JPH0974011A - Dust core and manufacture thereof - Google Patents

Dust core and manufacture thereof

Info

Publication number
JPH0974011A
JPH0974011A JP7230483A JP23048395A JPH0974011A JP H0974011 A JPH0974011 A JP H0974011A JP 7230483 A JP7230483 A JP 7230483A JP 23048395 A JP23048395 A JP 23048395A JP H0974011 A JPH0974011 A JP H0974011A
Authority
JP
Japan
Prior art keywords
core
powder
alloy powder
dust core
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7230483A
Other languages
Japanese (ja)
Inventor
Eiji Moro
英治 茂呂
Naomichi Umehara
直道 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7230483A priority Critical patent/JPH0974011A/en
Publication of JPH0974011A publication Critical patent/JPH0974011A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a core which is small in size and can be used at high frequencies by specifying the oxygen content of each alloy powder particle and oxydizing the surfaces of the particles. SOLUTION: Fe-Si-Al alloy powder is manufactured by melting iron, silicon or ferrosilicon, and aluminum or ferroaluminum and then rapidly quenching the melted materials by the gas atomizing method or high-speed quenching method in an inactive atmosphere. The oxygen content of each particle of the alloy powder is 400ppm or below and the surfaces of the particles are oxidized. Furthermore, the obtained Fe-Si-Al alloy powder is molded and then is annealed at temperatures 500-800 deg.C in an inactive atmosphere and then is annealed again at temperatures 400-700 deg.C in an oxydized atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種電気、電子機器に
用いられる圧粉コアおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dust core used in various electric and electronic devices and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子、電気機器の小型化が進み、
小型で高効率の圧粉コアが要求されている。小型化する
ひとつの方法は周波数を高く(50kHz以上)するこ
とであるが、この場合コアロスが小さいことが必須条件
となる。センダスト圧粉コアは、低損失であることが知
られているが、これまでのコアロスではチョークコイル
やインダクタの小型化には必ずしも十分とはいえない。
2. Description of the Related Art In recent years, miniaturization of electronic and electric devices has advanced,
A compact and highly efficient dust core is required. One method for downsizing is to increase the frequency (50 kHz or more), but in this case, a small core loss is an essential condition. It is known that the sendust dust core has a low loss, but the core loss so far is not always sufficient for downsizing the choke coil and the inductor.

【0003】センダスト圧粉磁心の損失低減に関して
は、例えば以下に挙げる提案がなされている。
The following proposals have been made for reducing the loss of the sendust dust core.

【0004】特公昭62−21041号公報では、Fe
−Si−Al系磁性合金インゴットを700〜1100
℃でアニール後、粉砕してプレス成形し、さらに水素雰
囲気中で600〜800℃で焼成することにより、モリ
ブデンパーマロイよりも高い透磁率と低い電力損失のF
e−Si−Al系磁性合金圧粉磁心が得られるとしてい
る。同公報の実施例では、32メッシュ以下に整粒して
プレス成形した後、700℃で焼成することにより、透
磁率が10kHzで146、電力損失が25kHz、1
000Gで158kW/m3、2000Gで548kW
/m3である圧粉磁心を得ている。しかし、力率改善回
路などに用いられるインダクターでは、コアロスのさら
なる低減が望まれる。また、チョークコイルを小型化す
るにもコアロスの低減が望まれる。
In Japanese Patent Publication No. Sho 62-21041, Fe
-Si-Al magnetic alloy ingot 700 to 1100
After annealing at ℃, crushed and press-molded, and then baked at 600 to 800 ℃ in a hydrogen atmosphere to obtain F having higher magnetic permeability and lower power loss than molybdenum permalloy.
It is said that an e-Si-Al magnetic alloy powder magnetic core can be obtained. In the example of the publication, the particles are sized to 32 mesh or less, press-molded, and then fired at 700 ° C., so that the magnetic permeability is 146 at 10 kHz and the power loss is 25 kHz, 1
158 kW / m 3 at 000 G, 548 kW at 2000 G
A powder magnetic core of / m 3 is obtained. However, in inductors used for power factor correction circuits, etc., further reduction of core loss is desired. In addition, reduction in core loss is desired to reduce the size of the choke coil.

【0005】また、特公平7−50648号公報には、
Fe−Si−Al系合金圧粉磁心の製造方法が記載され
ている。この方法では、Fe−Si−Al系合金の溶湯
からガスアトマイズによって球状の粗粉末を製造し、そ
の後に該粗粉末をさらに粉砕して得られた平均粒径が4
0〜110μm、見かけ密度2.6〜3.8g/cm3
の粉末を用いる。ガスアトマイズによって得た球状粗粉
末を粉砕するのは、上記した所定の粒度の粉末を廉価に
得るためである。同公報では、透磁率の周波数特性の改
善と成形体の強度向上とを効果としている。同公報記載
の方法は、Fe−Si−Al系合金粉末の製造方法にガ
スアトマイズ法を用いる点で本発明と類似するが、同公
報ではガスアトマイズ法により製造した粗粉末をさらに
粉砕しているために、粉末にストレスが生じ、ヒステリ
シス損失を小さくすることができない。なお、同公報記
載の発明はコアロス低減を目的としておらず、同公報の
実施例ではコアロスを測定していない。
Further, Japanese Patent Publication No. 7-50648 discloses that
A method for manufacturing an Fe-Si-Al alloy powder magnetic core is described. In this method, a spherical coarse powder is produced from a molten Fe—Si—Al alloy by gas atomization, and then the coarse powder is further pulverized to obtain an average particle size of 4
0 to 110 μm, apparent density 2.6 to 3.8 g / cm 3
Powder is used. The spherical coarse powder obtained by gas atomization is pulverized in order to obtain the powder having the above-mentioned predetermined particle size at a low cost. In this publication, it is effective to improve the frequency characteristic of magnetic permeability and the strength of the molded body. The method described in the publication is similar to the present invention in that the gas atomizing method is used for the method for producing the Fe-Si-Al alloy powder, but in the publication, the coarse powder produced by the gas atomizing method is further pulverized. However, stress is generated in the powder, and the hysteresis loss cannot be reduced. The invention described in the publication does not aim to reduce the core loss, and the core loss is not measured in the embodiments of the publication.

【0006】さらに、特公平3−46521号公報に
は、Fe、SiおよびAlを主成分とする磁性合金の粉
末に、水ガラスと、1〜5wt%の水分とを添加した
後、成形することを特徴とするFe−Si−Al系磁性
合金圧粉磁心の製造方法が記載されている。同公報で
は、プレス成形性の改善による透磁率の向上と成形体の
強度向上とを効果としている。同公報には、磁性合金の
粉末の製造方法として、溶解して得た合金を粉砕する方
法が記載されている。同公報の実施例では、25kH
z、2000Gでコアロスが500kW/m3以上とな
っており、コアロスの低減は不十分である。なお、同公
報の実施例では、プレス成形後に750℃で焼成してい
るが、本発明者らの実験では、絶縁剤として水ガラスを
用いた場合、750℃もの高温では水ガラスが分解して
しまい、合金粒子間の絶縁を保つことが不可能となって
渦電流損失が著増してしまった。
Further, in Japanese Examined Patent Publication No. 3-46521, water glass and 1 to 5 wt% of water are added to a powder of a magnetic alloy containing Fe, Si and Al as main components, and then molded. And a method for manufacturing a Fe-Si-Al-based magnetic alloy powder magnetic core. In this publication, improvement in magnetic permeability and improvement in strength of the molded product are made effective by improving press moldability. The publication describes a method of pulverizing an alloy obtained by melting as a method of producing a powder of a magnetic alloy. In the example of the publication, 25 kHz
The core loss is 500 kW / m 3 or more at z and 2000 G, and the reduction of the core loss is insufficient. In addition, in the example of the same publication, it is fired at 750 ° C. after press molding, but in the experiments of the present inventors, when water glass was used as the insulating agent, the water glass decomposed at a high temperature of 750 ° C. As a result, it becomes impossible to maintain the insulation between the alloy particles, and the eddy current loss increases significantly.

【0007】本出願者も特願平6−192207におい
て、ほぼ球状のFe、SiおよびAlを含む金属粉末を
用いることで、低損失の圧粉コアが作製できることを開
示した。
The present applicant also disclosed in Japanese Patent Application No. 6-192207 that a powder core with low loss can be produced by using a metal powder containing substantially spherical Fe, Si and Al.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記製造方法
により得られたFe−Si−Al系磁性合金圧粉磁心の
コアロスではチョークコイルやインダクターの小型化に
は充分といえない。そこで、本発明は小型で高周波での
使用が可能であるコアロスの小さい圧粉コアおよびその
製造方法を提供する。
However, the core loss of the Fe--Si--Al magnetic alloy powder magnetic core obtained by the above manufacturing method cannot be said to be sufficient for downsizing a choke coil or an inductor. Therefore, the present invention provides a compacted core having a small core loss that can be used at high frequencies and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】このような目的は下記
(1)〜(5)の構成により達成できる。
Such an object can be achieved by the following constitutions (1) to (5).

【0010】(1)Fe−Si−Al系合金粉末と絶縁
剤を成形した圧粉コアにおいて、前記合金粉末の粒子内
部の酸素含有量が400ppm以下であって、粒子表面
が酸化されていることを特徴とする圧粉コア。
(1) In a dust core formed by molding an Fe-Si-Al alloy powder and an insulating agent, the oxygen content inside the particles of the alloy powder is 400 ppm or less, and the particle surface is oxidized. Powder core characterized by.

【0011】(2)鉄、シリコンもしくはフェロシリコ
ン、およびアルミニウムもしくはフェロアルミを不活性
雰囲気中で溶融し、不活性雰囲気中で急冷による製造方
法で該合金微粉末を作製し、絶縁剤と混合成形後アニー
ルすることを特徴とする(1)の圧粉コアの製造方法。
(2) Iron, silicon or ferro-silicon, and aluminum or ferro-aluminum are melted in an inert atmosphere, and the alloy fine powder is produced by a manufacturing method by rapid cooling in an inert atmosphere, and mixed and molded with an insulating agent. The method for producing a powder core according to (1), characterized in that post-annealing is performed.

【0012】(3)上記(2)に係る急冷による製造方
法がガスアトマイズ法によることを特徴とする圧粉コア
の製造方法。
(3) A method for producing a dust core, characterized in that the production method by rapid cooling according to (2) above is a gas atomizing method.

【0013】(4)上記(2)に係る急冷による製造方
法が高速急冷法によることを特徴とする圧粉コアの製造
方法。
(4) A method for producing a dust core, characterized in that the rapid cooling method according to (2) above is a rapid quenching method.

【0014】(5)成形したコアを不活性雰囲気中でア
ニール後、さらに酸化雰囲気中でアニールすることを特
徴とする(2)、(3)および(4)の圧粉コアの製造
方法。
(5) The method for producing a powder core according to (2), (3) and (4), characterized in that the molded core is annealed in an inert atmosphere and then annealed in an oxidizing atmosphere.

【0015】(6)不活性雰囲気中でのアニール温度が
500〜800℃である(5)の圧粉コアの製造方法。
(6) The method for producing a powder core according to (5), wherein the annealing temperature is 500 to 800 ° C. in an inert atmosphere.

【0016】(7)酸化雰囲気中でのアニール温度が4
00〜700℃である(5)の圧粉コアの製造方法。
(7) The annealing temperature in the oxidizing atmosphere is 4
The method for producing a dust core according to (5), which is from 00 to 700 ° C.

【0017】本発明の圧粉コアの製造方法は、不活性雰
囲気中で急冷による製造方法で作製されたFe−Si−
Al系合金粉末と絶縁剤とを混合し、混合物を成形す
る。その後、不活性雰囲気でアニールし、さらに酸化雰
囲気でアニールする方法である。各雰囲気でのアニール
温度等を選択することによりコアロスの小さい圧粉コア
の製造が可能となる。
The method for producing a dust core according to the present invention is a Fe-Si- produced by a quenching method in an inert atmosphere.
The Al-based alloy powder and the insulating agent are mixed to form a mixture. After that, it is a method of annealing in an inert atmosphere and further annealing in an oxidizing atmosphere. By selecting the annealing temperature and the like in each atmosphere, it becomes possible to manufacture a dust core with a small core loss.

【0018】高周波領域でコアロスを低減するには、粒
子サイズを小さくすることが効果的であることがフェラ
イトではよく知られている。圧粉コアの場合も、同様に
粒子サイズを小さくすることが低損失化に効果があるこ
とが推定される。そこで我々は、平均粒径の異なるガス
アトマイズ粉および粉砕粉末を用いて圧粉コアを作製
し、粒子サイズを変えた場合にコアロスがどのように変
化するか調査した。結果を図1に示す。これより、圧粉
コアの場合は、コアロスを低減するには、粒子サイズを
小さくするだけでは不十分でFe−Si−Al系合金粉
末の作製方法によりコアロスに大きな違いがあることが
わかった。
It is well known that ferrite is effective for reducing the particle size in order to reduce the core loss in the high frequency region. Also in the case of the dust core, it is presumed that similarly reducing the particle size is effective in reducing the loss. Therefore, we made a dust core using gas atomized powder and crushed powder with different average particle diameters, and investigated how the core loss changes when the particle size is changed. The results are shown in FIG. From this, it has been found that in the case of the dust core, it is not sufficient to reduce the particle size to reduce the core loss, and there is a large difference in the core loss depending on the manufacturing method of the Fe-Si-Al alloy powder.

【0019】具体的には、本発明で用いるFe−Si−
Al系合金粉末は、鉄、シリコンもしくはフェロシリコ
ン、およびアルミニウムもしくはフェロアルミを溶融
し、ガスアトマイズ法または高速急冷法等の急冷による
製造方法で、かつ、不活性雰囲気中で作製される。すな
わち、均一な組成で、極力含有酸素量が少ないことが望
ましい。冷却速度が小さいとAlまたはSiが冷却過程
で偏析し、組成が不均一になるため保磁力が大きくな
る。従ってヒステリシス損失が大きくなるため好ましく
ない。また、粒子内部の酸素含有量が多いと、磁壁移動
が妨げられ保磁力が大きくなり、従ってヒステリシス損
失が大きくなるため好ましくない。
Specifically, Fe-Si- used in the present invention.
The Al-based alloy powder is produced by melting iron, silicon or ferro-silicon, and aluminum or ferro-aluminum, and by a quenching method such as a gas atomizing method or a rapid quenching method and in an inert atmosphere. That is, it is desirable that the composition has a uniform composition and the oxygen content is as small as possible. If the cooling rate is low, Al or Si segregates in the cooling process and the composition becomes non-uniform, so the coercive force increases. Therefore, the hysteresis loss becomes large, which is not preferable. On the other hand, if the oxygen content in the particles is high, the movement of the domain wall is hindered and the coercive force becomes large, and the hysteresis loss becomes large, which is not preferable.

【0020】本発明では、Fe−Si−Al系合金粉末
の製造は、上記したようにガスアトマイズ法または高速
急冷法を用いる。ガスアトマイズ法は、ノズルから流下
させた原料合金の溶湯にガス流を噴射して飛沫化すると
ともに冷却し、凝固・粉末化する。なお、後述するよう
に、渦電流を小さく抑えるためには圧粉コアの粒子表面
が酸化されていることが好ましい。しかし、成形前に粒
子が酸化されると、粒子表面にFe−Si−Al系合金
よりも固いAl23が形成されるため、成型時に密度を
上げることができなくなる。このため、冷却のためのガ
スは、粉末の酸化を防ぐために非酸化性のもの、例えば
窒素やアルゴン等を用いる。ガスアトマイズの際の条件
は、例えば溶湯の温度は1400〜1600℃とするこ
とが好ましく、ガスの噴射圧力は、2.0〜2.5MP
aとすることが好ましい。一方、高速急冷法は、直接、
粉末を得る方法および得られた薄帯を粉砕する方法があ
る。
In the present invention, the Fe-Si-Al alloy powder is produced by the gas atomizing method or the rapid quenching method as described above. In the gas atomizing method, a gas flow is injected into a molten metal of a raw material alloy that is made to flow down from a nozzle so as to be sprayed and cooled, and then solidified and powdered. As described later, in order to suppress the eddy current to be small, it is preferable that the particle surface of the dust core is oxidized. However, if the particles are oxidized before forming, Al 2 O 3 that is harder than the Fe-Si-Al alloy is formed on the surface of the particles, so that the density cannot be increased during forming. Therefore, as the cooling gas, a non-oxidizing gas such as nitrogen or argon is used to prevent the powder from being oxidized. The conditions for gas atomization are, for example, preferably a molten metal temperature of 1400 to 1600 ° C., and a gas injection pressure of 2.0 to 2.5 MP.
It is preferably a. On the other hand, the rapid quenching method directly
There are methods of obtaining a powder and crushing the obtained ribbon.

【0021】いずれの方法により得られたFe−Si−
Al系合金粉末も、比較的偏析が少なく、含有酸素量も
少ない。
Fe-Si-obtained by either method
Al-based alloy powder also has relatively little segregation and a small oxygen content.

【0022】さらに、上記方法にて得られたFe−Si
−Al系合金粉末を成形後、不活性雰囲気でアニール
し、さらに酸化雰囲気でアニールする。不活性雰囲気で
アニールすることにより、成形によるストレスを低減す
る。また後に酸化雰囲気でアニールすることにより、粒
子表面が酸化され渦電流が小さくなる。渦電流を小さく
することで、渦電流損失が小さくなるだけでなくヒステ
リシス損失も小さくなる。これは、100kHz程度の
交流では渦電流により磁壁移動が妨げられるからであ
る。したがって電気抵抗を大きくすることにより、渦電
流が小さくなると磁壁移動が容易となりヒステリシス損
失も小さくなる。ただし、Fe−Si−Al系合金粉末
内部に酸素含有量が多いと、磁壁移動が妨げられるため
に、酸素含有量の少ないFe−Si−Al系合金粉末を
用いて、粒子表面が酸化され、粒子内部は酸化されない
ようなアニール条件を選択する必要がある。具体的に
は、粒子内部の酸素含有量は400ppmが限度であ
る。400ppmを超えるころから、上記したように、
磁壁移動が妨げられるためにヒステリシス損失が大きく
なり、結果としてコアロスが大きくなるためである。
Further, Fe--Si obtained by the above method
After forming the Al-based alloy powder, it is annealed in an inert atmosphere and further annealed in an oxidizing atmosphere. Annealing in an inert atmosphere reduces stress due to molding. Further, by subsequently annealing in an oxidizing atmosphere, the particle surface is oxidized and the eddy current is reduced. By reducing the eddy current, not only the eddy current loss decreases but also the hysteresis loss decreases. This is because the domain wall movement is hindered by the eddy current in an alternating current of about 100 kHz. Therefore, when the eddy current becomes small by increasing the electric resistance, the domain wall movement becomes easy and the hysteresis loss becomes small. However, when the oxygen content is large inside the Fe-Si-Al alloy powder, the domain wall movement is hindered, so the particle surface is oxidized by using the Fe-Si-Al alloy powder having a low oxygen content, It is necessary to select an annealing condition so that the inside of the grain is not oxidized. Specifically, the oxygen content inside the particles is limited to 400 ppm. From the time of exceeding 400 ppm, as described above,
This is because the domain wall movement is hindered and the hysteresis loss becomes large, resulting in a large core loss.

【0023】不活性雰囲気でのアニール条件は、Fe−
Si−Al系合金粉末の粒径および粒度分布ならびに成
形条件に応じて適宜決定すればよいが、シリコーン樹脂
と有機チタンを添加した場合の処理温度は、好ましくは
500〜800℃、より好ましくは600〜760℃で
ある。処理温度が500℃に満たない場合、アニールの
効果が現れずヒステリシス損失の低減をはかれない。一
方、800℃を超える場合は、Fe−Si−Al系合金
粉末が焼結しやすくなり、強磁性粒子間の絶縁性が劣化
して渦電流損失が大きくなりやすい。処理時間、すなわ
ち上記温度範囲内を通過する時間または上記温度範囲内
で一定の温度に保持する時間は、好ましくは10〜60
分間である。処理時間が上記範囲に満たない場合、アニ
ールの効果が現れずヒステリシス損失の低減をはかれな
い。一方、処理時間が上記範囲を超える場合はFe−S
i−Al系合金粉末が焼結しやすくなり好ましくない。
The annealing conditions in the inert atmosphere are Fe-
The treatment temperature when the silicone resin and the organic titanium are added is preferably 500 to 800 ° C., more preferably 600, although it may be appropriately determined depending on the particle size and particle size distribution of the Si—Al alloy powder and the molding conditions. ~ 760 ° C. If the processing temperature is less than 500 ° C., the effect of annealing does not appear and the hysteresis loss cannot be reduced. On the other hand, when the temperature exceeds 800 ° C., the Fe—Si—Al alloy powder is likely to be sintered, the insulating property between the ferromagnetic particles is deteriorated, and the eddy current loss is likely to be large. The treatment time, that is, the time of passing through the above temperature range or the time of maintaining a constant temperature within the above temperature range is preferably 10 to 60.
It's a minute. When the treatment time is less than the above range, the effect of annealing does not appear and the hysteresis loss cannot be reduced. On the other hand, when the processing time exceeds the above range, Fe-S
This is not preferable because the i-Al alloy powder is easily sintered.

【0024】また、酸化雰囲気でのアニール条件もま
た、不活性雰囲気でのアニール条件と同様に、Fe−S
i−Al系合金粉末の粒径および粒度分布ならびに成形
条件に応じて適宜決定すればよいが、シリコーン樹脂と
有機チタンを添加した場合の処理温度は400〜700
℃が好ましい。処理温度が上記範囲に満たない場合、F
e−Si−Al系合金粉末表面の酸化が十分でなく、コ
アロスの低減がはかれない。一方、処理温度が上記範囲
を超える場合、Fe−Si−Al系合金粉末の酸化が進
みすぎ透磁率が小さくなり好ましくない。このとき特に
Alが酸化物を形成している。
The annealing conditions in the oxidizing atmosphere are also Fe--S, as in the inert atmosphere.
It may be appropriately determined depending on the particle size and particle size distribution of the i-Al alloy powder and the molding conditions, but the processing temperature when the silicone resin and the organic titanium are added is 400 to 700.
C is preferred. If the processing temperature is below the above range, F
The oxidation of the surface of the e-Si-Al alloy powder is not sufficient, and the core loss cannot be reduced. On the other hand, when the treatment temperature exceeds the above range, the Fe—Si—Al alloy powder is excessively oxidized and the magnetic permeability becomes small, which is not preferable. At this time, especially Al forms an oxide.

【0025】ここで、シリコーン樹脂と有機チタンを添
加し、アニール処理を行った場合、アニールの雰囲気に
よらずコア中には、シリコーン樹脂がより高分子化して
存在している。これは、FT−IR(フーリエ変換赤外
分光)透過方法等の分析方法により確認することができ
る。
Here, when the silicone resin and the organic titanium are added and the annealing treatment is performed, the silicone resin is present in a higher polymer in the core regardless of the annealing atmosphere. This can be confirmed by an analysis method such as an FT-IR (Fourier transform infrared spectroscopy) transmission method.

【0026】本発明の圧粉コアは、上記Fe−Si−A
l系合金粉末と絶縁剤を成形したものである。絶縁剤は
特に限定されないが、上記温度でのアニール処理に耐え
ること、また、コアの機械的強度向上効果が高いことか
らシリコーン樹脂を用いることが好ましい。
The dust core of the present invention is the above Fe-Si-A.
It is formed by molding an l-based alloy powder and an insulating agent. The insulating agent is not particularly limited, but it is preferable to use a silicone resin because it can withstand the annealing treatment at the above temperature and has a high effect of improving the mechanical strength of the core.

【0027】シリコーン樹脂は、オルガノシロキサン結
合を有するオルガノポリシロキサンであり、狭義には、
3次元網目構造を有するオルガノポリシロキサンであ
る。本発明で用いるシリコーン樹脂は特に限定されない
が、狭義のシリコーン樹脂は必ず用いる。これは他の樹
脂では耐熱性に難があり、アニールを高温でできないた
めである。ただし、シリコーンオイルやシリコーンゴム
等の広義のシリコーン樹脂を併用してもよい。使用する
全シリコーン樹脂中における狭義のシリコーン樹脂の割
合は、好ましくは50wt%以上、より好ましくは狭義
のシリコーン樹脂のみを用いる。シリコーン樹脂は、通
常、ジメチルポリシロキサンを主成分とするが、メチル
基の一部が他のアルキル基またはアリール基で置換され
てもよい。
The silicone resin is an organopolysiloxane having an organosiloxane bond, and in a narrow sense,
It is an organopolysiloxane having a three-dimensional network structure. The silicone resin used in the present invention is not particularly limited, but a silicone resin in a narrow sense is always used. This is because other resins have poor heat resistance and cannot be annealed at high temperatures. However, a silicone resin in a broad sense such as silicone oil or silicone rubber may be used together. The proportion of the narrowly defined silicone resin in all the silicone resins used is preferably 50 wt% or more, and more preferably only the narrowly defined silicone resin is used. The silicone resin usually contains dimethylpolysiloxane as a main component, but a part of the methyl group may be substituted with another alkyl group or aryl group.

【0028】シリコーン樹脂とFe−Si−Al系合金
粉末とを混合するときには、固体状または液状のシリコ
ーン樹脂を溶液化して混合してもよく、液状のシリコー
ン樹脂を直接混合してもよいが、溶液化して用いる場合
には成形前に溶液を乾燥する必要があるため、好ましく
は溶液化せずに液状のシリコーン樹脂を直接混合する。
液状のシリコーン樹脂の粘度は、25℃において好まし
くは10〜10000CP、より好ましくは1000〜
9000CPである。上記範囲外すなわち粘度が10C
Pより低すぎても10000CPより高すぎても、強磁
性金属粒子表面に均一な皮膜を形成することが難しくな
る。
When the silicone resin and the Fe-Si-Al alloy powder are mixed, the solid or liquid silicone resin may be dissolved and mixed, or the liquid silicone resin may be directly mixed. When the solution is used, it is necessary to dry the solution before molding. Therefore, it is preferable to directly mix the liquid silicone resin without solution.
The viscosity of the liquid silicone resin at 25 ° C. is preferably 10 to 10000 CP, more preferably 1000 to
9000 CP. Outside the above range, that is, viscosity is 10C
If it is lower than P or higher than 10,000 CP, it becomes difficult to form a uniform film on the surface of the ferromagnetic metal particles.

【0029】シリコーン樹脂の混合量は、Fe−Si−
Al系合金粉末に対し好ましくは0.5〜5wt%、よ
り好ましくは1〜3wt%である。シリコーン樹脂の混
合量が0.5wt%に満たない場合、強磁性金属粒子間
の絶縁性が不十分となり、また、コアの機械強度も不十
分となる。一方、シリコーン樹脂の混合量が5wt%を
超える場合、コア中の非磁性領域の比率が高くなって透
磁率が低くなる。また、上記範囲外すなわちシリコーン
樹脂が少なすぎても多すぎても、コアの密度が低くなる
傾向がある。
The mixing amount of the silicone resin is Fe-Si-
It is preferably 0.5 to 5 wt%, and more preferably 1 to 3 wt% with respect to the Al-based alloy powder. If the mixing amount of the silicone resin is less than 0.5 wt%, the insulating property between the ferromagnetic metal particles becomes insufficient, and the mechanical strength of the core also becomes insufficient. On the other hand, when the mixing amount of the silicone resin exceeds 5 wt%, the ratio of the non-magnetic region in the core becomes high and the magnetic permeability becomes low. Further, if the content is out of the above range, that is, the amount of silicone resin is too small or too large, the density of the core tends to be low.

【0030】絶縁剤としてシリコーン樹脂を用いる場
合、架橋剤として有機チタンを混合する。有機チタンを
添加することにより、コアの機械的強度がさらに向上す
る。
When a silicone resin is used as the insulating agent, organic titanium is mixed as the crosslinking agent. By adding the organic titanium, the mechanical strength of the core is further improved.

【0031】本発明で用いる有機チタンとは、チタンの
アルコキシドおよびキレートから選択される少なくとも
1種であり、シリコーン樹脂の架橋剤として使用できる
ものである。
The organic titanium used in the present invention is at least one selected from titanium alkoxides and chelates, and can be used as a crosslinking agent for silicone resins.

【0032】アルコキシドは、モノマーであってもオリ
ゴマーないしポリマーであってもよく、これらを併用し
てもよい。アルコキシドとしては、例えば、アルキル基
の炭素数が1〜8のテトラアルコキシチタン、具体的に
は、テトラ−i−プロポキシチタン、テトラ−n−ブト
キシチタン、テトラキス(2−エチルヘソキシキ)チタ
ンが好ましく、これらのうち、テトラ−n−ブトキシチ
タンが最も好ましい。特に、下記化1で表されるテトラ
−n−ブトキシチタンのオリゴマーないしポリマーが好
ましい。
The alkoxide may be a monomer, an oligomer or a polymer, and these may be used in combination. As the alkoxide, for example, tetraalkoxytitanium having an alkyl group having 1 to 8 carbon atoms, specifically, tetra-i-propoxytitanium, tetra-n-butoxytitanium, and tetrakis (2-ethylhesoxyki) titanium are preferable. Of these, tetra-n-butoxy titanium is the most preferable. Particularly, an oligomer or polymer of tetra-n-butoxytitanium represented by the following chemical formula 1 is preferable.

【0033】[0033]

【化1】 Embedded image

【0034】上記化1において、nは好ましくは10以
下の整数であり、より好ましくはn=2、4、7、10
であり、より好ましくはn=4である。nが10を超え
る場合、架橋反応の速度が低くなる傾向がある。
In the above chemical formula 1, n is preferably an integer of 10 or less, more preferably n = 2, 4, 7, 10
And more preferably n = 4. When n exceeds 10, the crosslinking reaction rate tends to be low.

【0035】キレートとしては、ジ−n−プロポキシ・
ビス(アセチルアセトナト)チタン、ジ−n−ブトキシ
・ビス(トリエタノールアミナト)チタンが好ましい。
As the chelate, di-n-propoxy.
Bis (acetylacetonato) titanium and di-n-butoxy bis (triethanolaminato) titanium are preferred.

【0036】これら有機チタンのうち、上記した各種ア
ルコキシドを用いることが好ましい。上記アルコキシド
は、常温で液体であるために混合する際に液状のシリコ
ーン樹脂と共に直接混合でき、また、加水分解速度が適
当であり、入手も容易である。
Of these organic titanium, it is preferable to use the above-mentioned various alkoxides. Since the alkoxide is a liquid at room temperature, it can be directly mixed with a liquid silicone resin at the time of mixing, the hydrolysis rate is appropriate, and the alkoxide is easily available.

【0037】有機チタンの混合量は、シリコーン樹脂の
混合量に対し、好ましくは10〜70wt%、より好ま
しくは25〜50wt%である。有機チタンの混合量が
10wt%より少ないと、コアの機械的強度をさらに向
上させる効果が不十分となる。一方、混合量が70wt
%より多くても機械的強度は顕著には向上せず、コアの
透磁率が低くなる。
The mixing amount of the organic titanium is preferably 10 to 70 wt%, more preferably 25 to 50 wt% with respect to the mixing amount of the silicone resin. If the mixing amount of the organic titanium is less than 10 wt%, the effect of further improving the mechanical strength of the core becomes insufficient. On the other hand, the mixing amount is 70 wt
%, The mechanical strength is not significantly improved, and the magnetic permeability of the core becomes low.

【0038】なお、シリコーン樹脂以外にも、従来の圧
粉コアに用いられている水ガラス等が使用可能である
が、水ガラスは300℃程度を超える温度では分解して
絶縁性を保てなくなるため、高温のアニール処理が不可
能であり、磁気特性向上が難しい。
Besides the silicone resin, water glass or the like used in the conventional dust core can be used, but the water glass decomposes at a temperature exceeding about 300 ° C. and cannot maintain its insulating property. Therefore, high-temperature annealing cannot be performed, and it is difficult to improve magnetic characteristics.

【0039】Fe−Si−Al系合金粉末とシリコーン
樹脂と有機チタンとを混合した後、混合物に乾燥処理を
施すことが好ましい。乾燥処理では、好ましくは50〜
300℃、より好ましくは50〜150℃の温度範囲に
保持する。処理温度が50℃に満たない場合、シリコー
ン樹脂の接着性が弱くならないためFe−Si−Al系
合金粉末が凝集しやすくなって成形性が低下し、処理温
度が150℃を超える場合、シリコーン樹脂の接着性が
弱くなりすぎてコアの機械的強度向上効果が不十分とな
る。処理時間、すなわち、上記温度範囲内を通過する時
間あるいは上記処理温度内の一定の時間に保持する時間
は、好ましくは0.5〜2時間とする。上記処理時間の
範囲に満たない場合、シリコーン樹脂の接着性が弱くな
らず、上記処理時間の範囲を超える場合、シリコーン樹
脂の接着性が弱くなりすぎる。処理条件は比較的低温で
行うので、非酸化雰囲気中で行う必要はなく、空気中で
行ってよい。
After the Fe-Si-Al alloy powder, the silicone resin and the organic titanium are mixed, it is preferable to dry the mixture. In the drying process, preferably 50 to
The temperature is maintained at 300 ° C, more preferably 50 to 150 ° C. When the treatment temperature is lower than 50 ° C, the adhesiveness of the silicone resin does not become weak, so that the Fe-Si-Al alloy powder easily aggregates and the moldability deteriorates. When the treatment temperature exceeds 150 ° C, the silicone resin The adhesiveness of is too weak, and the effect of improving the mechanical strength of the core becomes insufficient. The processing time, that is, the time of passing through the above temperature range or the time of maintaining the above processing temperature for a certain period of time is preferably 0.5 to 2 hours. If it is less than the above treatment time range, the adhesiveness of the silicone resin does not become weak, and if it exceeds the above treatment time range, the adhesiveness of the silicone resin becomes too weak. Since the treatment is performed at a relatively low temperature, it is not necessary to perform it in a non-oxidizing atmosphere, and it may be performed in air.

【0040】乾燥処理後、成形前に、前記混合物に潤滑
剤を添加することが好ましい。潤滑剤は、成形時の粒子
間潤滑性を高めたり、金型からの離型性を向上させたり
するために用いられる。潤滑剤には、圧粉コアに通常用
いられている各種のものを選択でき、例えば、ステアリ
ン酸アミド等の高級脂肪酸、その塩、あるいはワックス
など、常温で固体の有機潤滑剤や、二酸化モリブデン等
の無機潤滑剤などから適宜選択すればよい。潤滑剤の割
合量は種類によっても異なるが、常温で固体の有機潤滑
剤ではFe−Si−Al系合金粉末に対し好ましくは
0.1〜1wt%とし、無機潤滑剤ではFe−Si−A
l系合金粉末に対し好ましくは0.1〜0.5wt%と
する。上記割合量の範囲に満たない場合は、添加による
効果が不十分となり、上記割合量の範囲を超える場合
は、コアの透磁率が低くなり、また、コアの強度も低く
なる。
A lubricant is preferably added to the mixture after the drying treatment and before the molding. The lubricant is used to enhance interparticle lubricity during molding and to improve releasability from the mold. As the lubricant, various kinds of substances usually used for powder cores can be selected. For example, higher fatty acids such as stearamide and salts thereof, waxes, organic lubricants that are solid at room temperature, molybdenum dioxide, etc. It may be appropriately selected from the above inorganic lubricants. The proportion of the lubricant varies depending on the type, but for an organic lubricant that is solid at room temperature, it is preferably 0.1 to 1 wt% with respect to the Fe-Si-Al alloy powder, and for an inorganic lubricant, Fe-Si-A.
It is preferably 0.1 to 0.5 wt% with respect to the l-based alloy powder. If the amount is less than the above range, the effect of addition becomes insufficient, and if the amount exceeds the above range, the magnetic permeability of the core becomes low and the strength of the core also becomes low.

【0041】なお、潤滑剤は、通常、乾燥処理後に混合
するが、乾燥処理の際の加熱に耐えられる潤滑剤を用い
る場合には、潤滑剤を乾燥処理前に添加してもよい。
The lubricant is usually mixed after the drying treatment, but if a lubricant that can withstand the heating during the drying treatment is used, the lubricant may be added before the drying treatment.

【0042】成形工程では、所望のコア形状に成形す
る。本発明が適用されるコア形状は特に限定されず、い
わゆるトロイダル型、EE型、EI型、ER型、EPC
型、ドラム型、ポット型、カップ型等の各種形状のコア
の製造に本発明は適用される。
In the molding step, a desired core shape is formed. The shape of the core to which the present invention is applied is not particularly limited, and so-called toroidal type, EE type, EI type, ER type, EPC
The present invention is applied to the production of cores of various shapes such as molds, drum shapes, pot shapes, cup shapes and the like.

【0043】成形条件は特に限定されず、目的とするコ
ア形状やコア寸法、コア密度などに応じて適宜決定すれ
ばよいが、通常、最大圧力は6〜20t/cm2程度、
最大圧力に保持する時間は0.1秒間〜1分間程度とす
る。
The molding conditions are not particularly limited and may be appropriately determined according to the desired core shape, core size, core density, etc., but normally the maximum pressure is about 6 to 20 t / cm 2 .
The time for maintaining the maximum pressure is about 0.1 second to 1 minute.

【0044】[0044]

【実施例】以下、本発明の具体的実施例を示す。EXAMPLES Specific examples of the present invention will be described below.

【0045】(実施例1)合金の製造方法を変え、表1
に示す5種類のFe−Si−Al合金粉末を得た。な
お、これら合金粉末の具体的な製造方法を以下に示す。
(Example 1) Table 1
Five kinds of Fe-Si-Al alloy powders shown in were obtained. In addition, the concrete manufacturing method of these alloy powders is shown below.

【0046】ガスアトマイズ粉末はガスアトマイズ法に
よりFeが84.3wt%、Siが9.8wt%、Al
が5.9wt%となるように製造した。
The gas atomized powder was prepared by the gas atomizing method so that Fe was 84.3 wt%, Si was 9.8 wt% and Al was Al.
Was manufactured to be 5.9 wt%.

【0047】高速急冷粉末は単ロール型高速急冷法を用
いて、上記組成と同様になるようにFe−Si−Al合
金の薄帯を作製し、ボールミルで粉砕し、Fe−Si−
Al合金粉末を作製した。
The rapid-quenching powder was produced by using a single-roll type rapid-quenching method to prepare a thin strip of Fe-Si-Al alloy so as to have the same composition as described above, and crushed by a ball mill to obtain Fe-Si-
An Al alloy powder was produced.

【0048】粉砕粉末は溶解鋳造により製造したインゴ
ットを、ジョークラッシャー、ブラウンミルおよびベッ
セルミルにより粉砕し、Fe−Si−Al合金粉末を作
製した。粉砕後、水素雰囲気中で800℃にて1時間熱
処理を施した。なお粉末の組成は上記ガスアトマイズ法
による粉末と同様とした。
As the crushed powder, the ingot produced by melting and casting was crushed by a jaw crusher, a brown mill and a vessel mill to prepare a Fe-Si-Al alloy powder. After crushing, heat treatment was performed at 800 ° C. for 1 hour in a hydrogen atmosphere. The composition of the powder was the same as that of the powder obtained by the gas atomizing method.

【0049】水アトマイズ粉末は水アトマイズ法によ
り、組成が上記ガスアトマイズ法による粉末と同様とな
るようにFe−Si−Al合金粉末を作製した。
The Fe-Si-Al alloy powder was produced by the water atomizing method so that the composition was the same as that of the powder by the gas atomizing method.

【0050】ガスアトマイズ+粉砕粉末は上記ガスアト
マイズ法により作製した粉末をベッセルミルを用いて粉
砕した。粉砕粉を水素雰囲気中で800℃にて1時間加
熱処理を施した。
The gas atomized + pulverized powder was obtained by pulverizing the powder produced by the above gas atomizing method using a vessel mill. The pulverized powder was heat-treated in a hydrogen atmosphere at 800 ° C. for 1 hour.

【0051】[0051]

【表1】 [Table 1]

【0052】上記これらの粉末にシリコーン樹脂と有機
チタンとを自動乳鉢により混合し、100℃で1時間乾
燥した。シリコーン樹脂には、無溶剤型シリコーン樹脂
(トーレ・シリコーン社製SR2414:25℃におけ
る粘度2000〜8000CP)を用い、有機チタン酸
には、前記した化1の化合物でn=4のもの(日曹社製
TBTポリマーB−4)を用いた。Fe−Si−Al合
金粉末に対するシリコーン樹脂の混合量は1.8wt%
とし、シリコーン樹脂に対する有機チタンの添加量は3
3wt%とした。
Silicone resin and organic titanium were mixed with these powders in an automatic mortar and dried at 100 ° C. for 1 hour. Solvent-free silicone resin (SR2414 manufactured by Toray Silicone Co., Ltd .: Viscosity 2000-8000 CP at 25 ° C.) is used as the silicone resin, and organic titanic acid is the compound of the above chemical formula 1 with n = 4 (Nisso TBT polymer B-4) manufactured by the same company was used. The amount of the silicone resin mixed with the Fe-Si-Al alloy powder is 1.8 wt%
And the amount of organotitanium added to the silicone resin is 3
It was set to 3 wt%.

【0053】乾燥後、潤滑剤を混合した。潤滑剤には、
Fe−Si−Al合金粉末に対し0.4wt%のステア
リン酸アミドを用いた。次に、乾燥物を加圧成形し、ト
ロイダル状(外形17.5mm、内径10.2mm、高
さ6mm)の圧粉体を得た。成形圧力は、12t/cm
2とし、加圧時間は10秒間とした。
After drying, the lubricant was mixed. For lubricant,
0.4 wt% stearic acid amide was used with respect to the Fe-Si-Al alloy powder. Next, the dried product was pressure-molded to obtain a toroidal green powder (outer shape 17.5 mm, inner diameter 10.2 mm, height 6 mm). Molding pressure is 12t / cm
2 and the pressing time was 10 seconds.

【0054】得られたトロイダルコアを窒素雰囲気、7
00℃、30分間アニールし100kHzにおける初透
磁率(μi)を求め、また、100kHz、100mT
におけるヒステリシス損失(Ph)、渦電流損失(P
e)、コアロス(Pt)を求めた。その結果を表2に示
す。
The resulting toroidal core was placed in a nitrogen atmosphere,
Annealing is performed at 00 ° C. for 30 minutes to obtain the initial magnetic permeability (μi) at 100 kHz. Also, 100 kHz, 100 mT
Hysteresis loss (Ph) and eddy current loss (Ph)
e) and core loss (Pt) were determined. The results are shown in Table 2.

【0055】[0055]

【表2】 [Table 2]

【0056】表2より冷却速度の比較的大きいガスアト
マイズ、高速急冷法により作製した強磁性金属粉末を使
用したトロイダルコアはコアロスが小さいことがわか
る。またガスアトマイズにより作製した強磁性金属粉末
をさらに粉砕したものを使用したトロイダルコアは粉砕
によるストレスがあり、粉末のアニールをしても粉砕の
歪みが完全にリリースしないため、保磁力が大きく、従
ってヒステリシス損失も大きい。
It can be seen from Table 2 that the core loss of the toroidal core using the ferromagnetic metal powder produced by the gas atomization and the rapid quenching method, which has a relatively high cooling rate, is small. In addition, the toroidal core made by further crushing the ferromagnetic metal powder produced by gas atomization has stress due to crushing, and even if the powder is annealed, the distortion of crushing does not completely release, so the coercive force is large and therefore the hysteresis Loss is also large.

【0057】(実施例2)さらにコアロスを低減するた
めにアニール条件を検討した。その結果を表3に示す。
Example 2 The annealing conditions were examined to further reduce the core loss. Table 3 shows the results.

【0058】ここで試料となるトロイダルコアは平均粒
径11μmのガスアトマイズ粉を用いて実施例1と同様
な方法により作製した。また、各コアの測定も実施例1
と同様である。
The toroidal core used as a sample was prepared by the same method as in Example 1 using gas atomized powder having an average particle size of 11 μm. In addition, the measurement of each core was also performed in Example 1.
Is the same as

【0059】[0059]

【表3】 [Table 3]

【0060】表3より、2回目のアニールを酸化雰囲気
で行うことにより、コアロスを低減できることがわか
る。2回目のアニールは、400〜700℃が好まし
い。アニール温度が400℃より低い場合、コアロスの
低減が不十分であり、アニール温度が700℃より高い
と透磁率が小さくなる。2回目のアニールを不活性雰囲
気中で行うと、コアロスの低減は認められず好ましくな
い。また、アニールを酸化雰囲気のみで行うと、コアロ
スは小さくなるものの、初透磁率が小さくなりすぎてし
まい好ましくない。
Table 3 shows that core loss can be reduced by performing the second annealing in an oxidizing atmosphere. The temperature of the second annealing is preferably 400 to 700 ° C. When the annealing temperature is lower than 400 ° C, the core loss is insufficiently reduced, and when the annealing temperature is higher than 700 ° C, the magnetic permeability becomes small. When the second annealing is performed in an inert atmosphere, reduction of core loss is not recognized, which is not preferable. Further, if the annealing is performed only in an oxidizing atmosphere, the core loss is reduced, but the initial magnetic permeability becomes too small, which is not preferable.

【0061】不活性雰囲気でアニール後、酸化雰囲気で
アニールを行うことにより、コアロスを低減できるの
は、強磁性金属粒子表面が酸化し電気抵抗が大きくなる
ことにより、渦電流が小さくなるためである。100k
Hz程度の交流では、圧粉コアのヒステリシス損失も渦
電流が小さくなることで小さくなる。これは、渦電流に
よる磁界が磁壁移動を妨げられる作用を抑えられるため
である。
The core loss can be reduced by performing the annealing in the oxidizing atmosphere after the annealing in the inert atmosphere, because the surface of the ferromagnetic metal particles is oxidized and the electric resistance is increased, so that the eddy current is reduced. . 100k
With an alternating current of about Hz, the hysteresis loss of the dust core also becomes smaller as the eddy current becomes smaller. This is because the magnetic field due to the eddy current can suppress the effect of hindering the domain wall movement.

【0062】(実施例3)実施例2よりアニールの雰囲
気等によりコアロスを低減できることがわかった。そこ
で実施例1で作製したコアをさらに酸化雰囲気(空気
中)、400℃、30分間アニールした。これらのコア
を実施例1と同様に初透磁率、コアロスを測定し、Fe
−Si−Al合金粉末の製造方法の違いによる影響を見
た。結果を表4に示す。
(Example 3) From Example 2, it was found that the core loss can be reduced by the annealing atmosphere and the like. Therefore, the core manufactured in Example 1 was further annealed at 400 ° C. for 30 minutes in an oxidizing atmosphere (in air). These cores were measured for initial permeability and core loss in the same manner as in Example 1, and Fe
The effect of the difference in the manufacturing method of the -Si-Al alloy powder was observed. The results are shown in Table 4.

【0063】[0063]

【表4】 [Table 4]

【0064】ガスアトマイズまたは高速急冷で作製した
Fe−Si−Al合金粉末を用いた場合は、表2と比較
して2回目のアニールでコアロスが低減する。2回目の
アニールで金属粒子表面が酸化し、電気抵抗が高くなる
ことにより渦電流の影響が少なくなりコアロスが小さく
なる。
When the Fe-Si-Al alloy powder produced by gas atomization or rapid quenching is used, the core loss is reduced by the second annealing as compared with Table 2. By the second annealing, the surface of the metal particles is oxidized and the electric resistance is increased, so that the influence of the eddy current is reduced and the core loss is reduced.

【0065】一方、粉砕または水アトマイズで作成した
Fe−Si−Al合金粉末を用いた場合は、コアロスが
大きく2回目のアニールでコアロスがほとんど低減しな
い。粉砕粉末を使用した場合は、金属粉末の酸素量が多
すぎるため磁壁移動が妨げられ、保磁力が大きくなり、
ヒステリシス損失が大きくなっている。
On the other hand, when the Fe-Si-Al alloy powder prepared by pulverization or water atomization is used, the core loss is large and the core loss is hardly reduced by the second annealing. When pulverized powder is used, the amount of oxygen in the metal powder is too large, which hinders domain wall movement and increases coercive force.
The hysteresis loss is large.

【0066】合金を構成している各元素の偏析の度合い
は、例えば、EPMAなどにより分析できる。また、合
金粉末の酸素量はガス分析により知ることができる。
The degree of segregation of each element constituting the alloy can be analyzed by, for example, EPMA. The oxygen content of the alloy powder can be known by gas analysis.

【0067】[0067]

【発明の効果】ガスアトマイズ法または高速急冷法等に
より製造されたFe−Si−Al合金粉末は粉砕粉末等
に比べ、成形後の不活性雰囲気でのアニールによりスト
レスが開放されやすい。さらに不活性雰囲気で作製され
るため含有酸素量が少ないために、酸化物による磁壁移
動の妨げが少なく、保磁力が小さくなり、従ってヒステ
リシス損失が小さくなる。また2回目の酸化雰囲気での
アニールにより、コアロスの低減がはかれる。よって本
発明に係る製造方法により作製された圧粉コアは小型
化、高周波での使用が可能となる。
The Fe-Si-Al alloy powder produced by the gas atomizing method or the rapid quenching method is easier to release the stress by annealing in the inert atmosphere after molding than the pulverized powder. Further, since it is produced in an inert atmosphere, the amount of oxygen contained is small, so that there is little obstruction of domain wall movement due to oxides, the coercive force is small, and therefore hysteresis loss is small. Also, the core loss can be reduced by the second annealing in the oxidizing atmosphere. Therefore, the dust core manufactured by the manufacturing method according to the present invention can be downsized and used at high frequency.

【図面の簡単な説明】[Brief description of drawings]

【図1】強磁性金属粒子の粒径とコアロスの関係を示す
図である。
FIG. 1 is a diagram showing the relationship between the particle size of ferromagnetic metal particles and core loss.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】Fe−Si−Al系合金粉末と絶縁剤を成
形した圧粉コアにおいて、前記合金粉末の粒子内部の酸
素含有量が400ppm以下であって、粒子表面が酸化
されていることを特徴とする圧粉コア。
1. In a dust core formed by molding a Fe—Si—Al alloy powder and an insulating agent, the oxygen content inside the particles of the alloy powder is 400 ppm or less, and the surface of the particles is oxidized. Characterized dust core.
【請求項2】鉄、シリコンもしくはフェロシリコン、お
よびアルミニウムもしくはフェロアルミを不活性雰囲気
中で溶融し、不活性雰囲気中で急冷による製造方法で該
合金微粉末を作製し、絶縁剤と混合成形後アニールする
ことを特徴とする請求項1の圧粉コアの製造方法。
2. Iron, silicon or ferro-silicon, and aluminum or ferro-aluminum are melted in an inert atmosphere, and the alloy fine powder is manufactured by a manufacturing method by quenching in an inert atmosphere, and after mixing and molding with an insulating agent. Annealing is performed, The manufacturing method of the dust core of Claim 1 characterized by the above-mentioned.
【請求項3】請求項2に係る急冷による製造方法がガス
アトマイズ法によることを特徴とする圧粉コアの製造方
法。
3. A method for producing a dust core, wherein the method for producing by quenching according to claim 2 is a gas atomizing method.
【請求項4】請求項2に係る急冷による製造方法が高速
急冷法によることを特徴とする圧粉コアの製造方法。
4. A method of manufacturing a dust core, wherein the method of manufacturing by rapid cooling according to claim 2 is a rapid cooling method.
【請求項5】成形したコアを不活性雰囲気中でアニール
後、さらに酸化雰囲気中でアニールすることを特徴とす
る請求項2、請求項3および請求項4の圧粉コアの製造
方法。
5. The method for manufacturing a dust core according to claim 2, wherein the molded core is annealed in an inert atmosphere and then annealed in an oxidizing atmosphere.
【請求項6】不活性雰囲気中でのアニール温度が500
〜800℃である請求項5の圧粉コアの製造方法。
6. An annealing temperature of 500 in an inert atmosphere.
The method for producing a dust core according to claim 5, wherein the temperature is from about 800 ° C.
【請求項7】酸化雰囲気中でのアニール温度が400〜
700℃である請求項5の圧粉コアの製造方法。
7. An annealing temperature in an oxidizing atmosphere of 400 to.
The method for producing a dust core according to claim 5, wherein the temperature is 700 ° C.
JP7230483A 1995-09-07 1995-09-07 Dust core and manufacture thereof Withdrawn JPH0974011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230483A JPH0974011A (en) 1995-09-07 1995-09-07 Dust core and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230483A JPH0974011A (en) 1995-09-07 1995-09-07 Dust core and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0974011A true JPH0974011A (en) 1997-03-18

Family

ID=16908501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230483A Withdrawn JPH0974011A (en) 1995-09-07 1995-09-07 Dust core and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0974011A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510286A (en) * 1997-07-18 2001-07-31 ホガナス アクチボラゲット Soft magnetic synthetic material and method for producing the same
JP2004319652A (en) * 2003-04-15 2004-11-11 Tamura Seisakusho Co Ltd Core and method of manufacturing the same
JP2007012994A (en) * 2005-07-01 2007-01-18 Mitsubishi Steel Mfg Co Ltd Method for manufacturing insulating soft magnetic metal powder molding
JP2008244347A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Pmg Corp Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material
WO2009060895A1 (en) * 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP2009141346A (en) * 2007-11-16 2009-06-25 Mitsubishi Materials Corp High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP2009246256A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp High-strength high-resistivity low loss composite soft magnetic material, its method for manufacturing, and electromagnetic circuit component
JP2010028131A (en) * 2003-12-29 2010-02-04 Hoganas Ab Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member
CN101871071A (en) * 2010-06-24 2010-10-27 湖州微控电子有限公司 Manufacturing method of soft magnet silicon-aluminum alloy magnetic powder core with small amounts of rare earth element cerium or lanthanum
JP2011146681A (en) * 2009-10-06 2011-07-28 Fuji Electric Co Ltd Dust core and method of manufacturing the same
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
WO2012147576A1 (en) * 2011-04-27 2012-11-01 太陽誘電株式会社 Magnetic material and coil component
US8362866B2 (en) 2011-01-20 2013-01-29 Taiyo Yuden Co., Ltd. Coil component
JP2013045927A (en) * 2011-08-25 2013-03-04 Taiyo Yuden Co Ltd Electronic component and manufacturing method therefor
JP2013045985A (en) * 2011-08-26 2013-03-04 Taiyo Yuden Co Ltd Magnetic material and coil component
JP2013046055A (en) * 2012-05-25 2013-03-04 Taiyo Yuden Co Ltd Magnetic material and coil component
JP2013055316A (en) * 2011-08-10 2013-03-21 Taiyo Yuden Co Ltd Multilayer inductor
JP2013055078A (en) * 2011-08-25 2013-03-21 Taiyo Yuden Co Ltd Winding type inductor
JP2013055315A (en) * 2011-08-05 2013-03-21 Taiyo Yuden Co Ltd Multilayer inductor
US8427265B2 (en) 2011-04-27 2013-04-23 Taiyo Yuden Co., Ltd. Laminated inductor
JP2014042006A (en) * 2012-07-26 2014-03-06 Sanyo Special Steel Co Ltd Powder for powder-compact magnetic core
US8704629B2 (en) 2010-04-30 2014-04-22 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
CN103943296A (en) * 2013-01-23 2014-07-23 Tdk株式会社 Soft magnetic body composition, manufacturing method thereof, magnetic core, and coil-type electronic component
US8866579B2 (en) 2011-11-17 2014-10-21 Taiyo Yuden Co., Ltd. Laminated inductor
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
US9007159B2 (en) 2011-12-15 2015-04-14 Taiyo Yuden Co., Ltd. Coil-type electronic component
US9293244B2 (en) 2011-07-19 2016-03-22 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US9318251B2 (en) 2006-08-09 2016-04-19 Coilcraft, Incorporated Method of manufacturing an electronic component
US9349517B2 (en) 2011-01-20 2016-05-24 Taiyo Yuden Co., Ltd. Coil component
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
JP2021086990A (en) * 2019-11-29 2021-06-03 株式会社タムラ製作所 Reactor
JP2022520294A (en) * 2020-01-17 2022-03-30 深▲セン▼市▲ハク▼科新材料股▲フン▼有限公司 Copper plate embedded soft magnetic powder core inductor, its manufacturing method and applications
EP3928892A4 (en) * 2019-02-22 2023-03-08 Alps Alpine Co., Ltd. Powder magnetic core and method for producing same

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510286A (en) * 1997-07-18 2001-07-31 ホガナス アクチボラゲット Soft magnetic synthetic material and method for producing the same
JP4689038B2 (en) * 1997-07-18 2011-05-25 ホガナス アクチボラゲット Soft magnetic synthetic material and manufacturing method thereof
JP2004319652A (en) * 2003-04-15 2004-11-11 Tamura Seisakusho Co Ltd Core and method of manufacturing the same
JP2010028131A (en) * 2003-12-29 2010-02-04 Hoganas Ab Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member
JP2007012994A (en) * 2005-07-01 2007-01-18 Mitsubishi Steel Mfg Co Ltd Method for manufacturing insulating soft magnetic metal powder molding
US11869696B2 (en) 2006-08-09 2024-01-09 Coilcraft, Incorporated Electronic component
US9318251B2 (en) 2006-08-09 2016-04-19 Coilcraft, Incorporated Method of manufacturing an electronic component
US10319507B2 (en) 2006-08-09 2019-06-11 Coilcraft, Incorporated Method of manufacturing an electronic component
JP2008244347A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Pmg Corp Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material
JP2009117651A (en) * 2007-11-07 2009-05-28 Mitsubishi Materials Pmg Corp High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
WO2009060895A1 (en) * 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP2009141346A (en) * 2007-11-16 2009-06-25 Mitsubishi Materials Corp High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP2009246256A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp High-strength high-resistivity low loss composite soft magnetic material, its method for manufacturing, and electromagnetic circuit component
JP2011146681A (en) * 2009-10-06 2011-07-28 Fuji Electric Co Ltd Dust core and method of manufacturing the same
US8704629B2 (en) 2010-04-30 2014-04-22 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US8813346B2 (en) 2010-04-30 2014-08-26 Taiyo Yuden Co., Ltd. Method for manufacturing a coil-type electronic component
US8749339B2 (en) 2010-04-30 2014-06-10 Taiyo Yuden Co., Ltd. Coil-type electronic component and process for producing same
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
CN101871071A (en) * 2010-06-24 2010-10-27 湖州微控电子有限公司 Manufacturing method of soft magnet silicon-aluminum alloy magnetic powder core with small amounts of rare earth element cerium or lanthanum
US9349517B2 (en) 2011-01-20 2016-05-24 Taiyo Yuden Co., Ltd. Coil component
US8362866B2 (en) 2011-01-20 2013-01-29 Taiyo Yuden Co., Ltd. Coil component
US9685267B2 (en) 2011-01-20 2017-06-20 Taiyo Yuden Co., Ltd. Coil component
WO2012147576A1 (en) * 2011-04-27 2012-11-01 太陽誘電株式会社 Magnetic material and coil component
US8416051B2 (en) 2011-04-27 2013-04-09 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US8427265B2 (en) 2011-04-27 2013-04-23 Taiyo Yuden Co., Ltd. Laminated inductor
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
US9472341B2 (en) 2011-04-27 2016-10-18 Taiyo Yuden Co., Ltd. Method for manufacturing magnetic grain compact
WO2012147224A1 (en) * 2011-04-27 2012-11-01 太陽誘電株式会社 Magnetic material and coil component using same
US9030285B2 (en) 2011-04-27 2015-05-12 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
US9287026B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component
US9287033B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
JP5883437B2 (en) * 2011-04-27 2016-03-15 太陽誘電株式会社 Magnetic material and coil component using the same
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
US9293244B2 (en) 2011-07-19 2016-03-22 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US9165705B2 (en) 2011-08-05 2015-10-20 Taiyo Yuden Co., Ltd. Laminated inductor
JP2013055315A (en) * 2011-08-05 2013-03-21 Taiyo Yuden Co Ltd Multilayer inductor
US8610525B2 (en) 2011-08-05 2013-12-17 Taiyo Yuden Co., Ltd. Laminated inductor
JP2013055316A (en) * 2011-08-10 2013-03-21 Taiyo Yuden Co Ltd Multilayer inductor
US8525630B2 (en) 2011-08-10 2013-09-03 Taiyo Yuden Co., Ltd. Laminated inductor
JP2013045927A (en) * 2011-08-25 2013-03-04 Taiyo Yuden Co Ltd Electronic component and manufacturing method therefor
JP2013055078A (en) * 2011-08-25 2013-03-21 Taiyo Yuden Co Ltd Winding type inductor
CN106158222B (en) * 2011-08-26 2021-06-22 太阳诱电株式会社 Magnetic material and coil component
US11972885B2 (en) 2011-08-26 2024-04-30 Taiyo Yuden Co., Ltd Magnetic material and coil component
CN106158222A (en) * 2011-08-26 2016-11-23 太阳诱电株式会社 Magnetic material and coil component
TWI501262B (en) * 2011-08-26 2015-09-21 Taiyo Yuden Kk Magnetic materials and coil parts
CN103765529A (en) * 2011-08-26 2014-04-30 太阳诱电株式会社 Magnetic material and coil component
WO2013031243A1 (en) * 2011-08-26 2013-03-07 太陽誘電株式会社 Magnetic material and coil component
CN103765529B (en) * 2011-08-26 2016-09-14 太阳诱电株式会社 magnetic material and coil component
KR101490772B1 (en) * 2011-08-26 2015-02-06 다이요 유덴 가부시키가이샤 Magnetic material and coil component
JP2013045985A (en) * 2011-08-26 2013-03-04 Taiyo Yuden Co Ltd Magnetic material and coil component
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
US8866579B2 (en) 2011-11-17 2014-10-21 Taiyo Yuden Co., Ltd. Laminated inductor
US9007159B2 (en) 2011-12-15 2015-04-14 Taiyo Yuden Co., Ltd. Coil-type electronic component
JP2013046055A (en) * 2012-05-25 2013-03-04 Taiyo Yuden Co Ltd Magnetic material and coil component
JP2014042006A (en) * 2012-07-26 2014-03-06 Sanyo Special Steel Co Ltd Powder for powder-compact magnetic core
CN103943296A (en) * 2013-01-23 2014-07-23 Tdk株式会社 Soft magnetic body composition, manufacturing method thereof, magnetic core, and coil-type electronic component
CN103943296B (en) * 2013-01-23 2018-02-13 Tdk株式会社 Soft-magnetic body composition and its manufacture method, magnetic core and coil form electronic unit
EP3928892A4 (en) * 2019-02-22 2023-03-08 Alps Alpine Co., Ltd. Powder magnetic core and method for producing same
JP2021086990A (en) * 2019-11-29 2021-06-03 株式会社タムラ製作所 Reactor
JP2022520294A (en) * 2020-01-17 2022-03-30 深▲セン▼市▲ハク▼科新材料股▲フン▼有限公司 Copper plate embedded soft magnetic powder core inductor, its manufacturing method and applications

Similar Documents

Publication Publication Date Title
JPH0974011A (en) Dust core and manufacture thereof
KR100187347B1 (en) Power magnetic core
EP1840907B1 (en) Soft magnetic material and dust core
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
US5800636A (en) Dust core, iron powder therefor and method of making
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP4707054B2 (en) Soft magnetic material, method for producing soft magnetic material, dust core, and method for producing dust core
WO2010084812A1 (en) Process for producing metallurgical powder, process for producing powder magnetic core, powder magnetic core, and coil component
JP6265210B2 (en) Reactor dust core
JP2007012994A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2014216495A (en) Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact
JP2014143286A (en) Soft magnetic material composition, method for producing the same, magnetic core, and coil type electronic component
JP2001011563A (en) Manufacture of composite magnetic material
JP2011089191A (en) Soft magnetic material, dust core and method for producing the core
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
JP4995222B2 (en) Powder magnetic core and manufacturing method thereof
JP2002343657A (en) Duct core and manufacturing method therefor
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JPH0682577B2 (en) Fe-Si alloy dust core and method of manufacturing the same
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP2007231331A (en) Metallic powder for powder magnetic core, and method for manufacturing powder magnetic core
KR20190056314A (en) Soft magnetic metal powder, method for producing the same, and soft magnetic metal dust core

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203