KR101664603B1 - Powder metallurgical method - Google Patents

Powder metallurgical method Download PDF

Info

Publication number
KR101664603B1
KR101664603B1 KR1020140167677A KR20140167677A KR101664603B1 KR 101664603 B1 KR101664603 B1 KR 101664603B1 KR 1020140167677 A KR1020140167677 A KR 1020140167677A KR 20140167677 A KR20140167677 A KR 20140167677A KR 101664603 B1 KR101664603 B1 KR 101664603B1
Authority
KR
South Korea
Prior art keywords
lubricant
weight
powder
parts
erucamide
Prior art date
Application number
KR1020140167677A
Other languages
Korean (ko)
Other versions
KR20160063868A (en
Inventor
조영철
김종문
곽형석
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020140167677A priority Critical patent/KR101664603B1/en
Priority to US14/929,190 priority patent/US20160151838A1/en
Priority to JP2015216025A priority patent/JP2016102259A/en
Priority to DE102015222656.5A priority patent/DE102015222656A1/en
Priority to CN201510795091.7A priority patent/CN105642886A/en
Publication of KR20160063868A publication Critical patent/KR20160063868A/en
Application granted granted Critical
Publication of KR101664603B1 publication Critical patent/KR101664603B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/68Amides; Imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder

Abstract

본 발명은 분말 야금 방법에 관한 것으로, 더욱 상세하게는 에틸렌 비스스테아라미드와 에루카미드가 일정 조성비를 이루는 윤활제 성분을 150 ~ 170℃에서 혼합하는 고온교반 공정을 거쳐 액상 윤활제를 제조한 후에, 냉각 및 분쇄하여 고상 윤활제를 제조하여 금속기재 분말에 첨가하는 과정을 포함하며, 이로써 금속기재 분말에 첨가되는 윤활제의 함량을 최소량으로 감소시키면서 성형 에너지 및 취출 에너지는 동등 또는 향상된 수준을 유지하면서도 고밀도 성형체를 제조하게 되는 분말 야금 방법에 관한 것이다.
More particularly, the present invention relates to a powder metallurgy method, and more particularly, to a method for producing a liquid lubricant by mixing a lubricant component having a constant composition ratio of ethylenebisstearamide and erucamide at 150 to 170.degree. And adding the solid lubricant to the metal base powder to reduce the amount of the lubricant added to the metal base powder to a minimum amount while maintaining the molding energy and the extraction energy at the same or improved level, The present invention relates to a powder metallurgy process.

Description

분말 야금 방법{Powder metallurgical method} Powder metallurgical method

본 발명은 분말 야금 방법에 관한 것으로, 더욱 상세하게는 에틸렌 비스스테아라미드와 에루카미드가 일정 조성비를 이루는 윤활제 성분을 150 ~ 170℃에서 혼합하는 고온교반 공정을 거쳐 액상 윤활제를 제조한 후에, 냉각 및 분쇄하여 고상 윤활제를 제조하여 금속기재 분말에 첨가하는 과정을 포함하며, 이로써 금속기재 분말에 첨가되는 윤활제의 함량을 최소량으로 감소시키면서 성형 에너지 및 취출 에너지는 동등 또는 향상된 수준을 유지하면서도 고밀도 성형체를 제조하게 되는 분말 야금 방법에 관한 것이다.More particularly, the present invention relates to a powder metallurgy method, and more particularly, to a method for producing a liquid lubricant by mixing a lubricant component having a constant composition ratio of ethylenebisstearamide and erucamide at 150 to 170.degree. And adding the solid lubricant to the metal base powder to reduce the amount of the lubricant added to the metal base powder to a minimum amount while maintaining the molding energy and the extraction energy at the same or improved level, The present invention relates to a powder metallurgy process.

엔진의 고출력화에 따라 자동차 엔진 및 변속기 부품은 더 높은 기계적 물성을 확보해야 한다. 이러한 기계적 물성을 상승시키기 위한 방법으로 여러 성형 기술이 개발되어 있으나, 부품의 제조원가 상승 및 고압력 성형시 금형의 파손 등으로 인하여 성형 기술이 제한적으로 적용되고 있다. 많은 고밀도 성형 기술 중 기존 일반 성형과 유사한 압력(400 ~ 700 MPa)에서 높은 밀도를 확보할 수 있는 방법으로서 윤활제의 첨가량을 감소시키는 방법이 있다.As engine power increases, automotive engines and transmission components must have higher mechanical properties. Various molding technologies have been developed to increase the mechanical properties, but the molding technology has been limited due to the increase in the manufacturing cost of the parts and the breakage of the mold in the high pressure molding. Among many high-density molding technologies, there is a method of reducing the addition amount of the lubricant as a method of securing a high density at a pressure (400 to 700 MPa) similar to the conventional molding.

분말 야금의 분야에서는 성형 압축과정에서 금속기재 분말 입자간의 내부 마찰을 줄이고, 분말 야금이 균일하게 압축되도록 하고, 그리고 다이의 손상을 최소화하기 위한 목적으로 윤활제를 사용하고 있다. 그러나 윤활제가 포함된 금속기재 분말을 압출 성형하게 되면, 윤활제가 금속기재 분말 입자 사이에 잔류함으로써 고밀도 성형체를 얻을 수 없다. 하지만 금속기재 분말에 첨가되는 윤활체의 첨가량을 낮추면 압분체와 금형 벽면의 마찰 저항이 증가하여, 압분체를 금형으로부터 빼낼 때의 탈형력이 상승하여, 형마모 등의 금형 손상의 문제가 발생한다. 또한, 압축 성형에 수반하는 금속기재 분말 입자의 재배열 시에 분말 입자 사이의 윤활성도 저하되어, 압분체의 밀도 향상에 한계가 발생한다. 고밀도 성형용 윤활제로서는 에틸렌 비스스테아라미드(Ethylene Bis Stearamide; EBS)가 포함되는 아미드계 고분자가 일반적으로 사용되고 있다. [특허문헌 1, 2] In the field of powder metallurgy, lubricants are used for the purpose of reducing the internal friction between metal-based powder particles during molding and compression, uniformly compressing the powder metallurgy, and minimizing damage to the die. However, when the metal base powder containing the lubricant is extruded, the lubricant remains between the metal base powder particles, so that a high-density molded body can not be obtained. However, if the addition amount of the lubricant added to the metal base powder is decreased, the frictional resistance between the green compact and the wall surface of the mold increases, and the demolding force at the time of withdrawing the green compact from the mold increases, . In addition, when the metal-based powder particles are rearranged along with the compression molding, the lubricity between the powder particles is also lowered, resulting in a limit in improving the density of the green compact. As the lubricant for high-density molding, an amide-based polymer including ethylene-bis-stearamide (EBS) is generally used. [Patent Literatures 1 and 2]

한편, 윤활제를 금속기재 분말에 혼합하는 방법으로는 1)단순히 혼합하는 기계적 혼합방법과 2)윤활제 기초재료인 단량체를 중합하는 중합방법이 있다. On the other hand, as a method of mixing a lubricant with a metal base powder, there are 1) a simple mechanical mixing method and 2) a polymerization method of polymerizing a monomer as a lubricant base material.

상기 기계적 혼합방법은 윤활제 기초재료를 25 ㎛ 이하 크기로 파쇄한 후에, 혼합기에 금속기재 분말과 윤활제 기초재료를 투입하여 혼합하는 과정으로 이루어져 그 공정이 비교적 단순하다는 장점이 있다. 반면에, 취출 에너지가 높아 윤활제의 첨가량을 감소시킬 수 없으며 성형체의 표면 조도(surface roughness)를 낮게 확보하는데 있어 불리하다는 단점이 있다. In the mechanical mixing method, the lubricant base material is crushed to a size of 25 mu m or less, and then the metal base powder and the lubricant base material are added to the mixer and mixed. Thus, the process is relatively simple. On the other hand, it has disadvantages in that it can not reduce the addition amount of the lubricant due to a high extraction energy and is disadvantageous in ensuring a low surface roughness of the formed body.

상기 중합방법은 중합기에 중합용매를 투입하고 윤활제 제조를 위한 단량체와 금속기재 분말을 투입하여 100℃ 정도로 가열하여 중합하는 과정으로 이루어진다. 상기 중합방법은 윤활제 기초재료의 분자간 화학적 결합을 유도하기 때문에 균질성 및 낮은 취출 에너지를 확보할 수 있는 장점이 있는 반면에, 공정이 복잡하여 공정비용이 크게 상승하는 단점이 있다. In the polymerization method, a polymerization solvent is added to a polymerization reactor, monomers for preparing a lubricant and a metal base powder are charged and heated to about 100 ° C to polymerize. Since the polymerization method induces intermolecular chemical bonding of the lubricant base material, it has the advantage of ensuring homogeneity and low extraction energy, but has a disadvantage that the process is complicated and the process cost is greatly increased.

현재 분말 야금 분야에서는 윤활제의 첨가량을 최소화하여 고밀도 성형체를 얻을 수 있으면서도 성형가압 완료 후의 취출 시 취출 에너지를 낮게 유지하는 야금 방법의 개발이 절실히 요구된다. At present, in the field of powder metallurgy, it is urgently required to develop a metallurgy method which can obtain a high-density molded body by minimizing the addition amount of the lubricant and keep the extraction energy at the time of taking out after completion of the molding press.

한국공개특허공보 10-2007-0046958호Korean Patent Publication No. 10-2007-0046958 한국공개특허공보 10-2007-0132455호Korean Unexamined Patent Application Publication No. 10-2007-0132455

본 발명에서는 금속기재 분말에 첨가되는 윤활제의 함량을 최소화하고, 취출력 및 성형압력은 동등 또는 향상된 수준을 유지하면서 고밀도 성형체를 제조하는 개선된 분말 야금 방법을 제공하는 것을, 발명이 해결하고자 하는 과제로 한다.It is an object of the present invention to provide an improved powder metallurgy method for manufacturing a high-density molded article while minimizing the content of the lubricant added to the metal base powder and maintaining the same output or molding pressure at the same or improved level. .

상기한 과제 해결을 위하여, 본 발명에서는 In order to solve the above problems,

에틸렌 비스스테아라미드 60 ~ 70 중량%와 에루카미드 30 ~ 40 중량%를 150 ~ 170℃에서 혼합하는 고온교반 공정에 의해 액상 윤활제를 제조하는 단계;Preparing a liquid lubricant by a high temperature stirring process in which 60 to 70% by weight of ethylenebisstearamide and 30 to 40% by weight of erucamide are mixed at 150 to 170 占 폚;

액상 윤활제를 냉각하고 분쇄하여 고상 윤활제를 제조하는 단계;Cooling and pulverizing the liquid lubricant to produce a solid lubricant;

금속기재 분말 100 중량부에, 상기 고상 윤활제 0.4 ~ 0.75 중량부를 혼합하여 분말 야금 조성물을 제조하는 단계; 및Mixing 0.4 to 0.75 parts by weight of the solid lubricant with 100 parts by weight of the metal base powder to produce a powder metallurgy composition; And

분말 야금 조성물을 압축 성형하여 성형체를 제조하는 단계;를 포함하는 분말 야금 방법을 그 특징으로 한다.And a step of compressively molding the powder metallurgy composition to produce a molded body.

본 발명에서는 특정 조성의 윤활제 사용 및 고온교반 공정이 도입된 윤활제 제조과정을 거침으로써, 소량의 윤활제 사용으로 성형체의 밀도를 높이고, 표면 조도를 향상시키면서도, 성형 에너지 및 취출 에너지를 낮게 유지하는 효과가 있다. In the present invention, by using a lubricant having a specific composition and a high-temperature stirring process, it is possible to increase the density of the molded body by using a small amount of lubricant, improve the surface roughness, and maintain the molding energy and the extraction energy at a low level have.

따라서, 본 발명의 분말 야금 방법에 의하면 금속기재 분말 100 중량부에 대해 윤활제를 0.4 중량부까지 감소시켜, 7.3 g/㎤의 고밀도 성형체를 제조할 수 있다.Therefore, according to the powder metallurgy method of the present invention, the lubricant can be reduced to 0.4 parts by weight with respect to 100 parts by weight of the metal base powder, and a high-density molded body of 7.3 g / cm 3 can be produced.

도 1은 금속기재 분말 100 중량부와 고온교반 공정을 거쳐 제조된 윤활제 0.75 중량부를 사용하여 분말 야금 성형체를 제조함에 있어, 에틸렌 비스스테아라미드와 에루카미드의 윤활제 조성성분의 함량비 변화에 따른 취출력을 비교한 그래프이다.
도 2는 금속기재 분말 100 중량부와 고온교반 공정을 거쳐 제조된 윤활제 0.75 중량부(에틸렌 비스스테아라미드와 에루카미드의 조성비 70:30 중량%)를 사용하여 분말 야금 성형체를 제조함에 있어 취출력을 비교한 그래프이다.
도 3은 금속기재 분말 100 중량부와 고온교반 공정을 거쳐 제조된 윤활제 0.4 중량부(에틸렌 비스스테아라미드와 에루카미드의 조성비 70:30 중량%)를 사용하여 분말 야금 성형체를 제조함에 있어, 윤활제 첨가량과 성형압력 변화에 따른 취출력을 비교한 그래프이다.
도 4는 종래방법에 의거하여 금속기재 분말 100 중량부와 상온에서 기계적 혼합 공정을 거쳐 제조된 윤활제 0.75 중량부를 사용하여 분말 야금 성형체를 제조함에 있어, 에틸렌 비스스테아라미드와 에루카미드의 윤활제 조성성분의 함량비 변화에 따른 취출력을 비교한 그래프이다.
도 5는 종래방법에 의거하여 금속기재 분말 100 중량부와 중합 공정을 거쳐 제조된 윤활제 0.75 중량부를 사용하여 분말 야금 성형체를 제조함에 있어, 에틸렌 비스스테아라미드와 에루카미드의 윤활제 조성성분의 함량비 변화에 따른 취출력을 비교한 그래프이다.
도 6은 실시예 1(고온 교반), 비교예 1(상온에서 기계적 혼합) 및 비교예 2(중합)에서 제조한 분말 야금 성형체의 표면조도를 비교한 사진이다.
FIG. 1 is a graph showing the relationship between the content ratio of the lubricant component of ethylene bisstearamide and erucamide in the production of a powder metallurgy compact by using 100 parts by weight of metal base powder and 0.75 part by weight of a lubricant prepared through a high- Output.
Fig. 2 is a graph showing the relationship between the ratio of the ethylene-bis-stearamide and erucamide in the composition ratio of erucamide to that of the lubricant prepared through the high-temperature stirring step of 100 parts by weight of the metal-based powder, FIG.
Fig. 3 is a graph showing the results obtained when a powder metallurgical compact is produced using 100 parts by weight of a metal base powder and 0.4 parts by weight of a lubricant prepared by a high temperature stirring process (composition ratio of ethylenebisstearamide and erucamide to 70:30% by weight) The graphs show the comparison of the amount of addition and the extraction output according to the molding pressure change.
Fig. 4 is a graph showing the results of the comparison of the composition of the lubricant composition of ethylene biststearamide and erucamide with that of the lubricating composition of ethylenebisstearamide and erucamide in the production of a powder metallurgy compact by using 100 parts by weight of metal base powder and 0.75 part by weight of a lubricant prepared by mechanical mixing at room temperature, In the graph of FIG.
5 is a graph showing the relationship between the content ratio of the lubricant composition components of ethylene biststearamide and erucamide in the production of a powder metallurgical compact by using 100 parts by weight of the metal base powder and 0.75 part by weight of the lubricant prepared through the polymerization process, And a graph showing a comparison of the output values according to the change.
6 is a photograph comparing the surface roughnesses of the powder metallurgy compacts produced in Example 1 (high temperature stirring), Comparative Example 1 (mechanical mixing at room temperature) and Comparative Example 2 (polymerization).

본 발명에 따른 분말 야금 방법을 단계별로 보다 구체적으로 설명하면 하기와 같다.The powder metallurgy method according to the present invention will be described in more detail with reference to the following steps.

첫 번째 단계는, 윤활제를 제조하는 단계이다.The first step is to prepare the lubricant.

본 발명에서는 윤활제로서 에틸렌 비스스테아라미드(Ethylene Bis Stearamide)와 에루카미드(Erucamide)를 포함하는 아마이드계 윤활제를 사용하며, 이들 윤활제 성분들이 서로 고르게 분산되도록 하기 위하여 고온교반 공정을 거친다. In the present invention, an amide-based lubricant containing ethylene bis stearamide and erucamide is used as a lubricant, and a high temperature stirring process is performed to disperse these lubricant components evenly.

즉, 본 발명에서는 분말 야금 분야에서 통상적으로 사용되는 아마이드계 윤활제 중에서도 에틸렌 비스스테아라미드와 에루카미드를 선택 사용하고, 이들 두 성분간의 최적 함량비를 제시함으로써, 윤활제 첨가량을 최소화함과 동시에 성형가압 에너지 및 성형체의 취출 에너지를 낮게 유지할 수 있었다. 본 발명에 의하면 윤활제는 에틸렌 비스스테아라미드 60 ~ 70 중량%와 에루카미드 30 ~ 40 중량%의 조성비를 이루는 것이 바람직하며, 특히 좋기로는 에틸렌 비스스테아라미드 70 중량%와 에루카미드 30 중량%의 조성비를 이루는 것이다. That is, in the present invention, among the amide-based lubricants conventionally used in the field of powder metallurgy, ethylene bisteostearamide and erucamide are selectively used and the optimum content ratio between the two components is presented, thereby minimizing the addition amount of the lubricant, The energy of the energy and the extraction energy of the molded body can be kept low. According to the present invention, it is preferable that the lubricant has a composition ratio of 60 to 70% by weight of ethylenebisstearamide and 30 to 40% by weight of erucamide, more preferably 70% by weight of ethylenebisstearamide and 30% by weight of erucamide, .

또한, 본 발명에서는 상기와 같은 특정의 조성비를 이루는 윤활제를 고온교반하여 고루 분산된 액상 윤활제를 제조한 후에, 상기 액상 윤활제를 냉각하여 케이크 형태의 고체상으로 전환한 후에 분쇄하여 얻은 고상 윤활제를 금속기재 분말에 혼합하여 사용한다. In the present invention, the lubricant having the specific composition ratio as described above is stirred at a high temperature to prepare a uniformly dispersed liquid lubricant. After the liquid lubricant is cooled to convert it into a cake-like solid, the solid lubricant is pulverized, It is mixed with powder.

종래의 윤활제 제조방법으로서 '기계적 혼합' 방법은 상온에서 이루어짐으로써 윤활제 조성성분간의 고른 분산을 유도하는 것이 한계가 있었다. 그러나, 본 발명에서는 혼합기 내부 온도를 150 ~ 170℃로 유지하면서 윤활제 성분을 혼합하는 '고온교반' 공정을 통해 윤활제 성분간의 고른 분산을 유도하여 궁극적으로는 성형체의 취출 에너지를 낮추어 줌으로써, 소량의 윤활제 첨가로도 성형체의 마모없이 안전하게 탈형하는 것이 가능해진 것이다. 본 발명에 따른 윤활제의 제조과정에서의 고온교반 온도가 150℃ 미만이면 에틸렌 비스스테아라미드와 에루카미드의 고른 분산이 이루어지지 않아 취출 에너지를 낮추는데 한계가 있음은 물론이고, 표면 조도(Ra)가 높은 성형체가 제조될 수 있다. 반대로, 고온교반 온도가 170℃를 초과하면 융점이 낮은 에루카마이드의 산화 현상이 발생, 변색 및 점도가 상승하여 파쇄시 불리할 수 있다. As a conventional method of producing a lubricant, the 'mechanical mixing' method is performed at room temperature, which has a limitation in inducing uniform dispersion of lubricant composition components. However, in the present invention, the 'hot agitation' process of mixing the lubricant components while maintaining the internal temperature of the mixer at 150 to 170 ° C. induces even dispersion between the lubricant components, ultimately lowering the extraction energy of the formed body, It is possible to safely demold the molded article without worn out. If the temperature of stirring at a high temperature in the process of producing the lubricant according to the present invention is less than 150 ° C, the uniform distribution of ethylene biststearamide and erucamide is not achieved and there is a limit in lowering the extraction energy. A high molded article can be produced. On the other hand, when the high temperature agitation temperature exceeds 170 ° C, oxidation of erucamide having a low melting point occurs, discoloration and viscosity increase, which may be disadvantageous at the time of crushing.

또한, 상기 고온교반 공정을 통해 제조된 액상 윤활제를 고상으로 전환하기 위하여, 통상의 방법으로 냉각 및 분쇄하는 공정을 수행한다. 즉, 액상 윤활제를 냉각시켜 케이크 형태로 전환하는데, 이때 냉각은 상온 주변의 온도가 좋으며, 구체적으로는 10 ~ 30℃ 온도까지 냉각시키는 것이다. 상기 케이크 형태의 윤활유는 금속기재 분말과의 고른 배합을 위해 분쇄하도록 하는데, 분쇄된 고상 윤활제의 평균입자크기는 10 ~ 40㎛ 범위를 유지하는 것이 좋다.
Further, in order to convert the liquid lubricant prepared through the high-temperature stirring step into a solid phase, a step of cooling and pulverizing by a conventional method is carried out. That is, the liquid lubricant is cooled to convert into a cake form. The cooling is performed at a temperature around room temperature, specifically, to a temperature of 10 to 30 ° C. The cake type lubricating oil is pulverized for uniform mixing with the metal base powder, and the average particle size of the pulverized solid lubricant is preferably in the range of 10 to 40 mu m.

두 번째 단계는, 분말 야금 조성물을 제조하는 단계이다.The second step is to prepare the powder metallurgy composition.

본 발명에서는 금속기재 분말 100 중량부에 윤활제 0.4 ~ 0.75 중량부를 혼합하여 분말 야금 조성물을 제조한다. 즉, 본 발명의 분말 야금 조성물 제조단계에서는 윤활제의 첨가량을 최소량으로 줄일 수 있다.
In the present invention, 0.4 to 0.75 parts by weight of a lubricant is mixed with 100 parts by weight of a metal base powder to prepare a powder metallurgy composition. That is, the addition amount of the lubricant can be reduced to a minimum amount in the step of preparing the powder metallurgy composition of the present invention.

세 번째 단계는, 압축 성형하여 고밀도 성형체를 제조하는 단계이다.The third step is a step of producing a high-density molded body by compression molding.

본 발명에서는 통상적인 야금 기술에 의해 압축 성형을 실시한다. 즉, 분말 야금 조성물을 다이에 채우고 500 ~ 600 MPa 압력으로 압축하여 성형체를 제조한다. 제조된 성형체는 취출력 900 ~ 1400 Kgf를 가하여 다이로부터 분리한다. In the present invention, compression molding is performed by a conventional metallurgical technique. That is, the powder metallurgy composition is filled in a die and compressed at a pressure of 500 to 600 MPa to produce a molded article. The produced molded body is separated from the die by applying an output power of 900 to 1400 Kgf.

이상의 방법을 통해 제조된 성형체는 7.1 ~ 7.3 g/㎤로서 고밀도를 유지한다. 또한, 본 발명의 분말 야금 방법에 의하면 금속기재 분말 100 중량부를 기준으로 윤활제 0.75 중량부 첨가 시에 대비하여, 0.4 중량부의 윤활제를 첨가 시에는 취출력이 200 Kgf 감소하지만, 성형밀도는 0.18 g/㎤ 향상되는 각별한 효과를 얻는다.
The compacts produced by the above method have a density of 7.1 to 7.3 g / cm 3. In addition, according to the powder metallurgy method of the present invention, when the lubricant is added in an amount of 0.4 part by weight based on 100 parts by weight of the lubricant based on 100 parts by weight of the metal base powder, the output is reduced by 200 Kgf, Cm < 3 >.

상기한 본 발명의 분말 야금 방법에 있어, 보다 바람직하기로는 In the powder metallurgy method of the present invention described above, more preferably,

ⅰ) 에틸렌 비스스테아라미드 60 ~ 70 중량%와 에루카미드 30 ~ 40 중량%를 150 ~ 170℃에서 혼합하는 고온교반 공정에 의해 액상 윤활제를 제조하는 단계;I) preparing a liquid lubricant by a high-temperature stirring process in which 60 to 70% by weight of ethylenebisstearamide and 30 to 40% by weight of erucamide are mixed at 150 to 170 DEG C;

ⅱ) 액상 윤활제를 냉각하고 분쇄하여 고상 윤활제를 제조하는 단계;Ii) cooling and pulverizing the liquid lubricant to produce a solid lubricant;

ⅲ) 금속기재 분말 100 중량부에, 상기 윤활제 0.4 ~ 0.5 중량부를 혼합하여 분말 야금 조성물을 제조하는 단계; 및Iii) mixing 0.4 to 0.5 parts by weight of the lubricant with 100 parts by weight of the metal base powder to produce a powder metallurgy composition; And

ⅳ) 분말 야금 조성물을 500 ~ 600 MPa 압력하에서 압축 성형하고, 취출력 900 ~ 1100 Kgf를 가하여 밀도가 7.2 ~ 7.3 g/㎤인 성형체를 제조하는 단계; 를 수행하는 것이다.
Iv) compression molding the powder metallurgy composition at a pressure of 500 to 600 MPa and applying an output of 900 to 1100 Kgf to produce a compact having a density of 7.2 to 7.3 g / cm 3; .

이와 같은 본 발명은 하기의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited by the following examples.

[실시예]
[Example]

실시예 1. 에틸렌 비스스테아라미드와 에루카미드의 조성비에 따른 취출력 변화 확인Example 1. Confirmation of change in output power depending on the composition ratio of ethylenebisstearamide and erucamide

윤활제 조성성분으로서 에틸렌 비스스테아라미드와 에루카미드의 조성비를 50;50, 55:45, 60:40, 70:30 중량%로 변화시켜 각각의 윤활제를 준비하였다. 즉, 상기 윤활제 조성성분을 160℃의 온도로 60분 동안 고온교반하여 액상 윤활제를 얻었다. 그리고, 액상 윤활제를 상온에서 방치시키면서 냉각하여 케이크 형태의 윤활제를 얻은 다음 분쇄하여 10 ~ 40㎛ 범위인 고생 윤활제를 얻었다.The composition ratio of ethylene biststearamide and erucamide was changed to 50, 50, 55:45, 60:40, and 70:30 weight% as lubricant composition components, respectively, to prepare respective lubricants. That is, the lubricant component was stirred at 160 DEG C for 60 minutes at a high temperature to obtain a liquid lubricant. Then, the liquid lubricant was cooled while being left at room temperature to obtain a cake-like lubricant, and then pulverized to obtain a hard lubricant in the range of 10 to 40 μm.

철기재 분말로서는 HSPP (현대제철 순철분말)를 사용하였다. 철기재 분말 100 중량부에 상기에서 준비한 고상 윤활제 0.75 중량부를 혼합하여 분말 야금 조성물을 제조하였다. 분말 야금 조성물을 다이에 넣고 500 MPa 성형압력을 가하여 밀도가 7.12 g/㎤인 성형체를 제조하였다.
HSPP (Hyundai Steel Pure Iron Powder) was used as the iron base powder. To 100 parts by weight of the iron base powder, 0.75 part by weight of the solid lubricant prepared above was mixed to prepare a powder metallurgy composition. The powder metallurgy composition was placed in a die and a forming pressure of 500 MPa was applied to produce a compact having a density of 7.12 g / cm < 3 >.

윤활제를 구성하는 에틸렌 비스스테아라미드와 에루카미드의 조성비에 따른 취출력을 확인하기 위하여, MPIF Standard 45에 근거하여 취출력을 측정하였으며 그 결과는 도 1에 나타내었다.In order to confirm the output power depending on the composition ratio of ethylene bisstearamide and erucamide constituting the lubricant, the output power was measured based on MPIF Standard 45, and the results are shown in FIG.

도 1에 의하면, 에틸렌 비스스테아라미드(EBS)와 에루카미드(ERu)의 조성비가 50;50, 55:45, 60:40, 70:30 중량%로 변화될수록 취출력(Ejection force)은 낮아짐을 알 수 있다. 즉, 윤활제 중에 포함되는 에루카미드의 함량이 낮아질수록 취출력이 1400 kgf에서 1100 kgf로 낮아졌고, 에틸렌 비스스테아라미드와 에루카미드의 조성비가 70:30 중량%일 때 취출력 1100 kgf로 가장 낮았다.
1, the ejection force decreases as the composition ratio of ethylenebisstearamide (EBS) and erucamide (ERu) is changed to 50: 50, 55:45, 60:40, and 70:30% by weight . That is, as the content of erucamide contained in the lubricant was lowered, the exhaust power was lowered from 1400 kgf to 1100 kgf, and when the composition ratio of ethylenebisstearamide and erucamide was 70:30 wt%, the output was 1100 kgf Low.

실시예 2. 윤활제 첨가량에 따른 성형체의 밀도 변화 확인Example 2. Confirmation of Density Change of Molded Particle According to Lubricant Addition Amount

상기 실시예 1의 야금 방법에 의해 에틸렌 비스스테아라미드와 에루카미드의 조성비가 70:30 중량%인 고상 윤활제를 사용하여 성형체를 제조하였으며, 다만 철기재 분말 100 중량부를 기준으로 고상 윤활제의 첨가량을 각각 0.75 중량부 또는 0.40 중량부로 변화시키면서 성형체의 밀도 변화를 측정하였다.
A molded article was prepared using the solid lubricant having a composition ratio of ethylene biststearamide and erucamide of 70:30 wt% by the metallurgical method of Example 1, except that the addition amount of the solid lubricant based on 100 parts by weight of the iron base powder And 0.75 parts by weight or 0.40 parts by weight, respectively.

도 2에는 철기재 분말 100 중량부를 기준으로 윤활제 0.75 중량부를 첨가하고 취출력을 3회 반복하여 측정한 결과를 그래프로 나타내었다. 도 2에 의하면 취출력은 1100 kgf으로 낮았으며, 500 MPa 성형압력을 가하여 밀도가 7.11 g/㎤인 성형체를 제조하였다.FIG. 2 is a graph showing the measurement results obtained by adding 0.75 parts by weight of a lubricant based on 100 parts by weight of the iron base powder and measuring the output three times. 2, the output power was as low as 1100 kgf, and a compact having a density of 7.11 g / cm3 was produced by applying a molding pressure of 500 MPa.

도 3에는 철기재 분말 100 중량부를 기준으로 윤활제 0.40 중량부를 첨가하고 도2 대비 윤활제 첨가량과 성형 압력을 변화하여 취출력을 3회 반복하여 측정한 결과를 그래프로 나타내었다. 도 3에 의하면 취출력은 900 kgf으로 매우 낮았으며, 500 MPa 성형압력을 가하여 밀도가 7.30 g/㎤인 성형체를 제조하였다.FIG. 3 is a graph showing the results obtained by repeating three times repetition of the addition of 0.40 parts by weight of a lubricant based on 100 parts by weight of the iron base powder and changing the addition amount of the lubricant and the molding pressure according to FIG. As shown in FIG. 3, the output power was as low as 900 kgf, and a compact having a density of 7.30 g / cm 3 was produced by applying a molding pressure of 500 MPa.

상기 도 2와 도 3에 의하면 에틸렌 비스스테아라미드와 에루카미드의 조성비가 70:30 중량%인 윤활제를 사용하는 경우, 윤활제의 첨가량을 0.75 중량부에서 0.40 중량부를 감소시키면서 취출력을 200 kgf로 낮추는 것이 가능해졌고, 성형체의 밀도를 0.19 g/㎤ 만큼 향상시키는 것도 가능함을 알 수 있다.
2 and 3, when a lubricant having a composition ratio of ethylene bisteostearide and erucamide of 70:30 wt% is used, the amount of lubricant added is reduced from 0.75 part by weight to 0.40 part by weight, It is possible to lower the density of the molded body by 0.19 g / cm < 3 >.

비교예 1 및 비교예 2. 종래의 야금 방법에 의한 취출력 비교COMPARATIVE EXAMPLE 1 AND COMPARATIVE EXAMPLE 2 Comparison of output power by conventional metallurgical method

상기 실시예 1의 방법으로 철기재 분말과 윤활제를 혼합하여 분말 야금 조성물을 제조하되, 윤활제 제조를 위한 종래 방법으로서 상온에서의 기계적 혼합(비교예 1) 또는 가열 중합(비교예 2) 방법을 실시하였다.(Comparative Example 1) or heat polymerization (Comparative Example 2) at room temperature as a conventional method for producing a powder metallurgy composition by mixing the iron base powder with the lubricant by the method of Example 1 Respectively.

도 4 및 도 5에는 윤활제를 구성하는 에틸렌 비스스테아라미드(EBS)와 에루카미드(ERu)의 조성비를 50;50, 55:45, 60:40, 70:30 중량%로 변화시키면서 취출력(Ejection force)을 측정한 결과를 각각 나타내었다.4 and 5 show changes in the composition ratios of ethylenebisteamide (EBS) and erucamide (ERu) constituting the lubricant to 50, 50, 55, 45, 60, Ejection force, respectively.

또한, 도 6에는 실시예 1(고온 교반), 비교예 1(상온에서 기계적 혼합) 및 비교예 2(중합)에서 제조한 분말 야금 성형체의 표면조도를 비교한 사진을 나타내었다.
6 shows photographs comparing the surface roughnesses of the powder metallurgy compacts produced in Example 1 (high temperature stirring), Comparative Example 1 (mechanical mixing at room temperature) and Comparative Example 2 (polymerization).

하기 표 1에는 상기 실시예 1, 2와 비교예 1, 2를 통해 비교 확인한 결과를 정리하여 나타내었다.Table 1 below summarizes the results of comparison and confirmation through Examples 1 and 2 and Comparative Examples 1 and 2.

구분division 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
윤활제

slush
구성
(중량%)
Configuration
(weight%)
에틸렌 비스스테아라미드:에루카미드의 함량비
70:30
Ethylene bisstearamide: content ratio of erucamide
70:30
첨가량
(중량부)
Addition amount
(Parts by weight)
0.750.75 0.40.4 0.750.75 0.750.75
혼합방법Mixing method 160℃ 고온 혼합160 ℃ high temperature mixing 상온 혼합Room temperature mixing 중합polymerization 취출력 (kgf) Output power (kgf) 1100~14001100 to 1400 900900 1500~22501500 to 2250 15001500 성형압력 (MPa)Molding pressure (MPa) 500500 500500 500500 500500 성형체Shaped body 밀도 (g/㎤)Density (g / cm3) 7.127.12 7.307.30 7.117.11 7.107.10 표면조도(Ra)Surface roughness (Ra) 0.60.6 0.80.8 1.11.1 0.90.9

이상에서 비교한 바와 같이, 본 발명에 따른 야금 방법에 의하면 윤활제를 구성하는 에틸렌 비스스테아라미드와 에루카미드의 조성비를 특정 범위로 한정하면서 고온에서 혼합하여 분말 야금 조성물을 제조함으로써, 금속기재 분말의 중량대비 윤활제의 첨가량을 줄일 수 있으면서 취출에너지를 낮추어 최고 7.3 g/㎤ 밀도를 가지는 고밀도 성형체를 제조할 수 있다. 또한, 상기 표 1의 결과에 의하면 표면 조도를 낮게 유지하는 것도 가능하다.
As described above, according to the metallurgical process of the present invention, the powder metallurgy composition is produced by mixing at a high temperature while limiting the composition ratio of ethylene biststearamide and erucamide to a specific range, which constitutes the lubricant, A high density molded body having a density of up to 7.3 g / cm 3 can be manufactured by reducing the amount of the lubricant added to the weight and lowering the extraction energy. According to the results of Table 1, it is also possible to keep the surface roughness low.

Claims (5)

에틸렌 비스스테아라미드 60 ~ 70 중량%와 에루카미드 30 ~ 40 중량%를 150 ~ 170℃에서 혼합하는 고온교반 공정에 의해 액상 윤활제를 제조하는 단계;
액상 윤활제를 10 ~ 30℃ 온도로 냉각하고, 평균입자크기가 10 ~ 40㎛ 되도록 분쇄하여 고상 윤활제를 제조하는 단계;
금속기재 분말 100 중량부에, 상기 고상 윤활제 0.4 ~ 0.75 중량부를 혼합하여 분말 야금 조성물을 제조하는 단계; 및
분말 야금 조성물을 압축 성형하여 성형체를 제조하는 단계;
를 포함하는 분말 야금 방법.
Preparing a liquid lubricant by a high temperature stirring process in which 60 to 70% by weight of ethylenebisstearamide and 30 to 40% by weight of erucamide are mixed at 150 to 170 占 폚;
Cooling the liquid lubricant to a temperature of 10 to 30 DEG C and pulverizing the liquid lubricant to a mean particle size of 10 to 40 mu m to prepare a solid lubricant;
Mixing 0.4 to 0.75 parts by weight of the solid lubricant with 100 parts by weight of the metal base powder to produce a powder metallurgy composition; And
A process for producing a molded article by compression molding of a powder metallurgy composition;
≪ / RTI >
제 1 항에 있어서,
상기 금속기재 분말은 철기재 분말인 것을 특징으로 하는 분말 야금 방법.
The method according to claim 1,
Wherein the metal base powder is an iron base powder.
제 1 항에 있어서,
상기 압축 성형은 500 ~ 600 MPa 압력하에서 수행하는 것을 특징으로 하는 분말 야금 방법.
The method according to claim 1,
Wherein the compression molding is performed at a pressure of 500 to 600 MPa.
제 1 항에 있어서,
상기 성형체는 취출력 900 ~ 1400 Kgf를 가하여 금형으로부터 취출하는 것을 특징으로 하는 분말 야금 방법.
The method according to claim 1,
Wherein the molded body is taken out from the mold by applying an extraction output of 900 to 1400 Kgf.
제 1 항에 있어서,
에틸렌 비스스테아라미드 60 ~ 70 중량%와 에루카미드 30 ~ 40 중량%를 150 ~ 170℃에서 혼합하는 고온교반 공정에 의해 액상 윤활제를 제조하는 단계;
액상 윤활제를 10 ~ 30℃ 온도로 냉각하고, 평균입자크기가 10 ~ 40㎛ 되도록 분쇄하여 고상 윤활제를 제조하는 단계;
금속기재 분말 100 중량부에, 상기 고상 윤활제 0.4 ~ 0.75 중량부를 혼합하여 분말 야금 조성물을 제조하는 단계; 및
분말 야금 조성물을 500 ~ 600 MPa 압력하에서 압축 성형하고, 취출력 900 ~ 1100 Kgf를 가하여 밀도가 7.2 ~ 7.3 g/㎤인 성형체를 제조하는 단계;
를 포함하는 분말 야금 방법.
The method according to claim 1,
Preparing a liquid lubricant by a high temperature stirring process in which 60 to 70% by weight of ethylenebisstearamide and 30 to 40% by weight of erucamide are mixed at 150 to 170 占 폚;
Cooling the liquid lubricant to a temperature of 10 to 30 DEG C and pulverizing the liquid lubricant to a mean particle size of 10 to 40 mu m to prepare a solid lubricant;
Mixing 0.4 to 0.75 parts by weight of the solid lubricant with 100 parts by weight of the metal base powder to produce a powder metallurgy composition; And
Compressing the powder metallurgy composition under a pressure of 500 to 600 MPa and applying an output of 900 to 1100 Kgf to produce a compact having a density of 7.2 to 7.3 g / cm 3;
≪ / RTI >
KR1020140167677A 2014-11-27 2014-11-27 Powder metallurgical method KR101664603B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020140167677A KR101664603B1 (en) 2014-11-27 2014-11-27 Powder metallurgical method
US14/929,190 US20160151838A1 (en) 2014-11-27 2015-10-30 Powder metallurgical method
JP2015216025A JP2016102259A (en) 2014-11-27 2015-11-02 Powder metallurgy method
DE102015222656.5A DE102015222656A1 (en) 2014-11-27 2015-11-17 Powder metallurgy method
CN201510795091.7A CN105642886A (en) 2014-11-27 2015-11-18 Powder metallurgical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140167677A KR101664603B1 (en) 2014-11-27 2014-11-27 Powder metallurgical method

Publications (2)

Publication Number Publication Date
KR20160063868A KR20160063868A (en) 2016-06-07
KR101664603B1 true KR101664603B1 (en) 2016-10-11

Family

ID=55968174

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140167677A KR101664603B1 (en) 2014-11-27 2014-11-27 Powder metallurgical method

Country Status (5)

Country Link
US (1) US20160151838A1 (en)
JP (1) JP2016102259A (en)
KR (1) KR101664603B1 (en)
CN (1) CN105642886A (en)
DE (1) DE102015222656A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248462B1 (en) * 2020-09-08 2021-05-06 장기태 Lubricant and manufacturing method for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194616A1 (en) * 2019-03-27 2020-10-01 日立化成株式会社 Lubricant, powdered mixture, and method for producing sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118603A (en) * 2012-12-17 2014-06-30 Diamet:Kk Raw material powder for powder metallurgy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264646B2 (en) * 2001-08-14 2007-09-04 Apex Advanced Technologies, Llc Lubricant system for use in powdered metals
SE0303580D0 (en) * 2003-12-29 2003-12-29 Hoeganaes Ab Composition for producing soft magnetic composites by powder metallurgy
JP2005307348A (en) * 2004-03-22 2005-11-04 Jfe Steel Kk Iron-based powder mixture for powder metallurgy
JP4887296B2 (en) * 2004-09-17 2012-02-29 ホガナス アクチボラゲット Powdered metal composition containing secondary amide as lubricant and / or binder, method of use thereof, and method of manufacturing substrate
US7329302B2 (en) * 2004-11-05 2008-02-12 H. L. Blachford Ltd./Ltee Lubricants for powdered metals and powdered metal compositions containing said lubricants
UA95096C2 (en) * 2005-12-30 2011-07-11 Хеганес Аб Iron-based powder metallurgical composition, composite lubricant on its base and method of production thereof
JP4188407B2 (en) 2006-12-19 2008-11-26 日東電工株式会社 Adhesive optical film and image display device
JP5583139B2 (en) * 2008-11-26 2014-09-03 ホガナス アクチボラグ (パブル) Lubricants for powder metallurgy compositions
JP2010285633A (en) * 2009-06-09 2010-12-24 Kobe Steel Ltd Method of producing powder mixture for powder metallurgy, and method of producing sintered body
JP5663974B2 (en) * 2009-06-26 2015-02-04 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
EP2475481B1 (en) * 2009-09-08 2014-06-18 Höganäs AB Metal powder composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118603A (en) * 2012-12-17 2014-06-30 Diamet:Kk Raw material powder for powder metallurgy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248462B1 (en) * 2020-09-08 2021-05-06 장기태 Lubricant and manufacturing method for the same
WO2022055242A1 (en) * 2020-09-08 2022-03-17 장기태 Composite lubricant and preparation method therefor

Also Published As

Publication number Publication date
KR20160063868A (en) 2016-06-07
JP2016102259A (en) 2016-06-02
CN105642886A (en) 2016-06-08
US20160151838A1 (en) 2016-06-02
DE102015222656A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP2904932B2 (en) Improved iron-based powder composition including a lubricant to enhance green compact strength
CN100462165C (en) Manufacture method and die for powder metallurgy inside spin ratchet wheel
US4144207A (en) Composition and process for injection molding ceramic materials
KR0185685B1 (en) Method for preparing binder-treated metallurgical powders containing an organic lubricant
US20100310406A1 (en) Method for producing powder mixture for powder metallurgy, and method for producing sintered body
US7524352B2 (en) Composition for the production of sintered molded parts
KR100861988B1 (en) Powder metallurgy lubricant compositions and methods for using the same
JP4964126B2 (en) Method for producing a molded product
KR101664603B1 (en) Powder metallurgical method
KR101632381B1 (en) Method of producing an iron-based metal parts using iron-based metal powder granules
JP4629102B2 (en) Powder composition and method for producing soft magnetic component
JP2008503653A5 (en) Powder composition and method for producing soft magnetic component
EP1513638B1 (en) Metal powder composition including a bonding lubricant and a bonding lubricant comprising glyceryl stearate.
US7264646B2 (en) Lubricant system for use in powdered metals
JP2003509582A (en) Amide wax lubricants for warm forming of iron-based powder compositions
KR20190128427A (en) The method of powder metallurgy
JP4126230B2 (en) Iron powder composition containing amide type lubricant and method for producing the same
KR100845392B1 (en) Lubricants for insulated soft magnetic iron-based powder compositions
CN112166001A (en) Powder mixture for powder metallurgy and method for producing same
CN105228774A (en) The solvent-free adhesive method of metallurgical composites
US20050118053A1 (en) Process for complex transient liquid phase sintering of powder metal
KR20040077451A (en) Improved Powder Metallurgy Lubricant Compositions and Methods for Using the Same
RU2637252C1 (en) Complex binder for forming roducts from non-plastic ceramic powders
JPH05319905A (en) Production of sic powder compact
Hanejko Warm Compaction and Warm Die Compaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant