JP5663974B2 - Iron-based mixed powder for powder metallurgy - Google Patents

Iron-based mixed powder for powder metallurgy Download PDF

Info

Publication number
JP5663974B2
JP5663974B2 JP2010142355A JP2010142355A JP5663974B2 JP 5663974 B2 JP5663974 B2 JP 5663974B2 JP 2010142355 A JP2010142355 A JP 2010142355A JP 2010142355 A JP2010142355 A JP 2010142355A JP 5663974 B2 JP5663974 B2 JP 5663974B2
Authority
JP
Japan
Prior art keywords
iron
powder
based mixed
mixed powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010142355A
Other languages
Japanese (ja)
Other versions
JP2011026700A (en
Inventor
河野 貴史
貴史 河野
尾野 友重
友重 尾野
由紀子 尾▲崎▼
由紀子 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010142355A priority Critical patent/JP5663974B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to CN201080028281.1A priority patent/CN102802843B/en
Priority to EP10792237.9A priority patent/EP2446985B1/en
Priority to PCT/JP2010/061297 priority patent/WO2010150920A1/en
Priority to CA 2766042 priority patent/CA2766042C/en
Priority to US13/377,396 priority patent/US20120085201A1/en
Priority to KR1020117029370A priority patent/KR101355040B1/en
Publication of JP2011026700A publication Critical patent/JP2011026700A/en
Application granted granted Critical
Publication of JP5663974B2 publication Critical patent/JP5663974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、粉末冶金技術に用いて好適な鉄基混合粉末に関し、特に圧粉成形体の密度を高めると共に、圧粉成形後に圧粉体を金型から抜き出す際の抜出力の有利な低減を図ろうとするものである。   The present invention relates to an iron-based mixed powder suitable for use in powder metallurgy technology, and in particular to increase the density of a green compact and to advantageously reduce the extraction output when the green compact is extracted from a mold after compacting. It is intended to be illustrated.

粉末冶金プロセスでは、原料粉末を混合した後、混合粉を移送して金型に充填し、加圧成形により製造した成形体(圧粉体という)を金型から取り出し、必要に応じて焼結などの後処理を施す。
かかる粉末冶金プロセスにおいて、製品品質の向上と製造コストの低減を実現するためには、移送工程における粉末の高い流動性、加圧成形工程における高い圧縮性、さらには圧粉体を金型から抜き出す工程における低い抜出力、を同時に達成することが求められる。
In the powder metallurgy process, after mixing raw material powders, the mixed powder is transferred and filled into a mold, and a molded body (referred to as a green compact) produced by pressure molding is taken out of the mold and sintered as necessary. After-treatment is performed.
In such a powder metallurgy process, in order to improve product quality and reduce manufacturing costs, high powder flowability in the transfer process, high compressibility in the pressure molding process, and further, the green compact is extracted from the mold. It is required to simultaneously achieve a low output in the process.

鉄基混合粉末の流動性を改善する手段としては、フラーレン類を添加することによって鉄基混合粉末の流動性を改善できることが特許文献1に開示されている。
また、500nm未満の平均粒子径を有する粒状無機酸化物を添加することによって、粉末の流動性を改良する手法が、特許文献2に開示されている。
しかしながら、これらの手段を用いたとしても、流動性を維持した上で、高い圧縮性や低い抜出力を実現するには不十分であった。
As means for improving the fluidity of the iron-based mixed powder, Patent Document 1 discloses that the fluidity of the iron-based mixed powder can be improved by adding fullerenes.
Patent Document 2 discloses a technique for improving the fluidity of a powder by adding a granular inorganic oxide having an average particle diameter of less than 500 nm.
However, even if these means are used, it is insufficient to realize high compressibility and low output power while maintaining fluidity.

また、圧粉体の成形密度を高めたり抜出力を低減したりするためには、鉄基混合粉末を加圧成形する温度において軟質で延伸性を有する潤滑剤を使用することが有効である。その理由は、加圧成形によって潤滑剤が鉄基混合粉末から滲み出して金型表面に付着し、金型と圧粉体との摩擦力を低減するからである。
しかしながら、このような潤滑剤は、延伸性を有するが故に、鉄粉や合金用粉末の粒子にも付着し易く、そのため鉄基混合粉末の流動性や充填性はかえって阻害されるという問題がある。
さらに、上記したような炭素材料、微粒子および潤滑剤を配合することは、鉄基混合粉末の理論密度(空隙率がゼロと仮定した場合)を低下させ、成形密度を低下させる要因となるので、あまりに多量の添加は好ましくない。
このように、従来は、鉄基混合粉末の流動性と、高い成形密度と、低い抜出力とを鼎立させることは極めて難しかった。
In order to increase the green compacting density or reduce the punching power, it is effective to use a soft and extensible lubricant at the temperature at which the iron-based mixed powder is pressure-molded. The reason is that the lubricant oozes out from the iron-based mixed powder by pressure molding and adheres to the mold surface, thereby reducing the frictional force between the mold and the green compact.
However, since such a lubricant has stretchability, it easily adheres to the particles of iron powder and alloy powder, so that the fluidity and filling properties of the iron-based mixed powder are hindered. .
Furthermore, blending the carbon material, fine particles, and lubricant as described above reduces the theoretical density of the iron-based mixed powder (assuming that the porosity is zero) and causes a reduction in molding density. Too much addition is not preferable.
Thus, conventionally, it has been extremely difficult to establish the fluidity of the iron-based mixed powder, the high molding density, and the low punching power.

なお、鉄基混合粉末への添加物に関する技術として、鉄酸化物であるミルスケールを添加すれば、焼結体の寸法変化率を制御可能なことが、特許文献3に記載されている。
また、鋼材の防錆塗料用顔料として用いられるα−酸化鉄の製造技術に関し、5〜30のアスペクト比を有するマイカ状酸化鉄の合成法が、特許文献4に開示されている。
In addition, as a technique regarding the additive to the iron-based mixed powder, Patent Document 3 describes that the dimensional change rate of the sintered body can be controlled by adding a mill scale that is an iron oxide.
Further, Patent Document 4 discloses a method for synthesizing mica-like iron oxide having an aspect ratio of 5 to 30 with respect to a technique for producing α-iron oxide used as a pigment for a rust-proof paint for steel.

特開2007−31744号公報JP 2007-31744 A 特表2002−515542号公報JP-T-2002-515542 特開平8−325667号公報JP-A-8-325667 特開平3−131526号公報Japanese Patent Laid-Open No. 3-131526

本発明は、上記した現状に鑑みて開発されたもので、鉄基混合粉末の流動性を高めることによって、圧粉体の成形密度を向上させると同時に、圧粉成形後の抜出力を大幅に低減し、もって製品品質の向上と製造コストの低減を併せて達成することができる粉末冶金用鉄基混合粉末を提案することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and by improving the fluidity of the iron-based mixed powder, the compacting density of the compact is improved and at the same time the output power after compacting is greatly increased. An object of the present invention is to propose an iron-based mixed powder for powder metallurgy that can be reduced, thereby achieving both improvement in product quality and reduction in manufacturing cost.

さて、発明者等は、上記の目的を達成するために、鉄基混合粉末中への添加材について種々検討を重ねた。
その結果、鉄基混合粉末中に、平均粒子径が0.5μm以上の酸化物粒子を適量添加することによって、流動性が大幅に改善され、また成形密度および抜出力も併せて改善されるという知見を得た。
本発明は、上記の知見に立脚するものである。
Now, in order to achieve the above object, the inventors have conducted various studies on the additive in the iron-based mixed powder.
As a result, by adding an appropriate amount of oxide particles having an average particle diameter of 0.5 μm or more to the iron-based mixed powder, the fluidity is greatly improved, and the molding density and the output power are also improved. Obtained knowledge.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.平均粒子径が10〜200μmの鉄基粉末(但し、希土類元素を含まず)を主成分とする粉末冶金用の鉄基混合粉末であって、該鉄基混合粉末中に、平均粒子径が0.5μm以上100μm以下、アスペクト比が5未満で、鉄、アルミニウムおよびケイ素から選ばれた少なくとも一種を含有する酸化物粒子(但し、希土類元素を含まず)を、0.01〜5.0質量%の範囲で含有させることを特徴とする粉末冶金用鉄基混合粉末。
That is, the gist configuration of the present invention is as follows.
1. An iron-based mixed powder for powder metallurgy mainly comprising an iron-based powder having an average particle size of 10 to 200 μm (but not including rare earth elements) , and the average particle size is 0 in the iron-based mixed powder 0.01 to 5.0% by mass of oxide particles (not including rare earth elements) containing 5 μm or more and 100 μm or less and an aspect ratio of less than 5 and containing at least one selected from iron, aluminum, and silicon An iron-based mixed powder for powder metallurgy, characterized by containing in the range of

.前記鉄基混合粉末が、0.1〜10質量%の合金用粉末を、有機結合剤を介して鉄基粉末の表面に付着させた状態で含有することを特徴とする前記1に記載の粉末冶金用鉄基混合粉末。 2 . The iron-based mixed powder, 0.1-10 wt% of the alloy powder, powder according to the 1, characterized in that it contains a state attached to the surface of the iron-based powder through an organic binder Iron-based mixed powder for metallurgy.

.前記鉄基混合粉末が、0.02〜0.8質量%の有機系潤滑剤を含有することを特徴とする前記1または2に記載の粉末冶金用鉄基混合粉末。 3 . 3. The iron-based mixed powder for powder metallurgy according to 1 or 2 , wherein the iron-based mixed powder contains 0.02 to 0.8% by mass of an organic lubricant .

.前記鉄基混合粉末が、0.01〜1.0質量%の遊離潤滑剤を含有することを特徴とする前記1〜のいずれかに記載の粉末冶金用鉄基混合粉末。 4 . 4. The iron-based mixed powder for powder metallurgy according to any one of 1 to 3 , wherein the iron-based mixed powder contains 0.01 to 1.0% by mass of a free lubricant.

本発明に従い、鉄基混合粉末中に、平均粒子径が0.5μm以上の酸化物粒子を適量添加することにより、流動性の向上のみならず、高い成形密度と低い抜出力を併せて達成することができ、その結果、生産性の向上および製造コストの低減が実現される。   According to the present invention, by adding an appropriate amount of oxide particles having an average particle diameter of 0.5 μm or more to the iron-based mixed powder, not only the fluidity is improved, but also a high molding density and a low output power are achieved. As a result, an improvement in productivity and a reduction in manufacturing costs are realized.

粉末のアスペクト比を説明する模式図である。It is a schematic diagram explaining the aspect ratio of powder.

以下、本発明を具体的に説明する。
本発明では、鉄基粉末の流動性改善成分として酸化物粒子を活用する。
一般的な鉄基混合粉末では、粉体の流動性を高めたり、成形体の抜出力を低下させたりするために、有機系潤滑剤が1質量%程度配合されている。この有機系潤滑剤の比重は1.0前後であり、鉄粉の比重7.8に比較して著しく低い。一般に、比重差の大きい粉末を混合しようとすると、混合時に偏析現象を起こし、流動性の低下やロット内での特性ばらつきの原因となる。
従って、異なる種類の粉末を混合する場合には、両者の比重差をできるだけ小さくすることが肝要である。
Hereinafter, the present invention will be specifically described.
In the present invention, oxide particles are utilized as a fluidity improving component of the iron-based powder.
In a general iron-based mixed powder, an organic lubricant is blended in an amount of about 1% by mass in order to increase the fluidity of the powder or reduce the output of the molded body. The specific gravity of this organic lubricant is around 1.0, which is significantly lower than the specific gravity of iron powder 7.8. In general, when mixing powders having a large difference in specific gravity, segregation occurs during mixing, which causes a decrease in fluidity and variation in characteristics within a lot.
Therefore, when mixing different types of powders, it is important to minimize the difference in specific gravity between them.

本発明で用いる酸化物粒子が、例えば酸化鉄(ヘマタイト)であれば比重が5.3であって、有機系潤滑剤に比較すると高比重である。従って、この酸化物粒子は、有機系潤滑剤に比べると粉体流動時の粉体層内部での空気流の影響を受けにくい。
従って、有機系潤滑剤に代えて、またはその一部を酸化物粒子で置換した本発明の鉄基混合粉末では、各種添加剤の偏析が抑止された結果、鉄基混合粉末の流動性が改善されるものと考えられる。
また、本発明のように、添加する酸化物粒子の粒子径を大きくすると、かかる酸化物粒子は、特許文献2に開示されているような一次粒子径がナノメートルオーダーの流動性改善粉末のように鉄基粉末表面を被覆するのではなく、鉄基粉末間の空隙へ好適に充填されるものと推定される。従って、成形工程においては圧粉体と金型間の実効接触面積が増大して、スプリングバック応力が分散された結果、抜出力の低下が実現できるものと推定される。
If the oxide particles used in the present invention are, for example, iron oxide (hematite), the specific gravity is 5.3, which is higher than that of the organic lubricant. Therefore, the oxide particles are less susceptible to the air flow in the powder layer during powder flow than the organic lubricant.
Therefore, in the iron-based mixed powder of the present invention, which is replaced with an organic lubricant or a part of which is replaced with oxide particles, segregation of various additives is suppressed, resulting in improved fluidity of the iron-based mixed powder. It is considered to be done.
In addition, when the particle size of the oxide particles to be added is increased as in the present invention, the oxide particles are like fluidity improving powder having a primary particle size of nanometer order as disclosed in Patent Document 2. It is presumed that the space between the iron-based powders is preferably filled in rather than coating the surface of the iron-based powder. Therefore, in the molding process, it is presumed that the effective contact area between the green compact and the mold is increased and the springback stress is dispersed, and as a result, a reduction in the extraction force can be realized.

上記の効果を発揮させるためには、酸化物粒子の平均粒子径を0.5μm以上とする必要がある。酸化物粒子の平均粒子径が0.5μmより小さい場合には、十分な抜出力の低減効果が得られない。とはいえ、酸化物粒子の平均粒子径が100μmを超えると、粉末冶金に常用される鉄基混合粉末(平均粒径:100μm前後)との均一混合ができなくなり、やはり上記の効果を発揮できなくなるので、酸化物粒子の粒子径は平均で100μm以下とする。より好ましい酸化物粒子の平均粒子径は40μm以下であり、さらに好ましくは20μm以下である。
なお、酸化物粒子中に20質量%以下程度(酸化物粒子全体に対する比率)の酸化物以外の不純物を含有することは許容される。ただし、工業的入手に支障がなければ、不純物がより少ないもの(例えば10質量%以下、あるいは2質量%以下)を使用することが好ましい。不純物は特に限定されず、公知の工業的手段で製造させる酸化物粒子に混入するような不純物(例えば、金属やその他の無機化合物)であれば、特に問題はない。
In order to exhibit the above effect, the average particle diameter of the oxide particles needs to be 0.5 μm or more. When the average particle diameter of the oxide particles is smaller than 0.5 μm, a sufficient effect of reducing the output power cannot be obtained. However, when the average particle size of the oxide particles exceeds 100 μm, uniform mixing with the iron-based mixed powder (average particle size: around 100 μm) commonly used in powder metallurgy cannot be performed, and the above effect can also be exhibited. because eliminated, the particle diameter of the oxide particles shall be the 100μm or less on average. More preferably, the average particle size of the oxide particles is 40 μm or less, and more preferably 20 μm or less.
In addition, it is permissible for the oxide particles to contain impurities other than oxide in an amount of about 20% by mass or less (ratio to the total oxide particles). However, it is preferable to use a material having less impurities (for example, 10% by mass or less, or 2% by mass or less) if there is no problem in industrial availability. The impurities are not particularly limited, and there are no particular problems as long as they are impurities (for example, metals and other inorganic compounds) that are mixed into oxide particles produced by a known industrial means.

本発明において、酸化物粒子としては、鉄、アルミニウムおよびケイ素のうちから選ばれた少なくとも一種を含有する酸化物が有利に適合する。かかる酸化物の具体例としては、Fe、AlおよびSiOなどが挙げられるが、特に成分や結晶構造を規定するものではない。酸化物粒子中における、鉄、アルミニウムおよびケイ素のうちから選ばれた少なくとも一種の酸化物の含有量の合計は、80質量%以上程度(酸化物粒子全体に対する比率)とすることが好ましく、98質量%以上であることがさらに好ましい。 In the present invention, as the oxide particles, an oxide containing at least one selected from iron, aluminum and silicon is advantageously suitable. Specific examples of such oxides include Fe 2 O 3 , Al 2 O 3, and SiO 2 , but the components and crystal structure are not particularly specified. The total content of at least one oxide selected from iron, aluminum, and silicon in the oxide particles is preferably about 80% by mass or more (ratio to the total oxide particles), and 98% by mass. % Or more is more preferable.

また、本発明を安価に実行可能とするためには、酸化物粒子が安価でかつ容易に入手できることが好適である。入手容易性という観点からは、鉄の酸化物、あるいは鉄の酸化物を主体とする鉄系の酸化物が特に好ましい。かような鉄系の酸化物のうち比較的工業的に入手が容易であるものとしては、鉄の酸化物を70〜95質量%程度(酸化物粒子全体に対する比率)含有し、他にAlの酸化物および/またはSiの酸化物を合計5〜30質量%程度含有するものが挙げられる。
ところで、粒子形状をアスペクト比の観点から見ると、アスペクト比が高い粒子は人工的に合成可能である。例えば、特許文献4には、アスペクト比が5〜30のα−酸化鉄の合成法が開示されている。しかしながら、このような手法は、合成過程で長時間の加熱や加圧が必要であり、製造コストが不可避的に高くなり、なおかつ入手が容易ではなかった。従って、アスペクト比は5未満とする。
本発明において、アスペクト比とは、図1に示すように、粉末の厚さ2に対する長径1の比を意味する。酸化物粒子のアスペクト比は後述する実施例に記載の方法で求めることが好ましい。
Further, in order to enable the present invention to be implemented at low cost, it is preferable that the oxide particles are inexpensive and easily available. From the viewpoint of availability, iron oxides or iron-based oxides mainly composed of iron oxides are particularly preferable. Among such iron-based oxides, those that are relatively easily available industrially contain about 70 to 95% by mass of iron oxide (ratio to the total oxide particles), and in addition to Al What contains a total of about 5-30 mass% of an oxide and / or the oxide of Si is mentioned.
By the way, from the viewpoint of the aspect ratio, the particles having a high aspect ratio can be artificially synthesized. For example, Patent Document 4 discloses a method for synthesizing α-iron oxide having an aspect ratio of 5 to 30. However, such a method requires long-time heating and pressurization during the synthesis process, resulting in an unavoidably high manufacturing cost and is not easily available. Accordingly, the aspect ratio you less than 5.
In the present invention, the aspect ratio means the ratio of the major axis 1 to the powder thickness 2 as shown in FIG. The aspect ratio of the oxide particles is preferably determined by the method described in the examples described later.

また、本発明において、酸化物粒子の鉄基混合粉末に対する配合量が0.01質量%を下回ると、酸化物粒子の添加効果が現れない。一方、5.0質量%を超えると、抜出力の著しい上昇を招くので好ましくない。従って、酸化物粒子の配合量は0.01〜5.0質量%とする。より好ましくは0.05〜1.0質量%の範囲である。   Moreover, in this invention, when the compounding quantity with respect to the iron-based mixed powder of an oxide particle is less than 0.01 mass%, the addition effect of an oxide particle will not appear. On the other hand, if it exceeds 5.0 mass%, it is not preferable because it causes a significant increase in the unplugging power. Therefore, the compounding quantity of oxide particles shall be 0.01-5.0 mass%. More preferably, it is the range of 0.05-1.0 mass%.

本発明において、鉄基混合粉末の主成分である鉄基粉末としては、アトマイズ鉄粉や還元鉄粉などの純鉄粉、または部分拡散合金化鋼粉および完全合金化鋼粉、さらには完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉などが例示される。かような鉄基粉末の平均粒子径は、10〜200μmとする
なお、本発明において、「主成分」とは、鉄基混合粉末中における鉄基粉末の含有量が50質量%以上であることを意味する。
In the present invention, the iron-based powder that is the main component of the iron-based mixed powder includes pure iron powder such as atomized iron powder and reduced iron powder, or partially diffusion alloyed steel powder and fully alloyed steel powder, and also a complete alloy Examples thereof include hybrid steel powder in which alloy components are partially diffused in chemical steel powder. The average particle diameter of such iron-based powder, and 10 to 200 [mu] m.
In the present invention, the “main component” means that the content of the iron-based powder in the iron-based mixed powder is 50% by mass or more.

また、合金用粉末の種類としては、黒鉛粉末、Cu、Mo、Niなどの金属粉末、金属化合物粉末等が例示される。他の公知の合金用粉末も用いることができるのはいうまでもない。これらの合金用粉末の少なくとも1種を鉄基粉末に混合させることにより焼結体の強度を上昇させることができる。
上記した合金用粉末の配合量の合計は、鉄基混合粉末中で0.1〜10質量%程度とすることが好ましい。というのは、合金用粉末を0.1質量%以上配合することにより、得られる焼結体の強度が有利に向上し、一方、10質量%を超えると、焼結体の寸法精度が低下するからである。
Examples of the type of alloy powder include graphite powder, metal powders such as Cu, Mo, and Ni, and metal compound powders. It goes without saying that other known alloy powders can also be used. The strength of the sintered body can be increased by mixing at least one of these alloy powders with the iron-based powder.
The total blending amount of the above-described alloy powder is preferably about 0.1 to 10% by mass in the iron-based mixed powder. This is because when the alloy powder is blended in an amount of 0.1% by mass or more, the strength of the obtained sintered body is advantageously improved, whereas when it exceeds 10% by mass, the dimensional accuracy of the sintered body is lowered. Because.

上記した合金用粉末は、有機結合剤を介して鉄基粉末の表面に付着させた状態(以下、合金成分外装鉄粉という)であることが好ましい。これにより、合金用粉末の偏析を防止し粉末中の成分分布を均一にすることができる。   The above-described alloy powder is preferably in a state of being adhered to the surface of the iron-based powder via an organic binder (hereinafter referred to as alloy component exterior iron powder). Thereby, segregation of the powder for alloy can be prevented and the component distribution in the powder can be made uniform.

ここに、有機結合剤としては、脂肪酸アミドや金属石鹸などが特に有利に適合するが、ポリオレフィン、ポリエステル、(メタ)アクリルポリマーおよび酢酸ビニルポリマーなどの、他の公知の有機結合剤も用いることができる。これらの有機結合剤は、それぞれ単独で使用しても良いし、2種以上を併用しても良い。2種以上の有機結合剤を併用する場合、少なくともその一部を共溶融物として用いても良い。かような有機結合剤の添加量が0.01質量%未満では、鉄粉の表面に合金用粉末を均一かつ十分に付着できない。一方、1.0質量%を超えると、鉄粉同士が付着し凝集するので、流動性が低下するおそれがある。したがって、有機結合剤の添加量は0.01〜1.0質量%の範囲とするのが好ましい。なお、有機結合剤の添加量(質量%)は、粉末冶金用鉄基混合粉末全体に占める有機結合剤の比率を指す。   Here, fatty acid amides, metal soaps and the like are particularly advantageously suitable as organic binders, but other known organic binders such as polyolefins, polyesters, (meth) acrylic polymers and vinyl acetate polymers can also be used. it can. These organic binders may be used alone or in combination of two or more. When using 2 or more types of organic binders together, you may use at least one part as a co-melt. When the amount of the organic binder added is less than 0.01% by mass, the alloy powder cannot be uniformly and sufficiently adhered to the surface of the iron powder. On the other hand, when it exceeds 1.0 mass%, iron powder adheres and aggregates, and there exists a possibility that fluidity | liquidity may fall. Therefore, the amount of organic binder added is preferably in the range of 0.01 to 1.0% by mass. In addition, the addition amount (mass%) of an organic binder points out the ratio of the organic binder which occupies for the whole iron-base mixed powder for powder metallurgy.

さらに、粉末冶金用鉄基混合粉末の流動性や成形性を向上させるために、遊離潤滑剤を添加することもできる。遊離潤滑剤の添加量は、粉末冶金用鉄基混合粉末全体に占める割合で1.0質量%以下とすることが好ましい。他方、遊離潤滑剤は0.01質量%以上添加することが好ましい。遊離潤滑剤としては、金属石鹸(たとえばステアリン酸亜鉛、ステアリン酸マンガン、ステアリン酸リチウム等)、ビスアミド(たとえばエチレンビスステアリン酸アミド等)、モノアミドを含む脂肪酸アミド(たとえばステアリン酸モノアミド、エルカ酸アミド等)、脂肪酸(たとえばオレイン酸、ステアリン酸等)および熱可塑性樹脂(たとえばポリアミド、ポリエチレン、ポリアセタール等)が、圧粉体の抜出力を低減する効果を有するので好ましい。前記以外の公知の遊離潤滑剤も、用いることができる。   Furthermore, in order to improve the fluidity and formability of the iron-based mixed powder for powder metallurgy, a free lubricant can be added. The amount of the free lubricant added is preferably 1.0% by mass or less as a proportion of the entire iron-based mixed powder for powder metallurgy. On the other hand, it is preferable to add 0.01% by mass or more of the free lubricant. Free lubricants include metal soaps (for example, zinc stearate, manganese stearate, lithium stearate, etc.), bisamides (for example, ethylene bisstearic acid amide), fatty acid amides containing monoamides (for example, stearic acid monoamide, erucic acid amide, etc.) ), Fatty acids (for example, oleic acid, stearic acid, etc.) and thermoplastic resins (for example, polyamide, polyethylene, polyacetal, etc.) are preferred because they have the effect of reducing the output of the green compact. Other known free lubricants other than those described above can also be used.

本発明においては、有機系潤滑剤の配合量を従来より低減し、これを酸化物粒子で代替することにより、優れた抜出力を確保しつつ、流動性や成形密度を改善することができる。すなわち、通常、上記有機系潤滑剤を低減すると抜出力が上昇するが、本発明では酸化物粒子の添加によりこの悪影響を回避することができる。一方で有機系潤滑剤に代えて酸化物粒子を含有することにより、成形密度は改善される。また、酸化物粒子の存在により流動度も改善される。以上の利点を享受する観点からは、有機系潤滑剤の配合量は鉄基混合粉末全体に占める割合で0.8質量%以下とすることが好ましい。より好ましくは0.7質量%以下であり、さらに好ましくは0.6質量%以下である。有機系潤滑剤の下限量としては、有機結合剤と遊離潤滑剤の各下限値の合計である0.02質量%が好ましい。
なお、有機系潤滑剤は、有機結合剤、有機遊離潤滑剤および有機非遊離潤滑剤(結合剤で鉄粉表面に付着させた有機潤滑剤)の少なくともいずれかからなるが、有機非遊離潤滑剤は有機結合剤でその機能を代用することが多いので、通常は有機結合剤と有機遊離潤滑剤との合計量が有機系潤滑剤の量となる。
In the present invention, the blending amount of the organic lubricant is reduced as compared with the conventional one, and this is replaced with oxide particles, whereby the fluidity and the molding density can be improved while ensuring excellent output power. That is, normally, when the organic lubricant is reduced, the output is increased, but in the present invention, this adverse effect can be avoided by the addition of oxide particles. On the other hand, the molding density is improved by containing oxide particles instead of the organic lubricant. In addition, the fluidity is improved by the presence of the oxide particles. From the viewpoint of enjoying the advantages described above, the blending amount of the organic lubricant is preferably 0.8% by mass or less as a proportion of the entire iron-based mixed powder. More preferably, it is 0.7 mass% or less, More preferably, it is 0.6 mass% or less. The lower limit amount of the organic lubricant is preferably 0.02% by mass, which is the sum of the lower limit values of the organic binder and the free lubricant.
The organic lubricant is composed of at least one of an organic binder, an organic free lubricant, and an organic non-free lubricant (an organic lubricant adhered to the iron powder surface with a binder). Since an organic binder often substitutes its function, the total amount of the organic binder and the organic free lubricant is usually the amount of the organic lubricant.

次に、本発明の鉄基混合粉末の製造方法について説明する。
鉄基粉末に、本発明に従う酸化物粒子や結合剤、潤滑剤などの添加材、さらに必要に応じて合金用粉末を加えて、混合する。なお、上記した結合剤、潤滑剤などの添加材は、必ずしも全量を一度に添加する必要はなく、一部のみを添加して一次混合を行ったのち、残部を添加して二次混合することもできる。
Next, the manufacturing method of the iron-based mixed powder of the present invention will be described.
Additives such as oxide particles, a binder, and a lubricant according to the present invention and, if necessary, an alloy powder are added to the iron-based powder and mixed. In addition, it is not always necessary to add all of the above-mentioned additives such as binders and lubricants at the same time. After adding only a part and performing primary mixing, the remainder is added and secondarily mixed. You can also.

また、混合手段としては、特に制限はなく、従来から公知の混合機いずれもが使用できる。例えば、従来から知られている撹拌翼型ミキサー(たとえばヘンシェルミキサー等)や容器回転型ミキサー(たとえばV型ミキサー、ダブルコーンミキサー等)が使用できる。加熱が必要な場合には、加熱が容易な、高速底部撹拌式混合機や傾斜回転バン型混合機、回転クワ型混合機および円錐遊星スクリュー型混合機等が、特に有利に適合する。   The mixing means is not particularly limited, and any conventionally known mixer can be used. For example, conventionally known stirring blade type mixers (for example, Henschel mixers) and container rotation type mixers (for example, V type mixers, double cone mixers, etc.) can be used. When heating is required, a high-speed bottom-stirring mixer, an inclined rotary van mixer, a rotary mulberry mixer, a conical planetary screw mixer, etc., which are easy to heat, are particularly advantageously adapted.

なお、本発明では、上記した添加材の他に、目的に応じて特性を改善するための添加材を添加できることはいうまでもない。例えば、焼結体の切削性を改善する目的で、MnSなどの切削性改善用粉末の添加が例示される。   In addition, in this invention, it cannot be overemphasized that the additive for improving a characteristic can be added according to the objective other than the above-mentioned additive. For example, for the purpose of improving the machinability of the sintered body, the addition of a machinability improving powder such as MnS is exemplified.

鉄基粉末として純鉄粉A(アトマイズ鉄粉、平均粒子径:80μm)と、この純鉄粉の表面に有機結合剤を介して合金用粉末を付着させた合金成分外装鉄粉Bとの二種類を準備した。Bに用いた合金用粉末はCu粉末(平均粒子径:25μm):2.0質量%および黒鉛粉末(平均粒径:5.0μm):0.8質量%とした。また、有機結合剤としては、ステアリン酸モノアミド:0.05質量%およびエチレンビスステアリン酸アミド:0.05質量%を使用した。なお、これらの添加比率はいずれも、鉄基混合粉末全体に占める比率である。
上記の純鉄粉Aと合金成分外装鉄粉Bとに、アスペクト比が5未満の酸化物粒子と遊離潤滑剤を種々の比率で添加したのち、混合して、粉末冶金用鉄基混合粉末とした。なお、酸化物粒子としては、JC(Fe、JFEケミカル製)、MIOX(FeとSiOとAlの混合物:Fe=90質量%、SiO=5質量%、Al=3質量%、残部不純物(いずれも概略値)、Karntner Montanindustrie Gesellschaft mbH製)およびA31(Al、日本軽金属製)を用いた。また、遊離潤滑剤としては、ステアリン酸リチウム:0.1質量%に加えて、ステアリン酸亜鉛や、エチレンビスステアリン酸アミド、エルカ酸アミド等を使用した。なお、鉄粉および酸化物粒子の平均粒子径は、JIS R 1629に準拠したレーザ回折・散乱法により粒子径分布を測定し、体積基準の積算分率における50%径を採用した。また、走査型電子顕微鏡で酸化物粒子を観察し、ランダムに選択した50個の粒子の各アスペクト比の平均値を、アスペクト比とした。
これらの混合粉末の配合比率を表1に示す。この配合比率は、粉末冶金用鉄基混合粉末全体に占める比率である。
Pure iron powder A (atomized iron powder, average particle size: 80 μm) as an iron-based powder, and an alloy component exterior iron powder B in which an alloy powder is attached to the surface of the pure iron powder via an organic binder Prepared the kind. The alloy powder used for B was Cu powder (average particle size: 25 μm): 2.0 mass% and graphite powder (average particle diameter: 5.0 μm): 0.8 mass%. As organic binders, stearic acid monoamide: 0.05% by mass and ethylenebisstearic acid amide: 0.05% by mass were used. In addition, all of these addition ratios are ratios which occupy for the whole iron-based mixed powder.
To the pure iron powder A and the alloy component exterior iron powder B, oxide particles having an aspect ratio of less than 5 and a free lubricant are added in various ratios, and then mixed to obtain an iron-based mixed powder for powder metallurgy. did. As oxide particles, JC (Fe 2 O 3 , manufactured by JFE Chemical), MIOX (mixture of Fe 2 O 3 , SiO 2 and Al 2 O 3 : Fe 2 O 3 = 90 mass%, SiO 2 = 5) Mass%, Al 2 O 3 = 3 mass%, the remaining impurities (both approximate values), Karntner Montanindustrie Gesellschaft mbH) and A31 (Al 2 O 3 , Nippon Light Metal) were used. Further, as the free lubricant, in addition to lithium stearate: 0.1% by mass, zinc stearate, ethylenebisstearic acid amide, erucic acid amide and the like were used. The average particle size of the iron powder and oxide particles was determined by measuring the particle size distribution by a laser diffraction / scattering method in accordance with JIS R 1629, and adopting a 50% diameter in a volume-based integrated fraction. The oxide particles were observed with a scanning electron microscope, and the average value of the aspect ratios of 50 randomly selected particles was defined as the aspect ratio.
Table 1 shows the blending ratio of these mixed powders. This blending ratio is the ratio of the entire iron-based mixed powder for powder metallurgy.

次に、得られた各鉄基混合粉末を、金型に充填し、室温で圧力:980MPaで加圧成形し、外径:11mm、高さ:11mmの円柱状の圧粉体とした。その際、鉄基混合粉末の流動性、圧粉体を金型から抜き出すときの抜出力および得られた圧粉体の圧粉密度について測定した結果を、表1に併記する。なお、鉄基混合粉末の流動性は、JIS Z 2502に準拠して評価した。
ここに、流動性は流動度が30sec/50g以下であれば、また圧縮性は成形密度が7.35Mg/m以上であれば、さらに抜出性は抜出力が25MPa以下であれば、それぞれ良好といえる。
Next, each obtained iron-based mixed powder was filled in a mold and pressure-molded at a pressure of 980 MPa at room temperature to obtain a cylindrical green compact having an outer diameter of 11 mm and a height of 11 mm. Table 1 also shows the results of measurement of the fluidity of the iron-based mixed powder, the output when the green compact is extracted from the mold, and the green density of the obtained green compact. The fluidity of the iron-based mixed powder was evaluated according to JIS Z 2502.
Here, if the fluidity is a flow rate of 30 sec / 50 g or less, and the compressibility is a molding density of 7.35 Mg / m 3 or more, then the drawability is more than 25 MPa or less, respectively. It can be said that it is good.

Figure 0005663974
Figure 0005663974

表1から明らかなように、本発明に従う酸化物粒子を適量添加することによって、流動性は勿論のこと、圧縮性および抜出力に優れる鉄基混合粉末が得られることが分かる。
これに対し、比較例はいずれも、流動性、成形密度および抜出力の少なくとも一つが劣っていた。
表1より、例えば有機系潤滑剤のみを合計0.8質量%含有する比較例9の鉄基混合粉末に比べ、鉄系の酸化物粒子(FeとSiOとAlの混合物粒子)を配合して有機系潤滑剤を0.4〜0.5質量%に低減した発明例9および10の鉄基混合粉末は、同等の抜出力を確保しつつ、成形密度や流動度が顕著に改善されていることが分かる。無論、発明例8より分かるように、さらに有機系潤滑剤を低減しても良好な流動度、成形密度および抜出力が得られる。
なお、有機結合剤、遊離潤滑剤、合金用粉末および酸化物粒子(特に鉄、アルミニウムおよび/またはケイ素を含有する酸化物粒子)等を種々変えた場合や、切削性改善用粉末等をさらに添加した場合においても、上記発明例と同様の結果が得られた。
As is apparent from Table 1, it can be seen that by adding an appropriate amount of the oxide particles according to the present invention, an iron-based mixed powder having excellent compressibility and punching power as well as fluidity can be obtained.
In contrast, all of the comparative examples were inferior in at least one of fluidity, molding density, and punching power.
From Table 1, for example, iron-based oxide particles (Fe 2 O 3 , SiO 2, and Al 2 O 3 are compared with the iron-based mixed powder of Comparative Example 9 containing only 0.8% by mass of the organic lubricant in total. The iron-based mixed powders of Invention Examples 9 and 10 in which the organic lubricant is reduced to 0.4 to 0.5% by mass by blending the mixture particles), while ensuring the same output power, the molding density and fluidity It can be seen that is significantly improved. Of course, as can be seen from Invention Example 8, even if the organic lubricant is further reduced, good fluidity, molding density, and extraction power can be obtained.
In addition, when organic binders, free lubricants, alloy powders and oxide particles (especially oxide particles containing iron, aluminum and / or silicon) are variously changed, and further machinability improving powders are added. In this case, the same results as in the above invention examples were obtained.

本発明に従う酸化物粒子を、鉄基混合粉末中に適量添加することにより、流動性は勿論のこと、成形密度と抜出力を併せて改善することができ、ひいては生産性の向上のみならず、製造コストを低減することができる。   By adding an appropriate amount of the oxide particles according to the present invention to the iron-based mixed powder, not only the fluidity but also the molding density and the unloading power can be improved, and not only the productivity is improved, Manufacturing cost can be reduced.

1 長径
2 厚さ
1 Major axis 2 Thickness

Claims (4)

平均粒子径が10〜200μmの鉄基粉末(但し、希土類元素を含まず)を主成分とする粉末冶金用の鉄基混合粉末であって、該鉄基混合粉末中に、平均粒子径が0.5μm以上100μm以下、アスペクト比が5未満で、鉄、アルミニウムおよびケイ素から選ばれた少なくとも一種を含有する酸化物粒子(但し、希土類元素を含まず)を、0.01〜5.0質量%の範囲で含有させることを特徴とする粉末冶金用鉄基混合粉末。 An iron-based mixed powder for powder metallurgy mainly comprising an iron-based powder having an average particle size of 10 to 200 μm (but not including rare earth elements) , and the average particle size is 0 in the iron-based mixed powder 0.01 to 5.0% by mass of oxide particles (not including rare earth elements) containing 5 μm or more and 100 μm or less and an aspect ratio of less than 5 and containing at least one selected from iron, aluminum, and silicon An iron-based mixed powder for powder metallurgy, characterized by containing in the range of 前記鉄基混合粉末が、0.1〜10質量%の合金用粉末を、有機結合剤を介して鉄基粉末の表面に付着させた状態で含有することを特徴とする請求項1に記載の粉末冶金用鉄基混合粉末。 The iron-based mixed powder is 0.1 to 10 wt% alloy powders, according to claim 1, characterized in that it contains a state attached to the surface of the iron-based powder through an organic binder Iron-based mixed powder for powder metallurgy. 前記鉄基混合粉末が、0.02〜0.8質量%の有機系潤滑剤を含有することを特徴とする請求項1または2に記載の粉末冶金用鉄基混合粉末。 The iron-based mixed powder for powder metallurgy according to claim 1 or 2 , wherein the iron-based mixed powder contains 0.02 to 0.8 mass% of an organic lubricant . 前記鉄基混合粉末が、0.01〜1.0質量%の遊離潤滑剤を含有することを特徴とする請求項1〜のいずれかに記載の粉末冶金用鉄基混合粉末。 The iron-based mixed powder for powder metallurgy according to any one of claims 1 to 3 , wherein the iron-based mixed powder contains 0.01 to 1.0 mass% of a free lubricant.
JP2010142355A 2009-06-26 2010-06-23 Iron-based mixed powder for powder metallurgy Active JP5663974B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010142355A JP5663974B2 (en) 2009-06-26 2010-06-23 Iron-based mixed powder for powder metallurgy
EP10792237.9A EP2446985B1 (en) 2009-06-26 2010-06-25 Iron-based mixed powder for powder metallurgy
PCT/JP2010/061297 WO2010150920A1 (en) 2009-06-26 2010-06-25 Iron-based mixed powder for powder metallurgy
CA 2766042 CA2766042C (en) 2009-06-26 2010-06-25 Iron-based mixed powder for powder metallurgy
CN201080028281.1A CN102802843B (en) 2009-06-26 2010-06-25 Iron-based mixed powder for powder metallurgy
US13/377,396 US20120085201A1 (en) 2009-06-26 2010-06-25 Iron-based mixed powder for powder metallurgy
KR1020117029370A KR101355040B1 (en) 2009-06-26 2010-06-25 Iron-based mixed powder for powder metallurgy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009152593 2009-06-26
JP2009152593 2009-06-26
JP2010142355A JP5663974B2 (en) 2009-06-26 2010-06-23 Iron-based mixed powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2011026700A JP2011026700A (en) 2011-02-10
JP5663974B2 true JP5663974B2 (en) 2015-02-04

Family

ID=43386686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142355A Active JP5663974B2 (en) 2009-06-26 2010-06-23 Iron-based mixed powder for powder metallurgy

Country Status (7)

Country Link
US (1) US20120085201A1 (en)
EP (1) EP2446985B1 (en)
JP (1) JP5663974B2 (en)
KR (1) KR101355040B1 (en)
CN (1) CN102802843B (en)
CA (1) CA2766042C (en)
WO (1) WO2010150920A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129908A (en) * 2011-04-01 2011-07-20 钢铁研究总院 Novel composite soft magnetic material and preparation method thereof
JP5945915B2 (en) * 2012-03-02 2016-07-05 日立化成株式会社 Powder mixture and method for producing sintered member
JP2016056445A (en) * 2014-09-04 2016-04-21 Ntn株式会社 Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy
KR101664603B1 (en) * 2014-11-27 2016-10-11 현대자동차주식회사 Powder metallurgical method
JP6766399B2 (en) * 2016-03-28 2020-10-14 大同特殊鋼株式会社 Sintering powder and sintered body
WO2019177614A1 (en) 2018-03-15 2019-09-19 Hewlett-Packard Development Company, L.P. Composition
WO2020066927A1 (en) * 2018-09-26 2020-04-02 Jfeスチール株式会社 Mixed powder for powder metallurgy and lubricant for powder metallurgy
CN112276073B (en) * 2020-09-23 2022-12-30 山东鲁银新材料科技有限公司 Powder metallurgy composition comprising silicon dioxide as a leavening agent and a flow rate enhancer
CN115036090A (en) * 2022-07-11 2022-09-09 陕西华夏粉末冶金有限责任公司 Formula and preparation method of soft magnetic composite material

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS204329B1 (en) * 1978-09-22 1981-04-30 Milan Slesar Method of making the sintered iron pressings of the hardened iron oxides
JP2743090B2 (en) * 1989-07-31 1998-04-22 株式会社 小松製作所 How to control the carbon content of metal injection products
JP2829644B2 (en) 1989-10-13 1998-11-25 日本化学工業株式会社 Production method of α-iron oxide
CA2123881C (en) * 1992-09-18 2000-12-12 Takeo Omura Mixed iron powder for powder metallurgy and method of producing same
JPH06136404A (en) * 1992-10-28 1994-05-17 Kawasaki Steel Corp Production of iron-base soft magnetic material sintered compact
JP3351844B2 (en) * 1993-03-01 2002-12-03 川崎製鉄株式会社 Alloy steel powder for iron-based sintered material and method for producing the same
EP0739991B1 (en) * 1995-04-25 2000-11-29 Kawasaki Steel Corporation Iron-base powder mixture for powder metallurgy and manufacturing method therefor
JPH08325667A (en) 1995-05-26 1996-12-10 Kobe Steel Ltd Method for controlling dimensional change of powder metallurgical iron sintered compact
US6280683B1 (en) * 1997-10-21 2001-08-28 Hoeganaes Corporation Metallurgical compositions containing binding agent/lubricant and process for preparing same
SE9704494D0 (en) * 1997-12-02 1997-12-02 Hoeganaes Ab Lubricant for metallurgical powder compositions
DE69828315T2 (en) * 1998-05-15 2005-06-09 Höganäs Ab METALLURGICAL IRON BASED COMPOSITIONS CONTAINING FLUX AND METHOD FOR THEIR USE
JP2002008913A (en) * 2000-06-19 2002-01-11 Daido Electronics Co Ltd Rare earth magnet and its molding material
JP4208689B2 (en) * 2003-09-30 2009-01-14 日立粉末冶金株式会社 Method for producing high corrosion resistance stainless sintered material
JP4412133B2 (en) * 2004-09-27 2010-02-10 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
JP2006124777A (en) * 2004-10-28 2006-05-18 Kobe Steel Ltd Powder mixture for powder metallurgy and green compact molding
JP2006213984A (en) * 2005-02-07 2006-08-17 Tdk Corp Super-magnetostrictive material and manufacturing method therefor
JP2007031744A (en) 2005-07-22 2007-02-08 Kobe Steel Ltd Powdery mixture for powder metallurgy
US20070186722A1 (en) * 2006-01-12 2007-08-16 Hoeganaes Corporation Methods for preparing metallurgical powder compositions and compacted articles made from the same
CA2707903C (en) * 2007-12-13 2012-11-13 Jfe Steel Corporation Iron-based powder for powder metallurgy

Also Published As

Publication number Publication date
JP2011026700A (en) 2011-02-10
EP2446985B1 (en) 2017-12-27
CN102802843A (en) 2012-11-28
CA2766042C (en) 2014-03-25
EP2446985A1 (en) 2012-05-02
WO2010150920A1 (en) 2010-12-29
CN102802843B (en) 2015-06-17
EP2446985A4 (en) 2015-06-17
CA2766042A1 (en) 2010-12-29
US20120085201A1 (en) 2012-04-12
KR101355040B1 (en) 2014-01-22
KR20120026086A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
JP5663974B2 (en) Iron-based mixed powder for powder metallurgy
JP5604981B2 (en) Iron-based mixed powder for powder metallurgy
JP2010053440A (en) Iron-based powder for powder metallurgy
JP5617529B2 (en) Iron-based mixed powder for powder metallurgy
WO2016190039A1 (en) Mixed powder for iron-based powder metallurgy and sintered body produced using same
JP2009280907A (en) Iron powder mixture for powder metallurgy
JP4483595B2 (en) Iron-based powder mixture for high-strength sintered parts
EP3305439B1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same
WO2016190038A1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, sintered body produced using same, and method for producing sintered body
US11643710B2 (en) Mixed powder for powder metallurgy
JP5439926B2 (en) Iron-based mixed powder for powder metallurgy
JP5245728B2 (en) Iron-based mixed powder for powder metallurgy
JP2003221602A (en) Iron-base mixed powder for powder metallurgy
JP6877375B2 (en) Mixed powder for powder metallurgy
JP2024017984A (en) Iron-based powder mix for powder metallurgy, iron-based sintered body, and sintered mechanical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5663974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250