in productivity.

本発明の一形態として、上記コイルが一対の筒状のコイル素子を有し、上記磁心が、各コイル素子内に配置される一対の内側コア部と、上記コイル素子が配置されず、上記コイル素子から露出された一対の露出コア部とを具える形態が挙げられる。上記磁心は、これら内側コア部と露出コア部とを組み合せて環状に形成される。各内側コア部はそれぞれ、1以上の上記内コア片で構成されている。各露出コア部はそれぞれ、1以上の上記露出コア片で構成されている。   As one form of this invention, the said coil has a pair of cylindrical coil element, the said magnetic core is a pair of inner core part arrange | positioned in each coil element, and the said coil element is not arrange | positioned, but the said coil The form which comprises a pair of exposed core part exposed from the element is mentioned. The magnetic core is formed in an annular shape by combining the inner core portion and the exposed core portion. Each inner core portion is composed of one or more inner core pieces. Each exposed core portion is composed of one or more exposed core pieces.

上記一対のコイル素子と環状の磁心とを具える形態では、各露出コア部をそれぞれ構成する露出コア片の体積が、上述のように一つの内コア片よりも大きい傾向にある。このような大型の露出コア片であって、平均粒径dSが大きい露出コア片を製造するにあたり、粗粒粉末が使用可能であることで、上記形態は、露出コア片の生産性の向上への寄与度が高いと期待される。従って、上記形態は、磁気回路部品の生産性に優れる。 In the form including the pair of coil elements and the annular magnetic core, the volume of the exposed core pieces constituting each exposed core portion tends to be larger than that of one inner core piece as described above. A exposed core pieces of such large, in producing a mean particle diameter d S is greater exposed core pieces, by coarse powder is available, the above embodiment, improvement in the productivity of the exposed core pieces It is expected that the contribution to Therefore, the said form is excellent in productivity of a magnetic circuit component.

本発明の一形態として、上記軟磁性粉末は、同一組成からなり、上記露出コア部を構成する少なくとも一つ露出コア片の密度DSが、上記内側コア部を構成する少なくとも一つの内コア片の密度DMよりも小さい形態が挙げられる。 As one form of the invention, the soft magnetic powder is made of the same composition, the density D S of the at least one exposed core pieces constituting the exposed core portion, at least one inner core piece constituting the inner core portion The form is smaller than the density D M of .

本発明者らは、露出コア片の密度を内コア片の密度よりも小さくしたリアクトルは、内コア片の密度と露出コア片の密度とが同じである上記従来のリアクトルに対して、遜色ない性能を有しており、十分に利用できる、との知見を得た。また、露出コア片の密度を小さくする手法として、圧粉成形体の製造時の成形圧力を小さくすることが考えられる。成形圧力を小さくすると、上述のようにスプリングバックが小さくなり、成形用金型との摩擦を低減できることから、成形用金型の摩耗を低減できる。また、成形圧力を小さくすると、上述のように加圧時間を短縮できることから、成形スピードを速められる。従って、上述のように内コア片及び露出コア片において平均粒径を異ならせることに加えて、露出コア片の密度を内コア片の密度よりも小さくすることを提案する。   The inventors of the present invention have a reactor in which the density of the exposed core piece is smaller than that of the inner core piece, compared with the conventional reactor in which the density of the inner core piece and the density of the exposed core piece are the same. We have the knowledge that it has performance and can be used sufficiently. Further, as a technique for reducing the density of the exposed core piece, it is conceivable to reduce the molding pressure during the production of the green compact. When the molding pressure is reduced, the spring back is reduced as described above, and the friction with the molding die can be reduced, so that the wear of the molding die can be reduced. Further, when the molding pressure is reduced, the pressurization time can be shortened as described above, so that the molding speed can be increased. Therefore, in addition to making the average particle size different between the inner core piece and the exposed core piece as described above, it is proposed to make the density of the exposed core piece smaller than the density of the inner core piece.

上記形態は、磁心の主要構成部材である圧粉成形体からなる各コア片の密度が一様ではなく、磁心の一部において密度が異なる。具体的には、上述のように少なくとも一つの露出コア片の密度DSが少なくとも一つの内コア片の密度DMよりも小さい。この構成によって、上記形態は、露出コア片の製造にあたり、成形圧力を小さくすることができるため、加圧時間の短縮による成形スピードの向上、スプリングバックの低減による成形用金型の摩耗の低減を図ることができる。このように内コア片と露出コア片との両コア片の平均粒径の差異に加えて、両コア片の密度を異ならせることでも成形圧力を小さくして、露出コア片の成形スピードの向上、成形用金型の摩耗の低減を図ることができ、上記形態は、磁気回路部品の生産性の向上に寄与することができる。 In the above-described embodiment, the density of each core piece made of a compacted body, which is a main component of the magnetic core, is not uniform, and the density is different in a part of the magnetic core. Specifically, as described above, the density D S of at least one exposed core piece is smaller than the density D M of at least one inner core piece. With this configuration, the above-described configuration can reduce the molding pressure in the production of the exposed core piece. Therefore, the molding speed can be improved by shortening the pressurizing time, and the wear of the molding die can be reduced by reducing the spring back. Can be planned. In this way, in addition to the difference in the average particle size of both core pieces between the inner core piece and the exposed core piece, the molding pressure can also be reduced by changing the density of both core pieces to improve the molding speed of the exposed core piece. Thus, the wear of the molding die can be reduced, and the above configuration can contribute to the improvement of the productivity of the magnetic circuit component.

また、昨今、ハイブリッド自動車などの車載部品には、燃費の向上のために軽量化が望まれており、リアクトルなどの磁気回路部品も軽量化が望まれている。上述のように露出コア片は、内コア片よりも体積が大きくなり易く、磁気回路部品のサイズによるものの、一つの内コア片の重さの3倍、或いはそれ以上となることがある。従って、露出コア片の軽量化は、リアクトルなどの磁気回路部品の軽量化への寄与度が大きいと期待される。上記形態は、磁心の主要構成部材であるコア片のうち、露出コア片(特に、内コア片よりも体積が大きなもの)の密度が内コア片の密度よりも小さいことで、軽量化も図ることができる。   In recent years, in-vehicle components such as hybrid vehicles are desired to be reduced in weight to improve fuel efficiency, and magnetic circuit components such as reactors are also desired to be reduced in weight. As described above, the exposed core piece tends to be larger in volume than the inner core piece and may be three times the weight of one inner core piece or more, depending on the size of the magnetic circuit component. Therefore, the weight reduction of the exposed core piece is expected to contribute greatly to the weight reduction of the magnetic circuit components such as the reactor. In the above-described form, among the core pieces that are the main constituent members of the magnetic core, the density of the exposed core pieces (particularly those having a volume larger than that of the inner core pieces) is smaller than the density of the inner core pieces. be able to.

本発明の一形態として、上記内コア片の密度DMと上記露出コア片の密度DSとの差をDM−DS、上記内コア片の密度DMに対する上記差(DM−DS)の比を(DM−DS)/DMとするとき、(DM−DS)/DMは1/80以上である形態が挙げられる。或いは、本発明の一形態として、上記内コア片の密度DMと上記露出コア片の密度DSとの差をDM−DSとするとき、DM−DSは0.1g/cm3以上である形態が挙げられる。 As one mode of the present invention, the difference the difference between the density D S of the density D M and the exposed core piece of the inner core piece D M -D S, for the density D M of the inner core piece (D M -D When the ratio of S ) is (D M −D S ) / D M , (D M −D S ) / D M is 1/80 or more. Alternatively, as one embodiment of the present invention, when the difference between the density D M of the inner core piece and the density D S of the exposed core piece is D M −D S , D M −D S is 0.1 g / cm 3. The form which is the above is mentioned.

上記形態はいずれも、露出コア片の密度が十分に小さいことから、成形スピードの向上、成形用金型の摩耗の低減、軽量化をより効果的に図ることができる。   In any of the above forms, since the density of the exposed core pieces is sufficiently small, the molding speed can be improved, the wear of the molding die can be reduced, and the weight can be reduced more effectively.

本発明磁気回路部品は、代表的にはリアクトルが挙げられる。このリアクトルは、上述のように比較的粗大粒子から構成される露出コア片を具えることで、生産性に優れる。   A typical example of the magnetic circuit component of the present invention is a reactor. This reactor is excellent in productivity by including the exposed core piece composed of relatively coarse particles as described above.

本発明磁気回路部品は、生産性に優れる。   The magnetic circuit component of the present invention is excellent in productivity.

実施形態1のリアクトルの概略構成を示す斜視図である。1 is a perspective view illustrating a schematic configuration of a reactor according to a first embodiment. (A)は、実施形態1のリアクトルに具える磁心の分解斜視図、(B)は、実施形態1のリアクトルを模式的に示す正面図である。FIG. 2A is an exploded perspective view of a magnetic core included in the reactor according to the first embodiment, and FIG. 2B is a front view schematically showing the reactor according to the first embodiment.

以下に、図面を参照して、本発明の実施の形態に係る磁気回路部品としてリアクトルを例に挙げて、詳細に説明する。図において同一符号は同一物を示す。   Hereinafter, a reactor will be described in detail as an example of a magnetic circuit component according to an embodiment of the present invention with reference to the drawings. In the drawings, the same reference numerals indicate the same items.

(実施形態1)
図1に示すリアクトル1は、内部に冷媒の循環路を有する金属製(代表的にはアルミニウム製)の冷却ベース(図示せず)といった設置対象に設置されて利用される磁気回路部品である。このリアクトル1は、一対の筒状のコイル素子2a,2bを有するコイル2と、各コイル素子2a,2b内にそれぞれ配置される一対の内側コア部31とコイル素子2a,2bが配置されない一対の露出コア部32とによって閉磁路を形成する磁心3とを具える。磁心3は、主として、圧粉成形体から構成された複数のコア片(内コア片31m,露出コア片32m)から構成されている。リアクトル1の基本的な形状・構成部材は、一対のコイル素子と、圧粉成形体からなる複数のコア片とを具える従来のリアクトルと同様である。リアクトル1の特徴とするところは、露出コア片32mの平均粒径dSが内コア片31mの平均粒径dMよりも大きい点にある。以下、まず、各構成部材の基本形状などを説明し、次に、コア片の製造方法について詳しく説明する。
(Embodiment 1)
A reactor 1 shown in FIG. 1 is a magnetic circuit component that is installed and used in an installation target such as a metal (typically aluminum) cooling base (not shown) having a refrigerant circulation path therein. The reactor 1 includes a coil 2 having a pair of cylindrical coil elements 2a and 2b, a pair of inner core portions 31 disposed in the coil elements 2a and 2b, respectively, and a pair of coil elements 2a and 2b not disposed. A magnetic core 3 that forms a closed magnetic path with the exposed core portion 32 is provided. The magnetic core 3 is mainly composed of a plurality of core pieces (an inner core piece 31m and an exposed core piece 32m) made of a powder compact. The basic shape / constituent member of the reactor 1 is the same as that of a conventional reactor including a pair of coil elements and a plurality of core pieces made of a compacted body. It is a feature of the reactor 1 is that the average particle diameter d S of the exposed core pieces 32m is larger than the average grain size d M of the inner core pieces 31m. Hereinafter, first, the basic shape of each component will be described, and then the method for manufacturing the core piece will be described in detail.

[コイル]
コイル2は、接合部の無い1本の連続する巻線2wを螺旋状に巻回してなる一対のコイル素子2a,2bと、巻線2wの一部をU字状に屈曲してなり、両コイル素子2a,2bを連結する連結部2rとを具える。各コイル素子2a,2bは、互いに同一の巻数の中空の筒状体であり、各軸方向が平行するように並列(横並び)に形成されている。
[coil]
The coil 2 includes a pair of coil elements 2a and 2b formed by spirally winding a single continuous winding 2w without a joint, and a portion of the winding 2w bent in a U shape. And a connecting portion 2r for connecting the coil elements 2a and 2b. Each coil element 2a, 2b is a hollow cylindrical body having the same number of turns, and is formed in parallel (side by side) so that the respective axial directions are parallel.

巻線2wは、銅やアルミニウム、その合金といった導電性材料からなる導体の外周に、絶縁材料からなる絶縁層(代表的には、ポリアミドイミドなどからなるエナメル層)を具える被覆線を好適に利用できる。巻線2wの導体は、断面円形状の丸線の他、断面矩形状の平角線を好適に利用できる。コイル素子2a,2bは、絶縁層を有する被覆平角線をエッジワイズ巻きして形成されたエッジワイズコイルである。   The winding 2w is preferably a covered wire having an insulating layer made of an insulating material (typically an enamel layer made of polyamideimide) on the outer periphery of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof. Available. As the conductor of the winding 2w, a rectangular wire having a rectangular cross section as well as a round wire having a circular cross section can be suitably used. The coil elements 2a and 2b are edgewise coils formed by edgewise winding a covered rectangular wire having an insulating layer.

なお、各コイル素子を別々の巻線によって作製し、各コイル素子を形成する巻線の端部を溶接や冷間圧接などによって接合して一体化したコイルを利用してもよい。   It is also possible to use a coil in which each coil element is produced by separate windings and the ends of the windings forming each coil element are joined and integrated by welding or cold welding.

巻線2wの両端部は、ターン形成部分から適宜引き延ばされ、絶縁層が剥がされて露出された導体部分に、導電性材料からなる端子部材(図示せず)が接続される。この端子部材を介して、コイル2に電力供給を行う電源などの外部装置(図示せず)が接続される。巻線2wの導体部分と端子部材との接続には、TIG溶接などの溶接や冷間圧接、半田付けなどが利用できる。   Both end portions of the winding 2w are appropriately extended from the turn forming portion, and a terminal member (not shown) made of a conductive material is connected to the conductor portion exposed by peeling off the insulating layer. An external device (not shown) such as a power source for supplying power is connected to the coil 2 through this terminal member. For connection between the conductor portion of the winding 2w and the terminal member, welding such as TIG welding, cold welding, soldering, or the like can be used.

[磁心]
《全体構成》
磁心3の説明は、図2を適宜参照して行う。磁心3は、各コイル素子2a,2b(図1)にそれぞれに覆われた一対の直方体状の内側コア部31が、互いの軸が平行するように並列に配置され、コイル素子2a,2bに覆われずコイル素子2a,2bから露出された一対の柱状の露出コア部32がこれら内側コア部31を挟むように配置された環状体である。
[core]
"overall structure"
The magnetic core 3 will be described with reference to FIG. The magnetic core 3 has a pair of rectangular parallelepiped inner core portions 31 covered by the coil elements 2a and 2b (FIG. 1), respectively, arranged in parallel so that their axes are parallel to each other, and the coil elements 2a and 2b A pair of columnar exposed core portions 32 that are not covered and are exposed from the coil elements 2a and 2b are annular bodies arranged so as to sandwich the inner core portion 31 therebetween.

《内側コア部》
各内側コア部31はそれぞれ、複数の直方体状の内コア片31mと、複数の板状のギャップ材31gとの組物であり、内コア片31mとギャップ材31gとが交互に積層されている。この組物は、接着剤や粘着テープなどで接合すると、積層体として扱い易い。内コア片31mの個数、ギャップ材31gの厚さ・配置箇所・個数は、リアクトル1のインダクタンスに応じて適宜選択することができる。
《Inner core part》
Each inner core portion 31 is an assembly of a plurality of rectangular parallelepiped inner core pieces 31m and a plurality of plate-shaped gap members 31g, and the inner core pieces 31m and the gap members 31g are alternately stacked. . This assembly is easy to handle as a laminate when bonded with an adhesive or an adhesive tape. The number of inner core pieces 31m and the thickness / arrangement location / number of gap members 31g can be appropriately selected according to the inductance of the reactor 1.

内側コア部31の形状は、適宜選択することができる。コイル素子2a,2b(図1)の内周形状に沿った形状とすると、コイル素子2a,2bと内側コア部31との間の隙間を小さくでき、リアクトル1の小型化を図ることができる。内側コア部31が所望の形状となるように内コア片31mの形状を選択するとよい。ここでは、内コア片31を直方体状としているが、円柱状、角部を所望の角度に丸めた角丸め直方体状などとすることができる。ここでは、各内コア片31mはいずれも、同一組成の軟磁性材料(後述)からなり、同一の平均粒径の原料粉末を用いて、同一の製造条件(成形圧力など)で成形した圧粉成形体から構成され、その形状・サイズはいずれも同じである。   The shape of the inner core portion 31 can be selected as appropriate. When the coil elements 2a and 2b (FIG. 1) have a shape along the inner peripheral shape, the gap between the coil elements 2a and 2b and the inner core portion 31 can be reduced, and the reactor 1 can be downsized. The shape of the inner core piece 31m may be selected so that the inner core portion 31 has a desired shape. Here, the inner core piece 31 is formed in a rectangular parallelepiped shape, but may be a cylindrical shape, a rounded rectangular parallelepiped shape in which corners are rounded to a desired angle, or the like. Here, each inner core piece 31m is made of a soft magnetic material (described later) having the same composition, and is formed by using raw material powder having the same average particle diameter and molded under the same manufacturing conditions (such as molding pressure). It is composed of a molded body, and the shape and size are the same.

各ギャップ材31gは、リアクトル1のインダクタンスの調整のためにコア片間に設けられる隙間に配置される板状材である。ギャップ材31gの構成材料は、コア片よりも比透磁率が小さい材料、代表的には、アルミナなどの非磁性材料が挙げられる。その他の構成材料として、鉄粉などの磁性粉末と、フェノール樹脂などの非磁性樹脂との混合物(比透磁率が1.1〜10程度)が挙げられる。ギャップ材31gのうち少なくとも、内コア片31mと露出コア片32mとの間に介在されるギャップ材31gを上記混合物からなるものとすると、漏れ磁束を効果的に低減できる。ギャップ材31gの少なくとも一つをエアギャップとすることもできる。   Each gap material 31g is a plate-like material disposed in a gap provided between the core pieces for adjusting the inductance of the reactor 1. The constituent material of the gap material 31g is a material having a relative permeability smaller than that of the core piece, typically a non-magnetic material such as alumina. Other constituent materials include a mixture of magnetic powder such as iron powder and non-magnetic resin such as phenol resin (relative magnetic permeability is about 1.1 to 10). When at least the gap material 31g interposed between the inner core piece 31m and the exposed core piece 32m of the gap material 31g is made of the above mixture, the leakage magnetic flux can be effectively reduced. At least one of the gap members 31g can be an air gap.

《露出コア部》
各露出コア部32はそれぞれ、一つの露出コア片32mで構成されている。各露出コア片32mは、ここでは、対向する一対の面が角部を丸めた角丸め台形状面である角柱状体である。各露出コア片32mにおいて一対の角丸め台形状面32u,32dを繋ぐ一面であって、一対の内側コア部31を挟む内端面32eは、ここでは、平面で構成されている。各露出コア片32mにおいて一対の角丸め台形状面32u,32dを繋ぐ他面(以下、外周面と呼ぶ)は、ここでは、曲面と平面とで構成されている。
<Exposed core>
Each exposed core portion 32 is composed of one exposed core piece 32m. Here, each exposed core piece 32m is a prismatic body which is a rounded trapezoidal shape with a pair of opposing surfaces rounded at the corners. In each exposed core piece 32m, an inner end surface 32e that connects the pair of rounded trapezoidal surfaces 32u and 32d and sandwiches the pair of inner core portions 31 is formed by a flat surface. In each exposed core piece 32m, the other surface (hereinafter referred to as the outer peripheral surface) connecting the pair of rounded trapezoidal surfaces 32u and 32d is composed of a curved surface and a flat surface.

ここでは、各露出コア片32mは、環状に組み立てられた磁心3をその軸方向から平面視したとき、内側コア部31から離れる側に向かって先細りする平面(上述の角丸め台形状面)と、この平面に繋がる傾斜面(上記外周面の一部を構成する面)とを有する立体としている。その他、露出コア片32mは、上述の対向する一対の面が長方形状や台形状であり、外周面が平面のみで構成された形態、つまり、直方体や台形状の角柱体とすることができる。なお、各露出コア部32も複数の露出コア片からなる構成とすることができる。   Here, each exposed core piece 32m is a plane (the above-mentioned rounded trapezoidal shape surface) that tapers toward the side away from the inner core portion 31 when the annularly assembled magnetic core 3 is viewed in plan from its axial direction. The solid body has an inclined surface (a surface constituting a part of the outer peripheral surface) connected to the plane. In addition, the exposed core piece 32m can be a rectangular or trapezoidal prism body in which the pair of opposed surfaces described above are rectangular or trapezoidal and the outer peripheral surface is configured only by a flat surface. Each exposed core portion 32 can also be composed of a plurality of exposed core pieces.

また、ここでは、図2(B)に示すように、各露出コア片32mは、その高さh32(一対の角丸め台形状面32u,32d間の距離=コイル2の軸方向及びコイル素子2a,2b(図1)の横並び方向の双方に直交する方向の距離)が内コア片31mの高さh31よりも大きい(高い)。 Further, here, as shown in FIG. 2 (B), each exposed core piece 32m has a height h 32 (a distance between a pair of rounded trapezoidal surfaces 32u and 32d = the axial direction of the coil 2 and the coil element). 2a, 2b is greater than the height h 31 direction distance) of the inner core pieces 31m that is orthogonal to both the side-by-side direction (FIG. 1) (high).

磁心3は、図2(B)に示すようにリアクトル1を設置対象に取り付けた状態において設置側となる角丸め台形状面32dを、内側コア部31において設置側となる面よりも突出する形態とすることができる。或いは、磁心3は、上記設置側となる角丸め台形状面32dと対向する角丸め台形状面32uを、内側コア部31において設置側となる面との対向面よりも突出する形態とすることができる。露出コア片32mは、圧粉成形体であるため、上述の突出した部分も磁路に利用できる。また、この突出した部分を設けることで、露出コア片32mの投影面積(角丸め台形状面32u,32dの面積)を小さくでき、設置面積の低減を図ることができる。ここでは、露出コア片32mの高さh32と内コア片31mの高さh31との差:h32−h31がコイル2を構成する巻線2w(図1)の幅程度となるように両高さh31,h32を調整している。このため、露出コア片32mの設置側の角丸め台形状面32dとコイル2における設置側の面とが実質的に面一になる。なお、高さの差:h32−h31(露出コア片32mの突出量)は、適宜選択することができる。 As shown in FIG. 2 (B), the magnetic core 3 has a rounded trapezoidal surface 32d on the installation side in a state in which the reactor 1 is attached to the installation target, and protrudes from the surface on the installation side in the inner core portion 31. It can be. Alternatively, the magnetic core 3 has a configuration in which the rounded round trapezoidal surface 32d facing the rounded round trapezoidal surface 32d on the installation side protrudes beyond the surface facing the installation side in the inner core portion 31. Can do. Since the exposed core piece 32m is a powder compact, the above-described protruding portion can also be used for the magnetic path. Further, by providing this protruding portion, the projected area of the exposed core piece 32m (the area of the rounded trapezoidal surfaces 32u and 32d) can be reduced, and the installation area can be reduced. Here, the difference between the height h 31 of the inner core pieces 31m and the height h 32 of the exposed core pieces 32m: to h 32 -h 31 is about the width of the winding 2w (Figure 1) constituting the coil 2 Both heights h 31 and h 32 are adjusted. For this reason, the rounded trapezoidal surface 32d on the installation side of the exposed core piece 32m and the installation side surface of the coil 2 are substantially flush with each other. The difference in height: h 32 −h 31 (projection amount of the exposed core piece 32m) can be selected as appropriate.

このように二つの内側コア部31に連結される各露出コア片32mはいずれも、その体積が任意の内コア片31mよりも大きい。ここでは、各露出コア片32mはいずれも、同一組成(内コア片31mに用いた原料粉末と同じ軟磁性材料(後述))からなり、かつ同一の平均粒径の原料粉末を用いて、同一の製造条件(成形圧力など)で成形しており、その形状・サイズはいずれも同じである。但し、露出コア片32mに用いた原料粉末の平均粒径は、内コア片31mに用いた原料粉末の平均粒径よりも大きい。なお、原料粉末の組成を調整することで、各露出コア片32mの組成が異なる形態や、内コア片31mと露出コア片32mとで組成が異なる形態とすることができる。   Thus, each of the exposed core pieces 32m connected to the two inner core portions 31 has a volume larger than that of the arbitrary inner core piece 31m. Here, each exposed core piece 32m is made of the same composition (the same soft magnetic material as the raw material powder used for the inner core piece 31m (described later)), and the same average particle diameter raw material powder is used. The production conditions (molding pressure, etc.) are the same, and the shape and size are the same. However, the average particle diameter of the raw material powder used for the exposed core piece 32m is larger than the average particle diameter of the raw material powder used for the inner core piece 31m. It should be noted that by adjusting the composition of the raw material powder, the exposed core pieces 32m may have different compositions, or the inner core pieces 31m and the exposed core pieces 32m may have different compositions.

そして、リアクトル1では、各露出コア片32mはいずれもその平均粒径dSが、いずれの内コア片31mの平均粒径dMよりも大きい。即ち、リアクトル1では、内コア片31mの平均粒径dMに対する露出コア片32mの平均粒径dSの比:dS/dMが1超である。なお、ここでは、各露出コア片32mの平均粒径dSはいずれも同じであり、全ての内コア片31mの平均粒径dMもいずれも同じである。 Then, the reactor 1, either the exposed core pieces 32m has an average particle diameter d S, larger than the average grain size d M of either of the inner core pieces 31m. That is, in the reactor 1, the ratio of the average particle diameter d S of the exposed core piece 32m to the average particle diameter d M of the inner core piece 31m: d S / d M is more than 1. Here, the average particle diameter d S of each exposed core piece 32m is the same, and the average particle diameter d M of all the inner core pieces 31m is also the same.

平均粒径の比:dS/dMが大きいほど、代表的には、露出コア片32mの平均粒径dSの絶対値が大きくなり、露出コア片32mの原料粉末に平均粒径が大きな粗粒粉末を利用することができる。粗粒粉末を原料粉末に利用することで、露出コア片32mの生産性を高められる。平均粒径の比:dS/dMは、1.5以上、更に2以上、特に3以上とすると、露出コア片32mの生産性をより高められる。但し、平均粒径の比:dS/dMが大き過ぎると、露出コア片32mの平均粒径dSの絶対値が大きくなり過ぎて、渦電流損の増大などの不具合を招く。従って、平均粒径の比:dS/dMの上限は、5程度が好ましい。 Average particle size ratio: Typically, the larger the d S / d M , the larger the absolute value of the average particle size d S of the exposed core piece 32m, and the larger the average particle size of the raw powder of the exposed core piece 32m. Coarse powder can be used. By using coarse powder as raw material powder, productivity of the exposed core piece 32m can be increased. When the ratio of the average particle diameters: d S / d M is 1.5 or more, further 2 or more, particularly 3 or more, the productivity of the exposed core piece 32m can be further increased. However, if the ratio of the average particle diameter: d S / d M is too large, the absolute value of the average particle diameter d S of the exposed core piece 32m becomes too large, causing problems such as an increase in eddy current loss. Therefore, the upper limit of the ratio of average particle diameter: d S / d M is preferably about 5.

より具体的な平均粒径としては、内コア片31mの平均粒径dMが20μm〜100μm、露出コア片32mの平均粒径dSが100μm〜200μmが挙げられる(但し、dM≠dS)。磁束を生成するコイル素子2a,2b(図1)内に配置される内コア片31mの平均粒径dMが上記範囲を満たすことで、渦電流損が小さく、低損失なリアクトルとすることができる。平均粒径が小さいほど渦電流損を低減できるため、内コア片31mの平均粒径dMは、70μm以下、更に50μm以下が好ましい。 More specifically, the average particle diameter d M of the inner core piece 31m is 20 μm to 100 μm, and the average particle diameter d S of the exposed core piece 32 m is 100 μm to 200 μm (provided that d M ≠ d S ). Coil elements 2a to generate a magnetic flux, that the average particle size d M of the inner core pieces 31m disposed within 2b (FIG. 1) satisfies the above range, the eddy current loss is small, and low loss reactor it can. It is possible to reduce the eddy current loss as the average particle diameter is small, the average particle diameter d M of the inner core piece 31m is, 70 [mu] m or less, more 50μm or less.

露出コア片32mの平均粒径dSが100μm以上であることで、原料粉末に平均粒径が十分に大きなものを利用することができ、露出コア片32mの生産性を高められる。露出コア片32mの平均粒径dSは、大きいほど原料粉末に粗大なものを利用でき、露出コア片32mの生産性の更なる向上を図ることができるため、120μm以上、更に130μm以上が好ましい。但し、露出コア片32mの平均粒径dSは、大き過ぎると、渦電流損の増大を招くことから、200μm以下が好ましく、更に170μm以下が好ましい。 When the average particle diameter d S of the exposed core piece 32m is 100 μm or more, a raw material powder having a sufficiently large average particle diameter can be used, and the productivity of the exposed core piece 32m can be improved. The larger the average particle diameter d S of the exposed core piece 32m, the larger the raw material powder can be used, and the productivity of the exposed core piece 32m can be further improved. Therefore, it is preferably 120 μm or more, more preferably 130 μm or more. . However, the average particle diameter d S of the exposed core piece 32m is preferably 200 μm or less, and more preferably 170 μm or less because an excessive increase in eddy current loss will result.

[その他の構成部材]
その他、コイル2と磁心3との間の絶縁性を高めるために、絶縁性樹脂から構成されるインシュレータを具えることができる。或いは、インシュレータに代えて、各コイル素子の内周及び外周を絶縁性樹脂によって被覆したコイル成形体とすることができる。コイル2と磁心3との組合体を保護したり、放熱性を高めたりなどするために、組合体の外周を絶縁性樹脂で覆った一体化物としたり、組合体を金属材料などからなるケースに収納したり、ケースに収納した組合体を封止樹脂によって覆ったりすることができる。
[Other components]
In addition, in order to improve the insulation between the coil 2 and the magnetic core 3, an insulator made of an insulating resin can be provided. Or it can replace with an insulator and can be set as the coil molded object which coat | covered the inner periphery and outer periphery of each coil element with insulating resin. To protect the assembly of coil 2 and magnetic core 3 and to improve heat dissipation, etc., use a case where the outer periphery of the assembly is covered with an insulating resin, or a case made of a metal material. It can be housed or the assembly housed in the case can be covered with a sealing resin.

[リアクトルの製造方法]
上記構成を具えるリアクトル1は、例えば、以下のようにして製造することができる。まず、コイル2、内コア片31m、露出コア片32m、ギャップ材31g、その他インシュレータなどを用意する。内コア片31mとギャップ材31gとを交互に積層して内側コア部31を二つ形成する。次に、コイル素子2a,2b内にそれぞれ内側コア部31が挿入された組物を形成して、各内側コア部31の端面と露出コア片32m(露出コア部32)の内端面32e(図2)とを接合することで、コイル2と磁心3との組合体を具えるリアクトル1が得られる。更に、この組合体を上述のようにケースに収納したり、樹脂で覆ったりしてもよい。
[Reactor manufacturing method]
The reactor 1 having the above configuration can be manufactured, for example, as follows. First, the coil 2, the inner core piece 31m, the exposed core piece 32m, the gap material 31g, and other insulators are prepared. Two inner core portions 31 are formed by alternately laminating inner core pieces 31m and gap members 31g. Next, an assembly in which the inner core portion 31 is inserted into each of the coil elements 2a and 2b is formed, and the end surface of each inner core portion 31 and the inner end surface 32e of the exposed core piece 32m (exposed core portion 32) (see FIG. By joining 2), a reactor 1 having a combination of a coil 2 and a magnetic core 3 is obtained. Furthermore, this combination may be housed in a case as described above or covered with a resin.

[磁性コア片]
次に、内コア片31m、露出コア片32mに利用する原料粉末及び製造方法を説明する。両コア片31m,32mは、基本的には従来の圧粉成形体の製造方法を利用して製造することができる。代表的には、貫通孔が設けられた筒状のダイと、この貫通孔の一方の開口部に挿入した下パンチとで形成される成形空間に、磁性材料からなる原料粉末を充填した後、上記貫通孔の他方の開口部に挿入した上パンチと上記下パンチとで当該原料粉末を加圧・圧縮して所定の加圧を行ったら、ダイから圧縮成形物を抜き出す。得られた圧縮成形物はそのまま利用することもできるが、後述する熱処理を施すことが一般的である。更に、圧縮成形物や熱処理を施した熱処理物に後述する後処理を施すこともある。従って、圧粉成形体は、代表的には、圧縮成形物、熱処理物、後処理を施した後処理物のいずれかの形態をとる。
[Magnetic core piece]
Next, the raw material powder used for the inner core piece 31m and the exposed core piece 32m and the manufacturing method will be described. Both core pieces 31m and 32m can be basically manufactured by using a conventional method for manufacturing a green compact. Typically, after filling a raw material powder made of a magnetic material into a molding space formed by a cylindrical die provided with a through hole and a lower punch inserted into one opening of the through hole, When the raw material powder is pressed and compressed by the upper punch inserted into the other opening of the through hole and the lower punch and subjected to a predetermined pressure, the compression molded product is extracted from the die. The obtained compression-molded product can be used as it is, but is generally subjected to a heat treatment described later. Furthermore, the post-processing mentioned later may be given to the compression molded product and the heat-treated material which heat-processed. Accordingly, the green compact is typically in the form of any one of a compression molded product, a heat-treated product, and a post-treated product after being subjected to post-treatment.

≪原料粉末≫
原料粉末は、特に、軟磁性材料からなる軟磁性粒子とこの粒子の表面に設けられた絶縁被膜とを具える被覆軟磁性粉末が好ましい。被覆軟磁性粉末を利用した場合、内コア片31mや露出コア片32mは、軟磁性粒子が上記絶縁被膜(或いは、後述する熱処理によって変成された絶縁物)に覆われた被覆粒子から構成される圧粉成形体となる。この圧粉成形体は、上記絶縁被膜(絶縁物)の介在によって、電気抵抗が高く、渦電流損を低減でき、低損失である。
≪Raw material powder≫
The raw material powder is particularly preferably a coated soft magnetic powder comprising soft magnetic particles made of a soft magnetic material and an insulating coating provided on the surface of the particles. When the coated soft magnetic powder is used, the inner core piece 31m and the exposed core piece 32m are composed of coated particles in which the soft magnetic particles are covered with the insulating coating (or an insulating material modified by heat treatment described later). It becomes a green compact. This green compact has high electrical resistance, can reduce eddy current loss, and has low loss due to the interposition of the insulating coating (insulator).

軟磁性材料は、鉄基材料や希土類金属といった金属材料、フェライトなどの非金属材料が挙げられる。特に、絶縁被膜を具える形態とする場合、鉄を50質量%以上含有する鉄基材料が好ましい。例えば、純鉄(Fe)、その他、Fe-Si系合金,Fe-Al系合金,Fe-N系合金,Fe-Ni系合金,Fe-C系合金,Fe-B系合金,Fe-Co系合金,Fe-P系合金,Fe-Ni-Co系合金,及びFe-Al-Si系合金から選択される1種の鉄合金が挙げられる。特に、99質量%以上がFeである純鉄からなる圧粉成形体は、透磁率及び磁束密度が高い磁心が得られ、鉄合金からなる圧粉成形体は、渦電流損を低減し易く、より低損失な磁心が得られる。内コア片31m及び露出コア片32mが所望の組成となるように材料を選択する。   Examples of soft magnetic materials include metal materials such as iron-based materials and rare earth metals, and non-metallic materials such as ferrite. In particular, when a form having an insulating coating is provided, an iron-based material containing 50% by mass or more of iron is preferable. For example, pure iron (Fe), other Fe-Si alloys, Fe-Al alloys, Fe-N alloys, Fe-Ni alloys, Fe-C alloys, Fe-B alloys, Fe-Co alloys There is one kind of iron alloy selected from alloys, Fe-P alloys, Fe-Ni-Co alloys, and Fe-Al-Si alloys. In particular, a compacted body made of pure iron in which 99% by mass or more is Fe can obtain a magnetic core having a high magnetic permeability and magnetic flux density, and a compacted body made of an iron alloy can easily reduce eddy current loss, A lower loss magnetic core can be obtained. The material is selected so that the inner core piece 31m and the exposed core piece 32m have a desired composition.

軟磁性粒子の粒径は、内コア片31mの平均粒径、露出コア片32mの平均粒径がそれぞれ所望の値となるように選択する。例えば、内コア片31mの原料粉末の平均粒径は、20μm〜100μm、露出コア片32mの原料粉末の平均粒径は、100μm〜200μmが挙げられる。内コア片31mの原料粉末の平均粒径が20μm以上であることで、流動性に優れる上にヒステリシス損の増加を抑制でき、露出コア片32mの原料粉末の平均粒径が200μm以下であることで、得られた圧粉成形体を磁心に用いたとき、1kHz以上といった高周波数で使用した場合でも、渦電流損を効果的に低減できる。内コア片31mの原料粉末の平均粒径が50μm以上であると、ヒステリシス損の低減効果を得易い上に、粉末を取り扱い易い。上記平均粒径は、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径(質量)をいう。   The particle diameters of the soft magnetic particles are selected so that the average particle diameter of the inner core piece 31m and the average particle diameter of the exposed core piece 32m each have desired values. For example, the average particle size of the raw material powder of the inner core piece 31m is 20 μm to 100 μm, and the average particle size of the raw material powder of the exposed core piece 32m is 100 μm to 200 μm. The average particle size of the raw material powder of the inner core piece 31m is 20 μm or more, so that it has excellent fluidity and can suppress an increase in hysteresis loss, and the average particle size of the raw material powder of the exposed core piece 32m is 200 μm or less. Thus, when the obtained green compact is used for a magnetic core, eddy current loss can be effectively reduced even when used at a high frequency of 1 kHz or higher. When the average particle size of the raw material powder of the inner core piece 31m is 50 μm or more, it is easy to obtain the effect of reducing hysteresis loss and the powder is easy to handle. The average particle diameter refers to a particle diameter of particles in which the sum of masses from particles having a small particle diameter reaches 50% of the total mass in the particle diameter histogram, that is, 50% particle diameter (mass).

絶縁被膜には、絶縁性に優れる適宜な絶縁材料が利用できる。例えば、絶縁材料には、Fe,Al,Ca,Mn,Zn,Mg,V,Cr,Y,Ba,Sr,及び希土類元素(Yを除く)などから選択された1種以上の金属元素の酸化物、窒化物、炭化物などの金属酸化物、金属窒化物、金属炭化物が挙げられる。或いは、絶縁材料には、上記金属酸化物、金属窒化物、金属炭化物以外の化合物、例えば、リン化合物、珪素化合物、ジルコニウム化合物及びアルミニウム化合物から選択された1種以上の化合物が挙げられる。その他の絶縁材料には、金属塩化合物、例えば、リン酸金属塩化合物(代表的には、リン酸鉄やリン酸マンガン、リン酸亜鉛、リン酸カルシウムなど)、硼酸金属塩化合物、珪酸金属塩化合物、チタン酸金属塩化合物などが挙げられる。特に、リン酸金属塩化合物は変形性に優れることから、リン酸金属塩化合物による絶縁被膜は、圧縮成形時、軟磁性粒子の変形に追従して容易に変形できて損傷し難く、当該絶縁被膜を具える粉末を利用すると、絶縁被膜が健全な状態で存在する圧粉成形体を得易い。また、リン酸金属塩化合物による絶縁被膜は、鉄系材料からなる軟磁性粒子に対する密着性が高く、当該粒子の表面から脱落し難い。   As the insulating film, an appropriate insulating material having excellent insulating properties can be used. For example, the insulating material includes oxidation of one or more metal elements selected from Fe, Al, Ca, Mn, Zn, Mg, V, Cr, Y, Ba, Sr, and rare earth elements (excluding Y). Metal oxides such as oxides, nitrides and carbides, metal nitrides and metal carbides. Alternatively, examples of the insulating material include compounds other than the metal oxide, metal nitride, and metal carbide, for example, one or more compounds selected from phosphorus compounds, silicon compounds, zirconium compounds, and aluminum compounds. Other insulating materials include metal salt compounds, such as metal phosphate compounds (typically iron phosphate, manganese phosphate, zinc phosphate, calcium phosphate, etc.), borate metal salt compounds, silicate metal salt compounds, Examples include titanic acid metal salt compounds. In particular, since the metal phosphate compound is excellent in deformability, the insulation coating made of the metal phosphate compound can easily be deformed following the deformation of the soft magnetic particles during compression molding and is not easily damaged. If the powder which comprises is used, it will be easy to obtain the compacting body in which an insulating film exists in a healthy state. In addition, the insulating coating made of a metal phosphate compound has high adhesion to soft magnetic particles made of an iron-based material and is difficult to drop off from the surface of the particles.

上記以外の絶縁材料として、熱可塑性樹脂や非熱可塑性樹脂といった樹脂や高級脂肪酸塩が挙げられる。特に、シリコーン樹脂といったシリコン系有機化合物は耐熱性に優れることから、得られた圧縮成形物に後述する熱処理を施した際にも分解し難い。   Examples of insulating materials other than the above include resins such as thermoplastic resins and non-thermoplastic resins and higher fatty acid salts. In particular, a silicon-based organic compound such as a silicone resin is excellent in heat resistance, so that it is difficult to be decomposed when the obtained compression-molded product is subjected to a heat treatment described later.

絶縁被膜の形成には、例えば、リン酸塩化成処理といった化成処理を利用できる。その他、絶縁被膜の形成には、溶剤の吹きつけや前駆体を用いたゾルゲル処理が利用できる。シリコーン系有機化合物によって絶縁被膜を形成する場合、有機溶剤を用いた湿式被覆処理や、ミキサーによる直接被覆処理などを利用できる。   For the formation of the insulating film, for example, a chemical conversion treatment such as a phosphate chemical conversion treatment can be used. In addition, for the formation of the insulating film, spraying of a solvent or sol-gel treatment using a precursor can be used. In the case where the insulating coating is formed from a silicone organic compound, wet coating using an organic solvent, direct coating using a mixer, or the like can be used.

軟磁性粒子に具える絶縁被膜の厚さは、10nm以上1μm以下が挙げられる。10nm以上であると、軟磁性粒子間の絶縁を確保でき、1μm以下であると、絶縁被膜の存在によって、圧粉成形体中の磁性成分の割合の低下を抑制できる。即ち、この圧粉成形体によって磁心を作製した場合、磁束密度の著しい低下を抑制できる。絶縁被膜の厚さは、組成分析(透過型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置:TEM-EDX)によって得られる膜組成と、誘導結合プラズマ質量分析装置(ICP-MS)によって得られる元素量とを鑑みて相当厚さを導出し、更に、TEM写真によって直接、絶縁被膜を観察して、先に導出された相当厚さのオーダーが適正な値であることを確認して決定される平均的な厚さとする。   The thickness of the insulating coating provided in the soft magnetic particles is 10 nm or more and 1 μm or less. When it is 10 nm or more, insulation between soft magnetic particles can be secured, and when it is 1 μm or less, a decrease in the ratio of the magnetic component in the green compact can be suppressed due to the presence of the insulating coating. That is, when a magnetic core is produced with this compacting body, the remarkable fall of magnetic flux density can be suppressed. The thickness of the insulating coating is determined by composition analysis (analyzer using transmission electron microscope and energy dispersive X-ray spectroscopy: TEM-EDX) and inductively coupled plasma mass spectrometer (ICP-MS). In view of the amount of element obtained by the above, the equivalent thickness is derived, and further, the insulation film is directly observed by the TEM photograph to confirm that the order of the equivalent thickness derived earlier is an appropriate value. The average thickness determined by

上記原料粉末に潤滑剤を添加することができる。この潤滑剤は、有機物からなる固体潤滑剤の他、窒化硼素やグラファイトなどの無機物が挙げられる。或いは、成形用金型(特に、ダイの内周面)に潤滑剤を塗布することができる。これら潤滑剤を利用することで、原料粉末や圧縮成形物と成形用金型との間の摩擦を低減することができ、摩擦による絶縁被膜の損傷を低減できる。潤滑剤は、ステアリン酸リチウムなどの金属石鹸、ステアリン酸アミドなどの脂肪酸アミド、エチレンビスステアリン酸アミドなどの高級脂肪酸アミドなどの固体潤滑剤、固体潤滑剤を水などの液媒に分散させた分散液、液状潤滑剤などが挙げられる。その他、金型を加熱した状態で成形する(温間成形する)と、成形性をより高められる。冷間成形でも勿論よい。   A lubricant can be added to the raw material powder. Examples of the lubricant include organic lubricants and inorganic substances such as boron nitride and graphite. Alternatively, a lubricant can be applied to a molding die (in particular, the inner peripheral surface of the die). By using these lubricants, it is possible to reduce the friction between the raw material powder or the compression molded product and the molding die, and to reduce the damage to the insulating coating due to the friction. Lubricant is a metal soap such as lithium stearate, a fatty acid amide such as stearic acid amide, a solid lubricant such as higher fatty acid amide such as ethylenebisstearic acid amide, a solid lubricant dispersed in a liquid medium such as water. Examples thereof include liquids and liquid lubricants. In addition, if the mold is molded in a heated state (warm molding), the moldability can be further improved. Of course, cold forming may be used.

≪成形圧力≫
成形圧力は、5ton/cm2(≒490MPa)以上15ton/cm2(≒1470MPa)以下が挙げられる。5ton/cm2以上とすることで、原料粉末を十分に圧縮でき、圧粉成形体の相対密度を高められ、15ton/cm2以下とすることで、絶縁被膜を具える場合、絶縁被膜の損傷を抑制できる。
≪Forming pressure≫
The molding pressure is 5 ton / cm 2 (≈490 MPa) or more and 15 ton / cm 2 (≈1470 MPa) or less. By using 5 ton / cm 2 or more, the raw material powder can be sufficiently compressed, and the relative density of the green compact can be increased. By making the product to 15 ton / cm 2 or less, the insulation film is damaged. Can be suppressed.

特に、露出コア片32mの原料粉末に粗粒粉末(例えば、平均粒径が150μm以上)を利用する場合、内コア片31mを成形するときの成形圧力と露出コア片32mを成形するときの成形圧力とを異ならせることができる。具体的には、露出コア片32mの成形圧力を内コア片31mの成形圧力よりも小さくすることができる。成形圧力が小さいほど、加圧時間を短縮でき、成形スピードを速められる傾向にあることから露出コア片32mの成形圧力は小さい方が好ましい。具体的には、露出コア片32mの成形圧力PSは、5ton/cm2〜7ton/cm2が挙げられ、内コア片31mの成形圧力PMは、7ton/cm2〜9ton/cm2が挙げられる(但し、PM≠PS)。 In particular, when using coarse powder (for example, an average particle size of 150 μm or more) as the raw material powder for the exposed core piece 32m, molding pressure for molding the inner core piece 31m and molding for molding the exposed core piece 32m The pressure can be made different. Specifically, the molding pressure of the exposed core piece 32m can be made smaller than the molding pressure of the inner core piece 31m. The smaller the molding pressure, the shorter the pressurization time and the higher the molding speed, so the smaller the molding pressure of the exposed core piece 32m is preferable. Specifically, the molding pressure P S of the exposed core pieces 32m is include 5ton / cm 2 ~7ton / cm 2 , the molding pressure P M of the inner core piece 31m is, 7ton / cm 2 ~9ton / cm 2 is (Where P M ≠ P S ).

≪成形後の処理≫
ダイから抜き出した圧縮成形物に、圧縮に伴う歪みを除去することなどを目的として、熱処理を施すことができる。歪みの除去によって、ヒステリシス損といった損失を低減できる。熱処理条件は、加熱温度:300℃〜800℃ぐらい、保持時間:30分以上60分以下が挙げられる。加熱温度は、高いほど歪みを除去し易くヒステリシス損を低減できるが、絶縁被膜を具える場合、絶縁被膜が熱分解して渦電流損が増加する恐れがあるため、熱分解温度未満とすることが好ましい。代表的には、絶縁被膜がリン酸鉄やリン酸亜鉛などの非晶質リン酸塩からなる場合、上記加熱温度は500℃程度までが好ましく、金属酸化物やシリコーン樹脂などの耐熱性に優れる絶縁材料からなる場合、上記加熱温度は550℃以上、更に600℃以上、特に650℃以上に高められる。加熱温度及び保持時間は、絶縁被膜の構成材料に応じて適宜選択するとよい。この熱処理時の雰囲気は特に問わないが、窒素雰囲気といった非酸化性雰囲気、或いは酸素濃度が低い低酸素雰囲気とすると、軟磁性粒子の酸化を防止できる。
≪Process after molding≫
The compression-molded product extracted from the die can be subjected to a heat treatment for the purpose of removing distortion caused by compression. By removing distortion, loss such as hysteresis loss can be reduced. The heat treatment conditions include heating temperature: about 300 ° C. to 800 ° C., holding time: 30 minutes to 60 minutes. The higher the heating temperature, the easier the distortion can be removed and the hysteresis loss can be reduced. However, if an insulating film is provided, the insulating film may thermally decompose and eddy current loss may increase, so the temperature should be lower than the thermal decomposition temperature. Is preferred. Typically, when the insulating coating is made of an amorphous phosphate such as iron phosphate or zinc phosphate, the heating temperature is preferably up to about 500 ° C., and is excellent in heat resistance such as a metal oxide or silicone resin. In the case of an insulating material, the heating temperature is raised to 550 ° C. or higher, further 600 ° C. or higher, particularly 650 ° C. or higher. The heating temperature and holding time may be appropriately selected according to the constituent material of the insulating coating. The atmosphere during the heat treatment is not particularly limited, but the oxidation of the soft magnetic particles can be prevented if a non-oxidizing atmosphere such as a nitrogen atmosphere or a low oxygen atmosphere with a low oxygen concentration is used.

絶縁被膜を具える原料粉末を用いた場合、所定の加圧後にダイから圧縮成形物を抜き出す際などで、絶縁被膜を損傷し、絶縁被膜から露出して、かつ変形した軟磁性粒子同士が導通可能となった箇所:ブリッジ部が形成されることがある。従って、得られた圧縮成形物、或いは上述の熱処理を施した熱処理物に、ブリッジ部を除去することなどを目的として、酸エッチングなどの後処理を施すことができる。後処理は、例えば、損失が所定の大きさ以下となるように、処理時間や処理液の濃度を調整するとよい。   When using raw material powder that has an insulation coating, the insulation coating is damaged, such as when a compression molded product is extracted from the die after a predetermined pressure, and the deformed soft magnetic particles are electrically connected to each other. Where it became possible: A bridge may be formed. Therefore, post-treatment such as acid etching can be performed on the obtained compression-molded product or the heat-treated product subjected to the above-described heat treatment for the purpose of removing the bridge portion. In the post-treatment, for example, the treatment time and the concentration of the treatment liquid may be adjusted so that the loss becomes a predetermined magnitude or less.

<効果>
リアクトル1は、コイル2から露出される露出コア部32を構成する露出コア片32mの平均粒径dSが、コイル2(コイル素子2a,2b)に覆われる内側コア部31を構成する内コア片31mの平均粒径dMよりも大きい。この例では、各露出コア片32mの平均粒径dSがいずれも同じで、各内コア片31mの平均粒径dMがいずれも同じであることから、各露出コア片32mの平均粒径dSはいずれも、任意の内コア片31mの平均粒径dMよりも大きい。そのため、露出コア片32mの原料粉末に、成形し易い粗粒粉末を使用することができ、露出コア片32mの製造工程において、給粉時間や加圧時間を短縮して、成形スピードを速められる。また、粗粒粉末を使用する場合、成形圧力を小さくすることができる。このことからも、所定の成形圧力に加圧する時間を短縮できることから、露出コア片32mの成形スピードを速められる。その上、成形圧力が小さいことで圧縮成形物のスプリングバックが小さくなり、スプリングバックに起因する成形用金型の摩耗を低減できる。これらのことから、磁心3は、生産性に優れ、この磁心3を構成部材とするリアクトル1も、生産性に優れる。
<Effect>
Reactor 1 is an inner core constituting inner core portion 31 in which average particle diameter d S of exposed core piece 32m constituting exposed core portion 32 exposed from coil 2 is covered by coil 2 (coil elements 2a, 2b). greater than the average particle diameter d M pieces 31m. In this example, both the average particle diameter d S of the exposed core pieces 32m is the same, since the average particle diameter d M of each the core pieces 31m is the same both, the average particle diameter of each exposed core pieces 32m All of d S is larger than the average particle diameter d M of an arbitrary inner core piece 31m. Therefore, it is possible to use coarse powder that is easy to mold as the raw material powder of the exposed core piece 32m, and in the manufacturing process of the exposed core piece 32m, the powder feeding time and pressurizing time can be shortened to increase the molding speed. . Moreover, when using coarse-grained powder, a shaping | molding pressure can be made small. This also shortens the time for pressurization to a predetermined molding pressure, thereby increasing the molding speed of the exposed core piece 32m. In addition, since the molding pressure is low, the spring back of the compression molded product is reduced, and wear of the molding die due to the spring back can be reduced. For these reasons, the magnetic core 3 is excellent in productivity, and the reactor 1 including the magnetic core 3 as a constituent member is also excellent in productivity.

特に、実施形態1のリアクトル1では、露出コア片32mの高さh32が内コア片31mの高さh31よりも大きく、露出コア片32mの体積が内コア片31mよりも十分に大きい。このような露出コア片32mを製造する場合にその成形圧力を内コア片31mの成形圧力と同じにすると、加圧時間が長くなったり、スプリングバックが大きくなり易い。従って、実施形態1のリアクトル1のように、露出コア片32mが内コア片31mよりも非常に大きな体積を有する場合、露出コア片32mの平均粒径dSを内コア片31mの平均粒径dMよりも大きくすることは、磁心3やリアクトル1の生産性の向上への寄与度が高いと期待される。 In particular, in the reactor 1 of the first embodiment, the height h 32 of the exposed core piece 32m is larger than the height h 31 of the inner core piece 31m, and the volume of the exposed core piece 32m is sufficiently larger than the inner core piece 31m. When manufacturing such an exposed core piece 32m, if the molding pressure is made the same as the molding pressure of the inner core piece 31m, the pressurization time tends to be long and the spring back tends to be large. Therefore, as in the reactor 1 of the first embodiment, when the exposed core piece 32m has a much larger volume than the inner core piece 31m, the average particle diameter d S of the exposed core piece 32m is the average particle diameter of the inner core piece 31m. Making it larger than d M is expected to contribute greatly to the productivity improvement of the magnetic core 3 and the reactor 1.

その他、リアクトル1では、露出コア片32mの設置側の面とコイル2の設置側の面とが実質的に面一であることで、リアクトル1を設置するときに安定し易い上に、コイル2及び磁心3が冷却ベースやケースに直接支持されるため、放熱性に優れる。   In addition, in the reactor 1, since the surface on the installation side of the exposed core piece 32m and the surface on the installation side of the coil 2 are substantially flush, it is easy to stabilize when installing the reactor 1, and the coil 2 And since the magnetic core 3 is directly supported by the cooling base and the case, the heat dissipation is excellent.

(変形例1)
上記実施形態1で説明した、露出コア片32mの平均粒径dSが内コア片31mの平均粒径dMよりも大きい構成に加えて、露出コア片32mの密度DSが内コア片31mの密度DMよりも小さい形態が挙げられる。より具体的には、各露出コア片32mはいずれもその密度DSが、いずれの内コア片31mの密度DMよりも小さい。なお、ここでは、各露出コア片32mの密度DSはいずれも同じである。また、全ての内コア片31mの密度DMもいずれも同じである。
(Modification 1)
In addition to the configuration described in the first embodiment, the average particle diameter d S of the exposed core piece 32m is larger than the average particle diameter d M of the inner core piece 31m, and the density D S of the exposed core piece 32m is 31 m of the inner core piece 31m. The form is smaller than the density D M of . More specifically, both the exposed core pieces 32m has a density D S, less than the density D M of either of the inner core pieces 31m. Here, the density D S of the exposed core pieces 32m are the same. Moreover, the same also both the density D M of all of the inner core pieces 31m.

内コア片31mの密度DMに対して、露出コア片32mの密度DSと内コア片31mの密度DMとの差:DM−DSが大きいほど、代表的には、露出コア片32mの密度DSの絶対値が小さくなり、露出コア片32mの生産性を高められる。そのため、密度の比:(DM−DS)/DMは1/80以上(0.0125以上)が好ましく、1/70以上(0.0143以上)、更に1/50以上(0.02以上)、特に1/20(0.05以上)とすると、露出コア片32mの生産性をより効果的に高められる。但し、密度の比:(DM−DS)/DMが大き過ぎると、露出コア片32mの密度DSの絶対値が小さくなり過ぎて、磁性成分の低下によって、漏れ磁束が増加するなどの不具合を招く。従って、密度の比:(DM−DS)/DMの上限は、0.1程度が好ましい。 Relative density D M of the inner core pieces 31m, the difference between the density D M of the inner core pieces 31m and density D S of the exposed core pieces 32m: as D M -D S is large, typically, the exposed core pieces the absolute value of the density D S of 32m is reduced, it increased the productivity of the exposed core pieces 32m. Therefore, the density ratio: (D M −D S ) / D M is preferably 1/80 or more (0.0125 or more), 1/70 or more (0.0143 or more), 1/50 or more (0.02 or more), particularly 1/70 or more. If it is 20 (0.05 or more), the productivity of the exposed core piece 32m can be increased more effectively. However, if the ratio of density: (D M −D S ) / D M is too large, the absolute value of the density D S of the exposed core piece 32m becomes too small, and the leakage flux increases due to a decrease in the magnetic component. Invite the problem. Therefore, the upper limit of the density ratio: (D M −D S ) / D M is preferably about 0.1.

また、上述の密度の差:DM−DS自体が大きいほど、代表的には、露出コア片32mの密度DSの絶対値が小さくなり、露出コア片32mの生産性を高められる。そのため、密度の差:DM−DSは0.1g/cm3以上が好ましく、0.15g/cm3以上、更に0.2g/cm3以上、特に0.4g/cm3以上とすると、露出コア片32mの生産性をより効果的に高められる。但し、密度の差:DM−DSが大き過ぎると、露出コア片32mの密度DSの絶対値が小さくなり過ぎて、上述のような不具合を招くことから、密度の差:DM−DSの上限は、0.8g/cm3程度が好ましい。 Further, as the above-described density difference: D M −D S itself is larger, typically, the absolute value of the density D S of the exposed core piece 32m becomes smaller, and the productivity of the exposed core piece 32m can be increased. Therefore, the density difference: D M −D S is preferably 0.1 g / cm 3 or more, 0.15 g / cm 3 or more, more preferably 0.2 g / cm 3 or more, and particularly 0.4 g / cm 3 or more. The productivity of can be increased more effectively. However, if the difference in density: D M −D S is too large, the absolute value of the density D S of the exposed core piece 32m becomes too small, causing the above-described problems. Therefore, the difference in density: D M − the upper limit of the D S is about 0.8 g / cm 3 are preferred.

変形例1のリアクトルは、コイル2から露出される露出コア部32を構成する露出コア片32mの密度DSが、コイル2(コイル素子2a,2b)に覆われる内側コア部31を構成する内コア片31mの密度DMよりも小さいことで、露出コア片32mの製造にあたり、成形圧力を小さくすることができる。そのため、変形例1のリアクトルでは、露出コア片32mの成形スピードの向上、成形用金型の摩耗の低減を図ることができる。これらのことから、磁心3は生産性に優れ、この磁心3を構成部材とする変形例1のリアクトルも、生産性に優れる。 Reactor first modification, among the density D S of the exposed core pieces 32m constituting the exposed core portions 32 are exposed from the coil 2 constitute the inner core portion 31 covered with the coil 2 (coil elements 2a, 2b) small it is than the density D M of the core pieces 31m, in the production of exposed core pieces 32m, it is possible to reduce the molding pressure. Therefore, in the reactor of the first modification, it is possible to improve the molding speed of the exposed core piece 32m and reduce the wear of the molding die. For these reasons, the magnetic core 3 is excellent in productivity, and the reactor of the first modification using the magnetic core 3 as a constituent member is also excellent in productivity.

また、変形例1のリアクトルは、内コア片31mよりも大きな体積を有する露出コア片32mの密度DSが内コア片31mの密度DMよりも小さいことで、軽量化を効果的に図ることができる。 In addition, the reactor of the first modification can effectively reduce the weight because the density D S of the exposed core piece 32m having a larger volume than the inner core piece 31m is smaller than the density D M of the inner core piece 31m. Can do.

(変形例2)
実施形態1では、内側コア部31の外表面よりも露出コア部32の外表面が突出した形態について説明した。内側コア部の外表面と露出コア部の外表面とが面一である形態(図示せず)とすることができる。この形態でも、各露出コア部をそれぞれ一つの露出コア片から構成すると、各露出コア片にはそれぞれ一対の内側コア部を連結することから、各露出コア片はいずれも、一つの内コア片よりも体積が大きくなる。従って、この形態も、体積が大きな露出コア片の平均粒径dSが内コア片の平均粒径dMよりも大きいことで、露出コア片の原料粉末に粗粒粉末を利用して、成形スピードの向上、成形用金型の摩耗の低減を図ることができる。そのため、変形例2のリアクトルも、生産性に優れる。
(Modification 2)
In the first embodiment, the form in which the outer surface of the exposed core portion 32 protrudes from the outer surface of the inner core portion 31 has been described. The outer surface of the inner core part and the outer surface of the exposed core part may be flush with each other (not shown). Even in this embodiment, when each exposed core part is composed of one exposed core piece, each exposed core piece is connected to a pair of inner core parts, so each exposed core piece is one inner core piece. The volume becomes larger. Therefore, this form is also formed by using coarse powder as the raw powder of the exposed core piece because the average particle diameter d S of the exposed core piece having a large volume is larger than the average particle diameter d M of the inner core piece. The speed can be improved and the wear of the molding die can be reduced. Therefore, the reactor of Modification 2 is also excellent in productivity.

(変形例3)
実施形態1では、露出コア部32を構成する露出コア片32mにおける内側コア部31との接合面(内端面32e)が平面である形態を説明した。露出コア片を、その透視平面形状がU字状である立体とすることができる。この形態でも、各露出コア部をそれぞれ一つの露出コア片から構成すると、各露出コア片にはそれぞれ一対の内側コア部を連結することから、各露出コア片はいずれも、一つの内コア片よりも体積が大きくなる。従って、この形態も、体積が大きな露出コア片の平均粒径dSが内コア片の平均粒径dMよりも大きいことで、露出コア片の原料粉末に粗粒粉末を利用して、成形スピードの向上、成形用金型の摩耗の低減を図ることができる。そのため、変形例3のリアクトルも、生産性に優れる。なお、一方の露出コア片を実施形態1の形状とし、他方の露出コア片を上述のU字状体とすることもできる。
(Modification 3)
In the first embodiment, the mode in which the joint surface (inner end surface 32e) with the inner core portion 31 in the exposed core piece 32m constituting the exposed core portion 32 is a flat surface has been described. The exposed core piece may be a solid whose perspective plane shape is U-shaped. Even in this embodiment, when each exposed core part is composed of one exposed core piece, each exposed core piece is connected to a pair of inner core parts, so each exposed core piece is one inner core piece. The volume becomes larger. Therefore, this form is also formed by using coarse powder as the raw powder of the exposed core piece because the average particle diameter d S of the exposed core piece having a large volume is larger than the average particle diameter d M of the inner core piece. The speed can be improved and the wear of the molding die can be reduced. Therefore, the reactor of Modification 3 is also excellent in productivity. One exposed core piece may have the shape of the first embodiment, and the other exposed core piece may have the U-shaped body described above.

(変形例4)
実施形態1では、一対のコイル素子2a,2bと、内側コア部31及び露出コア部32によって環状に形成される磁心3とを具える形態を説明した。その他の形態として、一つの筒状のコイルと、このコイルが配置される磁心とを具える形態が挙げられる。この形態の磁心として、上記一つの筒状のコイル内に配置される柱状の内側コア部と、コイルから露出された露出コア部とを具える形態が挙げられる。露出コア部は、コイルの外周面の少なくとも一部を覆うように配置される外周コア部と、コイルの端面の少なくとも一部を覆うように配置される端部コア部とを具えるものが挙げられる。このような磁心として、ER型コア、E型コア、I型コアを組み合せて構成されるE-I形態、E-E形態、ポット形態などと呼ばれる形態の磁心が利用できる。より具体的には、例えば、外周コア部を構成する一つのコア片(例えば、筒状のコア片)と端部コア部を構成する一対のコア片(例えば、板状のコア片)とを具える形態、外周コア部が複数のコア片を有する形態、内側コア部、外周コア部、及び端部コア部から選択される少なくとも二つのコア部を一体に構成するコア片を有する形態などが挙げられる。露出コア部を構成する露出コア片は、コイルの外周面や端面を覆うように配置されるため、その外形は、内コア片よりも大きくなり易い。従って、変形例4のリアクトルも、少なくとも一つの露出コア片の平均粒径dSが内コア片の平均粒径dMよりも大きいことで、露出コア片の原料粉末に粗粒粉末を利用して、成形スピードの向上、成形用金型の摩耗の低減を図ることができる。そのため、変形例4のリアクトルも、生産性に優れる。
(Modification 4)
In the first embodiment, the configuration including the pair of coil elements 2a and 2b and the magnetic core 3 formed in an annular shape by the inner core portion 31 and the exposed core portion 32 has been described. As another form, the form provided with one cylindrical coil and the magnetic core by which this coil is arrange | positioned is mentioned. Examples of the magnetic core of this form include a form including a columnar inner core portion disposed in the one cylindrical coil and an exposed core portion exposed from the coil. The exposed core portion includes an outer peripheral core portion disposed so as to cover at least a part of the outer peripheral surface of the coil, and an end core portion disposed so as to cover at least a part of the end surface of the coil. It is done. As such a magnetic core, a magnetic core of a form called an EI form, an EE form, a pot form, etc. configured by combining an ER type core, an E type core, and an I type core can be used. More specifically, for example, one core piece (for example, a cylindrical core piece) constituting the outer peripheral core portion and a pair of core pieces (for example, a plate-shaped core piece) constituting the end core portion. A form having a plurality of core pieces, a form having a core piece integrally forming at least two core parts selected from an inner core part, an outer core part, and an end core part, etc. Can be mentioned. Since the exposed core piece constituting the exposed core portion is disposed so as to cover the outer peripheral surface and end face of the coil, the outer shape thereof is likely to be larger than the inner core piece. Therefore, the reactor of Modification 4 also uses coarse powder as the raw material powder for the exposed core piece because the average particle diameter d S of at least one exposed core piece is larger than the average particle diameter d M of the inner core piece. Thus, the molding speed can be improved and the wear of the molding die can be reduced. Therefore, the reactor of the modification 4 is also excellent in productivity.

(試験例)
圧粉成形体を種々の条件で作製し、得られた圧粉成形体を用いてリアクトルを作製し、このリアクトルの性能(鉄損及びインダクタンス)を比較した。また、圧粉成形体の成形スピード、成形用金型の摩耗量を調べた。
(Test example)
A compacted body was produced under various conditions, a reactor was fabricated using the obtained compacted body, and the performance (iron loss and inductance) of the reactor was compared. Further, the molding speed of the green compact and the amount of wear of the molding die were examined.

この試験では、三つのリアクトルを作製した。各試料のリアクトルの材質、形状、サイズはいずれも同じにした。具体的には、実施形態1で説明した、一対のコイル素子を有するコイルと、一対の直方体状の内側コア部及び一対の露出コア部を有する磁心とを具えるリアクトルを作製した。試料No.1は、実施形態1相当の試料、試料No.2は、変形例1相当の試料である。試料No.100は、比較試料である。   In this test, three reactors were produced. The material, shape, and size of the reactor of each sample were all the same. Specifically, a reactor including the coil having the pair of coil elements and the magnetic core having the pair of rectangular parallelepiped inner core portions and the pair of exposed core portions described in the first embodiment was manufactured. Sample No. 1 is a sample corresponding to Embodiment 1, and Sample No. 2 is a sample corresponding to Modification 1. Sample No. 100 is a comparative sample.

各リアクトルに具える一対の内側コア部のそれぞれに対して、複数の直方体状の圧粉成形体(40mm×25mm×15mm)を作製し、各圧粉成形体をそれぞれ内コア片とした。内コア片の個数、形状、大きさは、いずれの試料についても同様とした。また、各内側コア部はそれぞれ、ギャップ材を具えるものとし、ギャップ材の材質、形状、大きさは、いずれの試料についても同様とした。   A plurality of cuboid compacts (40 mm × 25 mm × 15 mm) were prepared for each of the pair of inner cores provided in each reactor, and each compact was used as an inner core piece. The number, shape, and size of the inner core pieces were the same for all samples. Each inner core portion is provided with a gap material, and the material, shape, and size of the gap material are the same for all samples.

各リアクトルに具える一対の露出コア部のそれぞれに対して、圧粉成形体を一つずつ作製し、各圧粉成形体をそれぞれ露出コア片とした。この試験では、露出コア片は、70mm×50mm×25mmの直方体状とした。一つの露出コア片の体積は、一つの内コア片の体積よりも大きい。   One compacted body was produced for each of the pair of exposed core portions provided in each reactor, and each compacted body was used as an exposed core piece. In this test, the exposed core piece was a rectangular parallelepiped shape of 70 mm × 50 mm × 25 mm. The volume of one exposed core piece is larger than the volume of one inner core piece.

いずれの試料も、原料粉末には、水アトマイズ法によって製造された純鉄粉に、化成処理によってリン酸金属塩化合物からなる絶縁被膜(厚さ:20nm以下程度)を形成した被覆軟磁性粒子からなる被覆粉末を用意した。この試験では、いずれの試料も、上記被覆粉末にステアリン酸亜鉛の粉末を混合した混合粉末(ステアリン酸亜鉛の混合量:混合粉末全体に対して0.6質量%)を用いた。   In any sample, the raw material powder is made of coated soft magnetic particles in which an insulating coating (thickness: about 20 nm or less) made of a metal phosphate compound is formed by chemical conversion treatment on pure iron powder produced by a water atomization method. A coating powder was prepared. In each test, a mixed powder obtained by mixing the powdered zinc stearate with the above-described coating powder (mixed amount of zinc stearate: 0.6% by mass with respect to the whole mixed powder) was used.

試料No.1,2はいずれも、内コア片の原料粉末に、平均粒径50μmの純鉄粉を用い、露出コア片の原料粉末に、平均粒径100μmの純鉄粉を用いた。試料No.100は、原料粉末に、平均粒径50μmの純鉄粉を用いて、内コア片及び露出コア片を成形した。平均粒径は、上述した50%粒径(質量)である。   In each of Sample Nos. 1 and 2, pure iron powder having an average particle size of 50 μm was used as the raw material powder for the inner core piece, and pure iron powder having an average particle size of 100 μm was used as the raw material powder for the exposed core piece. In sample No. 100, the inner core piece and the exposed core piece were formed using pure iron powder having an average particle diameter of 50 μm as the raw material powder. The average particle diameter is the 50% particle diameter (mass) described above.

試料No.1,2の内コア片の成形圧力は、7ton/cm2、露出コア片の成形圧力は、試料No.1:6.5ton/cm2、試料No.2:6ton/cm2とした。一方、試料No.100は、内コア片及び露出コア片の成形圧力を同じとし、7ton/cm2とした。 The molding pressure of the inner core piece of sample No. 1 and 2 was 7 ton / cm 2 , and the molding pressure of the exposed core piece was sample No. 1: 6.5 ton / cm 2 and sample No. 2: 6 ton / cm 2 . On the other hand, in sample No. 100, the inner core piece and the exposed core piece had the same molding pressure of 7 ton / cm 2 .

ダイから抜き出した試料No.1,2,100の圧縮成形物に、同じ条件で熱処理(400℃×30分、窒素雰囲気)を施して、熱処理物を得た。   The compression molded product of Sample Nos. 1, 2, 100 extracted from the die was subjected to heat treatment (400 ° C. × 30 minutes, nitrogen atmosphere) under the same conditions to obtain a heat treated product.

得られた試料No.1,2,100の熱処理物に、同じ条件で後処理を施して、後処理物を得た。この後処理は、各熱処理物の表面を塩酸(濃度:35質量%)によってエッチングすることで行った。   The heat-treated product of Sample No. 1,2,100 obtained was post-treated under the same conditions to obtain a post-treated product. This post-treatment was performed by etching the surface of each heat-treated product with hydrochloric acid (concentration: 35% by mass).

得られた試料No.1,2,100の後処理物を内コア片、露出コア片とし、試料No.1,2,100の内コア片及び露出コア片の密度を測定した。その結果を表1に示す。密度は、アルキメデス法を用いて測定した。   The obtained samples No. 1, 2,100 were treated as inner core pieces and exposed core pieces, and the densities of the inner core pieces and the exposed core pieces of sample Nos. 1, 2, 100 were measured. The results are shown in Table 1. The density was measured using the Archimedes method.

試料No.1,2,100の内コア片及び露出コア片の平均粒径を測定した。その結果を表1に示す。平均粒径は、以下のようにして測定した。各コア片において、加圧成形面(上パンチ又は下パンチによって成形された面)の中心を含み、加圧成形面の面積の50%以内の領域を観察領域とし、観察領域から観察視野を選択して顕微鏡で観察する(100倍〜1000倍程度)。得られた観察像を画像処理して、観察像内に存在する粒子の輪郭を抽出し、この輪郭の面積を算出する。算出には、市販の画像処理装置を利用すると容易に行える。各粒子の輪郭内の面積に等しい面積を有する円:等価面積円を求め、各等価面積円の直径を各粒子の直径とし、観察像内に存在する全ての粒子の直径の平均をこの観察像における平均粒径とする。加圧成形面ではなく、圧縮成形時の加圧方向に平行な任意の断面、又は加圧方向に直交する任意の断面を用いて、平均粒径を測定してもよい。この場合、断面の中心を含み、断面の面積の50%以内の領域を観察領域とする。なお、絶縁被膜は、20nm以下といった非常に薄いものであるから、その厚さが、各コア片を構成する粒子の粒径に与える影響は少ないため、絶縁被膜を含めた輪郭を抽出することを許容する。   The average particle size of the inner core piece and the exposed core piece of sample No. 1,2,100 was measured. The results are shown in Table 1. The average particle size was measured as follows. Each core piece includes the center of the pressure molding surface (surface formed by the upper punch or lower punch), and the area within 50% of the area of the pressure molding surface is the observation area, and the observation field is selected from the observation area. And observe with a microscope (about 100 to 1000 times). The obtained observation image is image-processed, the outline of the particle existing in the observation image is extracted, and the area of the outline is calculated. The calculation can be easily performed using a commercially available image processing apparatus. Circle having an area equal to the area within the outline of each particle: An equivalent area circle is obtained, the diameter of each equivalent area circle is taken as the diameter of each particle, and the average of the diameters of all particles present in the observation image is obtained. The average particle size at. The average particle diameter may be measured using an arbitrary cross section parallel to the pressing direction at the time of compression molding, or an arbitrary cross section orthogonal to the pressing direction, instead of the pressure forming surface. In this case, an area including the center of the cross section and within 50% of the area of the cross section is taken as an observation area. Since the insulating film is very thin, such as 20 nm or less, its thickness has little effect on the particle size of the particles constituting each core piece, so it is necessary to extract the contour including the insulating film. Allow.

試料No.1,2,100の内コア片及び露出コア片を用いて環状の磁心を形成し、この磁心の一部(内側コア部)に一対のコイル素子が配置されたリアクトルを作製した。具体的には、内側コア部を各コイル素子に挿入配置し、露出コア片と内側コア部とを連結した。   An annular magnetic core was formed using the inner core piece and the exposed core piece of sample Nos. 1, 2, 100, and a reactor in which a pair of coil elements were arranged on a part of this magnetic core (inner core part) was produced. Specifically, the inner core portion was inserted and arranged in each coil element, and the exposed core piece and the inner core portion were connected.

作製した試料No.1,2,100のリアクトルに対して、AC-BHカーブトレーサを用いて、励起磁束密度Bm:1kG(=0.1T)、測定周波数:5kHzにおける鉄損(W)を測定した。その結果を表1に示す。また、作製した試料No.1,2,100のリアクトルのインダクタンスを調べた。その結果を表1に示す。インダクタンスの測定条件は、通電電流(直流):350Aとした。   Using the AC-BH curve tracer, the iron loss (W) at an excitation magnetic flux density Bm: 1 kG (= 0.1 T) and a measurement frequency: 5 kHz was measured for the reactor of the produced sample Nos. 1, 2,100. The results are shown in Table 1. In addition, the inductances of the reactors of the manufactured samples No. 1, 2,100 were examined. The results are shown in Table 1. The measurement condition of the inductance was set to a current carrying current (DC): 350A.

更に、露出コア片について、給粉→加圧・圧縮・脱気→圧縮成形物の抜き出し、を一連の工程とし、この一連の工程の所要時間を測定して成形スピード(個/分)を調べた。その結果を表1に示す。   Furthermore, for the exposed core piece, powder feeding → pressurization / compression / deaeration → extraction of the compression molded product is a series of processes, and the time required for this series of processes is measured to determine the molding speed (pieces / minute). It was. The results are shown in Table 1.

加えて、露出コア片の素材に用いた圧縮成形物を連続成形した後の成形用金型の摩耗量を調べた。その結果を表1に示す。ここでは、摩耗量は、ダイの内周面における以下の箇所を測定領域とし、この測定領域の輪郭形状(プロフィール)を3次元形状測定機で測定する。測定領域は、原料粉末を完全に圧縮した状態(所定の成形圧力を負荷した状態)において、成形された圧縮成形物の外周面のうち、厚さ方向の中心部に接触する箇所とする。そして、成形前の測定領域の輪郭形状と、10,000個の圧縮成形物を成形後の測定領域の輪郭形状との差を調べ、この差の最大値を摩耗量:金型摩耗量とする。   In addition, the amount of wear of the molding die after continuously molding the compression molding used as the material of the exposed core piece was examined. The results are shown in Table 1. Here, the amount of wear is measured at the following locations on the inner peripheral surface of the die, and the contour shape (profile) of the measurement region is measured with a three-dimensional shape measuring machine. The measurement region is a portion in contact with the central portion in the thickness direction on the outer peripheral surface of the molded compression molded product in a state where the raw material powder is completely compressed (a state where a predetermined molding pressure is applied). Then, the difference between the contour shape of the measurement region before molding and the contour shape of the measurement region after molding 10,000 compression molded products is examined, and the maximum value of this difference is defined as wear amount: die wear amount.

Figure 0005845022
Figure 0005845022

表1に示すように、露出コア片の平均粒径dSが内コア片の平均粒径dMよりも大きい試料No.1,2はいずれも、両コア片の平均粒径dS,dMが同じである試料No.100と比較して、同程度以下の損失であり、かつ同程度のインダクタンスを有することが分かる。つまり、試料No.1,2はいずれも、試料No.100のリアクトルに遜色無い性能を有し、低損失であることが分かる。かつ、試料No.1,2はいずれも、試料No.100と比較して、同程度の性能を有しながら、露出コア片の成形スピードが大きく、金型摩耗量が少ないことが分かる。この理由として、試料No.1,2はいずれも、内コア片よりも体積が大きい露出コア片の平均粒径dSが内コア片の平均粒径dMよりも大きくなるように、原料粉末に粗粒粉末を利用したことや成形圧力を小さくしたことで、給粉時間や加圧時間を短縮したり、スプリングバックによる摩擦が低減されたりしたため、と考えられる。また、露出コア片の平均粒径dSが内コア片の平均粒径dMよりも大きいことに加えて、露出コア片の密度DSが内コア片の密度DMよりも小さい試料No.2は、成形スピードの更なる向上、金型摩耗量の更なる低減を図ることができることが分かる。この理由として、露出コア片の密度DSが小さくなるように成形圧力を低減したため、と考えられる。 As shown in Table 1, each of the sample Nos. 1 and 2 in which the average particle diameter d S of the exposed core piece is larger than the average particle diameter d M of the inner core piece is the average particle diameter d S , d of both core pieces. Compared to Sample No. 100 having the same M, it can be seen that the loss is about the same or less and the inductance is about the same. That is, it can be seen that both sample Nos. 1 and 2 have performance comparable to the reactor of sample No. 100 and low loss. In addition, it can be seen that Sample Nos. 1 and 2 both have the same performance as Sample No. 100, but have a high molding speed of the exposed core piece and a small amount of die wear. The reason for this is that both sample Nos. 1 and 2 are raw material powders so that the average particle diameter d S of the exposed core piece having a larger volume than the inner core piece is larger than the average particle diameter d M of the inner core piece. This is probably because the use of coarse powder and the reduction of the molding pressure shortened the powder feeding time and pressurizing time and reduced the friction caused by springback. Further, in addition to the average particle diameter d S of the exposed core piece being larger than the average particle diameter d M of the inner core piece, the sample No. in which the density D S of the exposed core piece is smaller than the density D M of the inner core piece. 2 shows that the molding speed can be further improved and the die wear amount can be further reduced. This is probably because the molding pressure was reduced so that the density D S of the exposed core pieces was reduced.

また、試料No.2は、内コア片の密度DM:7.2g/cm3に対して、露出コア片の密度DSが7.0g/cm3であることから、密度の比:DS/DM≒0.972であり、密度の比:DS/DM=1である試料No.100に対して、軽量化が図れることが分かる。この試験では、70mm×50mm×25mmの露出コア片を二つ具えることから、試料No.2は、試料No.100に対して、(7.2−7.0)g/cm3×(7.0cm×5.0cm×2.5cm)×2個=35gの軽量化が図れる。従って、試料No.2のリアクトルは、グラムオーダーの軽量化が求められる車載部品に好適に利用できるといえる。 Sample No. 2 has an inner core piece density D M of 7.2 g / cm 3 and an exposed core piece density D S of 7.0 g / cm 3 , so the density ratio: D S / It can be seen that the weight can be reduced with respect to the sample No. 100 in which D M ≈0.972 and the density ratio: D S / D M = 1. In this test, two exposed core pieces of 70 mm × 50 mm × 25 mm are provided, so that sample No. 2 is (7.2−7.0) g / cm 3 × (7.0 cm × 5.0) with respect to sample No. 100. (cm x 2.5cm) x 2 pieces = 35g can be reduced in weight. Therefore, it can be said that the reactor of sample No. 2 can be suitably used for in-vehicle components that are required to be reduced in weight on the order of grams.

また、この試験から、内コア片の平均粒径dMに対する露出コア片の平均粒径dSの比:dS/dMが1超10以下(この試験では、2以上)であったり、内コア片の平均粒径dMが20μm以上100μm以下、露出コア片の平均粒径dSが100μm以上200μm以下(この試験では、内コア片:50μm、露出コア片:100μm)であれば、成形スピードを大きくでき、かつ摩擦量の低減を十分に図ることができることが分かる。従って、露出コア片・内コア片の平均粒径を上記範囲に調整することで、所望の性能(鉄損やインダクタンス)が実質的に変化しない範囲で、生産性の向上を図ることができるといえる。 Further, from this test, the ratio of the average particle diameter d S of the exposed core piece to the average particle diameter d M of the inner core piece: d S / d M is more than 1 and 10 or less (in this test, 2 or more), If the average particle diameter d M of the inner core piece is 20 μm or more and 100 μm or less, and the average particle diameter d S of the exposed core piece is 100 μm or more and 200 μm or less (in this test, the inner core piece: 50 μm, the exposed core piece: 100 μm), It can be seen that the molding speed can be increased and the friction amount can be sufficiently reduced. Therefore, by adjusting the average particle size of the exposed core piece and the inner core piece to the above range, it is possible to improve productivity within a range where the desired performance (iron loss and inductance) does not substantially change. I can say that.

以上から、一対のコイル素子と、圧粉成形体からなる複数のコア片を組み合せて環状に形成される磁心とを具える磁気回路部品として、コイル素子から露出された露出コア部を構成する露出コア片の平均粒径dSを、コイル素子内に配置される内側コア部を構成する内コア片の平均粒径dMよりも大きくすることで、生産性に優れるリアクトルなどの磁気回路部品が得られる、といえる。 From the above, as a magnetic circuit component comprising a pair of coil elements and a magnetic core formed in an annular shape by combining a plurality of core pieces made of a powder compact, an exposed core part exposed from the coil elements is formed. By making the average particle diameter d S of the core piece larger than the average particle diameter d M of the inner core piece constituting the inner core portion arranged in the coil element, a magnetic circuit component such as a reactor having excellent productivity can be obtained. It can be said that it is obtained.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、各コア片の材質・平均粒径・形状、内コア片・露出コア片の数などを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the material / average particle diameter / shape of each core piece, the number of inner core pieces / exposed core pieces, and the like can be appropriately changed.

本発明磁気回路部品は、各種のリアクトル(車載部品、発電・変電設備の部品など)に好適に利用することができる。特に、本発明磁気回路部品は、ハイブリッド自動車や電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータといった車載用電力変換装置に具えるリアクトルに好適に利用することができる。   The magnetic circuit component of the present invention can be suitably used for various reactors (on-vehicle components, components for power generation / transforming equipment, etc.). In particular, the magnetic circuit component of the present invention can be suitably used for a reactor provided in an in-vehicle power conversion device such as an in-vehicle converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.

1 リアクトル 2 コイル 2a,2b コイル素子 2w 巻線 2r 連結部
3 磁心 31 内側コア部 31m 内コア片 31g ギャップ材
32 露出コア部 32m 露出コア片 32u,32d 角丸め台形状面 32e 内端面
1 Reactor 2 Coil 2a, 2b Coil element 2w Winding 2r Connection
3 Magnetic core 31 Inner core part 31m Inner core piece 31g Gap material
32 Exposed core part 32m Exposed core piece 32u, 32d Rounded trapezoidal surface 32e Inner end face

Claims (5)

筒状のコイルと、
前記コイル内に配置される内側コア部と、前記コイルから露出された露出コア部とによって閉磁路を形成する磁心とを具える磁気回路部品であって、
前記磁心は、軟磁性粉末からなる圧粉成形体から構成される複数のコア片を具え、
前記露出コア部を構成するコア片を露出コア片、前記内側コア部を構成するコア片を内コア片とするとき、前記露出コア部を構成する少なくとも一つの露出コア片の平均粒径dSが、前記内側コア部を構成する少なくとも一つの内コア片の平均粒径dMよりも大きい磁気回路部品。
A cylindrical coil;
A magnetic circuit component comprising an inner core portion disposed in the coil and a magnetic core that forms a closed magnetic path with an exposed core portion exposed from the coil,
The core may comprise a plurality of core pieces composed of green compact made of a soft magnetic powder,
When the core piece constituting the exposed core portion is an exposed core piece and the core piece constituting the inner core portion is an inner core piece, the average particle diameter d S of at least one exposed core piece constituting the exposed core portion but at least one average particle diameter d magnitude I磁 magnetic circuit components than M of the inner core piece constituting the inner core portion.
前記内コア片の平均粒径dMに対する前記露出コア片の平均粒径dSの比をdS/dMとするとき、dS/dMが1超10以下である請求項1に記載の磁気回路部品。 When the ratio of the average particle diameter d S of the exposed core pieces to the average particle diameter d M of the inner core piece and d S / d M, Motomeko 1 d S / d M is Ru der than 1 to 10 The magnetic circuit component described in 1. 前記内コア片の平均粒径dMが20μm以上100μm以下であり、
前記露出コア片の平均粒径dSが100μm以上200μm以下である請求項1又は請求項2に記載の磁気回路部品。
The average particle size d M of the inner core piece is at 20μm or 100μm or less,
The magnetic circuit component according to Motomeko 1 or claim 2 average particle diameter d S is Ru der least 200μm below 100μm of the exposed core pieces.
前記コイルは、一対の筒状のコイル素子を有し、
前記磁心は、各コイル素子内に配置される一対の内側コア部と、前記コイル素子が配置されず、前記コイル素子から露出された一対の露出コア部とを具え、これら内側コア部と露出コア部とを組み合せて環状に形成され、
各内側コア部はそれぞれ、1以上の前記内コア片で構成され、各露出コア部はそれぞれ、1以上の前記露出コア片で構成されている請求項1〜請求項3のいずれか1項に記載の磁気回路部品。
The coil has a pair of cylindrical coil elements,
The magnetic core includes a pair of inner core portions disposed in each coil element, and a pair of exposed core portions exposed from the coil element, where the coil elements are not disposed, and the inner core portion and the exposed core. It is formed into a ring by combining the parts,
Each Each inner core portion is composed of one or more of the inner core piece, each of the exposed core portion, Motomeko 1 any one of claims 3 that consists of one or more of the exposed core pieces The magnetic circuit component described in 1.
前記磁気回路部品は、リアクトルである請求項1〜請求項4のいずれか1項に記載の磁気回路部品。 The magnetic circuit component, the magnetic circuit component according to any one of the reactor der Ru請 Motomeko 1 to claim 4.
JP2011171279A 2011-08-04 2011-08-04 Magnetic circuit parts Active JP5845022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171279A JP5845022B2 (en) 2011-08-04 2011-08-04 Magnetic circuit parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171279A JP5845022B2 (en) 2011-08-04 2011-08-04 Magnetic circuit parts

Publications (2)

Publication Number Publication Date
JP2013038133A JP2013038133A (en) 2013-02-21
JP5845022B2 true JP5845022B2 (en) 2016-01-20

Family

ID=47887487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171279A Active JP5845022B2 (en) 2011-08-04 2011-08-04 Magnetic circuit parts

Country Status (1)

Country Link
JP (1) JP5845022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715886B (en) 2013-12-12 2018-11-13 伊顿公司 A kind of integrated inductor
JP2017079221A (en) * 2015-10-19 2017-04-27 スミダコーポレーション株式会社 Coil component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168610A (en) * 2001-11-29 2003-06-13 Toko Inc Inductance element
JP4289665B2 (en) * 2003-07-30 2009-07-01 株式会社豊田中央研究所 Reactor, reactor core and manufacturing method thereof
JP2008041876A (en) * 2006-08-04 2008-02-21 Sumitomo Electric Ind Ltd Reactor
JP5459120B2 (en) * 2009-07-31 2014-04-02 住友電気工業株式会社 Reactor, reactor parts, and converter

Also Published As

Publication number Publication date
JP2013038133A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5032690B1 (en) Compacted body
JP6098786B2 (en) Composite material, reactor, converter, and power converter
JP5991460B2 (en) Composite material, reactor core, and reactor
JP5096605B2 (en) Outer core manufacturing method, outer core, and reactor
CN103430249B (en) Composite material, reactor magnetic core, reactor, converter and power converter arrangement
CN106663513B (en) Magnetic core, the manufacturing method of magnetic core and coil component
KR102104701B1 (en) Compressed powder core, method of manufacturing the compressed powder core, inductor comprising the compressed powder core and electronic-electric device mounted with the inductor
US9859044B2 (en) Powder magnetic core and reactor using the same
JP5445801B2 (en) Reactor and booster circuit
JP5919144B2 (en) Iron powder for dust core and method for producing dust core
CN109716454B (en) Magnetic core and coil component
JP5845022B2 (en) Magnetic circuit parts
JP6226047B2 (en) Composite material, reactor core, and reactor
JP2017017326A (en) Composite material, reactor-use core, and reactor
JP5922887B2 (en) Method for producing a green compact, a green compact, and a reactor
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP5845141B2 (en) Compact body, reactor core, and magnetic circuit component
JP2013038132A (en) Magnetic circuit component
JP6174954B2 (en) Method for producing a green compact
WO2020090405A1 (en) Powder compression-molded core, method for producing powder compression-molded core, inductor having powder compression-molded core, and electronic/electrical device having said inductor
JP5831941B2 (en) Manufacturing method of outer core
JP2021036577A (en) Dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5845022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250