JP6086098B2 - Laminated electrical steel sheet and manufacturing method thereof - Google Patents
Laminated electrical steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP6086098B2 JP6086098B2 JP2014128186A JP2014128186A JP6086098B2 JP 6086098 B2 JP6086098 B2 JP 6086098B2 JP 2014128186 A JP2014128186 A JP 2014128186A JP 2014128186 A JP2014128186 A JP 2014128186A JP 6086098 B2 JP6086098 B2 JP 6086098B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- adhesive
- electrical steel
- laminated
- adhesive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 102
- 239000010959 steel Substances 0.000 claims description 102
- 239000000853 adhesive Substances 0.000 claims description 65
- 230000001070 adhesive effect Effects 0.000 claims description 63
- 239000012790 adhesive layer Substances 0.000 claims description 56
- 238000010030 laminating Methods 0.000 claims description 15
- 238000003475 lamination Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 description 31
- 238000004080 punching Methods 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 8
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical group [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 1
- 229910000576 Laminated steel Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0233—Manufacturing of magnetic circuits made from sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Laminated Bodies (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、加熱により接着可能な接着層付き積層電磁鋼板に関するものである。 The present invention relates to a laminated electrical steel sheet with an adhesive layer that can be bonded by heating.
従来、電気機器等に使用される鉄芯は、まず渦電流を減少させるために電磁鋼板表面に絶縁被膜を形成し、次いで打抜き又は切断加工等により所定の単板形状に加工し、それらを多数積層し、溶接若しくは接着等により固着させて製造していた。 Conventionally, iron cores used in electrical equipment, etc. are first formed with an insulating coating on the surface of an electromagnetic steel sheet to reduce eddy currents, then processed into a predetermined single plate shape by punching or cutting, etc. It was manufactured by laminating and fixing by welding or bonding.
これに対し、特許文献1では、上記製造方法の製造工程を簡略化する方法として、加熱加圧により接着力を発現する接着剤を予め絶縁被膜として塗布、乾燥して得られた被覆鋼板を、打抜き又は切断加工して所定の単板形状に加工し、多数積層し、最後に加熱加圧して鉄心を製造する方法が記載されている。 On the other hand, in Patent Document 1, as a method of simplifying the manufacturing process of the above manufacturing method, a coated steel sheet obtained by applying and drying an adhesive that expresses adhesive force by heating and pressurization in advance as an insulating film, A method is described in which an iron core is manufactured by punching or cutting into a predetermined single plate shape, laminating a large number, and finally heating and pressing.
又、特許文献2には、半硬化状態の接着剤がコーティングされ所定の形状に加工された電磁鋼板を積層し、加熱加圧して前記接着剤を硬化させ鉄芯を製造する方法が記載されている。 Patent Document 2 describes a method of manufacturing an iron core by laminating electromagnetic steel sheets coated with a semi-cured adhesive and processed into a predetermined shape, and heating and pressing to cure the adhesive. Yes.
しかし、これらの方法は、いずれも鋼板を1枚1枚打抜き、その後それらを治具などを用いて揃えて積層する必要がある。一方、近年ではモーターやトランスの損失低減のために電磁鋼板の板厚を減少させる必要があり、この結果所定の性能を得るのに必要な枚数も増加している。この場合、薄い鋼板を1枚1枚打抜き、積層することは、第一に、打抜き回数の増加による生産性の低下・コストの増加、第2に、板厚が薄いことに起因する金型の磨耗、という問題点が生じる。 However, all of these methods require punching steel sheets one by one and then aligning them using a jig or the like and laminating them. On the other hand, in recent years, it has been necessary to reduce the thickness of electromagnetic steel sheets in order to reduce the loss of motors and transformers. As a result, the number of sheets necessary to obtain a predetermined performance has increased. In this case, punching and laminating thin steel sheets one by one, the first is a decrease in productivity and an increase in cost due to an increase in the number of punches, and the second is a mold caused by a thin plate thickness. The problem of wear occurs.
加えて、特許文献2の方法では、接着剤が半硬化状態の電磁鋼板を扱うために、搬送ロールや打抜き用金型に接着剤が付着しトラブルの原因となる。 In addition, in the method of Patent Document 2, since the adhesive handles a semi-cured electromagnetic steel sheet, the adhesive adheres to the transport roll and the punching die, causing trouble.
特許文献3には、2枚以上の電磁鋼板を貼り合わせて多層積層の鋼板とし、それを所定の形状に打抜いた後積層して鉄芯を製造する方法が記載されている。更に、前記打抜かれた積層電磁鋼板同士に再度接着剤を塗布することなく積層体を形成する方法として、接着層を不完全硬化状態とし、打抜きプレス成形機において打抜いた後、金型内で加熱して積層体を形成させる方法が記載されている。 Patent Document 3 describes a method of manufacturing an iron core by laminating two or more electromagnetic steel sheets to form a multilayer laminated steel sheet, punching it into a predetermined shape, and then laminating it. Further, as a method of forming a laminate without re-applying an adhesive between the punched laminated electrical steel sheets, the adhesive layer is in an incompletely cured state, and after punching with a punching press molding machine, A method for forming a laminate by heating is described.
この方法により、薄い鋼板を1枚1枚打抜くことは回避され、これによる生産性の低下は解消できるが、接着剤が半硬化状態(特許文献3では「不完全硬化状態」)であるため、取扱い時に電磁鋼板同士の剥がれ生じて通板できなくなるというトラブルや、ロール及び金型に接着剤が付着するという問題があった。 By this method, it is possible to avoid punching thin steel sheets one by one, and it is possible to eliminate a decrease in productivity due to this, but the adhesive is in a semi-cured state (“incompletely cured state” in Patent Document 3). There was a problem that the magnetic steel sheets peeled off during handling and the sheet could not be passed, and there was a problem that the adhesive adhered to the roll and the mold.
電磁鋼板を複数枚積層することにより鋼板を1枚1枚打抜くことを回避し、積層の剥がれがなく、加えて搬送ロール・金型等に接着剤が付着することによるトラブルがない積層電磁鋼板およびその製造方法を提供することを目的とする。 Laminated electrical steel sheet that avoids punching of steel sheets one by one by laminating a plurality of electrical steel sheets, there is no peeling of the laminate, and there is no trouble caused by adhesives adhering to transport rolls and molds And it aims at providing the manufacturing method.
発明者らは、上記の問題を解決すべく鋭意検討を重ねたところ、複数の電磁鋼板からなる積層電磁鋼板とし、最表面及び鋼板間に特定の硬化度をもつ接着層を付与することで、上記の問題が有利に解決されることを見出した。すなわち、本発明の要旨構成は次のとおりである。 The inventors have made extensive studies in order to solve the above problems, and as a laminated electromagnetic steel sheet composed of a plurality of electromagnetic steel sheets, by providing an adhesive layer having a specific degree of hardening between the outermost surface and the steel sheet, It has been found that the above problems are advantageously solved. That is, the gist configuration of the present invention is as follows.
本発明の積層電磁鋼板は、複数の電磁鋼板を積層接着した積層電磁鋼板であり、最表面の片面または両面に対数減衰率の最大値が0.30以上0.60以下の接着層を有し、鋼板間に対数減衰率の最大値が0以上0.30未満の接着層を有することを特徴とする。 The laminated electrical steel sheet of the present invention is a laminated electrical steel sheet obtained by laminating and bonding a plurality of electrical steel sheets, and has an adhesive layer having a maximum value of logarithmic attenuation of 0.30 to 0.60 on one or both surfaces of the outermost surface. The adhesive layer has a maximum logarithmic decay rate of 0 or more and less than 0.30 between the steel plates.
また、本発明の製造方法は、電磁鋼板の少なくとも片面に接着剤を塗布し、積層後焼付して積層電磁鋼板としたのち、前記積層電磁鋼板の最表面の片面または両面に接着剤を塗布し、焼付して前記積層電磁鋼板を製造することを特徴とする。 In the production method of the present invention, an adhesive is applied to at least one surface of an electromagnetic steel sheet, and after baking, a laminated electromagnetic steel sheet is obtained. Then, an adhesive is applied to one or both surfaces of the outermost surface of the laminated electromagnetic steel sheet. The laminated electromagnetic steel sheet is manufactured by baking.
また、本発明の製造方法は、前記鋼板間の接着層と、前記最表面の接着層をそれぞれ形成するに際し、異なる接着剤を用いることを特徴とする。 The production method of the present invention is characterized in that different adhesives are used in forming the adhesive layer between the steel plates and the outermost adhesive layer.
また、本発明の製造方法は、電磁鋼板の少なくとも片面に接着剤を塗布し、積層して積層電磁鋼板としたのち、前記積層電磁鋼板の最表面の片面または両面に前記接着剤とは異なる接着剤を塗布し、焼付して前記積層電磁鋼板を製造することを特徴とする。 Further, the manufacturing method of the present invention is such that after applying an adhesive on at least one surface of the electromagnetic steel sheet and laminating it to form a laminated electromagnetic steel sheet, adhesion different from the adhesive on one or both surfaces of the outermost surface of the laminated electromagnetic steel sheet The laminated electrical steel sheet is manufactured by applying an agent and baking.
本発明によれば、積層の剥がれがなく、搬送ロール・金型等に接着剤が付着するというトラブルがない積層電磁鋼板が得られる。また、本発明の積層電磁鋼板の製造方法によれば、積層することにより鋼板を1枚1枚打抜くことを回避し、効率よく生産することができる。さらに、本発明の積層電磁鋼板を用いることで、接着性に優れる鉄心が得られる。 According to the present invention, it is possible to obtain a laminated electrical steel sheet that is free from lamination peeling and has no trouble that an adhesive adheres to a transport roll, a mold, or the like. Moreover, according to the manufacturing method of the laminated electrical steel sheet of the present invention, it is possible to avoid the punching of the steel sheets one by one by laminating and to produce efficiently. Furthermore, the iron core which is excellent in adhesiveness is obtained by using the laminated electrical steel sheet of the present invention.
電磁鋼板:
本発明において、素材である電磁鋼板とは、鋼板の電磁気的特性を利用し、主としてモーターやトランスに用いられる鋼板であるが、特にこの用途に限定されることはなく、従来から公知のものいずれもが適合する。
Electrical steel sheet:
In the present invention, the electromagnetic steel sheet as a material is a steel sheet mainly used for motors and transformers utilizing the electromagnetic properties of the steel sheet, but is not particularly limited to this application, and any conventionally known ones. Fits.
すなわち、磁束密度の高いいわゆる軟鉄板(電気鉄板)やSPCC等の一般冷延鋼板、また比抵抗を上げるためにSiやAlを含有させた無方向性電磁鋼板、方向性電磁鋼板など、鋼の電磁気的特性が利用されるものであれば、いずれも適用できる。ここで、軟鉄板(電気鉄板)とは、軟磁性を有する鋼板を意味する。 That is, general cold-rolled steel sheets such as so-called soft iron plates (electric iron plates) and SPCC with high magnetic flux density, non-oriented electrical steel sheets containing Si and Al to increase specific resistance, directional electrical steel sheets, etc. Any can be applied as long as electromagnetic characteristics are utilized. Here, the soft iron plate (electric iron plate) means a steel plate having soft magnetism.
厚みに関しては1枚の鋼板あたり0.30mm以下の場合に本発明の効果が大きく、0.20mm、0.15mmと薄くなるに従い本発明の効果が更に大きくなる。本発明では、素材である電磁鋼板の前処理については特に規定しない。すなわち、未処理でもよいが、アルカリなどの脱脂処理、塩酸、硫酸、リン酸などの酸洗処理を施すことは有利である。また、既にフォルステライト被膜、リン酸塩系被膜、シリカ含有被膜やシランカップリング剤で硬化させたSi系被膜、ワニス被膜などの絶縁被膜が形成された電磁鋼板にも適用できる。 Regarding the thickness, the effect of the present invention is large when the thickness is 0.30 mm or less per one steel plate, and the effect of the present invention is further increased as the thickness is reduced to 0.20 mm and 0.15 mm. In this invention, it does not prescribe | regulate especially about the pre-processing of the electromagnetic steel plate which is a raw material. That is, although it may be untreated, it is advantageous to carry out a degreasing treatment such as alkali or pickling treatment such as hydrochloric acid, sulfuric acid or phosphoric acid. The present invention can also be applied to electrical steel sheets on which an insulating coating such as a forsterite coating, a phosphate coating, a silica-containing coating, a Si coating cured with a silane coupling agent, or a varnish coating is already formed.
積層電磁鋼板:
上記電磁鋼板を、例えば図2または図3に示すように、鋼帯の段階で、複数枚重ねて接着し焼き付けることによって一体化した鋼板である。その断面図の例を図1に、連続的に積層、接着、焼付けを行う方法の例を図2、図3に示す。図1において、上段左側は2枚を積層して積層電磁鋼板とし、更にこの両表面に接着剤を塗布し、接着層を形成した場合、上段右側は更に最表面の片面に接着剤を塗布し、接着層を形成した場合を示し、下段は積層枚数を3枚とした場合である。これを用途に従った形状に打抜き加工若しくは切断加工することにより、一度の加工で複数枚から構成される部材が得られる。例えば、2枚積層すれば打抜き加工等の回数は1/2に、3枚積層すれば1/3となる。加工後、この部材を鉄心を構成するのに必要な枚数に更に積層して接着し、トランス等を製造する。
Laminated electrical steel sheet:
For example, as shown in FIG. 2 or FIG. 3, the electromagnetic steel sheet is a steel sheet integrated by stacking, bonding and baking a plurality of sheets at the stage of a steel strip. An example of the cross-sectional view is shown in FIG. 1, and examples of methods for continuously laminating, bonding, and baking are shown in FIGS. In FIG. 1, the upper left side is laminated to form a laminated electrical steel sheet, and an adhesive is applied to both surfaces to form an adhesive layer. When the upper layer right side is further coated with an adhesive on one surface of the outermost surface. The case where an adhesive layer is formed is shown, and the lower part is a case where the number of stacked layers is three. By punching or cutting this into a shape according to the application, a member composed of a plurality of sheets can be obtained by a single process. For example, if two sheets are stacked, the number of times of punching or the like is ½, and if three sheets are stacked, the number is one third. After processing, this member is further laminated and bonded to the number necessary to constitute the iron core to manufacture a transformer or the like.
本発明においては、上記のように鋼板を積層し接着し、焼付ける工程に加え、積層後一体化された積層電磁鋼板の最表面(片面又は両面)にも接着剤を塗布し、焼付ける工程を有する。接着層の焼付け度合いは「硬化度」と称され、この値は「樹脂の架橋反応の進行度の指標」となるものである。また、「硬化度」は硬さ法、キュラストメータ法、動的粘弾性法、剛体振子型物性試験といった力学的方法、誘電法、DSC(示差走査熱量測定)法などで知ることができる。 In the present invention, in addition to the steps of laminating and bonding the steel plates as described above, baking, and applying and baking the adhesive on the outermost surface (one side or both sides) of the laminated electromagnetic steel plates integrated after lamination Have The degree of baking of the adhesive layer is referred to as “curing degree”, and this value becomes “an index of the degree of progress of the crosslinking reaction of the resin”. The “curing degree” can be known by a mechanical method such as a hardness method, a curlastometer method, a dynamic viscoelastic method, a rigid pendulum type physical property test, a dielectric method, a DSC (differential scanning calorimetry) method, or the like.
対数減衰率:
本発明においては、対数減衰率の最大値を規定することで、最表面の片面または両面の接着層と鋼板間の接着層の硬化度を規定することとする。すなわち、本発明の積層電磁鋼板は、最表面の片面または両面に対数減衰率の最大値が0.30以上0.60以下の接着層を有し、鋼板間に対数減衰率の最大値が0以上0.30未満の接着層を有する。
Logarithmic decay rate:
In the present invention, by defining the maximum value of the logarithmic decay rate, the degree of cure of the adhesive layer between the outermost single-sided or double-sided adhesive layer and the steel sheet is specified. That is, the laminated electrical steel sheet of the present invention has an adhesive layer with a maximum value of logarithmic attenuation of 0.30 or more and 0.60 or less on one or both surfaces of the outermost surface, and the maximum value of logarithmic attenuation is 0 between steel sheets. It has an adhesive layer of less than 0.30.
上記対数減衰率の最大値は、剛体振子型物性試験で知ることができる。 The maximum value of the logarithmic decay rate can be known by a rigid pendulum type physical property test.
剛体振子型物性試験器としては例えばエー・アンド・デイ製RPT−3000Wを用い、常温から250℃までの対数減衰率を測定し、対数減衰率の最大値を求める。 As the rigid pendulum type physical property tester, for example, RPT-3000W manufactured by A & D is used, the logarithmic decay rate from room temperature to 250 ° C. is measured, and the maximum value of the logarithmic decay rate is obtained.
対数減衰率とは、架橋反応の進行による塗膜の粘弾性変化から得られる数値であり、その最大値とは架橋反応による硬化度の進みうる大きさを意味する。従って、硬化度が低ければ対数減衰率の最大値は大きくなり、硬化度が高ければ対数減衰率の最大値は小さくなる。 The logarithmic decay rate is a numerical value obtained from the change in viscoelasticity of the coating film due to the progress of the cross-linking reaction, and the maximum value means the magnitude of the degree of curing due to the cross-linking reaction. Therefore, the maximum value of the logarithmic decay rate increases when the degree of cure is low, and the maximum value of the logarithmic decay rate decreases when the degree of cure is high.
上記対数減衰率は、使用する接着剤の種類、焼き付け条件(温度、時間等)等を変更することによりコントロールすることができる。焼付け条件に関しては、温度を高くするほど、又時間を長くするほど対数減衰率は低くなり、硬化度が高くなる。 The logarithmic decay rate can be controlled by changing the type of adhesive used, baking conditions (temperature, time, etc.) and the like. Regarding the baking condition, the higher the temperature and the longer the time, the lower the logarithmic decay rate and the higher the degree of curing.
複数枚の電磁鋼板を未硬化に留めて接着させた場合、通板ロール・打抜き金型への樹脂付着が起きたり、鋼板の剥がれが生じるという問題が生じていた。硬化度を高めればこの問題の発生頻度が少なくなるが、同時に最表面の接着層の硬化度も高くなるため打抜き後の接着が困難になり、接着剤の付着及び剥がれの防止と、打抜き後の接着性に十分な改善点が見出せなかった。 When a plurality of electromagnetic steel sheets are left uncured and bonded, there has been a problem that resin adheres to the sheet passing roll and the punching die or the steel sheets peel off. Increasing the degree of cure will reduce the frequency of this problem, but at the same time the degree of cure of the outermost adhesive layer will also increase, making it difficult to adhere after punching, preventing adhesion and peeling of the adhesive, No sufficient improvement was found in the adhesion.
発明者らはこの点について原因を調査したところ、同一の接着剤(樹脂)、同一の接着方法によって複数の電磁鋼板を貼り合わせて未硬化状態に接着した場合、鋼板間の接着層の硬化度が最表面の接着層の硬化度より低くなることが避けられないことがわかった。 When the inventors investigated the cause of this point, the degree of cure of the adhesive layer between the steel plates when the same adhesive (resin) and the same adhesive method were bonded together to bond a plurality of electrical steel plates to an uncured state. However, it has been unavoidable that becomes lower than the degree of cure of the outermost adhesive layer.
更に接着方法や接着剤となる樹脂を変えて鋭意研究を行った結果、最表面の接着層の硬化度と鋼板間の接着層の硬化度を特定範囲にすることで、上記課題が優位に解決されることを見出した。 Furthermore, as a result of diligent research by changing the bonding method and resin used as an adhesive, the above problems can be solved predominately by setting the degree of cure of the outermost adhesive layer and the degree of cure of the adhesive layer between steel plates to a specific range. I found out that
最表面の接着層:
搬送ロール、プレス金型等への接着剤の付着を防止し、かつ打抜き後の接着性を確保するために最表面の対数減衰率の最大値は0.30〜0.60の範囲であることが必要である。0.30未満では打抜き後の接着で接着力不足となり、鉄芯の固定が不十分となる。0.60を超えるとベタツキが生じプレス通板時に付着するトラブルが発生する。
Outermost adhesive layer:
The maximum value of the logarithmic decay rate on the outermost surface is in the range of 0.30 to 0.60 in order to prevent adhesion of the adhesive to the transport roll, press die, etc., and to secure the adhesion after punching. is necessary. If it is less than 0.30, the adhesion after punching becomes insufficient, and the iron core is insufficiently fixed. If it exceeds 0.60, stickiness occurs and a problem of sticking occurs when the press passes.
鋼板間の接着層:
鋼板間の接着層は、打抜き後の接着性は不要であり、搬送ロール、プレス金型等への接着剤の付着を防止し、かつ鋼板の剥がれを防止する必要がある。このために、対数減衰率の最大値は0以上0.30未満とする。0.25未満であれば更に好ましい。0.30以上では鋼板の剥がれが生じる。
Adhesive layer between steel plates:
The adhesive layer between the steel plates does not need adhesiveness after punching, and it is necessary to prevent the adhesive from adhering to a transport roll, a press die and the like and to prevent the steel plates from peeling off. For this reason, the maximum value of the logarithmic decay rate is 0 or more and less than 0.30. More preferably, it is less than 0.25. If it is 0.30 or more, peeling of the steel sheet occurs.
最表面の接着剤と鋼板間の接着剤とは、同じものでも、別のものでもかまわない。表面の1面と別の1面を同じ接着剤にすることも、別の接着剤にすることも可能である。3枚以上積層した場合、鋼板間の接着剤を同じものにすることも、各々別のものにすることも可能である。また、鋼板間に最表面より硬化が早い接着剤を用いれば、同時に加熱しても鋼板間の硬化度を最表面より高めることが可能である。この場合、一度の工程で鋼板間及び最表面両方への塗布及び焼付けによる接着層形成が可能となり、生産効率を向上することができる。 The adhesive on the outermost surface and the adhesive between the steel plates may be the same or different. One surface and another surface can be the same adhesive or different adhesives. When three or more sheets are laminated, the adhesives between the steel plates can be the same or different. Further, if an adhesive that cures faster than the outermost surface is used between the steel plates, it is possible to increase the degree of curing between the steel plates from the outermost surface even when heated simultaneously. In this case, it becomes possible to form an adhesive layer by applying and baking between both steel plates and at the outermost surface in a single process, thereby improving the production efficiency.
鋼板間及び最表面の接着層の樹脂としては、上記要件を満たせば好適に使用でき、例えばフェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、シリコーン樹脂といった接着性を示す熱硬化性樹脂が好適に適用できる。 As the resin for the adhesive layer between the steel plates and on the outermost surface, it can be suitably used as long as the above requirements are satisfied. For example, thermosetting that exhibits adhesive properties such as phenol resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, and silicone resin. A suitable resin can be applied.
接着層の形成方法:
電磁鋼板の少なくとも片面に接着剤を塗布し、積層後焼付して積層電磁鋼板としたのち、前記積層電磁鋼板の最表面の片面または両面に接着剤を塗布、焼付することにより、鋼板間及び最表面に接着層を形成する方法である。例えば、2枚の電磁鋼板の片面に接着剤を塗布し、塗布面同士を積層して焼き付け、積層電磁鋼板とする(図2)。
Method for forming the adhesive layer:
After applying an adhesive to at least one side of the electrical steel sheet and baking it after lamination to form a laminated electrical steel sheet, the adhesive is applied and baked on one or both surfaces of the outermost surface of the laminated electrical steel sheet, so that In this method, an adhesive layer is formed on the surface. For example, an adhesive is applied to one side of two electromagnetic steel sheets, and the coated surfaces are laminated and baked to form a laminated electromagnetic steel sheet (FIG. 2).
更に、前記鋼板間の接着層及び最表面の接着層を形成するに際し、異なる接着剤を用いることを特徴とする方法も含まれる。電磁鋼板の少なくとも片面に接着剤を塗布し、積層して積層電磁鋼板としたのち、前記積層電磁鋼板の最表面の片面または両面に前記接着剤とは異なる接着剤を塗布し、焼付することにより、鋼板間及び最表面に接着層を形成する方法である(図3)。このように異なる接着剤を用いることにより、同一焼付け条件で特性の異なる接着層を形成することができ、一度の焼付け工程で鋼板間及び最表面両方の焼付けが可能となり、生産効率を向上することができる。 Furthermore, when forming the adhesive layer between the steel plates and the outermost adhesive layer, a method using different adhesives is also included. By applying an adhesive on at least one side of the electrical steel sheet and laminating it to obtain a laminated electrical steel sheet, applying an adhesive different from the adhesive on one or both sides of the outermost surface of the laminated electrical steel sheet and baking it. This is a method of forming an adhesive layer between steel plates and on the outermost surface (FIG. 3). By using different adhesives in this way, adhesive layers with different characteristics can be formed under the same baking conditions, and both the steel sheets and the outermost surface can be baked in a single baking process, improving production efficiency. Can do.
塗布方法は、一般工業的に用いられるバーコーター、ロールコーター、フローコーター、スプレー、ナイフコーター等種々の方法が適用可能である。1枚に厚めに塗布し無塗布のもう1枚と貼り合わせることも可能である。また、接着剤を水や、アルコール、キシレン等の有機溶剤で希釈して塗布することも可能である。 As a coating method, various methods such as a bar coater, a roll coater, a flow coater, a spray, and a knife coater that are generally used in industry can be applied. It is also possible to apply a thick layer on one sheet and bond it to another uncoated sheet. It is also possible to apply the adhesive diluted with water, an organic solvent such as alcohol or xylene.
焼付け方法は、通常実施されるような熱風式、赤外線式、誘導加熱式等が可能である。焼付け温度も通常レベルであればよく、時間1〜600秒で到達鋼板温度が100〜300℃程度となるようにすればよい。また、積層した状態でホットプレスにより焼付けを行ってもよい。ホットプレスの場合、時間1〜600秒で到達鋼板温度が100〜300℃程度となるように加熱し、圧力は0.1〜100kgf/cm2程度とすればよい。本発明では到達鋼板温度、保持時間、圧力などを変えることにより接着層の硬化度を制御できる。 The baking method can be a hot air type, an infrared type, an induction heating type, or the like as usual. The baking temperature may be a normal level, and the ultimate steel sheet temperature may be about 100 to 300 ° C. in a time of 1 to 600 seconds. Moreover, you may bake with a hot press in the laminated state. In the case of hot pressing, heating is performed so that the ultimate steel plate temperature is about 100 to 300 ° C. in a time of 1 to 600 seconds, and the pressure may be about 0.1 to 100 kgf / cm 2 . In the present invention, the degree of cure of the adhesive layer can be controlled by changing the ultimate steel plate temperature, holding time, pressure, and the like.
積層電磁鋼板としたのち、その積層電磁鋼板の表面に更に接着剤を塗布して接着可能な積層電磁鋼板が得られる。最表面の接着層は積層電磁鋼板の両面にあることが好ましいが、目的によっては片面のみでも構わない。また、目的によっては片面のみ施し、他面は他の絶縁被膜としても、他の絶縁被膜のうえに接着層を重ね塗りすることでも構わない。 After making the laminated electrical steel sheet, a laminated electrical steel sheet that can be bonded by further applying an adhesive to the surface of the laminated electrical steel sheet is obtained. The outermost adhesive layer is preferably on both sides of the laminated electrical steel sheet, but depending on the purpose, only one side may be provided. Further, depending on the purpose, only one surface may be applied, and the other surface may be another insulating coating, or an adhesive layer may be overcoated on another insulating coating.
本発明の電磁鋼板の板厚に特に制限はないが、2枚以上を積層し接着させて積層電磁鋼板とするため、0.30mm以下(例えば0.20mmや0.15mm)の場合、特に本発明の適用が効果的となる。板厚が0.30mm以下であれば、単一の鋼板と比較して形状保持性が向上して取扱い時に損傷されにくくなるばかりでなく、同じ大きさの鉄芯を1個つくるのに必要な打抜回数が減り生産性を大幅に向上でき、更に加工時の板厚が厚くなるため金型のクリアランスを大きくすることができ、型寿命も伸びるという効果も生じる。また、カシメ、溶接、ボルト締めといった大きな歪の入る加工が回避できるので、磁気特性を大幅に回復することができる。 There is no particular limitation on the thickness of the electromagnetic steel sheet of the present invention, but two or more sheets are laminated and bonded to form a laminated electromagnetic steel sheet. Therefore, in the case of 0.30 mm or less (for example, 0.20 mm or 0.15 mm), the present invention Application of the invention becomes effective. If the plate thickness is 0.30 mm or less, not only is the shape retention improved compared to a single steel plate, it is less likely to be damaged during handling, but it is also necessary to make one iron core of the same size. The number of punches can be reduced and the productivity can be greatly improved. Further, since the plate thickness at the time of processing is increased, the die clearance can be increased, and the die life can be extended. In addition, since processing with large distortion such as caulking, welding, and bolting can be avoided, the magnetic characteristics can be greatly recovered.
本発明の最表面の接着層の厚みは特に定めないが、平均で0.1μm以上50μm以下が好ましい。更に好ましくは0.5μm以上20μm以下である。0.1μm以上であれば、接着性が低下することがなく、50μm以下であれば粉吹きを防止できる。さらに20μm以下であれば占積率が低下することがない。 The thickness of the outermost adhesive layer of the present invention is not particularly defined, but is preferably 0.1 μm or more and 50 μm or less on average. More preferably, it is 0.5 μm or more and 20 μm or less. If it is 0.1 micrometer or more, adhesiveness will not fall, and if it is 50 micrometers or less, powder blowing can be prevented. Furthermore, if it is 20 micrometers or less, a space factor will not fall.
鋼板間の接着層厚みは特に定めないが、平均で0.1μm以上20μm以下が好ましい。更に好ましくは0.5μm以上10μm以下である。0.1μm以上であれば接着性が低下することがなく、20μm以下であれば占積率が低下することがない。 The thickness of the adhesive layer between the steel plates is not particularly defined, but is preferably 0.1 μm or more and 20 μm or less on average. More preferably, it is 0.5 μm or more and 10 μm or less. If it is 0.1 μm or more, the adhesion does not decrease, and if it is 20 μm or less, the space factor does not decrease.
上記の好ましい範囲であれば、最表面、鋼板間の接着層の厚みは揃わずとも構わない。 If it is said preferable range, the thickness of the adhesion layer between the outermost surface and the steel plate may not be uniform.
以下、本発明の効果を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, although the effect of the present invention is concretely explained based on an example, the present invention is not limited to these examples.
接着層を形成するための接着剤として、表1に示す樹脂、型番、メーカーの接着剤を希釈せず使用した。 As the adhesive for forming the adhesive layer, the resin, model number, and manufacturer's adhesive shown in Table 1 were used without dilution.
Si:2.80質量%、Al:0.30質量%およびMn:0.15質量%を含有する電磁鋼板(板厚:0.05〜0.15mm、幅:200mm、長さ:300mm)を準備した。 A magnetic steel sheet (sheet thickness: 0.05 to 0.15 mm, width: 200 mm, length: 300 mm) containing Si: 2.80 mass%, Al: 0.30 mass%, and Mn: 0.15 mass% Got ready.
発明例1〜13、17および18については、上記電磁鋼板2枚の鋼板間になる表面に、表2に示す鋼板間接着層の接着剤を表2に示す鋼板間接着層の厚みの1/2となるようにバーコーターで塗布し、塗布面同士を貼り合わせ、ホットプレスにより、時間30秒で表2に示す到達鋼板温度となるように加熱し、圧力10kgf/cm2で圧着した後、常温に放冷して2枚からなる積層電磁鋼板とした。更に積層電磁鋼板の両表面に表2に示す最表面接着層の接着剤を表2に示す最表面接着層の厚みとなるようにバーコーターで塗布後、30秒で表2に示す到達鋼板温度となるように焼付けを施した。このようにして、表2に示す鋼板間接着層および最表面接着層が形成された積層電磁鋼板を作製した。上記を連続的に行なう方法の例を図2に示した。 For Invention Examples 1 to 13, 17 and 18, the adhesive between the steel sheets shown in Table 2 is applied to the surface between the two steel sheets. 2 are applied with a bar coater so as to be 2, and the coated surfaces are bonded to each other, heated by a hot press so as to reach the ultimate steel plate temperature shown in Table 2 for 30 seconds, and subjected to pressure bonding at a pressure of 10 kgf / cm 2 . A laminated electromagnetic steel sheet consisting of two sheets was allowed to cool to room temperature. Furthermore, after applying the adhesive of the outermost surface adhesive layer shown in Table 2 on both surfaces of the laminated electrical steel sheet with a bar coater so as to have the thickness of the outermost surface adhesive layer shown in Table 2, the reached steel plate temperature shown in Table 2 in 30 seconds It was baked to become Thus, the laminated electrical steel sheet in which the adhesion layer between steel plates shown in Table 2 and the outermost surface adhesion layer were formed was produced. An example of a method for continuously performing the above is shown in FIG.
発明例16については上記電磁鋼板4枚の鋼板間になる表面に表2に示す鋼板間接着層の接着剤を表2に示す鋼板間接着層の厚みの1/2となるようにバーコーターで塗布し、塗布面同士を貼り合わせ、ホットプレスにより、時間30秒で表2に示す到達鋼板温度となるように加熱し、圧力10kgf/cm2で圧着した後、常温に放冷して4枚からなる積層電磁鋼板とした。更に積層電磁鋼板の両表面に表2に示す最表面接着層の接着剤を表2に示す最表面接着層の厚みとなるようにバーコーターで塗布後、30秒で表2に示す到達鋼板温度となるように焼付けを施した。このようにして、表2に示す厚みの鋼板間接着層および最表面接着層が形成された積層電磁鋼板を作製した。 In Invention Example 16, the adhesive between the steel sheet adhesive layers shown in Table 2 is applied to the surface between the four electromagnetic steel sheets with a bar coater so as to be 1/2 the thickness of the steel sheet adhesive layer shown in Table 2. After coating, the coated surfaces are bonded together, heated by hot press to reach the steel plate temperature shown in Table 2 in 30 seconds, pressed at a pressure of 10 kgf / cm 2 , and then allowed to cool to room temperature for 4 sheets A laminated electrical steel sheet made of Furthermore, after applying the adhesive of the outermost surface adhesive layer shown in Table 2 on both surfaces of the laminated electrical steel sheet with a bar coater so as to have the thickness of the outermost surface adhesive layer shown in Table 2, the reached steel plate temperature shown in Table 2 in 30 seconds It was baked to become Thus, the laminated electrical steel sheet in which the adhesion layer between steel plates and the outermost surface adhesion layer having thicknesses shown in Table 2 were formed was produced.
発明例14および15については上記電磁鋼板3枚の鋼板間になる表面に表2に示す鋼板間接着層の接着剤を表2に示す鋼板間接着層の厚みの1/2となるようにバーコーターで塗布し、塗布面同士を貼り合わせ、ホットプレスにより、時間30秒で表2に示す到達鋼板温度となるように加熱し、圧力10kgf/cm2で圧着した後、常温に放冷して3枚からなる積層電磁鋼板とした。更に積層電磁鋼板の両表面に表2に示す最表面接着層の接着剤を表2に示す最表面接着層の厚みとなるようにバーコーターで塗布後、30秒で表2に示す到達鋼板温度となるように焼付けを施した。このようにして、表2に示す厚みの鋼板間接着層および最表面接着層が形成された積層電磁鋼板を作製した。 For Invention Examples 14 and 15, the adhesive between the steel sheet adhesive layers shown in Table 2 is applied to the surface between the three steel sheets, so that the thickness of the adhesive layer between steel sheets shown in Table 2 is 1/2. Coated with a coater, the coated surfaces are bonded together, heated by hot pressing to reach the ultimate steel plate temperature shown in Table 2 in 30 seconds, pressed at a pressure of 10 kgf / cm 2 and then allowed to cool to room temperature. It was set as the laminated electromagnetic steel plate which consists of three sheets. Furthermore, after applying the adhesive of the outermost surface adhesive layer shown in Table 2 on both surfaces of the laminated electrical steel sheet with a bar coater so as to have the thickness of the outermost surface adhesive layer shown in Table 2, the reached steel plate temperature shown in Table 2 in 30 seconds It was baked to become Thus, the laminated electrical steel sheet in which the adhesion layer between steel plates and the outermost surface adhesion layer having thicknesses shown in Table 2 were formed was produced.
尚、比較例1〜5、発明例1〜16、19については絶縁被膜が形成されていない電磁鋼板を使用した。また、発明例17、18についてはそれぞれリン酸塩系絶縁被膜付き電磁鋼板、Si系絶縁被膜付き電磁鋼板を使用した。 For Comparative Examples 1 to 5 and Invention Examples 1 to 16 and 19, an electrical steel sheet on which no insulating coating was formed was used. Moreover, about invention example 17 and 18, the electromagnetic steel plate with a phosphate type insulating coating and the electromagnetic steel plate with a Si type insulating coating were used, respectively.
発明例19については上記電磁鋼板2枚の鋼板間になる表面に硬化の早い接着剤A:F1を表2に示す鋼板間接着層の厚みの1/2となるようにバーコーターで塗布し、コールドプレスにより、25℃、圧力10kgf/cm2で圧着して、2枚を貼り合わせた。貼り合わせた2枚の電磁鋼板の両表面に硬化の比較的遅い接着剤B:E2を表2に示す最表面接着層の厚みとなるようにバーコーターで塗布し、時間30秒で表2に示す鋼板到達温度となるように、加熱した。このようにして、表2に示す厚みの鋼板間接着層および最表面接着層が形成された積層電磁鋼板を作製した。上記を連続的に行う方法の例を図3に示す。このように異なる接着剤を用いることにより、1回の焼付け工程で特性の異なる接着層を形成することができる。つまり、一度の焼付け工程で鋼板間及び最表面両方の接着層の形成が可能となり、生産効率を向上することができる。 For Invention Example 19, fast-curing adhesive A: F1 was applied to the surface between the two steel sheets by a bar coater so that the thickness of the adhesive layer between steel sheets shown in Table 2 was 1/2. Two sheets were bonded together by pressure bonding at 25 ° C. and a pressure of 10 kgf / cm 2 by a cold press. Adhesive B: E2, which has a relatively slow curing, is applied to both surfaces of the two bonded electrical steel sheets with a bar coater so as to have the thickness of the outermost surface adhesive layer shown in Table 2. It heated so that it might become the steel plate attainment temperature shown. Thus, the laminated electrical steel sheet in which the adhesion layer between steel plates and the outermost surface adhesion layer having thicknesses shown in Table 2 were formed was produced. An example of a method for continuously performing the above is shown in FIG. By using different adhesives in this way, adhesive layers having different characteristics can be formed in a single baking process. That is, it is possible to form both the outermost steel sheet and the outermost adhesive layer in a single baking process, thereby improving the production efficiency.
また、比較例1〜4については、上記電磁鋼板2枚の両面に表2の接着剤を厚みが3μmとなるようにバーコーターで塗布し、貼り合わせ、ホットプレスにより、時間30秒で表2示す到達鋼板温度となるように加熱し、圧力10kgf/cm2で圧着した後、常温に放冷して2枚からなる積層電磁鋼板とした。この時、ホットプレスのプレス面が電磁鋼板の塗布面に接触する部分には、プレス面と電磁鋼板が接着しないように、テフロン(登録商標)シートを挟んで行った。このようにして、表2に示す厚みの鋼板間接着層および最表面接着層が形成された積層電磁鋼板を作製した。 Moreover, about Comparative Examples 1-4, the adhesive of Table 2 was apply | coated with the bar-coater so that thickness might be set to 3 micrometers on both surfaces of the said two electromagnetic steel plates, it bonded and hot-pressed by Table 30 in time 30 seconds. Heating was performed so that the temperature reached the indicated steel plate temperature, and pressure bonding was performed at a pressure of 10 kgf / cm 2 , followed by cooling to room temperature to obtain a laminated electromagnetic steel plate composed of two sheets. At this time, a Teflon (registered trademark) sheet was sandwiched between portions where the press surface of the hot press was in contact with the coated surface of the magnetic steel sheet so that the press surface and the magnetic steel sheet were not bonded. Thus, the laminated electrical steel sheet in which the adhesion layer between steel plates and the outermost surface adhesion layer having thicknesses shown in Table 2 were formed was produced.
さらに、比較例5については、発明例1〜13と同様にして、表2に示す厚みの鋼板間接着層および最表面接着層が形成された積層電磁鋼板を作製した。 Further, for Comparative Example 5, similarly to Invention Examples 1 to 13, a laminated electrical steel sheet on which an inter-steel sheet adhesive layer and an outermost surface adhesive layer having thicknesses shown in Table 2 were formed was produced.
かくして得られた積層電磁鋼板の被膜特性について調べた結果を、表2に条件と併せて示す。
<対数減衰率>
剛体振子型物性試験を用いて上述する方法で行った。
<鋼板一体性>
10mmφで曲げたときの鋼板同士の剥離程度を目視判定した。
(判定基準)
◎:剥離せず問題なし
○:一部剥離部が見られるが、取扱上問題なし
△:剥離がおこり、簡単に手で分離できる
×:剥離し、複数枚に分離
<金型への接着剤の付着>
幅60mm、長さ300mmにせん断した電磁鋼板を100枚積層し、外径45mm、内径35mmのリング状鉄芯に打抜いた。このときのクリアランスは積層板厚の5%とした。打抜きを行った際の接着剤の金型への付着程度を目視評価した。
(判定基準)
○:付着なし
×:付着した
Table 2 shows the results of examining the coating properties of the laminated electrical steel sheet thus obtained together with the conditions.
<Logarithmic decay rate>
The above-described method was performed using a rigid pendulum type physical property test.
<Steel integrity>
The degree of peeling between the steel plates when bent at 10 mmφ was visually determined.
(Criteria)
◎: No problem without peeling ○: Some peeling parts are seen, but there is no problem in handling △: Separation occurs and can be easily separated by hand ×: Separated into multiple sheets <Adhesive to mold Adhesion>
100 electromagnetic steel plates sheared to a width of 60 mm and a length of 300 mm were laminated and punched into a ring-shaped iron core having an outer diameter of 45 mm and an inner diameter of 35 mm. The clearance at this time was 5% of the laminate thickness. The degree of adhesion of the adhesive to the mold when punching was visually evaluated.
(Criteria)
○: No adhesion ×: Adhered
表2に示すとおり、本発明に従い得られた積層電磁鋼板はいずれも、積層の剥がれがなく、搬送ロール・金型等に接着剤が付着するというトラブルがないという点において、従来よりも優れた特徴を有する。 As shown in Table 2, all of the laminated electrical steel sheets obtained according to the present invention are superior to the conventional ones in that there is no peeling of the laminate and there is no trouble that the adhesive adheres to the transport rolls and molds. Has characteristics.
さらに、モーターコアを打抜き、歪取焼鈍した場合にも、ティース部が剥離、浮き上がることもなく、良好な状態のものが得られた。 Furthermore, even when the motor core was punched out and subjected to strain relief annealing, the teeth were not peeled off and lifted up, and a good product was obtained.
本発明の積層電磁鋼板を用いることにより、積層の剥がれの発生や、搬送ロール・金型等への接着剤の付着がなく、高効率、低コストに鉄芯を製造することができ、これらはモーター、トランス等に好適に用いられる。 By using the laminated electrical steel sheet of the present invention, there is no occurrence of peeling of the laminate, adhesion of the adhesive to the transport roll / mold, etc., and an iron core can be produced with high efficiency and low cost. It is suitably used for motors, transformers and the like.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014128186A JP6086098B2 (en) | 2014-06-23 | 2014-06-23 | Laminated electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014128186A JP6086098B2 (en) | 2014-06-23 | 2014-06-23 | Laminated electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016009710A JP2016009710A (en) | 2016-01-18 |
JP6086098B2 true JP6086098B2 (en) | 2017-03-01 |
Family
ID=55227104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014128186A Active JP6086098B2 (en) | 2014-06-23 | 2014-06-23 | Laminated electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6086098B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200066509A (en) * | 2018-11-30 | 2020-06-10 | 주식회사 포스코 | Electrical steel sheet and manufacturing method of the same |
JPWO2021256532A1 (en) * | 2020-06-17 | 2021-12-23 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3206213A1 (en) * | 2016-02-15 | 2017-08-16 | Voestalpine Stahl GmbH | Strip throughput method for producing an electrical strip wound into a coil |
KR102114810B1 (en) | 2017-12-26 | 2020-05-25 | 주식회사 포스코 | Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing the electrical steel sheet product |
DE102018109008B3 (en) * | 2018-04-16 | 2019-09-05 | Muhr Und Bender Kg | Method and device for producing multilayer sheet-metal strip packages |
MX2022010916A (en) * | 2020-06-17 | 2022-09-29 | Nippon Steel Corp | Layered core manufacturing method. |
JP2024503243A (en) * | 2020-12-21 | 2024-01-25 | ポスコ カンパニー リミテッド | Electromagnetic steel sheets for self-bonding and laminates containing the same |
KR20220089676A (en) * | 2020-12-21 | 2022-06-28 | 주식회사 포스코 | Electrical steel sheet laminate |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2706328A1 (en) * | 1977-02-15 | 1978-08-17 | Glyco Metall Werke | PROCESS AND DEVICE FOR CONTINUOUS MANUFACTURING OF A PRESSURE-RESISTANT LAMINATED MATERIAL WITH METALLIC OR NON-METALLIC CARRIER MATERIAL AND A PLASTIC LAYER APPLIED TO IT |
JPH0684065B2 (en) * | 1985-02-19 | 1994-10-26 | 株式会社雪ケ谷制御研究所 | Lamination of thin metal plates |
JPS61239607A (en) * | 1985-04-17 | 1986-10-24 | Canon Electronics Inc | Manufacture of magnetic thin plate laminated material |
JPH0694595B2 (en) * | 1986-03-31 | 1994-11-24 | 株式会社雪ケ谷制御研究所 | Laminating method for thin metal plates |
JPH05141477A (en) * | 1991-11-11 | 1993-06-08 | Nok Corp | Laminated metallic plate |
DE4437307A1 (en) * | 1994-10-19 | 1996-04-25 | Abb Patent Gmbh | Manufacture of core sheets |
JPH09235521A (en) * | 1996-02-27 | 1997-09-09 | Oji Paper Co Ltd | Adhesive sheet |
JP2000173815A (en) * | 1998-12-09 | 2000-06-23 | Sumitomo Metal Ind Ltd | Bonded steel sheet for stacked core |
JP2002173125A (en) * | 2000-09-29 | 2002-06-18 | Kao Corp | Paper container |
JP2007311652A (en) * | 2006-05-19 | 2007-11-29 | Denso Corp | Amorphous laminated wood, manufacturing method therefor, and manufacturing method for iron core of rotating electric machine |
JP2009200428A (en) * | 2008-02-25 | 2009-09-03 | Hitachi Metals Ltd | Layered product, and its manufacturing method |
JP5675418B2 (en) * | 2011-02-17 | 2015-02-25 | Jfeスチール株式会社 | Electrical steel sheet with insulating coating, method for producing the same, and laminated iron core |
-
2014
- 2014-06-23 JP JP2014128186A patent/JP6086098B2/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200066509A (en) * | 2018-11-30 | 2020-06-10 | 주식회사 포스코 | Electrical steel sheet and manufacturing method of the same |
WO2020111742A3 (en) * | 2018-11-30 | 2020-09-10 | 주식회사 포스코 | Electrical steel sheet and method for manufacturing same |
KR102156189B1 (en) * | 2018-11-30 | 2020-09-16 | 주식회사 포스코 | Electrical steel sheet and manufacturing method of the same |
JPWO2021256532A1 (en) * | 2020-06-17 | 2021-12-23 | ||
WO2021256532A1 (en) | 2020-06-17 | 2021-12-23 | 日本製鉄株式会社 | Electromagnetic steel sheet, lamianted core, and rotating electric machine |
JP7095819B2 (en) | 2020-06-17 | 2022-07-05 | 日本製鉄株式会社 | Electrical steel sheets, laminated cores and rotary electric machines |
KR20220140636A (en) | 2020-06-17 | 2022-10-18 | 닛폰세이테츠 가부시키가이샤 | Electronic steel sheet, laminated core and rotating electric machine |
TWI792355B (en) * | 2020-06-17 | 2023-02-11 | 日商日本製鐵股份有限公司 | Electromagnetic steel sheets, laminated iron cores, and rotating electrical machines |
EP4170690A4 (en) * | 2020-06-17 | 2023-11-29 | Nippon Steel Corporation | Electromagnetic steel sheet, lamianted core, and rotating electric machine |
US12057248B2 (en) | 2020-06-17 | 2024-08-06 | Nippon Steel Corporation | Electrical steel sheet, laminated core and rotating electric machine |
Also Published As
Publication number | Publication date |
---|---|
JP2016009710A (en) | 2016-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6086098B2 (en) | Laminated electrical steel sheet and manufacturing method thereof | |
JP5915075B2 (en) | Manufacturing method of laminated core | |
CN113169639B (en) | Adhesive laminated core for stator and rotary electric machine | |
JP7354249B2 (en) | Electromagnetic steel sheet, manufacturing method thereof, and electromagnetic steel sheet laminate | |
JP2017011863A (en) | Laminated electrical steel plate for motor core and production method therefor | |
JP2012521649A (en) | Laminated core made of soft magnetic material, and method of joining core single-layer plates by adhesive force to form soft magnetic laminated core | |
JP6344537B1 (en) | Method for producing electrical steel sheet with adhesive insulating coating and method for producing laminated electrical steel sheet | |
JP4345480B2 (en) | Manufacturing apparatus and manufacturing method of laminated iron core | |
US10755842B2 (en) | Method for producing an electric strip laminate wound as a coil | |
JP2022503911A (en) | Manufacturing method of electrical steel sheet products | |
JP4752613B2 (en) | Manufacturing method of laminated parts | |
KR102109279B1 (en) | A manufacturing method of stacked core for transformer with excellent no-load loss | |
JP2005191033A (en) | Method of manufacturing laminated core | |
JP5675418B2 (en) | Electrical steel sheet with insulating coating, method for producing the same, and laminated iron core | |
JPH0821494B2 (en) | Laminated magnetic core and method for manufacturing laminated magnetic core | |
CN113165328B (en) | Laminated body of electrical steel sheet | |
JP5750275B2 (en) | Insulated steel sheet and laminated iron core | |
JP3756674B2 (en) | Magnetic steel sheet for laminated adhesive cores with stable adhesive strength | |
JP2001338824A (en) | Method of manufacturing laminated iron core | |
JP4522688B2 (en) | Magnetic substrate and laminate and method for producing the same | |
WO2023243697A1 (en) | Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same | |
CN116422560A (en) | Electrical steel core and preparation method thereof | |
US20240051264A1 (en) | Laminated iron core and manufacturing method thereof | |
JP2024120132A (en) | Laminated magnetic body, motor, and method for manufacturing laminated magnetic body | |
JP2019161766A (en) | Electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6086098 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |