JP2017011073A - Powder-compact magnetic core and method of manufacturing power-compact magnetic core - Google Patents

Powder-compact magnetic core and method of manufacturing power-compact magnetic core Download PDF

Info

Publication number
JP2017011073A
JP2017011073A JP2015124026A JP2015124026A JP2017011073A JP 2017011073 A JP2017011073 A JP 2017011073A JP 2015124026 A JP2015124026 A JP 2015124026A JP 2015124026 A JP2015124026 A JP 2015124026A JP 2017011073 A JP2017011073 A JP 2017011073A
Authority
JP
Japan
Prior art keywords
powder
mass
soft magnetic
oxide
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015124026A
Other languages
Japanese (ja)
Inventor
繁樹 江頭
Shigeki Egashira
繁樹 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2015124026A priority Critical patent/JP2017011073A/en
Publication of JP2017011073A publication Critical patent/JP2017011073A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a powder-compact magnetic core whose soft magnetic particle is made of an Fe-Si-based alloy and which has a high density and a low coercive force.SOLUTION: Disclosed is a powder-compact magnetic core which includes: a plurality of soft magnetic particles; and an insulation coating covering each surface of the soft magnetic particles. The soft magnetic particle contains Si of 3 mass% or more and 10 mass% or less, and P of 0.4 mass% or more and 1.8 mass% or less, and the balance is an Fe-Si-based alloy particle composed of Fe and inevitable impurities. The insulation coating is an oxide material containing an oxide of Fe, an oxide of Si and an oxide of P. In the powder-compact magnetic core, the relative density is 93% or more.SELECTED DRAWING: Figure 1

Description

本発明は、リアクトルやインダクタといった回路部品に備える磁心などに利用される圧粉磁心、及び圧粉磁心の製造方法に関するものである。特に、軟磁性粒子がFe−Si−P系合金からなり、高密度で低保磁力な圧粉磁心に関する。   The present invention relates to a dust core used for a magnetic core provided in a circuit component such as a reactor or an inductor, and a method for manufacturing a dust core. In particular, the present invention relates to a dust core in which soft magnetic particles are made of an Fe-Si-P alloy and have a high density and a low coercive force.

スイッチング電源やDC/DCコンバータなどのエネルギーを変換する回路に備える部品として、巻線を巻回してなるコイルと、このコイルが配置され、閉磁路を形成する磁心とを備える磁気部品がある。上記磁心として、軟磁性材料からなる粉末を用いて製造される圧粉磁心がある。圧粉磁心は、代表的には、軟磁性粒子の表面に絶縁層を有する被覆軟磁性粒子の粉末を所定の形状に加圧成形して成形体とし、その成形体に熱処理を施すことで製造される。   As a component provided in a circuit for converting energy, such as a switching power supply or a DC / DC converter, there is a magnetic component including a coil formed by winding a winding and a magnetic core in which the coil is disposed to form a closed magnetic circuit. As the magnetic core, there is a powder magnetic core manufactured using a powder made of a soft magnetic material. A dust core is typically manufactured by press-molding a powder of coated soft magnetic particles having an insulating layer on the surface of soft magnetic particles into a predetermined shape, and subjecting the formed product to heat treatment. Is done.

軟磁性材料のうち、特に、センダストに代表されるFe−Si−Al系合金やFe−Si系合金といった鉄基合金は、例えば、純鉄に比較して鉄損を低減し易い。従って、上記鉄基合金から構成される圧粉磁心は、より低損失な磁心を構築できる(例えば、特許文献1)。   Among soft magnetic materials, iron-based alloys such as Fe-Si-Al alloys and Fe-Si alloys typified by Sendust are particularly easy to reduce iron loss compared to pure iron, for example. Therefore, the powder magnetic core comprised from the said iron-base alloy can construct | assemble a lower-loss magnetic core (for example, patent document 1).

特開2012−107330号公報JP 2012-107330 A

しかし、上述の鉄基合金は、添加元素の固溶体硬化によって純鉄に比較して非常に硬く塑性変形性に劣る。そのため、鉄基合金粒子は、上述の加圧成形によって、実質的に塑性変形しない。よって、圧粉磁心を構成する個々の鉄基合金粒子間に空隙が多くなり、圧粉磁心の密度の低下を招き、磁気特性が低下する。   However, the iron-based alloy described above is very hard and inferior in plastic deformability compared to pure iron due to solid solution hardening of the additive element. Therefore, the iron-base alloy particles are not substantially plastically deformed by the above-described pressure forming. Therefore, voids increase between the individual iron-base alloy particles constituting the dust core, leading to a decrease in the density of the dust core, resulting in a decrease in magnetic properties.

本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、軟磁性粒子がFe−Si−P系合金からなり、高密度で低保磁力な圧粉磁心を提供することにある。また、本発明の別の目的は、軟磁性粒子がFe−Si−P系合金からなり、高密度で低保磁力な圧粉磁心を効率的に得られる圧粉磁心の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a dust core having a high density and a low coercive force, in which soft magnetic particles are made of an Fe-Si-P alloy. It is in. Another object of the present invention is to provide a method for producing a dust core in which soft magnetic particles are made of an Fe-Si-P alloy, and a dust core with high density and low coercivity can be efficiently obtained. It is in.

本発明の一態様に係る圧粉磁心は、複数の軟磁性粒子と、前記軟磁性粒子の各々の表面を覆う絶縁被覆と、を備える。前記軟磁性粒子は、Siを3質量%以上10質量%以下、Pを0.4質量%以上1.8質量%以下含有し、残部がFe及び不可避不純物からなるFe−Si−P系合金粒子であり、前記絶縁被覆は、Feの酸化物と、Siの酸化物と、Pの酸化物と、を含む酸化物材であり、相対密度が93%以上である。   A dust core according to an aspect of the present invention includes a plurality of soft magnetic particles and an insulating coating that covers the surface of each of the soft magnetic particles. The soft magnetic particles are Fe-Si-P based alloy particles containing 3 mass% to 10 mass% of Si, 0.4 mass% to 1.8 mass% of P, and the balance being Fe and inevitable impurities. The insulating coating is an oxide material containing an oxide of Fe, an oxide of Si, and an oxide of P, and has a relative density of 93% or more.

本発明の一態様に係る圧粉磁心の製造方法は、準備工程と、成形工程と、焼結工程と、を備える。準備工程は、原料粉末として、Siの含有量が2質量%以下であるFe−Si系合金からなる低Si粉末と、Siの含有量が9質量%以上であるFe−Si系合金からなる高Si粉末と、Pの含有量が15質量%以上36質量%以下であるFe−P系合金粉末と、Siの酸化物を含む酸化物粉末と、が混合された混合粉末を準備する。成形工程は、前記混合粉末を加圧圧縮して成形体とする。焼結工程は、前記成形体を1000℃以上1300℃以下の温度にて焼結する。前記焼結工程は、一次焼結工程と、二次焼結工程と、を備える。一次焼結工程は、実質的に酸素を含まない雰囲気中で焼結を行い、前記低Si粉末及び前記高Si粉末を、Siの含有量が3質量%以上10質量%以下、Pの含有量が0.4質量%以上1.8質量%以下であるFe−Si−P系合金からなる複数の軟磁性粒子とする。二次焼結工程は、前記一次焼結工程の後、酸素を含む雰囲気中で焼結を行い、前記軟磁性粒子の各々の周囲を、Feの酸化物と、Siの酸化物と、Pの酸化物と、を含む酸化物材で覆う。   The manufacturing method of the powder magnetic core which concerns on 1 aspect of this invention is equipped with a preparatory process, a formation process, and a sintering process. The preparation step includes, as a raw material powder, a low Si powder composed of an Fe—Si based alloy having a Si content of 2% by mass or less and a high Si composed of an Fe—Si based alloy having a Si content of 9% by mass or more. A mixed powder is prepared by mixing Si powder, Fe-P alloy powder having a P content of 15% by mass to 36% by mass, and oxide powder containing Si oxide. In the molding step, the mixed powder is pressed and compressed to form a molded body. A sintering process sinters the said molded object at the temperature of 1000 degreeC or more and 1300 degrees C or less. The sintering process includes a primary sintering process and a secondary sintering process. In the primary sintering step, sintering is performed in an atmosphere substantially free of oxygen, and the Si content is 3% by mass or more and 10% by mass or less, and the P content is low. A plurality of soft magnetic particles made of an Fe—Si—P-based alloy having a content of 0.4 mass% to 1.8 mass%. In the secondary sintering step, after the primary sintering step, sintering is performed in an atmosphere containing oxygen, and around each of the soft magnetic particles, an Fe oxide, a Si oxide, and a P And an oxide material containing the oxide.

上記圧粉磁心は、軟磁性粒子がFe−Si−P系合金からなり、高密度で低保磁力である。   In the dust core, soft magnetic particles are made of an Fe-Si-P alloy, and have a high density and a low coercive force.

上記圧粉磁心の製造方法は、軟磁性粒子がFe−Si−P系合金からなり、高密度で低保磁力な圧粉磁心を生産性よく製造することができる。   In the method of manufacturing the dust core, a soft magnetic particle is made of an Fe-Si-P alloy, and a dust core having a high density and a low coercive force can be manufactured with high productivity.

実施形態に係る圧粉磁心を製造する状態を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the state which manufactures the powder magnetic core which concerns on embodiment.

[本発明の実施形態の説明]
Fe−Si系合金では、Siの含有量が6.5質量%近傍であると、保磁力が最も小さくなることが知られている。低保磁力な圧粉磁心を製造するにあたり、例えば、Fe−6.5質量%Si合金からなる合金粉末を用いて焼結することが考えられる。しかし、Fe−Si系合金では、Siの含有量が高いほど、高硬度となって塑性変形性に劣るため、高密度の圧粉磁心を得ることが困難である。そこで、Siの含有量が6.5質量%近傍であるFe−Si系合金(以下、Fe−6.5Si系合金と呼ぶことがある)からなる圧粉磁心を製造するにあたり、原料粉末として、Siの含有量が2質量%以下であるFe−Si系合金からなる低Si粉末を用いることで塑性変形性を向上させることを検討した。このとき、Fe−6.5Si系合金からなる合金粒子と、この合金粒子の表面を覆う絶縁被覆と、を有する被覆軟磁性粒子からなる圧粉磁心を得るために、原料粉末として、低Si粉末と、Siの含有量が高いFe−Si系合金からなる高Si粉末と、絶縁被覆となる酸化物粉末と、を混合した混合粉末を用いることを考えた。この混合粉末を加圧圧縮⇒焼結することで、低Si粉末と高Si粉末の各構成元素が相互拡散してFe−6.5Si系合金粒子からなる粉末となり、焼結によって液相となった酸化物粉末が各Fe−6.5Si系合金粒子の表面を覆うことで絶縁被覆となると考えられるからである。
[Description of Embodiment of the Present Invention]
It is known that the coercive force of the Fe—Si alloy is the smallest when the Si content is around 6.5 mass%. In manufacturing a dust core having a low coercive force, for example, it is conceivable to sinter using an alloy powder made of a Fe-6.5 mass% Si alloy. However, in Fe-Si alloys, the higher the Si content, the higher the hardness and the poorer the plastic deformability, so it is difficult to obtain a high-density dust core. Therefore, when manufacturing a dust core made of a Fe-Si based alloy (hereinafter sometimes referred to as a Fe-6.5Si based alloy) having a Si content of around 6.5 mass%, It was studied to improve plastic deformability by using a low Si powder made of an Fe—Si based alloy having a Si content of 2% by mass or less. At this time, in order to obtain a powder magnetic core made of coated soft magnetic particles having alloy particles made of Fe-6.5Si alloy and an insulating coating covering the surface of the alloy particles, a low Si powder is used as a raw material powder. Then, it was considered to use a mixed powder obtained by mixing a high Si powder made of an Fe—Si based alloy having a high Si content and an oxide powder serving as an insulating coating. By compressing and compressing this mixed powder, the constituent elements of the low Si powder and the high Si powder are mutually diffused to become a powder composed of Fe-6.5Si alloy particles, which becomes a liquid phase by sintering. This is because it is considered that the oxide powder covers the surface of each Fe-6.5Si alloy particle to form an insulating coating.

ここで、Fe−Si系合金の状態図から、酸化物粉末が液相となる焼結温度(1200℃近傍)では、Siの含有量が2質量%以下であるFe−Si系合金はγ相であることが知られている。γ相はFeの自己拡散が非常に遅いため、上述したような低Si粉末と高Si粉末との間で各構成元素の相互拡散が生じ難く、焼結が進み難い。そのため、上記混合粉末を加圧圧縮⇒焼結しても、Fe−6.5Si系合金からなる合金粒子と、この合金粒子の表面を覆う絶縁被覆と、を有する被覆軟磁性粒子からなる圧粉磁心を製造することが困難であることがわかった。そこで、本発明者らが鋭意研究した結果、上記混合粉末にPを含有したFe−P系合金粉末をさらに混合し、この混合粉末を加圧圧縮⇒焼結することで、Pが固溶されたFe−6.5Si系合金からなる合金粒子と、この合金粒子の表面を覆う絶縁被覆と、を有する被覆軟磁性粒子を含む圧粉磁心が得られる、ことを見出した。以下、本発明の実施形態の内容を列記して説明する。   Here, from the phase diagram of the Fe—Si based alloy, at the sintering temperature (around 1200 ° C.) at which the oxide powder becomes a liquid phase, the Fe—Si based alloy whose Si content is 2 mass% or less is the γ phase. It is known that In the γ phase, since Fe self-diffusion is very slow, mutual diffusion of each constituent element hardly occurs between the low Si powder and the high Si powder as described above, and sintering does not proceed easily. Therefore, even if the above mixed powder is pressed, compressed, and sintered, it is a compact made of coated soft magnetic particles having alloy particles made of Fe-6.5Si alloy and an insulating coating covering the surface of the alloy particles. It has proved difficult to manufacture the magnetic core. Therefore, as a result of intensive studies by the present inventors, P-containing alloy powder containing P is further mixed with the above mixed powder, and the mixed powder is pressed, compressed and sintered, so that P is dissolved. The present inventors have found that a dust core including coated soft magnetic particles having alloy particles made of Fe-6.5Si alloy and an insulating coating covering the surface of the alloy particles can be obtained. The contents of the embodiments of the present invention will be listed and described below.

(1)実施形態に係る圧粉磁心は、複数の軟磁性粒子と、前記軟磁性粒子の各々の表面を覆う絶縁被覆と、を備える。前記軟磁性粒子は、Siを3質量%以上10質量%以下、Pを0.4質量%以上1.8質量%以下含有し、残部がFe及び不可避不純物からなるFe−Si−P系合金粒子であり、前記絶縁被覆は、Feの酸化物と、Siの酸化物と、Pの酸化物と、を含む酸化物材であり、相対密度が93%以上である。   (1) A dust core according to an embodiment includes a plurality of soft magnetic particles and an insulating coating covering each surface of the soft magnetic particles. The soft magnetic particles are Fe-Si-P based alloy particles containing 3 mass% to 10 mass% of Si, 0.4 mass% to 1.8 mass% of P, and the balance being Fe and inevitable impurities. The insulating coating is an oxide material containing an oxide of Fe, an oxide of Si, and an oxide of P, and has a relative density of 93% or more.

上記構成によれば、軟磁性粒子がSiを3質量%以上10質量%以下含有するFe−Si−P系合金粒子であるにもかかわらず、相対密度が93%以上と高密度である。よって、上記圧粉磁心は、低保磁力である。   According to the said structure, although a soft magnetic particle is Fe-Si-P type alloy particle containing 3 mass% or more and 10 mass% or less of Si, relative density is as high as 93% or more. Therefore, the dust core has a low coercive force.

(2)上記圧粉磁心の一例として、前記酸化物材の含有量は、0.5質量%以上2.0質量%以下である形態が挙げられる。   (2) As an example of the dust core, the oxide material may have a content of 0.5% by mass or more and 2.0% by mass or less.

酸化物材の含有量が0.5質量%以上であることで、各軟磁性粒子の表面に絶縁被覆が均一に配され易い。均一な絶縁被覆の存在により、圧粉磁心の渦電流損を低減できる。一方、酸化物材の含有量が2.0質量%以下であることで、圧粉磁心における絶縁被覆量が適量となり、軟磁性粒子の量を十分とできるため、高密度の圧粉磁心を得易い。   When the content of the oxide material is 0.5% by mass or more, the insulating coating is easily provided uniformly on the surface of each soft magnetic particle. Due to the presence of the uniform insulation coating, the eddy current loss of the dust core can be reduced. On the other hand, since the content of the oxide material is 2.0% by mass or less, the insulation coating amount in the dust core becomes an appropriate amount, and the amount of soft magnetic particles can be sufficient, so that a high-density dust core is obtained. easy.

(3)上記圧粉磁心の一例として、前記圧粉磁心の任意の断面において、前記軟磁性粒子の過半数が単結晶である形態が挙げられる。   (3) As an example of the powder magnetic core, a form in which a majority of the soft magnetic particles are single crystals in an arbitrary cross section of the powder magnetic core.

軟磁性粒子が単結晶であるということは、磁化反転を阻害する結晶粒界が存在しないため保磁力を低減できる。   The fact that the soft magnetic particles are single crystals can reduce the coercive force because there are no crystal grain boundaries that inhibit magnetization reversal.

(4)上記圧粉磁心の一例として、前記軟磁性粒子が単結晶である場合、前記軟磁性粒子の単結晶の平均結晶粒径は、40μm以上300μm以下である形態が挙げられる。   (4) As an example of the powder magnetic core, when the soft magnetic particle is a single crystal, the average crystal grain size of the single crystal of the soft magnetic particle may be 40 μm or more and 300 μm or less.

軟磁性粒子の単結晶の平均結晶粒径が40μm以上であることで、保磁力を低減できる。一方、軟磁性粒子の単結晶の平均結晶粒径が300μm以下であることで、渦電流損失の増大を低減し易い。   When the average crystal grain size of the single crystal of soft magnetic particles is 40 μm or more, the coercive force can be reduced. On the other hand, when the average crystal grain size of the single crystal of soft magnetic particles is 300 μm or less, an increase in eddy current loss can be easily reduced.

(5)実施形態に係る圧粉磁心の製造方法は、準備工程と、成形工程と、焼結工程と、を備える。準備工程は、原料粉末として、Siの含有量が2質量%以下であるFe−Si系合金からなる低Si粉末と、Siの含有量が9質量%以上であるFe−Si系合金からなる高Si粉末と、Pの含有量が15質量%以上36質量%以下であるFe−P系合金粉末と、Siの酸化物を含む酸化物粉末と、が混合された混合粉末を準備する。成形工程は、前記混合粉末を加圧圧縮して成形体とする。焼結工程は、前記成形体を1000℃以上1300℃以下の温度にて焼結する。前記焼結工程は、一次焼結工程と、二次焼結工程と、を備える。一次焼結工程は、実質的に酸素を含まない雰囲気中で焼結を行い、前記低Si粉末及び前記高Si粉末を、Siの含有量が3質量%以上10質量%以下、Pの含有量が0.4質量%以上1.8質量%以下であるFe−Si−P系合金からなる複数の軟磁性粒子とする。二次焼結工程は、前記一次焼結工程の後、酸素を含む雰囲気中で焼結を行い、前記軟磁性粒子の各々の周囲を、Feの酸化物と、Siの酸化物と、Pの酸化物と、を含む酸化物材で覆う。   (5) The manufacturing method of the powder magnetic core which concerns on embodiment is equipped with a preparatory process, a formation process, and a sintering process. The preparation step includes, as a raw material powder, a low Si powder composed of an Fe—Si based alloy having a Si content of 2% by mass or less and a high Si composed of an Fe—Si based alloy having a Si content of 9% by mass or more. A mixed powder is prepared by mixing Si powder, Fe-P alloy powder having a P content of 15% by mass to 36% by mass, and oxide powder containing Si oxide. In the molding step, the mixed powder is pressed and compressed to form a molded body. A sintering process sinters the said molded object at the temperature of 1000 degreeC or more and 1300 degrees C or less. The sintering process includes a primary sintering process and a secondary sintering process. In the primary sintering step, sintering is performed in an atmosphere substantially free of oxygen, and the Si content is 3% by mass or more and 10% by mass or less, and the P content is low. A plurality of soft magnetic particles made of an Fe—Si—P-based alloy having a content of 0.4 mass% to 1.8 mass%. In the secondary sintering step, after the primary sintering step, sintering is performed in an atmosphere containing oxygen, and around each of the soft magnetic particles, an Fe oxide, a Si oxide, and a P And an oxide material containing the oxide.

上記構成によれば、原料粉末に塑性変形性に優れる低Si粉末を混合することで、圧縮成形時の塑性変形性に優れ、良好な成形性を有することができ、高密度な圧粉磁心を製造することができる。よって、成形用バインダなどを不要とできる。主に一次焼結工程において、低Si粉末と高Si粉末の各構成元素が相互拡散することで、圧粉磁心を構成する軟磁性粒子を、Siの含有量が3質量%以上10質量%以下であるFe−Si−P系合金とでき、低保磁力な圧粉磁心を製造することができる。また、主に二次焼結工程において、原料粉末に由来する酸化物材で各軟磁性粒子の周囲を覆うことができるため、原料粉末の段階で各粉末粒子の表面への絶縁被覆の形成を考慮する必要がなく、絶縁被覆を形成する工程を省略することができる。以上より、上記構成によれば、高密度で低保磁力な圧粉磁心を生産性よく製造することができる。   According to the above configuration, by mixing the raw material powder with low Si powder having excellent plastic deformability, the plastic powder has excellent plastic deformability at the time of compression molding, can have good moldability, and a high-density dust core can be obtained. Can be manufactured. Therefore, a molding binder or the like can be eliminated. Mainly in the primary sintering step, the constituent elements of the low Si powder and the high Si powder are mutually diffused, so that the soft magnetic particles constituting the dust core have a Si content of 3 mass% or more and 10 mass% or less. The Fe—Si—P-based alloy can be made, and a dust core having a low coercive force can be manufactured. In addition, since the periphery of each soft magnetic particle can be covered with an oxide material derived from the raw material powder mainly in the secondary sintering step, an insulating coating is formed on the surface of each powder particle at the raw material powder stage. There is no need to consider, and the step of forming the insulating coating can be omitted. As mentioned above, according to the said structure, the high-density and low coercive-force powder magnetic core can be manufactured with sufficient productivity.

焼結工程において、1000℃以上1300℃以下の温度にて焼結を行うことで、次の現象が生じていると考えられる。まず、一次焼結工程において、実質的に酸素を含まない雰囲気で焼結を行うことで、Fe−P系合金粉末が液相状態となり、この液相状態のFe−P系合金が低Si粉末及び高Si粉末の各粒子の結晶粒界に侵入する。このとき、低Si粉末と高Si粉末との間でFe,Siが相互拡散し、かつ液相状態のFe−P系合金から溶解したPが低Si粉末及び高Si粉末に固溶されることで、Siの含有量が3質量%以上10質量%以下、Pの含有量が0.4質量%以上1・8質量%以下であるFe−Si−P系合金からなる複数の軟磁性粒子が生成される。原料粉末にFe−P系合金粉末が混合されていることで、Fe−Si系合金がγ相(Feの自己拡散が非常に遅い)であっても、Feの自己拡散係数を向上でき、低Si粉末と高Si粉末との間でFe,Siが相互拡散を容易に行え、焼結が進む。液相状態のFe−P系合金は、各軟磁性粒子の結晶粒界に侵入するため、各軟磁性粒子の表面を覆い、各軟磁性粒子同士を絶縁する絶縁被覆となる。液相状態のFe−P系合金が各軟磁性粒子の結晶粒界に侵入することで、各軟磁性粒子は互いに近づく方向に移動し、各軟磁性粒子間の空隙が狭められる。   In the sintering process, it is considered that the following phenomenon occurs by performing sintering at a temperature of 1000 ° C. or higher and 1300 ° C. or lower. First, in the primary sintering step, sintering is performed in an atmosphere substantially free of oxygen, so that the Fe-P alloy powder becomes a liquid phase, and the Fe-P alloy in the liquid phase is a low Si powder. And enters the grain boundary of each particle of the high Si powder. At this time, Fe and Si are interdiffused between the low Si powder and the high Si powder, and P dissolved from the Fe-P alloy in the liquid phase is dissolved in the low Si powder and the high Si powder. A plurality of soft magnetic particles made of an Fe-Si-P alloy having a Si content of 3% by mass to 10% by mass and a P content of 0.4% by mass to 1.8% by mass. Generated. By mixing the Fe—P alloy powder with the raw material powder, even if the Fe—Si alloy is a γ phase (Fe self-diffusion is very slow), the self-diffusion coefficient of Fe can be improved and low Fe and Si can easily diffuse each other between the Si powder and the high Si powder, and the sintering proceeds. Since the Fe-P alloy in the liquid phase enters the crystal grain boundary of each soft magnetic particle, it becomes an insulating coating that covers the surface of each soft magnetic particle and insulates each soft magnetic particle from each other. When the Fe-P alloy in the liquid phase enters the crystal grain boundary of each soft magnetic particle, each soft magnetic particle moves in a direction approaching each other, and the gap between each soft magnetic particle is narrowed.

次に、二次焼結工程において、酸素を含む雰囲気中で焼結を行うことで、Siの酸化物が液相状態となり、かつ液相状態のFe−P系合金が酸化され、Siの酸化物と、Feの酸化物と、Pの酸化物とを含む酸化物材による絶縁被覆が生成される。その後、酸化物材が液相から固相に転移するにあたり、各軟磁性粒子は再配列され、各軟磁性粒子間の空隙がさらに縮小することで、高密度の圧粉磁心を製造することができる。   Next, in the secondary sintering step, sintering is performed in an atmosphere containing oxygen, so that the Si oxide becomes a liquid phase, and the liquid phase Fe-P alloy is oxidized. Insulating coating is produced with an oxide material containing a material, an oxide of Fe, and an oxide of P. Thereafter, as the oxide material transitions from the liquid phase to the solid phase, the soft magnetic particles are rearranged, and the voids between the soft magnetic particles are further reduced to produce a high-density powder magnetic core. it can.

[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。まず、圧粉磁心の製造方法を説明し、その後に圧粉磁心を説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。例えば、後述する試験例について原料粉末の混合割合、成形体の成形圧力、成形体の焼結温度・時間などを適宜変更することができる。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. First, the manufacturing method of a dust core will be described, and then the dust core will be described. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included. For example, in the test examples described later, the mixing ratio of the raw material powder, the molding pressure of the molded body, the sintering temperature / time of the molded body, and the like can be appropriately changed.

<圧粉磁心の製造方法>
実施形態の圧粉磁心の製造方法は、以下の準備工程、成形工程、焼結工程を備える。以下、図1に基づいて、各工程を順に説明する。
<Method of manufacturing a dust core>
The manufacturing method of the powder magnetic core of the embodiment includes the following preparation process, molding process, and sintering process. Hereinafter, each step will be described in order based on FIG.

〔準備工程〕
図1の上段左図に示すように、原料粉末として、Siの含有量が少ないFe−Si系合金からなる低Si粉末21と、Siの含有量が多いFe−Si系合金からなる高Si粉末22と、Fe−P系合金粉末23と、酸化物粉末24と、を混合した混合粉末2を準備する。
[Preparation process]
As shown in the upper left figure of FIG. 1, as raw material powder, a low Si powder 21 made of Fe-Si alloy having a low Si content and a high Si powder made of Fe-Si alloy having a high Si content. A mixed powder 2 is prepared by mixing 22, Fe—P-based alloy powder 23, and oxide powder 24.

・低Si粉末及び高Si粉末
低Si粉末(低Si軟磁性粒子)21におけるSiの含有量は、2質量%以下である。Siの含有量は、6.5質量%近傍であると低保磁力に寄与するものの、Siの含有量が多いほど高硬度となり塑性変形性の低下を招く。よって、Siの含有量が2質量%以下であることで、後述する成形工程において塑性変形性に優れ、良好な成形性を有することができる。Siの含有量は、1質量%以下が好ましく、Siを実質的に含有しない純鉄がより好ましい。純鉄は、鉄合金と比較して安価であり、経済性にも優れる。
Low Si powder and high Si powder The content of Si in the low Si powder (low Si soft magnetic particles) 21 is 2% by mass or less. If the Si content is in the vicinity of 6.5% by mass, it contributes to a low coercive force. However, the higher the Si content, the higher the hardness and the lower the plastic deformability. Therefore, when the Si content is 2% by mass or less, it is excellent in plastic deformability in the molding process described later, and can have good moldability. The content of Si is preferably 1% by mass or less, and more preferably pure iron containing substantially no Si. Pure iron is less expensive and more economical than iron alloys.

Fe−Si系合金は、900℃〜1400℃程度の領域において、Siの含有量によってα相とγ相との間で相変態する領域が存在する。γ相はFeの自己拡散が非常に遅い領域であり、後述する焼結工程において、低Si粉末と高Si粉末との間で各構成元素の相互拡散が生じ難く、焼結が進み難い領域である。ここで言う低Si粉末は、一次焼結工程の焼結温度(後述する焼結工程において説明する)において、Siの含有量がγ相の領域に位置するFe−Si系合金からなる。このγ相の領域は、代表的にはFe−P系合金粉末23及び酸化物粉末24が液相となる焼結温度では、Siの含有量が約2質量%以下である。   In the Fe—Si based alloy, in a region of about 900 ° C. to 1400 ° C., there is a region that undergoes phase transformation between the α phase and the γ phase depending on the Si content. The γ phase is a region where the self-diffusion of Fe is very slow. In the sintering process described later, mutual diffusion of each constituent element is difficult to occur between the low Si powder and the high Si powder, and the sintering is difficult to proceed. is there. The low Si powder mentioned here consists of an Fe—Si based alloy in which the Si content is located in the region of the γ phase at the sintering temperature of the primary sintering process (described in the sintering process described later). This γ-phase region typically has a Si content of about 2% by mass or less at a sintering temperature at which the Fe—P-based alloy powder 23 and the oxide powder 24 become a liquid phase.

高Si粉末(高Si軟磁性粒子)22におけるSiの含有量は、9質量%以上である。Siの含有量が9質量%以上であることで、後述する焼結工程において高Si粉末22から低Si粉末21にSiが十分に拡散して、Siの含有量が3質量%以上10質量%以下であるFe−Si−P系合金からなる圧粉磁心を製造し易い。Siの含有量は、多いほど焼結時に拡散するSi量が多くなって、Siの含有量が6.5質量%近傍であるFe−Si−P系合金を得易く、12質量%以上が好ましく、15質量%以上がより好ましい。   The Si content in the high Si powder (high Si soft magnetic particles) 22 is 9% by mass or more. When the Si content is 9% by mass or more, Si sufficiently diffuses from the high Si powder 22 to the low Si powder 21 in the sintering step described later, and the Si content is 3% by mass or more and 10% by mass. It is easy to manufacture a dust core made of the following Fe-Si-P alloy. As the Si content increases, the amount of Si that diffuses during sintering increases, and it is easier to obtain an Fe—Si—P-based alloy having a Si content of around 6.5% by mass, preferably 12% by mass or more. 15 mass% or more is more preferable.

低Si粉末21及び高Si粉末22は、代表的には、上述の範囲でSiを含有し、残部がFe及び不可避不純物というFe−Siの二相合金からなるものが挙げられる。   Typically, the low Si powder 21 and the high Si powder 22 include Si in the above-described range, and the balance is made of a Fe—Si two-phase alloy of Fe and inevitable impurities.

低Si粉末21及び高Si粉末22の各配合量(質量)は、低Si粉末:高Si粉末=2:1〜15:1が好ましく、3:1〜10:1がより好ましい。低Si粉末21及び高Si粉末22の各配合量は、後述するFe−P系合金粉末23及び酸化物粉末24の含有量と併せて、圧粉磁心を構成する軟磁性粒子10(Fe−Si−P系合金)中のSiの含有量が所望の値(3質量%以上10質量%以下から選択される値)となるように、各粉末のSiの含有量に応じて選択すればよい。また、高密度な圧粉磁心を得ることを考慮すると、低Si粉末21の含有量が高Si粉末22の含有量よりも多い方が好ましい。   Each compounding amount (mass) of the low Si powder 21 and the high Si powder 22 is preferably low Si powder: high Si powder = 2: 1 to 15: 1, and more preferably 3: 1 to 10: 1. The blending amounts of the low Si powder 21 and the high Si powder 22 are combined with the contents of the Fe—P alloy powder 23 and the oxide powder 24 described later, and the soft magnetic particles 10 (Fe—Si) constituting the dust core. What is necessary is just to select according to Si content of each powder so that it may become desired value (value selected from 3 mass% or more and 10 mass% or less) in Si content in -P type alloy. In consideration of obtaining a high-density powder magnetic core, the content of the low Si powder 21 is preferably larger than the content of the high Si powder 22.

低Si粉末21及び高Si粉末22の各粒子の大きさは、適宜選択することができる。成形性及び焼結性を考慮するといずれも、平均粒径は150μm以下が好ましい。特に、高Si粉末22は、低Si粉末21に比較して高硬度であり、成形性に劣ることから、低Si粉末21よりも小さい方が好ましい。具体的には、高Si粉末(各高Si軟磁性粒子)22の平均粒径は、45μm以下であると、原料粉末(混合粉末2)が成形性に優れて好ましく、さらに30μm以下、20μm以下が好ましい。但し、高Si粉末22が小さ過ぎると、取り扱い難く、作業性に劣ることから、高Si粉末(各高Si軟磁性粒子)22の平均粒径は、1μm以上が好ましく、さらに3μm以上、特に5μm以上であるとハンドリング性に優れてより好ましい。   The size of each particle of the low Si powder 21 and the high Si powder 22 can be appropriately selected. In consideration of moldability and sinterability, the average particle size is preferably 150 μm or less. In particular, the high Si powder 22 has a higher hardness than the low Si powder 21 and is inferior in moldability, so that it is preferably smaller than the low Si powder 21. Specifically, when the average particle size of the high Si powder (each high Si soft magnetic particle) 22 is 45 μm or less, the raw material powder (mixed powder 2) is preferably excellent in moldability, and further 30 μm or less and 20 μm or less. Is preferred. However, if the high Si powder 22 is too small, it is difficult to handle and the workability is inferior. Therefore, the average particle size of the high Si powder (each high Si soft magnetic particle) 22 is preferably 1 μm or more, more preferably 3 μm or more, particularly 5 μm. The above is more preferable because of excellent handling properties.

低Si粉末(低Si軟磁性粒子)21の平均粒径は、45μm以上であると、原料粉末(混合粉末2)が成形性に優れて好ましく、さらに50μm以上、70μm以上が好ましい。低Si粉末(低Si軟磁性粒子)21の平均粒径は、150μm以下であると、後述する焼結工程において、低Si合金からなる各粒子の内部にまでSiが十分に拡散できて焼結性に優れる。さらに、低Si粉末(低Si軟磁性粒子)21の平均粒径は、125μm以下、特に100μm以下であると、短時間でもSiを十分に拡散できて焼結性をさらに高め易い。また、低Si粉末(低Si軟磁性粒子)21の平均粒径は、高Si粉末(各高Si軟磁性粒子)22の平均粒径の3倍以上、さらに5倍以上であると、低Si粉末が十分に大きく、成形性に優れる。   When the average particle size of the low Si powder (low Si soft magnetic particles) 21 is 45 μm or more, the raw material powder (mixed powder 2) is preferably excellent in moldability, and more preferably 50 μm or more and 70 μm or more. When the average particle size of the low Si powder (low Si soft magnetic particles) 21 is 150 μm or less, in the sintering process described later, Si can be sufficiently diffused into each particle made of a low Si alloy and sintered. Excellent in properties. Furthermore, when the average particle size of the low Si powder (low Si soft magnetic particles) 21 is 125 μm or less, particularly 100 μm or less, Si can be sufficiently diffused even in a short time, and the sinterability can be further enhanced. The average particle size of the low Si powder (low Si soft magnetic particles) 21 is not less than 3 times, more preferably not less than 5 times the average particle size of the high Si powder (each high Si soft magnetic particle) 22. The powder is large enough and has excellent moldability.

低Si粉末21及び高Si粉末22は、公知のFe−Si系合金粉末の製造方法、例えば、アトマイズ法などを利用して製造できる。上述のSiの含有量や平均粒径を満たす市販の粉末を利用してもよい。   The low Si powder 21 and the high Si powder 22 can be manufactured using a known Fe—Si alloy powder manufacturing method, for example, an atomizing method. Commercially available powder satisfying the above-described Si content and average particle diameter may be used.

・Fe−P系合金粉末
Fe−P系合金粉末(Fe−P系合金粒子)23は、代表的には、Pを15質量%以上36質量%以下含有し、残部がFe及び不可避不純物というFe−Pの二相合金からなるものが挙げられる。Fe−P系合金粉末は、後述する焼結工程において液相状態となり、この液相状態のFe−P系合金に由来してFe−Si−P系合金粒子(軟磁性粒子)の周囲を覆う絶縁被覆を生成する。また、Fe−P系合金粉末は、後述する焼結工程において生じる低Si粉末21と高Si粉末22の各構成元素の相互拡散の促進を促す役割を行う。
-Fe-P-based alloy powder Fe-P-based alloy powder (Fe-P-based alloy particles) 23 typically contains 15 mass% or more and 36 mass% or less of P, with the balance being Fe and inevitable impurities. Examples thereof include those made of a two-phase alloy of -P. The Fe-P-based alloy powder is in a liquid phase state in a sintering step described later, and covers the periphery of the Fe-Si-P-based alloy particles (soft magnetic particles) derived from the Fe-P alloy in the liquid phase state. Produces an insulation coating. In addition, the Fe—P-based alloy powder plays a role of promoting the mutual diffusion of the constituent elements of the low Si powder 21 and the high Si powder 22 generated in the sintering process described later.

Pの含有量が15質量%以上であることで、低Si粉末は焼結温度近傍でα相となるため、Feの自己拡散係数を向上できる。よって、後述する焼結工程において低Si粉末21と高Si粉末22の各構成元素の相互拡散を容易に行うことができ、焼結を促進することができる。具体的には、Pの含有量が15質量%以上であることで、Feの自己拡散係数をγ相における自己拡散係数の100倍程度まで向上することができ、α相における自己拡散係数と同等とできる。一方、Pの含有量が36質量%以下であることで、Pによる保磁力への影響も実質的に出ない。Pの含有量は、20質量%以上33質量%以下が好ましく、25質量%以上30質量%以下がより好ましい。   When the content of P is 15% by mass or more, the low Si powder becomes an α phase in the vicinity of the sintering temperature, so that the self-diffusion coefficient of Fe can be improved. Therefore, the mutual diffusion of the constituent elements of the low Si powder 21 and the high Si powder 22 can be easily performed in the sintering step described later, and the sintering can be promoted. Specifically, when the content of P is 15% by mass or more, the self-diffusion coefficient of Fe can be improved to about 100 times the self-diffusion coefficient in the γ phase, which is equivalent to the self-diffusion coefficient in the α phase. And can. On the other hand, when the content of P is 36% by mass or less, the influence of P on the coercive force does not substantially occur. The content of P is preferably 20% by mass to 33% by mass, and more preferably 25% by mass to 30% by mass.

Fe−P系合金粉末(Fe−P系合金粒子)23の平均粒径は、45μm以下であると、原料粉末(混合粉末2)が成形性に優れて好ましく、さらに30μm以下、20μm以下が好ましい。ただし、Fe−P系合金粉末23が小さ過ぎると、取り扱い難く、作業性に劣ることから、Fe−P系合金粉末(Fe−P系合金粒子)23の平均粒径は、1μm以上が好ましく、さらに3μm以上、特に5μm以上であるとハンドリング性に優れてより好ましい。   When the average particle size of the Fe-P alloy powder (Fe-P alloy particles) 23 is 45 μm or less, the raw material powder (mixed powder 2) is preferably excellent in moldability, and more preferably 30 μm or less and 20 μm or less. . However, if the Fe-P alloy powder 23 is too small, it is difficult to handle and the workability is inferior. Therefore, the average particle diameter of the Fe-P alloy powder (Fe-P alloy particles) 23 is preferably 1 μm or more, Furthermore, it is more preferable that it is 3 μm or more, particularly 5 μm or more because of excellent handling properties.

Fe−P系合金粉末23の配合量は、混合粉末2中に1質量%以上7質量%以下が好ましい。Fe−P系合金粉末23の混合粉末2中の含有量が1質量%以上であることで、一次焼結後にFe−Si−P系合金粒子(軟磁性粒子)の周囲に均一的にFe−P系の粒界層を形成することができる。一方、Fe−P系合金粉末23の混合粉末2中の含有量が7質量%以下であることで、低Si粉末21及び高Si粉末22の含有量を適量とでき、圧粉磁心におけるFe−Si−P系合金粒子(軟磁性粒子)の含有量を十分に確保できる。   The blending amount of the Fe—P-based alloy powder 23 is preferably 1% by mass or more and 7% by mass or less in the mixed powder 2. When the content of the Fe—P based alloy powder 23 in the mixed powder 2 is 1% by mass or more, the Fe—Si—P based alloy particles (soft magnetic particles) are uniformly distributed around the Fe—Si—P based alloy particles after the primary sintering. A P-based grain boundary layer can be formed. On the other hand, when the content in the mixed powder 2 of the Fe-P alloy powder 23 is 7% by mass or less, the content of the low Si powder 21 and the high Si powder 22 can be made appropriate, and Fe— The content of Si-P alloy particles (soft magnetic particles) can be sufficiently secured.

Fe−P系合金粉末23は、所望の大きさの市販のFe−P系合金粉末を用いてもよいし、市販の粉末を粉砕して所望の大きさのものをふるいなどで選別してもよい。   The Fe-P alloy powder 23 may be a commercially available Fe-P alloy powder having a desired size, or may be obtained by pulverizing a commercially available powder and selecting a desired size by sieving. Good.

・酸化物粉末
酸化物粉末(酸化物粒子)24は、絶縁性を有する適宜な酸化物が利用でき、Siの酸化物を含む。酸化物粉末24は、後述する焼結工程において液相状態となり、この液相状態の酸化物に由来して、上述した液相状態のFe−P系合金と共にFe−Si−P系合金粒子(軟磁性粒子)の周囲を覆う絶縁被覆を生成する。酸化物粉末24は、(1)Fe−Si系合金やFe−Si−P系合金に固溶しない、もしくは固溶しても磁気特性に影響を及ぼさないもの、(2)Fe−Si系合金やFe−Si−P系合金に対して接触角が小さく(濡れ性が良く)、軟磁性粒子の結晶粒界へ液相侵入し易いもの、を含有することが挙げられる。
-Oxide powder The oxide powder (oxide particle | grains) 24 can utilize the appropriate oxide which has insulation, and contains the oxide of Si. The oxide powder 24 is in a liquid phase state in a sintering process to be described later, and is derived from the oxide in the liquid phase state, together with the Fe—P based alloy particles ( An insulating coating covering the periphery of the soft magnetic particles is generated. The oxide powder 24 is either (1) a solid solution that does not dissolve in the Fe—Si alloy or the Fe—Si—P alloy, or that does not affect the magnetic properties even if dissolved. (2) a Fe—Si alloy Or a Fe—Si—P-based alloy having a small contact angle (good wettability) and easily entering the liquid phase into the crystal grain boundary of the soft magnetic particles.

酸化物粉末(酸化物粒子)24の大きさは、平均粒径が1μm以上40μm以下であることが挙げられる。酸化物粉末(酸化物粒子)24の平均粒径が1μm以上であることで、低Si粉末21及び高Si粉末22の周囲に均一的に配され易く、さらに原料粉末(混合粉末2)として取り扱い易い。一方、酸化物粉末(酸化物粒子)24の平均粒径が40μm以下であることで、酸化物に由来して生成される絶縁被覆の厚さのばらつきを抑制し易く、磁気特性の低下を招き難い。酸化物粉末(酸化物粒子)24の平均粒径は、5μm以上30μm以下が好ましく、10μm以上30μm以下がより好ましい。   As for the size of the oxide powder (oxide particles) 24, the average particle diameter is 1 μm or more and 40 μm or less. Since the average particle diameter of the oxide powder (oxide particles) 24 is 1 μm or more, it is easily distributed uniformly around the low Si powder 21 and the high Si powder 22 and is further handled as a raw material powder (mixed powder 2). easy. On the other hand, when the average particle diameter of the oxide powder (oxide particles) 24 is 40 μm or less, it is easy to suppress variation in the thickness of the insulating coating that is generated from the oxide, leading to a decrease in magnetic properties. hard. The average particle size of the oxide powder (oxide particles) 24 is preferably 5 μm or more and 30 μm or less, and more preferably 10 μm or more and 30 μm or less.

酸化物粉末24の配合量は、混合粉末2中に0.5質量%以上2.0質量%以下が好ましい。酸化物粉末24の混合粉末2中の含有量が0.5質量%以上であることで、低Si粉末21及び高Si粉末22の周囲に均一的に配され易く、Fe−Si−P系合金粒子(軟磁性粒子)の周囲を均一的に絶縁被覆で被覆することができる。一方、酸化物粉末24の混合粉末2中の含有量が2.0質量%以下であることで、低Si粉末21及び高Si粉末22の含有量を適量とでき、圧粉磁心におけるFe−Si−P系合金粒子(軟磁性粒子)の含有量を十分に確保できる。酸化物粉末24の混合粉末2中の含有量は、さらに1質量%以上1.5質量%以下であることが挙げられる。   The blending amount of the oxide powder 24 is preferably 0.5% by mass or more and 2.0% by mass or less in the mixed powder 2. When the content of the oxide powder 24 in the mixed powder 2 is 0.5% by mass or more, it is easy to be uniformly distributed around the low Si powder 21 and the high Si powder 22, and the Fe—Si—P alloy. The periphery of the particles (soft magnetic particles) can be uniformly coated with an insulating coating. On the other hand, when the content of the oxide powder 24 in the mixed powder 2 is 2.0% by mass or less, the content of the low Si powder 21 and the high Si powder 22 can be set to appropriate amounts, and Fe—Si in the dust core. The content of -P alloy particles (soft magnetic particles) can be sufficiently secured. The content of the oxide powder 24 in the mixed powder 2 is further 1% by mass or more and 1.5% by mass or less.

酸化物粉末24の配合量は、混合粉末2中に2.0質量%超10質量%以下とすることもできる。酸化物粉末24の混合粉末2中の含有量が2.0質量%超であることで、酸化物に由来して生成される絶縁被覆の含有量を多くでき、低透磁率の圧粉磁心とできる。一方、酸化物粉末24の混合粉末2中の含有量が10質量%以下であることで、低Si粉末21及び高Si粉末22の含有量を適量とでき、圧粉磁心における軟磁性粒子の含有量を十分に確保することができる。   The blending amount of the oxide powder 24 can be more than 2.0 mass% and 10 mass% or less in the mixed powder 2. Since the content of the oxide powder 24 in the mixed powder 2 is more than 2.0% by mass, the content of the insulating coating produced from the oxide can be increased, and a low magnetic permeability powder core and it can. On the other hand, when the content of the oxide powder 24 in the mixed powder 2 is 10% by mass or less, the content of the low Si powder 21 and the high Si powder 22 can be made appropriate, and the soft magnetic particles are contained in the dust core. A sufficient amount can be secured.

酸化物粉末24は、Caの酸化物を含むことができる。Caは、Fe−Si系合金やFe−Si−P系合金に固溶しないため磁気特性を低下させ難い。また、Caの酸化物を添加した酸化物粉末24は、液相状態で表面張力が小さくなるため、結晶粒界間に侵入し易い点で好ましい。他に、酸化物粉末24は、Alを含むこともできる。AlはFe−Si系合金やFe−Si−P系合金に固溶するものの、固溶によって磁気特性の低下を招き難い。 The oxide powder 24 can include an oxide of Ca. Since Ca does not form a solid solution in the Fe—Si based alloy or Fe—Si—P based alloy, it is difficult to lower the magnetic properties. Further, the oxide powder 24 to which Ca oxide is added is preferable in that the surface tension becomes small in the liquid phase state, and therefore, the oxide powder 24 easily enters between crystal grain boundaries. In addition, the oxide powder 24 may include Al 2 O 3 . Although Al dissolves in a Fe—Si based alloy or a Fe—Si—P based alloy, it is difficult to cause a decrease in magnetic properties due to the solid solution.

酸化物粉末24は、所望の大きさの市販の酸化物粉末を用いてもよいし、市販の粉末を粉砕して所望の大きさのものをふるいなどで選別してもよい。   As the oxide powder 24, a commercially available oxide powder having a desired size may be used, or a commercially available powder may be pulverized and screened for a desired size.

・原料粉末に含まれるその他のもの
原料粉末(混合粉末2)には、潤滑剤を含有させることができる。この場合、(1)成形性を向上でき、寸法精度に優れる成形体が得られる、(2)成形時の摩擦を低減できるため、金型から成形体を抜き出し易く、表面性状に優れる成形体が得られる、といった利点を有する。潤滑剤は、例えば、ステアリン酸リチウム、ステアリン酸亜鉛などの金属石鹸、ステアリン酸アミドなどの脂肪酸アミド、エチレンビスステアリン酸アミドなどの高級脂肪酸アミドといった有機物、窒化硼素やグラファイトなどの無機物などが挙げられる。潤滑剤の含有量は、原料粉末に用いる低Si粉末及び高Si粉末の合計量(潤滑剤を含まないSi粉末のみの量)に対して0.1質量%以上1.0質量%以下であると、上記利点を十分に得られる上に、原料における合金の割合の低下を防止できる。
-Others contained in raw material powder The raw material powder (mixed powder 2) can contain a lubricant. In this case, (1) a mold with improved moldability and excellent dimensional accuracy can be obtained. (2) Since the friction during molding can be reduced, the molded article can be easily extracted from the mold and has excellent surface properties. It has the advantage that it is obtained. Examples of the lubricant include metal soaps such as lithium stearate and zinc stearate, fatty acid amides such as stearic acid amide, organic substances such as higher fatty acid amides such as ethylenebisstearic acid amide, and inorganic substances such as boron nitride and graphite. . The content of the lubricant is 0.1% by mass or more and 1.0% by mass or less with respect to the total amount of the low Si powder and the high Si powder used for the raw material powder (the amount of only the Si powder not containing the lubricant). In addition, the above advantages can be sufficiently obtained, and a decrease in the proportion of the alloy in the raw material can be prevented.

〔成形工程〕
準備した混合粉末2を加圧圧縮して成形体を成形する。成形体は、混合粉末2を所望の形状の金型の成形空間に充填して成形する。金型は、圧粉磁心の製造に利用される一般的なものが利用できる。代表的な金型は、貫通孔が設けられた筒状のダイと、この貫通孔に挿入配置されて原料粉末を加圧圧縮する上パンチ及び下パンチとを備えるものが挙げられる。ダイの貫通孔の内周面と、この貫通孔の一方の開口部に挿入した下パンチとで形成される成形空間に、上述の混合粉末2を充填した後、上記貫通孔の他方の開口部に挿入した上パンチと、上記下パンチとで原料粉末を所定の圧力で加圧・圧縮して成形体を形成し、ダイから成形体を抜き出す。この金型を用いた場合、ダイの輪郭形状、及び上パンチ・下パンチの端面形状に応じた柱状の成形体が得られる。上述の筒状のダイ内に挿通配置されるコアロッドを備える金型を用いると、コアロッドの形状に応じた貫通孔や溝を有する成形体を形成できる。コアロッドは、上パンチ及び下パンチの少なくとも一方に挿通配置する。
[Molding process]
The prepared mixed powder 2 is compressed under pressure to form a compact. The formed body is formed by filling the mixed powder 2 into a forming space of a mold having a desired shape. As the mold, a general mold used for manufacturing a dust core can be used. A typical mold includes a cylindrical die provided with a through hole, and an upper punch and a lower punch that are inserted into the through hole and compress the raw material powder under pressure. After filling the above-mentioned mixed powder 2 into the molding space formed by the inner peripheral surface of the through hole of the die and the lower punch inserted into one opening of this through hole, the other opening of the above through hole The raw powder is pressed and compressed at a predetermined pressure with the upper punch inserted into the upper punch and the lower punch to form a molded body, and the molded body is extracted from the die. When this mold is used, a columnar shaped body corresponding to the contour shape of the die and the end face shapes of the upper punch and the lower punch is obtained. When a mold including a core rod inserted and disposed in the above-described cylindrical die is used, a molded body having a through hole or a groove corresponding to the shape of the core rod can be formed. The core rod is inserted and disposed in at least one of the upper punch and the lower punch.

成形圧力は、例えば、5ton/cm(≒490MPa)以上15ton/cm(≒1470MPa)以下が挙げられる。5ton/cm以上とすることで、高硬度な高Si粉末を含む混合粉末2であっても十分に圧縮でき、15ton/cm以下とすることで、金型寿命が過度に短くならない。この加圧・圧縮は、常温下で行うことが好ましい。 Examples of the molding pressure include 5 ton / cm 2 (≈490 MPa) to 15 ton / cm 2 (≈1470 MPa). By setting it to 5 ton / cm < 2 > or more, even if it is the mixed powder 2 containing high hardness high Si powder, it can fully compress, and a mold life does not become excessively short by setting it to 15 ton / cm < 2 > or less. This pressurization / compression is preferably performed at room temperature.

上述した条件で加圧圧縮すると、図1の上段右図に示すように、低Si粉末21(複数の低Si軟磁性粒子)が塑性変形し、成形性に優れた成形体3とできる。   When the pressure compression is performed under the above-described conditions, as shown in the upper right diagram of FIG. 1, the low Si powder 21 (plural low Si soft magnetic particles) is plastically deformed, and a molded body 3 excellent in moldability can be obtained.

〔焼結工程〕
上記成形体3を1000℃以上1300℃以下の温度にて焼結を行い、圧粉磁心を成形する。焼結温度が上記範囲であることで、Fe−P系合金粉末23及び酸化物粉末24が液相となり、この液相を介して低Si粉末21と高Si粉末22との間でFe,Siが相互拡散できる。焼結温度が1000℃以上であることで、低Si粉末21と高Si粉末22との間でFe,Siが相互拡散し易く、Fe−Si系合金中のSiの含有量が所望の値(3質量%以上10質量%以下から選択された値)となる圧粉磁心が得られる。また、Fe−P系合金粉末23及び酸化物粉末24が液相となって各軟磁性粒子間に液相侵入することができ、各軟磁性粒子間を適切に絶縁する絶縁被覆となる。一方、焼結温度が1300℃以下であることで、融点(液相点)が低い高Si合金が焼結する前に溶出することを抑制できる。焼結温度は、より好ましくは1100℃以上1275℃以下、特に好ましくは1150℃以上1250℃以下が挙げられる。保持時間は5分以上、好ましくは30分以上が挙げられる。
[Sintering process]
The molded body 3 is sintered at a temperature of 1000 ° C. or higher and 1300 ° C. or lower to form a dust core. When the sintering temperature is in the above range, the Fe-P alloy powder 23 and the oxide powder 24 become a liquid phase, and Fe, Si between the low Si powder 21 and the high Si powder 22 through this liquid phase. Can be interdiffused. When the sintering temperature is 1000 ° C. or higher, Fe and Si are easily diffused between the low Si powder 21 and the high Si powder 22, and the content of Si in the Fe—Si alloy is a desired value ( A dust core having a value selected from 3% by mass to 10% by mass) is obtained. Further, the Fe—P-based alloy powder 23 and the oxide powder 24 become a liquid phase and can enter the liquid phase between the soft magnetic particles, thereby providing an insulating coating that appropriately insulates the soft magnetic particles. On the other hand, when the sintering temperature is 1300 ° C. or lower, it is possible to suppress elution before the high Si alloy having a low melting point (liquidus point) is sintered. The sintering temperature is more preferably 1100 ° C. or more and 1275 ° C. or less, particularly preferably 1150 ° C. or more and 1250 ° C. or less. The holding time is 5 minutes or more, preferably 30 minutes or more.

本実施形態の圧粉磁心の製造方法では、上述した焼結温度と保持時間内において、一次焼結工程⇒二次焼結工程を行う。以下、図1の下段図に基づいて、一次焼結工程及び二次焼結工程を行うことで生じるメカニズムについて詳しく説明する。   In the method for manufacturing a powder magnetic core according to the present embodiment, the primary sintering step ⇒ the secondary sintering step is performed within the above-described sintering temperature and holding time. Hereinafter, the mechanism generated by performing the primary sintering process and the secondary sintering process will be described in detail based on the lower diagram of FIG.

≪一次焼結工程≫
一次焼結工程は、実質的に酸素を含まない雰囲気中で焼結を行う。ここで言う実質的に酸素を含まない雰囲気とは、酸素分圧が1×10−5atm(1Pa)未満のことである。一次焼結を行うと、まず、図1の下段左図に示すように、Fe−P系合金粉末23が液相(液相介在部材44)となると共に、低Si粉末21と高Si粉末との間でFe,Siが相互拡散し、両Si粉末はSiを3質量%以上10質量%以下含有する多結晶軟磁性粒子40からなる粉末となる。このとき、液相介在部材44に含有されるPが低Si粉末に固溶することによって低Si粉末はα相となり、低Si粉末21と高Si粉末22との間で各構成元素の相互拡散が促進され、焼結が進む。上記固溶により、多結晶軟磁性粒子40は、Pを0.4質量%以上1.8質量%以下含有する。
≪Primary sintering process≫
In the primary sintering step, sintering is performed in an atmosphere substantially free of oxygen. The atmosphere that does not substantially contain oxygen here means that the oxygen partial pressure is less than 1 × 10 −5 atm (1 Pa). When primary sintering is performed, first, as shown in the lower left diagram of FIG. 1, the Fe—P alloy powder 23 becomes a liquid phase (liquid phase interposing member 44), and the low Si powder 21 and the high Si powder Fe and Si are interdiffused between the two, and both Si powders are powders composed of polycrystalline soft magnetic particles 40 containing 3 mass% or more and 10 mass% or less of Si. At this time, P contained in the liquid phase interposing member 44 is dissolved in the low Si powder, so that the low Si powder becomes an α phase, and the mutual diffusion of each constituent element between the low Si powder 21 and the high Si powder 22. Is promoted and sintering proceeds. Due to the above solid solution, the polycrystalline soft magnetic particles 40 contain 0.4 mass% or more and 1.8 mass% or less of P.

次に、多結晶軟磁性粒子40の結晶粒界に液相介在部材44が侵入する。そうすると、図1の下段中図に示すように、多結晶軟磁性粒子40は、結晶粒界に侵入した液相介在部材44によって分断され、複数の単結晶の軟磁性粒子10となる。液相介在部材44が結晶粒界に侵入していく過程では、多結晶軟磁性粒子40,40間、各軟磁性粒子10,10間、多結晶軟磁性粒子40と軟磁性粒子10との間で、Fe,Siが相互拡散し、各粒子10,40と液相介在部材44との間でFe,Pが相互溶解しながらさらに液相焼結が進む。液相介在部材44は、多結晶軟磁性粒子40の結晶粒界に侵入することで、各軟磁性粒子10の全表面を覆うことになり、各軟磁性粒子10同士を絶縁する絶縁被覆となる。液相焼結が進むと、分断された各軟磁性粒子10は互いに近づく方向に移動し、各軟磁性粒子10間の空隙が狭められる。   Next, the liquid phase intervening member 44 enters the crystal grain boundary of the polycrystalline soft magnetic particle 40. Then, as shown in the lower middle diagram of FIG. 1, the polycrystalline soft magnetic particles 40 are divided by the liquid phase intervening member 44 that has penetrated into the crystal grain boundaries, and become a plurality of single crystal soft magnetic particles 10. In the process in which the liquid phase intervening member 44 penetrates into the crystal grain boundary, between the polycrystalline soft magnetic particles 40, 40, between the soft magnetic particles 10, 10, and between the polycrystalline soft magnetic particles 40 and the soft magnetic particles 10. Then, Fe and Si are interdiffused, and liquid phase sintering further proceeds while Fe and P are mutually dissolved between the particles 10 and 40 and the liquid phase intervening member 44. The liquid phase intervening member 44 penetrates into the crystal grain boundary of the polycrystalline soft magnetic particles 40 to cover the entire surface of each soft magnetic particle 10 and becomes an insulating coating that insulates the soft magnetic particles 10 from each other. . As the liquid phase sintering proceeds, the divided soft magnetic particles 10 move toward each other, and the gaps between the soft magnetic particles 10 are narrowed.

一次焼結では、実質的に酸素を含まない雰囲気中とすることで、低Si粉末21と高Si粉末22との間で各構成元素の相互拡散を容易に行え、焼結を進ませることができる。一次焼結時の雰囲気に酸素が含まれると、Feの酸化物が生成され、Feの拡散が行われなくなるためである。   In the primary sintering, it is possible to easily diffuse each constituent element between the low Si powder 21 and the high Si powder 22 by making the atmosphere substantially free of oxygen and to promote the sintering. it can. This is because, if oxygen is contained in the atmosphere during the primary sintering, an oxide of Fe is generated, and diffusion of Fe is not performed.

≪二次焼結工程≫
二次焼結工程は、一次焼結の後、酸素を含む雰囲気中で焼結を行う。そうすると、酸化物粉末24が液相となり、かつ液相介在部材44が酸化され、Siの酸化物と、Feの酸化物と、Pの酸化物とを含む酸化物材による絶縁被覆が生成される。二次焼結の雰囲気は、酸素分圧を1×10−2atm(1013Pa)超とすることが挙げられ、さらに1×10−1atm(101Pa)以上、特に大気雰囲気が好ましい。
≪Secondary sintering process≫
In the secondary sintering step, sintering is performed in an atmosphere containing oxygen after the primary sintering. As a result, the oxide powder 24 becomes a liquid phase, and the liquid phase intervening member 44 is oxidized, and an insulating coating made of an oxide material containing an oxide of Si, an oxide of Fe, and an oxide of P is generated. . As for the atmosphere of secondary sintering, it is mentioned that oxygen partial pressure is more than 1 × 10 −2 atm (1013 Pa), more preferably 1 × 10 −1 atm (101 Pa) or more, and an air atmosphere is particularly preferable.

その後、酸化物材が液相から固相に転移するにあたり、各軟磁性粒子10は再配列され、各軟磁性粒子10間の空隙がさらに縮小する。この液相の酸化物材が各軟磁性粒子10間を絶縁する絶縁被覆14となり、図1の下段右図に示すように、複数の軟磁性粒子10と、各軟磁性粒子10間を絶縁する絶縁被覆14とを備える圧粉磁心1を得ることができる。各軟磁性粒子10は、上述したように、Siを3質量%以上10質量%以下、Pを0.4質量%以上1.8質量%以下含有するFe−Si−P系合金粒子である。   Thereafter, as the oxide material transitions from the liquid phase to the solid phase, the soft magnetic particles 10 are rearranged, and the gaps between the soft magnetic particles 10 are further reduced. This liquid-phase oxide material becomes an insulating coating 14 that insulates the soft magnetic particles 10, and insulates a plurality of soft magnetic particles 10 from each soft magnetic particle 10 as shown in the lower right diagram of FIG. 1. A dust core 1 having an insulating coating 14 can be obtained. As described above, each soft magnetic particle 10 is an Fe—Si—P-based alloy particle containing 3% by mass to 10% by mass of Si and 0.4% by mass to 1.8% by mass of P.

上述した一次焼結と二次焼結とは、一次焼結の後に連続して二次焼結を行うことが挙げられる。つまり、一次焼結工程の後に常温に冷却することなく、二次焼結工程を行う。この場合、例えば一次焼結と二次焼結とで焼結温度を同じとすることができ、効率的に液相焼結を行うことができる。他に、一次焼結工程の後に常温に冷却し、常温から再加熱して二次焼結工程を行ってもよいし、一次焼結工程と二次焼結工程とで焼結温度を異ならせてもよい。   Examples of the primary sintering and the secondary sintering described above include performing secondary sintering continuously after the primary sintering. That is, the secondary sintering process is performed without cooling to room temperature after the primary sintering process. In this case, for example, the sintering temperature can be the same in primary sintering and secondary sintering, and liquid phase sintering can be performed efficiently. In addition, after the primary sintering process, the secondary sintering process may be performed by cooling to room temperature and reheating from room temperature, or the sintering temperature may be different between the primary sintering process and the secondary sintering process. May be.

<圧粉磁心>
上述した圧粉磁心の製造方法によって得られる圧粉磁心は、複数の軟磁性粒子と、各軟磁性粒子の表面を覆う絶縁被覆とを備える。各軟磁性粒子は、Siを3質量%以上10質量%以下、Pを0.4質量%以上1.8質量%以下含有し、残部がFe及び不可避不純物からなるFe−Si−P系合金粒子である。絶縁被覆は、Feの酸化物と、Siの酸化物と、Pの酸化物とを含む酸化物材である。
<Dust core>
The dust core obtained by the above-described method for manufacturing a dust core includes a plurality of soft magnetic particles and an insulating coating that covers the surface of each soft magnetic particle. Each of the soft magnetic particles contains 3% by mass to 10% by mass of Si, 0.4% by mass to 1.8% by mass of P, and the balance is Fe—Si—P based alloy particles composed of Fe and inevitable impurities. It is. The insulating coating is an oxide material containing an oxide of Fe, an oxide of Si, and an oxide of P.

軟磁性粒子は、Siの含有量が6.5質量%近傍であると、保磁力が最も小さくなる。軟磁性粒子のSiの含有量は、4質量%以上9質量%以下が好ましく、さらに5質量%以上8質量%以下、特に6質量%以上7質量%以下が好ましい。また、軟磁性粒子のPの含有量は、0.6質量%以上1.5質量%以下が好ましく、さらに0.8質量%以上1.2質量%以下が好ましい。   The soft magnetic particles have the smallest coercive force when the Si content is around 6.5% by mass. The Si content of the soft magnetic particles is preferably 4% by mass to 9% by mass, more preferably 5% by mass to 8% by mass, and particularly preferably 6% by mass to 7% by mass. Further, the content of P in the soft magnetic particles is preferably 0.6% by mass or more and 1.5% by mass or less, and more preferably 0.8% by mass or more and 1.2% by mass or less.

軟磁性粒子は、圧粉磁心の任意の断面において、過半数が単結晶であることが挙げられる。上述した圧粉磁心の製造方法では、焼結工程において、液相となったFe−P系合金粉末及び酸化物粉末を多結晶軟磁性粒子の結晶粒界に侵入させることで絶縁被覆を形成しているため、圧粉磁心中の軟磁性粒子の過半数は単結晶となる。より好ましくは軟磁性粒子の80%以上、さらには実質的に全ての軟磁性粒子が単結晶であることが挙げられる。軟磁性粒子の状態は、圧粉磁心の任意の断面を光学顕微鏡や走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察することで確認したり、測定したりすることができる。例えば、圧粉磁心の任意の断面において、200μm×300μmの視野を5個以上取得して、各視野における単結晶である軟磁性粒子の割合の平均を単結晶粒子の比率とすることが挙げられる。   It can be mentioned that the majority of the soft magnetic particles are single crystals in any cross section of the dust core. In the above-described method for manufacturing a powder magnetic core, an insulating coating is formed by allowing the Fe-P alloy powder and oxide powder in a liquid phase to enter the crystal grain boundaries of the polycrystalline soft magnetic particles in the sintering process. Therefore, the majority of soft magnetic particles in the dust core are single crystals. More preferably, 80% or more of the soft magnetic particles, and substantially all the soft magnetic particles are single crystals. The state of the soft magnetic particles can be confirmed or measured by observing an arbitrary cross section of the dust core with an optical microscope or a scanning electron microscope (SEM). For example, in an arbitrary cross section of the dust core, five or more fields of 200 μm × 300 μm are obtained, and the average of the proportion of soft magnetic particles that are single crystals in each field of view is used as the ratio of single crystal particles. .

上述した圧粉磁心の製造方法では、焼結工程において高温の熱処理を行うため、低Si粉末と高Si粉末の各構成元素が相互拡散するにあたり、各粒子は粒成長し易く、原料粉末の各粒子の大きさよりも大きくなる傾向にある。その後、液相のFe−P系合金粉末及び酸化物粉末が多結晶軟磁性粒子の結晶粒界に侵入し、多結晶軟磁性粒子を分断することで、複数の単結晶の軟磁性粒子となる。この粒成長と分断によって生じる単結晶の軟磁性粒子の平均結晶粒径は、40μm以上300μm以下が挙げられる。特に、単結晶の軟磁性粒子の平均結晶粒径が75μm以上であると、磁化反転が容易となり、保磁力の低下に寄与し易い。単結晶の軟磁性粒子の平均結晶粒径は、例えば、50μm以上200μm以下や100μm以上150μm以下が挙げられる。   In the above-described method for manufacturing a powder magnetic core, high-temperature heat treatment is performed in the sintering process. Therefore, when each constituent element of the low Si powder and the high Si powder is interdiffused, each particle easily grows, It tends to be larger than the size of the particles. Thereafter, the liquid-phase Fe-P alloy powder and oxide powder penetrate into the crystal grain boundaries of the polycrystalline soft magnetic particles and divide the polycrystalline soft magnetic particles to form a plurality of single crystal soft magnetic particles. . Examples of the average crystal grain size of the single crystal soft magnetic particles generated by the grain growth and separation include 40 μm or more and 300 μm or less. In particular, when the average crystal grain size of the single crystal soft magnetic particles is 75 μm or more, the magnetization reversal becomes easy and it is easy to contribute to the reduction of the coercive force. Examples of the average crystal grain size of the single crystal soft magnetic particles include 50 μm to 200 μm and 100 μm to 150 μm.

絶縁被覆を構成する酸化物材の含有量は、0.5質量%以上2.0質量%以下であることが挙げられる。酸化物材の含有量が0.5質量%以上であることで、各軟磁性粒子間を十分に絶縁することができる。一方、酸化物材の含有量が2.0質量%以下であることで、圧粉磁心における軟磁性粒子の量を十分に確保することができる。酸化物材の含有量は、0.7質量%以上1.8質量%以下が好ましく、1.0質量%以上1.5質量%以下がより好ましい。   It is mentioned that content of the oxide material which comprises insulation coating is 0.5 mass% or more and 2.0 mass% or less. When the content of the oxide material is 0.5% by mass or more, the soft magnetic particles can be sufficiently insulated. On the other hand, when the content of the oxide material is 2.0% by mass or less, the amount of soft magnetic particles in the dust core can be sufficiently secured. The content of the oxide material is preferably 0.7% by mass or more and 1.8% by mass or less, and more preferably 1.0% by mass or more and 1.5% by mass or less.

絶縁被覆を構成する酸化物材の含有量は、2.0質量%超10質量%以下とすることもできる。酸化物材の含有量が2.0質量%超であることで、酸化物材の含有量を多くでき、低透磁率の圧粉磁心とできる。一方、10質量%以下であることで、圧粉磁心における軟磁性粉末の量を十分に確保することができる。   Content of the oxide material which comprises insulation coating can also be more than 2.0 mass% and 10 mass% or less. When the content of the oxide material is more than 2.0% by mass, the content of the oxide material can be increased, and a dust core having a low magnetic permeability can be obtained. On the other hand, the amount of soft magnetic powder in the dust core can be sufficiently ensured by being 10% by mass or less.

本実施形態の圧粉磁心は、(1)原料粉末に塑性変形性に優れる低Si粉末を混合することによる塑性変形性の向上、(2)液相焼結によって絶縁被覆を形成することによる各軟磁性粒子間の空隙の縮小、によって、高密度である。圧粉磁心の相対密度は93%以上である。この圧粉磁心の相対密度は、原料粉末における低Si粉末の混合割合や、焼結温度・保持時間などによって、例えば95%以上、さらには97%以上であることが挙げられる。本実施形態の圧粉磁心は、高密度であり、低保磁力である。   The powder magnetic core of the present embodiment includes (1) improvement in plastic deformability by mixing raw material powder with low Si powder having excellent plastic deformability, and (2) by forming an insulating coating by liquid phase sintering. High density due to reduction of voids between soft magnetic particles. The relative density of the dust core is 93% or more. The relative density of the powder magnetic core is, for example, 95% or more, further 97% or more, depending on the mixing ratio of the low Si powder in the raw material powder, the sintering temperature and the holding time, and the like. The dust core of this embodiment has a high density and a low coercive force.

また、本実施形態の圧粉磁心は、液相焼結によって絶縁被覆を形成しており、各軟磁性粒子が液相を経た酸化物材によって結合されているため、高強度である。   Further, the dust core of the present embodiment has a high strength because an insulating coating is formed by liquid phase sintering, and each soft magnetic particle is bonded by an oxide material that has undergone a liquid phase.

<試験例>
Fe−Si系合金粉末を含む混合粉末を加圧圧縮⇒焼結して、複数の軟磁性粒子と、軟磁性粒子の各々の表面を覆う絶縁被覆と、を備える圧粉磁心(試料No.1〜12)を作製し、得られた各圧粉磁心の相対密度と保磁力を調べた。
<Test example>
A powder magnetic core (sample No. 1) comprising a plurality of soft magnetic particles and an insulating coating covering each surface of the soft magnetic particles by pressure-compressing and sintering a mixed powder containing an Fe-Si based alloy powder. To 12), and the relative density and coercive force of each obtained dust core were examined.

・試料No.1〜試料No.12
原料粉末として、Siの含有量が異なる2種類のFe−Si系合金からなるSi粉末と、Fe−P系合金粉末と、酸化物粉末とを準備した。Si粉末は、一方がSiを実質的に含有しない純鉄粉(Fe:99.7質量%以上、残部:不可避不純物)の低Si粉末であり、他方がSiを18質量%含有し、残部がFe及び不可避不純物からなる高Si粉末(Fe−18Si合金粉末)である。純鉄粉は、後述する一次焼結温度においてPが固溶するため一次焼結温度にてα相になる。低Si粉末の平均粒径は75μm、高Si粉末の平均粒径は10μmである。Fe−P系合金粉末は、Pを表1に示す所定量含有し、残部がFe及び不可避不純物からなる合金粉末であり、平均粒径は10μmである。酸化物粉末は、Siの酸化物:SiO粉末であり、平均粒径は30μmである。この試験例において平均粒径は、市販の測定装置により測定した50%粒径(累積質量)である。原料粉末の配合量(質量)は、表1に示す。この原料の配合量によって生成される軟磁性粒子の組成も併せて表1に示す。
・ Sample No. 1 to Sample No. 12
As raw material powders, Si powders composed of two types of Fe—Si alloys having different Si contents, Fe—P alloy powders, and oxide powders were prepared. Si powder is a low Si powder of pure iron powder (Fe: 99.7 mass% or more, balance: inevitable impurities), one of which contains substantially no Si, the other contains 18 mass% of Si, and the balance is It is a high Si powder (Fe-18Si alloy powder) made of Fe and inevitable impurities. The pure iron powder becomes an α phase at the primary sintering temperature because P is dissolved at the primary sintering temperature described later. The average particle size of the low Si powder is 75 μm, and the average particle size of the high Si powder is 10 μm. The Fe—P-based alloy powder is an alloy powder containing a predetermined amount of P shown in Table 1, with the balance being Fe and inevitable impurities, and the average particle size is 10 μm. The oxide powder is an oxide of Si: SiO 2 powder, and the average particle size is 30 μm. In this test example, the average particle diameter is a 50% particle diameter (cumulative mass) measured by a commercially available measuring device. Table 1 shows the blending amount (mass) of the raw material powder. Table 1 also shows the composition of the soft magnetic particles produced by the blending amount of the raw materials.

Figure 2017011073
Figure 2017011073

上記原料粉末に潤滑剤を添加し、V型混合機により十分に混合して、混合粉末を作製した。潤滑剤は、エチレンビスステアリン酸アミドとし、その含有量は、低Si粉末、高Si粉末、Fe−P系合金粉末、及び酸化物粉末の合計量に対して0.6質量%とした。   A lubricant was added to the raw material powder and mixed well with a V-type mixer to prepare a mixed powder. The lubricant was ethylene bis-stearic acid amide, and the content thereof was 0.6% by mass with respect to the total amount of the low Si powder, high Si powder, Fe—P alloy powder, and oxide powder.

上記混合粉末を金型の成形空間に給粉し、成形圧力を8ton/cm(≒784MPa)として加圧・圧縮し、リング状の成形体(外径:34mm×内径:20mm×厚さ:5mm)を作製した。この成形体は、良好に成形することができた。 The mixed powder is fed into the molding space of the mold, pressed and compressed at a molding pressure of 8 ton / cm 2 (≈784 MPa), and a ring-shaped molded body (outer diameter: 34 mm × inner diameter: 20 mm × thickness: 5 mm). This molded body could be molded satisfactorily.

得られた成形体を、実質的に酸素を含まない真空雰囲気中(酸素分圧:1×10−3Pa)、600℃×1時間の熱処理を施して潤滑剤を除去した後、1200℃×1時間の熱処理(一次焼結)を施した。さらに、一次焼結に連続して、大気雰囲気中、1250℃×1時間の熱処理(二次焼結)を施し、圧粉磁心を作製した。 The obtained molded body was heat-treated at 600 ° C. for 1 hour in a vacuum atmosphere substantially free of oxygen (oxygen partial pressure: 1 × 10 −3 Pa) to remove the lubricant, and then 1200 ° C. × Heat treatment (primary sintering) for 1 hour was performed. Furthermore, following the primary sintering, heat treatment (secondary sintering) at 1250 ° C. for 1 hour was performed in an air atmosphere to produce a dust core.

・試料No.111
原料粉末として、Siの含有量が異なる2種類のFe−Si系合金からなるSi粉末と、酸化物粉末とを準備した。Si粉末は、試料No.1と同様の低Si粉末及び高Si粉末とした。酸化物粉末は、Feの酸化物:FeOと、Siの酸化物:SiOとを、FeO:SiO=2:1の割合(質量)で混合した粉末である。酸化物粉末の平均粒径は30μmである。原料粉末の配合量(質量)は、低Si粉末:高Si粉末:酸化物粉末=63:36:1とした。つまり、試料No.111では、原料粉末にFe−P系合金粉末を含有していない。
・ Sample No. 111
As raw material powders, Si powders made of two types of Fe—Si alloys having different Si contents and oxide powders were prepared. The Si powder was sample No. 1 and a low Si powder and a high Si powder. The oxide powder is a powder obtained by mixing Fe oxide: FeO and Si oxide: SiO 2 at a ratio (mass) of FeO: SiO 2 = 2: 1. The average particle size of the oxide powder is 30 μm. The blending amount (mass) of the raw material powder was low Si powder: high Si powder: oxide powder = 63: 36: 1. That is, sample no. In 111, the raw material powder does not contain Fe-P alloy powder.

上記原料粉末に試料No.1と同様の潤滑剤を添加して混合粉末を作製した。そして、試料No.1と同様に、リング状の成形体(外径:34mm×内径:20mm×厚さ:5mm)を作製した。   Sample no. The same lubricant as in No. 1 was added to prepare a mixed powder. And sample no. Similarly to 1, a ring-shaped molded body (outer diameter: 34 mm × inner diameter: 20 mm × thickness: 5 mm) was produced.

得られた成形体を大気雰囲気中、600℃×1時間の熱処理を施して、潤滑剤を除去した後、1250℃×1時間の熱処理(焼結)を施し、圧粉磁心を作製した。   The molded body thus obtained was subjected to heat treatment at 600 ° C. for 1 hour in an air atmosphere to remove the lubricant, and then subjected to heat treatment (sintering) at 1250 ° C. for 1 hour to produce a dust core.

・試料No.112
従来の方法(軟磁性粉末の準備→各軟磁性粒子の表面に絶縁被覆を形成→被覆軟磁性粉末を加圧・圧縮→焼結)で圧粉磁心を作製した。まず、原料粉末として、Siの含有量が6.5質量%であるFe−6.5Si合金の軟磁性粉末を準備し、各軟磁性粒子の表面にシリコーンの絶縁被覆を形成して被覆軟磁性粉末を作製した。絶縁被覆の被覆条件は、特許文献1と同様とした。被覆軟磁性粉末に成形用樹脂を添加して造粒粉とし、この造粒粉を8ton/cm(≒784MPa)の成形圧力で加圧・圧縮し、リング状の成形体(外径:34mm×内径:20mm×厚さ:5mm)を作製した。この成形体を窒素雰囲気中、775℃×1時間の熱処理を施し、圧粉磁心とした。
・ Sample No. 112
A dust core was prepared by a conventional method (preparation of soft magnetic powder → formation of an insulating coating on the surface of each soft magnetic particle → pressing and compressing the coated soft magnetic powder → sintering). First, as a raw material powder, a soft magnetic powder of an Fe-6.5Si alloy having a Si content of 6.5% by mass was prepared, and a silicone insulating coating was formed on the surface of each soft magnetic particle to coat the soft magnetic powder. A powder was prepared. The coating conditions for the insulation coating were the same as in Patent Document 1. A molding resin is added to the coated soft magnetic powder to form a granulated powder, and this granulated powder is pressed and compressed with a molding pressure of 8 ton / cm 2 (≈784 MPa) to form a ring-shaped molded body (outer diameter: 34 mm). X inner diameter: 20 mm x thickness: 5 mm). This molded body was heat-treated at 775 ° C. for 1 hour in a nitrogen atmosphere to obtain a dust core.

試料No.1〜12,111,112の圧粉磁心について、相対密度を測定した。相対密度は、(見掛密度/真密度)×100で表される密度比のことである。見掛密度は、アルキメデス法を利用して求めた。真密度は、圧粉磁心の成分分析を行い、その構成成分(ここでは、合金粒子・酸化物)の合成密度を用いた。成分分析は、公知の方法(エネルギー分散X線分光法や誘導結合プラズマ(ICP)発光分光分析法など)を利用する。その結果を表2に示す。   Sample No. Relative densities were measured for powder cores 1-12, 111, and 112. The relative density is a density ratio represented by (apparent density / true density) × 100. The apparent density was determined using the Archimedes method. For the true density, a component analysis of the powder magnetic core was performed, and the composite density of the constituent components (here, alloy particles and oxide) was used. The component analysis utilizes a known method (such as energy dispersive X-ray spectroscopy or inductively coupled plasma (ICP) emission spectroscopy). The results are shown in Table 2.

また、試料No.1〜12,111,112の圧粉磁心について、保磁力を測定した。保磁力(Oe)は、各試料のリング状の圧粉磁心に同一の巻線を配置して測定部材を作製し、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて測定した。その結果を表2に示す。   Sample No. The coercive force was measured for the dust cores 1 to 12, 111, and 112. The coercive force (Oe) was measured using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.) by arranging the same winding on the ring-shaped dust core of each sample. The results are shown in Table 2.

Figure 2017011073
Figure 2017011073

表2に示すように、原料粉末として純鉄粉(低Si粉末)及び高Si粉末、Pを15質量%36質量%以下含有するFe−P系合金粉末、酸化物粉末を含有した混合粉末に、加圧圧縮⇒二段階の焼結(一次焼結及び二次焼結)を行い、Fe−Si−P系合金粒子(軟磁性粒子)の粉末で構成された圧粉磁心を作製した試料No.2〜7,10,11は、高密度であり、保磁力が非常に低いことが分かった。試料No.2〜7,10,11では、(1)原料粉末に塑性変形性に優れる純鉄粉(低Si粉末)を混合したことで塑性変形性が向上した、(2)二段階の焼結によって絶縁被覆を形成したことで各軟磁性粒子間の空隙が縮小した、という理由により、高密度となったと考えらえる。また、試料No.2〜7,10,11では、適量のPを含有するFe−P系合金粉末を混合したことによって、Feの自己拡散係数を向上でき、焼結工程において低Si粉末と高Si粉末の各構成元素の相互拡散を容易に行うことができ、焼結を促進することができたと考えられる。さらに、試料No.2〜7,10,11では、二段階焼結によって、純鉄粉及び高Si粉末をSiの含有量が6.5質量%近傍であるFe−Si系合金からなる軟磁性粒子粉末とすることができ、かつ液相となったFe−P系合金粉末及び酸化物粉末によって各軟磁性粒子の周囲に絶縁被覆を生成することができ、低保磁力の圧粉磁心が得られたと考えられる。   As shown in Table 2, pure iron powder (low Si powder) and high Si powder as raw material powder, Fe-P alloy powder containing 15 mass% or less and 36 mass% or less of P, mixed powder containing oxide powder 、 Pressure compression ⇒ Sample No. in which two-stage sintering (primary sintering and secondary sintering) was performed to produce a powder magnetic core composed of powder of Fe-Si-P alloy particles (soft magnetic particles) . 2-7, 10 and 11 were found to have high density and very low coercivity. Sample No. 2-7, 10 and 11, (1) The plastic deformability was improved by mixing pure iron powder (low Si powder) excellent in plastic deformability with the raw material powder. (2) Insulation by two-step sintering It can be considered that the density was increased because the gap between the soft magnetic particles was reduced by forming the coating. Sample No. In Nos. 2-7, 10 and 11, the Fe-P alloy powder containing an appropriate amount of P can be mixed to improve the self-diffusion coefficient of Fe, and each composition of the low Si powder and the high Si powder in the sintering process. It is considered that interdiffusion of elements could be easily performed and sintering could be promoted. Furthermore, sample no. In Nos. 2-7, 10 and 11, pure iron powder and high Si powder are made into soft magnetic particle powder made of Fe-Si alloy having a Si content of around 6.5% by mass by two-stage sintering. It is considered that an insulating coating can be formed around each soft magnetic particle by the Fe—P alloy powder and oxide powder in a liquid phase, and a dust core having a low coercive force was obtained.

原料粉末として純鉄粉(低Si粉末)を混合し、かつ焼結によって絶縁被覆を形成したが、Fe−P系合金粉末を含まない試料No.111の圧粉磁心は、相対密度が86%程度と低く、保磁力も2.1Oeと試料No.2〜7,10,11に比較して高かった。また、Fe−P系合金粉末を含んだとしても、その含有量が少ない試料No.1の圧粉磁心も、相対密度が86%程度と低く、保磁力も2.1Oeと試料No.2〜7に比較して高かった。これは、焼結温度が1200℃近傍では、純鉄粉はγ相であるということに起因すると考えられる。γ相はFeの自己拡散が非常に遅いため、純鉄粉と高Si粉末との間で各構成元素の相互拡散が生じ難く、焼結が進み難い。そのため、試料No.111,1では、純鉄粉を混合した混合粉末を加圧圧縮⇒焼結しても、Fe−P系合金粉末を含まない又はその含有量が少ないことで、焼結が進まないために各軟磁性粒子の空隙を縮小することができないためと考えられる。   A pure iron powder (low Si powder) was mixed as a raw material powder, and an insulating coating was formed by sintering, but the sample no. The dust core of No. 111 has a low relative density of about 86% and a coercive force of 2.1 Oe. Higher than 2-7, 10 and 11. Even if Fe-P alloy powder is included, Sample No. 1 also has a low relative density of about 86% and a coercive force of 2.1 Oe. Higher than 2-7. This is considered to be due to the fact that the pure iron powder is in the γ phase when the sintering temperature is around 1200 ° C. In the γ phase, since Fe self-diffusion is very slow, mutual diffusion of each constituent element hardly occurs between pure iron powder and high Si powder, and sintering does not proceed easily. Therefore, sample no. In 111, 1, even if the mixed powder mixed with pure iron powder is pressed and compressed ⇒ sintered, it does not contain Fe-P alloy powder or its content is low, so that sintering does not proceed. This is probably because the voids of the soft magnetic particles cannot be reduced.

Fe−P系合金粉末の含有量が多い試料No.8,9の圧粉磁心は、保磁力が試料No.2〜7,10,11に比較して高かった。これは、Pによる保磁力への影響が大きくなったためと考えられる。Fe−P系合金粉末の含有量が多い場合でも、そのFe−P系合金粉末におけるPの含有量が適量である試料No.8は、高密度であった。これは、PによってFeの自己拡散係数が向上され、純鉄粉と高Si粉末との間で各構成元素の相互拡散が促進されることで、相対密度が向上されたためと考えられる。一方、試料No.2〜7,10,11では、原料粉末として適量のFe−P系合金粉末を混合しているため、Pが低Si粉末へ固溶しγ相からα相へと変態することで、Feの自己拡散係数が向上され、純鉄粉と高Si粉末との間で各構成元素の相互拡散が促進されたと考えられる。   Sample No. with a large content of Fe-P alloy powder. The dust cores of Nos. 8 and 9 have a coercive force of Sample No. Higher than 2-7, 10 and 11. This is presumably because the influence of P on the coercive force has increased. Even when the content of the Fe-P-based alloy powder is large, the sample No. 1 in which the content of P in the Fe-P-based alloy powder is an appropriate amount. 8 was high density. This is considered to be because the self-diffusion coefficient of Fe was improved by P and the relative density was improved by promoting the mutual diffusion of each constituent element between the pure iron powder and the high Si powder. On the other hand, sample No. 2-7, 10 and 11, since an appropriate amount of Fe-P alloy powder is mixed as a raw material powder, P is dissolved in a low Si powder and transformed from a γ phase to an α phase. It is considered that the self-diffusion coefficient was improved and the mutual diffusion of each constituent element was promoted between the pure iron powder and the high Si powder.

Fe−P系合金粉末を適量混合したとしても、Fe−P系合金粉末におけるPの含有量が多い試料No.12の圧粉磁心は、相対密度が85%程度と低く、保磁力も2.1Oeと試料No.2〜7,10,11に比較して高かった。これは、Fe−P系合金粉末におけるPの含有量が多過ぎるため、Pによる保磁力への影響が大きくなったからと考えられる。また、試料No.12の圧粉磁心は、Fe−P系合金粉末におけるPの含有量が多いことで、FePという安定な化合物が形成され、PがFeに拡散され難くなり、相対密度が低くなったと考えられる。   Even if an appropriate amount of Fe-P alloy powder is mixed, Sample No. with a high P content in the Fe-P alloy powder. The dust core of No. 12 has a relative density as low as about 85% and a coercive force of 2.1 Oe. Higher than 2-7, 10 and 11. This is presumably because the influence of P on the coercive force is increased because the content of P in the Fe-P alloy powder is too large. Sample No. It is considered that the dust core of No. 12 has a high content of P in the Fe-P alloy powder, so that a stable compound called FeP is formed, P becomes difficult to diffuse into Fe, and the relative density is lowered.

従来の方法で得られた試料No.112の圧粉磁心は、相対密度が85%程度と低く、保磁力も2.1Oeと試料No.2〜7,10,11に比較して高かった。これは、原料粉末として、Siの含有量が6.5質量%であるFe−6.5Si合金の軟磁性粉末を用いているため塑性変形性に劣り、成形時に相対密度が向上されなかったからと考えられる。   Sample No. obtained by the conventional method The dust core No. 112 has a low relative density of about 85% and a coercive force of 2.1 Oe. Higher than 2-7, 10 and 11. This is because the soft powder of Fe-6.5Si alloy having a Si content of 6.5% by mass is used as the raw material powder, so that the plastic deformability is inferior and the relative density was not improved during molding. Conceivable.

試料No.2〜7,10,11の圧粉磁心について、断面を観察した。圧粉磁心の断面を鏡面研磨してSEMで観察すると、コントラストの違いにより各単結晶の識別が可能である。その結果、試料No.2〜7,10,11の圧粉磁心は、軟磁性粒子の過半数が単結晶であることが確認できた。また、試料No.2〜7,10,11の圧粉磁心の断面のSEM反射電子像において、任意に選定した10個の単結晶粒子について、各単結晶粒子の面積を測定し、この面積と同面積の円の直径を各単結晶粒子の粒径とし、単結晶粒子の平均結晶粒径を求めた。その結果、単結晶粒子の平均結晶粒径は122μmであった。さらに、エネルギー分散X線分光法によって、各軟磁性粒子は均一的な組成のFe−6.5質量%Si合金であること、及び各軟磁性粒子の表面にFeO−SiO−Pからなる絶縁被覆が形成されていることが確認できた。 Sample No. The cross sections of the powder magnetic cores 2 to 7, 10, and 11 were observed. When the cross section of the dust core is mirror-polished and observed with an SEM, each single crystal can be identified by the difference in contrast. As a result, sample no. In the dust cores of 2 to 7, 10, and 11, it was confirmed that the majority of the soft magnetic particles were single crystals. Sample No. In the SEM backscattered electron image of the cross section of the dust cores 2-7, 10 and 11, the area of each single crystal particle was measured for 10 arbitrarily selected single crystal particles, and a circle having the same area as this area was measured. The diameter was taken as the particle size of each single crystal particle, and the average crystal particle size of the single crystal particle was determined. As a result, the average crystal grain size of the single crystal particles was 122 μm. Furthermore, by energy dispersive X-ray spectroscopy, each soft magnetic particle is a Fe-6.5 mass% Si alloy having a uniform composition, and FeO—SiO 2 —P 2 O 5 is formed on the surface of each soft magnetic particle. It was confirmed that an insulating coating made of

本発明の圧粉磁心は、低保磁力が望まれる用途の磁性部材に利用することができる。また、本発明の圧粉磁心の製造方法は、各種インダクタに用いられる圧粉磁心を得るのに好適に利用可能である。   The dust core of the present invention can be used as a magnetic member for applications where low coercivity is desired. Moreover, the manufacturing method of the powder magnetic core of this invention can be utilized suitably for obtaining the powder magnetic core used for various inductors.

1 圧粉磁心 2 混合粉末 3 成形体
10 軟磁性粒子(単結晶軟磁性粒子) 14 絶縁被覆
21 低Si軟磁性粒子(低Si粉末)
22 高Si軟磁性粒子(高Si粉末)
23 Fe−P系合金粒子(Fe−P系合金粉末)
24 酸化物粒子(酸化物粉末)
40 多結晶軟磁性粒子 44 液相介在部材
DESCRIPTION OF SYMBOLS 1 Powder magnetic core 2 Mixed powder 3 Molded body 10 Soft magnetic particle (single crystal soft magnetic particle) 14 Insulation coating 21 Low Si soft magnetic particle (low Si powder)
22 High Si soft magnetic particles (High Si powder)
23 Fe-P alloy particles (Fe-P alloy powder)
24 Oxide particles (oxide powder)
40 Polycrystalline soft magnetic particles 44 Liquid phase intervening member

Claims (5)

複数の軟磁性粒子と、前記軟磁性粒子の各々の表面を覆う絶縁被覆と、を備える圧粉磁心であって、
前記軟磁性粒子は、Siを3質量%以上10質量%以下、Pを0.4質量%以上1.8質量%以下含有し、残部がFe及び不可避不純物からなるFe−Si−P系合金粒子であり、
前記絶縁被覆は、Feの酸化物と、Siの酸化物と、Pの酸化物と、を含む酸化物材であり、
相対密度が93%以上である圧粉磁心。
A dust core comprising a plurality of soft magnetic particles and an insulating coating covering the surface of each of the soft magnetic particles,
The soft magnetic particles are Fe-Si-P based alloy particles containing 3 mass% to 10 mass% of Si, 0.4 mass% to 1.8 mass% of P, and the balance being Fe and inevitable impurities. And
The insulating coating is an oxide material containing an oxide of Fe, an oxide of Si, and an oxide of P,
A dust core having a relative density of 93% or more.
前記酸化物材の含有量は、0.5質量%以上2.0質量%以下である請求項1に記載の圧粉磁心。   The dust core according to claim 1, wherein the content of the oxide material is 0.5 mass% or more and 2.0 mass% or less. 前記圧粉磁心の任意の断面において、前記軟磁性粒子の過半数が単結晶である請求項1又は請求項2に記載の圧粉磁心。   The powder magnetic core according to claim 1 or 2, wherein a majority of the soft magnetic particles are single crystals in an arbitrary cross section of the powder magnetic core. 前記軟磁性粒子の単結晶の平均結晶粒径は、40μm以上300μm以下である請求項3に記載の圧粉磁心。   The powder magnetic core according to claim 3, wherein an average crystal grain size of the single crystal of the soft magnetic particles is 40 μm or more and 300 μm or less. 原料粉末として、Siの含有量が2質量%以下であるFe−Si系合金からなる低Si粉末と、Siの含有量が9質量%以上であるFe−Si系合金からなる高Si粉末と、Pの含有量が15質量%以上36質量%以下であるFe−P系合金粉末と、Siの酸化物を含む酸化物粉末と、が混合された混合粉末を準備する準備工程と、
前記混合粉末を加圧圧縮して成形体とする成形工程と、
前記成形体を1000℃以上1300℃以下の温度にて焼結する焼結工程と、を備え、
前記焼結工程は、
実質的に酸素を含まない雰囲気中で焼結を行い、前記低Si粉末及び前記高Si粉末を、Siの含有量が3質量%以上10質量%以下、Pの含有量が0.4質量%以上1.8質量%以下であるFe−Si−P系合金からなる複数の軟磁性粒子とする一次焼結工程と、
前記一次焼結工程の後、酸素を含む雰囲気中で焼結を行い、前記軟磁性粒子の各々の周囲を、Feの酸化物と、Siの酸化物と、Pの酸化物と、を含む酸化物材で覆う二次焼結工程と、を備える圧粉磁心の製造方法。
As raw material powder, a low Si powder composed of an Fe-Si based alloy having a Si content of 2% by mass or less, and a high Si powder composed of a Fe-Si based alloy having a Si content of 9% by mass or more, A preparation step of preparing a mixed powder in which an Fe-P alloy powder having a P content of 15% by mass to 36% by mass and an oxide powder containing an oxide of Si is prepared;
A molding step of compressing and pressing the mixed powder to form a molded body;
A sintering step of sintering the molded body at a temperature of 1000 ° C. or higher and 1300 ° C. or lower,
The sintering step includes
Sintering is performed in an atmosphere substantially free of oxygen, and the low Si powder and the high Si powder have a Si content of 3% by mass to 10% by mass and a P content of 0.4% by mass. A primary sintering step in which a plurality of soft magnetic particles composed of an Fe-Si-P-based alloy having a mass of 1.8% by mass or less;
After the primary sintering step, sintering is performed in an atmosphere containing oxygen, and each of the soft magnetic particles is oxidized including an oxide of Fe, an oxide of Si, and an oxide of P. A secondary sintering step of covering with a material.
JP2015124026A 2015-06-19 2015-06-19 Powder-compact magnetic core and method of manufacturing power-compact magnetic core Pending JP2017011073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124026A JP2017011073A (en) 2015-06-19 2015-06-19 Powder-compact magnetic core and method of manufacturing power-compact magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124026A JP2017011073A (en) 2015-06-19 2015-06-19 Powder-compact magnetic core and method of manufacturing power-compact magnetic core

Publications (1)

Publication Number Publication Date
JP2017011073A true JP2017011073A (en) 2017-01-12

Family

ID=57761751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124026A Pending JP2017011073A (en) 2015-06-19 2015-06-19 Powder-compact magnetic core and method of manufacturing power-compact magnetic core

Country Status (1)

Country Link
JP (1) JP2017011073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428528A (en) * 2018-03-16 2018-08-21 浙江恒基永昕新材料股份有限公司 A kind of ultralow coercivity soft magnet core and preparation method thereof
WO2019031399A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031399A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
JPWO2019031399A1 (en) * 2017-08-10 2020-02-06 住友電気工業株式会社 Manufacturing method of dust core, manufacturing method of electromagnetic parts
US11211198B2 (en) 2017-08-10 2021-12-28 Sumitomo Electric Industries, Ltd. Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
CN108428528A (en) * 2018-03-16 2018-08-21 浙江恒基永昕新材料股份有限公司 A kind of ultralow coercivity soft magnet core and preparation method thereof
CN108428528B (en) * 2018-03-16 2019-11-08 浙江恒基永昕新材料股份有限公司 A kind of ultralow coercivity soft magnet core and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101527268B1 (en) Reactor and method for producing same
KR101910139B1 (en) Magnetic core, method for producing magnetic core, and coil component
KR101213856B1 (en) Sintered soft magnetic powder molded body
JP2011029605A (en) Soft magnetic material, shaped body, compressed powder magnetic core, electromagnetic component, method of manufacturing soft magnetic material, and method of manufacturing compressed powder magnetic core
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP2014060183A (en) Soft magnetic material and method for manufacturing the same
EP1447824B1 (en) Composite magnetic material producing method
CN110997187B (en) Method for manufacturing dust core and method for manufacturing electromagnetic component
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
KR20200124609A (en) Alloy powder composition, moldings and the manufacturing method thereof, and inductors
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
JP2007220876A (en) Soft magnetic alloy consolidation object, and its manufacturing method
JP4825902B2 (en) Manufacturing method of dust core
JP6423629B2 (en) Powder core and coil parts
JP6563348B2 (en) Soft magnetic powder, soft magnetic body molded with soft magnetic powder, and soft magnetic powder and method for producing soft magnetic body
CN107615411B (en) Mixed powder for dust core and dust core
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP5051270B2 (en) Powder for magnetic member, powder molded body, and magnetic member
WO2015045561A1 (en) Dust core, method for producing dust core and coil component
JP6836106B2 (en) Method for manufacturing iron-based soft magnetic material
JP2006135164A (en) Soft magnetic material and manufacturing method thereof