JP2019161766A - Electromagnetic steel sheet - Google Patents

Electromagnetic steel sheet Download PDF

Info

Publication number
JP2019161766A
JP2019161766A JP2018042641A JP2018042641A JP2019161766A JP 2019161766 A JP2019161766 A JP 2019161766A JP 2018042641 A JP2018042641 A JP 2018042641A JP 2018042641 A JP2018042641 A JP 2018042641A JP 2019161766 A JP2019161766 A JP 2019161766A
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
electromagnetic steel
bonded
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018042641A
Other languages
Japanese (ja)
Other versions
JP7096016B2 (en
Inventor
千田 邦浩
Kunihiro Senda
邦浩 千田
佐志 一道
Kazumichi Sashi
一道 佐志
聡一郎 吉▲崎▼
Soichiro Yoshizaki
聡一郎 吉▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018042641A priority Critical patent/JP7096016B2/en
Publication of JP2019161766A publication Critical patent/JP2019161766A/en
Application granted granted Critical
Publication of JP7096016B2 publication Critical patent/JP7096016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

To provide an electromagnetic steel sheet by which a motor core can be stably manufactured even when applying a processing method generally used for manufacturing the motor core to the electromagnetic steel sheet in which an alloy addition amount is increased from a viewpoint of improving an iron loss.SOLUTION: An electromagnetic steel sheet is formed by bonding faces of two or more kinds of electromagnetic steel sheets that are different from each other. One of two or more kinds of the electromagnetic steel sheets has growth rate of 7% or less. Also the electromagnetic steel sheet with growth rate of 9% or more is adjacent to the electromagnetic steel with growth rate of 7% or less, and 20% or more of contact surface of the electromagnetic steel sheet is bonded.SELECTED DRAWING: Figure 1

Description

本発明は、異なる2種以上の電磁鋼板の面同士が互いに接着されることによって形成された電磁鋼板に関する。   The present invention relates to an electrical steel sheet formed by bonding two or more different types of electrical steel sheets to each other.

近年、低鉄損の電磁鋼板を得るために、Si含有量を6%以上とした高周波低鉄損電磁鋼板が開発されている。このような電磁鋼板では、Si含有量が高いことから硬度が高く脆いために、通常のモータ鉄心製造で用いられる打ち抜き加工やカシメ加工を行うことが困難である。特にカシメ加工では、電磁鋼板を局部的に大きく変形する必要があるので、低加工性の電磁鋼板を加工することは困難である。このため、従来は、高硬度で加工性が低い電磁鋼板を用いてモータ鉄心を製造する場合には、打ち抜き加工やワイヤカット加工、レーザカット加工を行って電磁鋼板同士を積層した後、積層した電磁鋼板の間に接着剤を浸透させて接着するか(特許文献1参照)、電磁鋼板表面のコーティングに接着機能を持たせておき鉄心形状の加工後に固着する(特許文献2参照)といった方法がとられていた。   In recent years, in order to obtain a low iron loss electromagnetic steel sheet, a high frequency low iron loss electromagnetic steel sheet having a Si content of 6% or more has been developed. In such an electromagnetic steel sheet, since the Si content is high, the hardness is high and the brittleness, it is difficult to perform punching and caulking used in normal motor iron core manufacturing. In particular, in the caulking process, it is necessary to greatly deform the electromagnetic steel sheet locally, so it is difficult to process the low workability electromagnetic steel sheet. For this reason, conventionally, when manufacturing a motor core using a magnetic steel sheet having high hardness and low workability, the steel sheets are laminated after performing punching, wire cutting, and laser cutting. A method in which an adhesive is infiltrated and bonded between the electromagnetic steel sheets (see Patent Document 1), or a coating on the surface of the electromagnetic steel sheet has an adhesion function and is fixed after processing the iron core shape (see Patent Document 2). It was taken.

特開2012−120299号公報JP 2012-120299 A 特開平4−299039号公報JP-A-4-299039

しかしながら、上述したモータ鉄心の製造方法では、製造工程が煩雑となり、コストの上昇を招く。このため、生産性に優れた従来の打ち抜き加工及びカシメ加工を用いたモータ鉄心の製造方法の提供が期待されていた。なお、打ち抜き加工及びカシメ加工の条件を精密に制御することにより、より高硬度及び低伸びの電磁鋼板の加工が可能であることが明らかになりつつあるものの、合金元素量を高めた電磁鋼板を加工する場合や加工速度を上げて生産性を確保しようとする場合には、やはり安定的な加工が困難になる。   However, in the method for manufacturing the motor core described above, the manufacturing process becomes complicated and the cost increases. For this reason, provision of the manufacturing method of the motor core using the conventional punching process and crimping process excellent in productivity was anticipated. Although it is becoming clear that machining of electrical steel sheets with higher hardness and lower elongation is possible by precisely controlling the conditions of punching and caulking, electrical steel sheets with an increased amount of alloy elements are becoming clearer. In the case of processing or when trying to secure productivity by increasing the processing speed, stable processing becomes difficult.

本発明は、上記課題に鑑みてなされたものであって、その目的は、鉄損改善の観点から合金添加量を高くした電磁鋼板に対してモータ鉄心の製造で通常用いられる加工方法を適用した場合でも安定的にモータ鉄心を製造可能な電磁鋼板を提供することである。   The present invention has been made in view of the above-mentioned problems, and its purpose is to apply a processing method normally used in the manufacture of a motor core to an electromagnetic steel sheet having a high alloy addition amount from the viewpoint of iron loss improvement. Even in such a case, an electromagnetic steel sheet capable of stably producing a motor iron core is provided.

本発明に係る電磁鋼板は、異なる2種以上の電磁鋼板の面同士が互いに接着されることによって形成された電磁鋼板であって、2種以上の電磁鋼板のうちの1種の電磁鋼板は伸びが7%以下の鋼板であり、さらに伸びが7%以下の電磁鋼板には伸びが9%以上の電磁鋼板が隣接し、且つ、電磁鋼板の接触面のうちの20%以上が接着されていることを特徴とする。   The electrical steel sheet according to the present invention is an electrical steel sheet formed by bonding surfaces of two or more different types of electrical steel sheets to each other, and one of the two or more electrical steel sheets is elongated. Is a steel sheet of 7% or less, and an electrical steel sheet having an elongation of 7% or less is adjacent to an electrical steel sheet having an elongation of 9% or more, and 20% or more of the contact surface of the electrical steel sheet is bonded. It is characterized by that.

本発明に係る電磁鋼板は、上記発明において、電磁鋼板同士の接着面となる隣接する電磁鋼板の片面又は両面に層間抵抗が0.7Ω・cm以上の絶縁被膜が形成されていることを特徴とする。 The electrical steel sheet according to the present invention is characterized in that, in the above invention, an insulating film having an interlayer resistance of 0.7 Ω · cm 2 or more is formed on one side or both sides of adjacent electrical steel sheets that serve as adhesive surfaces between the electrical steel sheets. And

本発明に係る電磁鋼板によれば、鉄損改善の観点から合金添加量を高くした電磁鋼板に対してモータ鉄心の製造で通常用いられる加工方法を適用した場合でも安定的にモータ鉄心を製造することができる。   According to the electromagnetic steel sheet according to the present invention, a motor iron core is stably produced even when a processing method normally used in the production of a motor iron core is applied to an electromagnetic steel sheet with a high alloy addition amount from the viewpoint of iron loss improvement. be able to.

図1は、ステータ鉄心の構成を示す平面図である。FIG. 1 is a plan view showing a configuration of a stator iron core. 図2は、鋼板の接着面を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an adhesive surface of a steel plate.

本発明の発明者らは、鉄損特性に優れるものの加工性の点で劣っていたSi含有量を6%以上に高めた電磁鋼板を用いてモータ鉄心の製造に用いられるカシメ加工を行う方法を種々検討した。その結果、Si含有量6%以上の電磁鋼板に低Si含有量の電磁鋼板を接着させて用いることが有効であるとの知見を得て本発明を想到するに至った。ここで、このような方法によって、加工性が低い電磁鋼板を用いているのにも拘わらずカシメ加工が可能となった理由は、硬度が低く伸びが大きい低Si含有量の電磁鋼板を接着させたことにより、低Si含有量の電磁鋼板が高Si含有量の電磁鋼板の破断を抑制するためと考えられる。また、このような知見は、単にSiの含有量の差ではなく、加工性の指標である硬度や伸びによって整理することができる。   The inventors of the present invention have a method of performing caulking processing used in the manufacture of motor cores using an electromagnetic steel sheet having an Si content that has been inferior in terms of workability but has been inferior in terms of workability but has been increased to 6% or more. Various studies were made. As a result, the inventors obtained the knowledge that it is effective to use an electromagnetic steel sheet having a low Si content on an electromagnetic steel sheet having a Si content of 6% or more, and arrived at the present invention. Here, the reason that the caulking process is possible despite the use of the electromagnetic steel sheet having low workability by such a method is that the low Si content electromagnetic steel sheet having low hardness and large elongation is bonded. This is considered to be because the electrical steel sheet having a low Si content suppresses the fracture of the electrical steel sheet having a high Si content. Moreover, such knowledge can be arranged not only by the difference in Si content but by hardness and elongation which are indexes of workability.

以下、本発明に係る電磁鋼板について説明する。   Hereinafter, the electrical steel sheet according to the present invention will be described.

(1)複数種の電磁鋼板の使用
本発明では、異なる複数種(2種以上)の電磁鋼板を同一のモータ鉄心内で混合して使用(混合積層)することにより、低鉄損の電磁鋼板のみを使用した場合よりもモータ鉄心全体の鉄損は劣る傾向となる。しかしながら、本発明の発明者らは、混合積層のモータ鉄心の場合、透磁率の高い電磁鋼板の特性が優先的に発現することを確認しており、材料コストを勘案すると、複数種の電磁鋼板を接着積層した電磁鋼板は磁気特性及び材料コストのバランスの上で有利となる。さらに、複数種の電磁鋼板を接着することにより、材料の加工性を大きく改善できる。
(1) Use of a plurality of types of electrical steel sheets In the present invention, a plurality of different types (two or more types) of electrical steel sheets are mixed and used (mixed lamination) in the same motor core, whereby a low iron loss electrical steel sheet. The iron loss of the entire motor core tends to be inferior compared with the case where only is used. However, the inventors of the present invention have confirmed that in the case of a mixed laminated motor iron core, the characteristics of the magnetic steel sheet having high magnetic permeability are preferentially developed. The electrical steel sheet laminated with adhesive is advantageous in terms of the balance of magnetic properties and material cost. Furthermore, the workability of the material can be greatly improved by bonding a plurality of types of electrical steel sheets.

(2)複数種の電磁鋼板のうちの1種は伸びが7%以下の電磁鋼板であり、さらに伸びが7%以下の電磁鋼板には伸びが9%以上の電磁鋼板が隣接している
加工性が低い電磁鋼板に加工性が高い電磁鋼板が隣接、接着されていることにより電磁鋼板全体での加工性を大きく向上することが可能である。電磁鋼板の加工性の良否は伸びによって評価することが適している場合が多く、伸びが小さい電磁鋼板の加工性改善のためには伸びが大きい電磁鋼板を接着させることが有効である。また、板厚方向にSiの含有量が傾斜分布している電磁鋼板では代表的な硬度を設定することが難しいが、伸びの場合は規定できる。ここでの伸びは、圧延方向及び圧延方向に直交する方向の平均値とするのがよい。用いられる電磁鋼板の伸びが7%を超える場合は単体でも通常加工が可能であるので、本発明を用いる必要がない。また、伸びが7%以下の電磁鋼板に接着させる電磁鋼板の伸びを9%以上とすることにより接着接合された電磁鋼板全体の加工性を改善できる。
(2) One of a plurality of types of electrical steel sheets is an electrical steel sheet having an elongation of 7% or less, and an electrical steel sheet having an elongation of 7% or less is adjacent to an electrical steel sheet having an elongation of 9% or more. It is possible to greatly improve the workability of the entire electromagnetic steel sheet by adhering and bonding the magnetic steel sheet having high workability to the electromagnetic steel sheet having low workability. In many cases, it is suitable to evaluate the workability of the electrical steel sheet by the elongation. For improving the workability of the electrical steel sheet having a small elongation, it is effective to bond the electrical steel sheet having a large elongation. In addition, it is difficult to set a typical hardness in an electromagnetic steel sheet in which the Si content is distributed in a gradient direction in the thickness direction, but it can be specified in the case of elongation. The elongation here is preferably the average value in the rolling direction and the direction orthogonal to the rolling direction. When the elongation of the electrical steel sheet used exceeds 7%, it is not necessary to use the present invention because it can be processed normally by itself. Moreover, the workability of the whole bonded electrical steel sheet can be improved by setting the elongation of the electrical steel sheet to be bonded to the electrical steel sheet having an elongation of 7% or less to 9% or more.

(3)接触面のうち20%以上が接着
打ち抜き加工やカシメ加工による強加工部は母材鋼板のどの部分に対応するかは一般的には製造段階では明らかでない。そのため、積層接着される母材鋼板はできるだけ広い範囲で互いに接着されている必要がある。但し、全領域が完全に接着されていなくても、加工部にある程度近接した部分が固定されていれば相応の効果を発現できる。接触面のうち接着された部分の面積が20%に満たないと隣接した高加工性の電磁鋼板の効果を十分に付与することができないため20%以上の範囲に限定とした。また、実施例1の表2に示す結果より、より望ましくは接着面積率を50%以上とすることが望ましい。
(3) 20% or more of the contact surfaces are bonded. It is generally not clear at the manufacturing stage which portion of the base steel plate corresponds to the strongly processed portion by stamping or caulking. Therefore, the base steel plates to be laminated and bonded need to be bonded to each other in as wide a range as possible. However, even if the entire region is not completely bonded, a corresponding effect can be exhibited if a portion close to the processed portion is fixed to some extent. If the area of the bonded portion of the contact surface is less than 20%, the effect of the adjacent highly workable electrical steel sheet cannot be sufficiently imparted, so the range is limited to 20% or more. Further, from the results shown in Table 2 of Example 1, it is more desirable that the adhesion area ratio is 50% or more.

なお、異種の電磁鋼板が接着接合された接合面は電気的に絶縁されていることで渦電流の増加を抑制できるが、母材となる電磁鋼板の接合面となる部分に接着前に予め絶縁被膜が形成されていない場合であっても、接着剤等による接着層が接合した電磁鋼板間の絶縁を十分に抑制する作用を有していれば、積層した電磁鋼板間の電気的な接触による鉄損の増加を抑制できる。   In addition, it is possible to suppress an increase in eddy current by electrically insulating the joint surface where different types of electrical steel sheets are bonded and bonded, but insulate them before bonding to the part that becomes the joint surface of the magnetic steel sheet that is the base material. Even if the coating is not formed, if the adhesive layer such as an adhesive has an effect of sufficiently suppressing the insulation between the joined electrical steel sheets, the electrical contact between the laminated electrical steel sheets Increase in iron loss can be suppressed.

(4)接着面の片側又は両側に層間抵抗が0.7Ω・cm以上の絶縁被膜を有する
異種の電磁鋼板の接合面の電気的な接触による渦電流の増加を抑制するためには、積層接着される電磁鋼板の接合面となる面の片側又は両側に予め十分な絶縁性を有する絶縁被膜を有することが望ましい。このような絶縁被膜がない場合であっても絶縁性を有する接着剤が絶縁層を兼ねることが可能であるものの、接着層の厚さの管理が不十分な場合には部分的な電気的接触が生じて磁気特性が劣化する可能性がある。このような観点で、接合接着される電磁鋼板の面の片側又は両側は予め絶縁被膜を有することが理想的である。このとき、絶縁被膜の絶縁性を確保するために、JIS C 2550−4にて規定された手法による層間抵抗が0.7Ω・cm以上であるのがよい。層間抵抗が0.7Ω・cmに満たないと異種の電磁鋼板間に渦電流が流れ、鉄損特性が劣化するため0.7Ω・cm以上に限定される。
(4) In order to suppress an increase in eddy current due to electrical contact between the joint surfaces of different types of electrical steel sheets having an insulating film with an interlayer resistance of 0.7 Ω · cm 2 or more on one or both sides of the bonding surface, It is desirable to have an insulating film having sufficient insulation on one side or both sides of the surface to be the bonding surface of the magnetic steel sheets to be bonded. Even in the absence of such an insulating coating, an insulating adhesive can also serve as an insulating layer, but when the thickness of the adhesive layer is insufficiently managed, partial electrical contact May occur and the magnetic characteristics may deteriorate. From such a viewpoint, it is ideal that one side or both sides of the surfaces of the magnetic steel sheets to be bonded and bonded have an insulating film in advance. At this time, in order to ensure the insulating property of the insulating coating, the interlayer resistance according to the method defined in JIS C 2550-4 is preferably 0.7 Ω · cm 2 or more. If the interlayer resistance is less than 0.7 Ω · cm 2 , an eddy current flows between different types of electrical steel sheets and the iron loss characteristics deteriorate, so that the resistance is limited to 0.7 Ω · cm 2 or more.

本発明の効果を得る上で電磁鋼板間の接着方法は特に限定されることはなく、種々の接着剤や接着性のコーティングを用いることが可能である。積層接着される電磁鋼板として絶縁被膜を有しない電磁鋼板を用いる場合には、絶縁層を兼ねる接着剤としては非導電性の物質を選択する必要がある。また、本発明の着想は高Si含有量の電磁鋼板の加工性を改善しようとして得られたものであるが、使用される電磁鋼板は高Si含有量の電磁鋼板に限定されることはなく、高Cr含有量の電磁鋼板や高Al含有量の電磁鋼板といった、磁気特性改善の観点から多量に添加されるものの電磁鋼板の加工性を劣化させる元素を添加した場合に適用可能である。   In obtaining the effects of the present invention, the method for bonding the magnetic steel sheets is not particularly limited, and various adhesives and adhesive coatings can be used. When an electromagnetic steel sheet having no insulating coating is used as the laminated steel sheet, it is necessary to select a non-conductive substance as an adhesive that also serves as an insulating layer. In addition, the idea of the present invention is obtained by trying to improve the workability of the electrical steel sheet having a high Si content, but the electrical steel sheet used is not limited to the electrical steel sheet having a high Si content, Although it is added in a large amount from the viewpoint of improving magnetic properties, such as a high Cr content electrical steel sheet and a high Al content electrical steel sheet, it is applicable when elements that deteriorate the workability of the electrical steel sheet are added.

[実施例1]
本実施例では、表1に示す1〜3種の電磁鋼板を表1に示した順序で積層して互いに接着した。接着の方法は、エポキシ系接着剤又は接着性被膜とした。エポキシ系接着剤で接着した場合は、母材鋼板の接着面となる面には絶縁被膜を形成させず、接着後の接着剤層で絶縁層と兼ね、積層接着された後の電磁鋼板の外側表面はクロム酸化合物と有機樹脂からなる絶縁被膜を形成させた(番号3,7)。また、番号4〜6の例では、母材鋼板の接着面となる面には接着性の被膜を形成し、加圧状態で700℃で5分間保持することにより接着を行った。積層接着された後の電磁鋼板の外側表面には、クロム酸化合物と有機樹脂からなる絶縁被膜が形成された。いずれの場合も接着された部分が電磁鋼板全体に占める面積率は20〜50%であった。これらの鋼板を用いて図1に示すステータ鉄心1の打ち抜き及びカシメ加工を順送金型を用いて行った。ここで、打ち抜き加工時のクリアランスは、積層接着した電磁鋼板の全厚の8%とした。また、カシメ2はVカシメとし、Vカシメ部を上から見たときの長辺を3mm、短辺を1mmとし、カシメダボの高さを0.4mmとした。順送金型でのプレス加工後の状態を観察し、打ち抜き加工端部に明瞭な亀裂が認められる場合は×、ごく微小な亀裂が認められる場合を△、全く問題がない場合を○とした。また、カシメについては、ダボでの割れ発生率が50%以上の場合を×、割れ発生率が5〜50%の場合を△、割れ発生率が5%以下の場合を○とした。
[Example 1]
In this example, 1-3 types of electrical steel sheets shown in Table 1 were laminated in the order shown in Table 1 and adhered to each other. The bonding method was an epoxy adhesive or an adhesive film. When bonded with an epoxy-based adhesive, do not form an insulating coating on the bonding surface of the base steel sheet, but also serve as an insulating layer in the adhesive layer after bonding, and the outer side of the magnetic steel sheet after being laminated and bonded An insulating coating made of a chromic acid compound and an organic resin was formed on the surface (Nos. 3 and 7). Moreover, in the examples of Nos. 4 to 6, adhesion was performed by forming an adhesive film on the surface to be the bonding surface of the base steel plate and holding it at 700 ° C. for 5 minutes in a pressurized state. An insulating coating made of a chromic acid compound and an organic resin was formed on the outer surface of the magnetic steel sheet after being laminated and adhered. In any case, the area ratio of the bonded portion in the entire electromagnetic steel sheet was 20 to 50%. Using these steel plates, stamping and crimping of the stator core 1 shown in FIG. 1 was performed using a progressive die. Here, the clearance at the time of punching was 8% of the total thickness of the laminated steel sheets. Further, the caulking 2 was V caulking, the long side when the V caulking portion was viewed from above was 3 mm, the short side was 1 mm, and the height of the caulking dowel was 0.4 mm. The state after the press working with the progressive die was observed. The case where a clear crack was observed at the punching end was indicated as “X”, the case where a very small crack was observed as “Δ”, and the case where there was no problem at all. For caulking, the case where the crack occurrence rate at the dowel was 50% or more was evaluated as x, the case where the crack generation rate was 5 to 50% was Δ, and the case where the crack generation rate was 5% or less was rated as ◯.

プレス加工の結果を表1に示す。表1に示されるように、本発明の請求項1の条件を満たす条件では、打ち抜き加工及びカシメ加工共に問題が十分に押さえられているといえる。また、表2に表1の番号5の電磁鋼板を用いて、接着剤の塗布領域を種々変更することにより、接着部分の面積率を変更したときの接着面積率と加工性(プレス加工性,カシメ性)の関係を示す。接着面積率が20%以上の場合に十分な加工性が確保されており、50%以上が接着されていればさらに望ましい結果が得られた。   Table 1 shows the results of pressing. As shown in Table 1, it can be said that the problem is sufficiently suppressed in both the punching process and the caulking process under the condition that satisfies the condition of claim 1 of the present invention. Moreover, using the magnetic steel sheet of No. 5 in Table 1 in Table 2, by changing the application area of the adhesive variously, the adhesive area ratio and workability (press workability, The caulking property is shown. Sufficient workability was ensured when the adhesion area ratio was 20% or more, and more desirable results were obtained if 50% or more were adhered.

Figure 2019161766
Figure 2019161766

Figure 2019161766
Figure 2019161766

[実施例2]
本実施例では、表1に示す番号4,8で用いた2種の元鋼板について、接着される面となる図2の面(元鋼板1下面、元鋼板2上面)に種々の厚さのクロム酸化合物と有機樹脂からなる絶縁被膜を形成させてからエポキシ系の接着剤を用いて接着し一体化させた。このときの接着面積率は50〜70%とした。接着接合される前の各面の層間抵抗値はJIS C 2550−4にて測定した。得られた電磁鋼板から図1に示すステータ鉄心1の打抜き試験を行ったところ、打抜き加工及びカシメ加工共に問題なく実施することができた。また、積層接着された鋼板から、圧延方向及び圧延直角方向に長さ280mm、幅30mmのエプスタイン試験片を切り出し、JIS C 2550−3に規定される方法で鉄損W10/400を測定した。表3に各面の層間抵抗値と積層接着された電磁鋼板の磁気特性の関係を示す。表3に示されるように、元鋼板1下面と元鋼板2上面のいずれか片面に層間抵抗0.7Ω・cm以上の絶縁被膜を形成させてから鋼板同士の接着を行うことで鉄損の増加が抑制されていることが確認できた。
[Example 2]
In this example, the two types of original steel plates used in numbers 4 and 8 shown in Table 1 have various thicknesses on the surfaces of FIG. 2 (the original steel plate 1 lower surface and the original steel plate 2 upper surface) to be bonded. An insulating film made of a chromic acid compound and an organic resin was formed, and then bonded and integrated using an epoxy adhesive. The adhesion area ratio at this time was 50 to 70%. The interlayer resistance value of each surface before adhesive bonding was measured according to JIS C 2550-4. When the punch test of the stator iron core 1 shown in FIG. 1 was performed from the obtained electromagnetic steel sheet, both the punching process and the caulking process could be carried out without any problem. Further, an Epstein test piece having a length of 280 mm and a width of 30 mm in the rolling direction and the direction perpendicular to the rolling direction was cut out from the laminated and bonded steel plates, and the iron loss W10 / 400 was measured by the method defined in JIS C 2550-3. Table 3 shows the relationship between the interlayer resistance value of each surface and the magnetic properties of the laminated steel sheets. As shown in Table 3, iron loss can be reduced by forming an insulating film having an interlayer resistance of 0.7 Ω · cm 2 or more on one surface of the lower surface of the original steel plate 1 and the upper surface of the original steel plate 2 and then bonding the steel plates together. It was confirmed that the increase was suppressed.

Figure 2019161766
Figure 2019161766

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 ステータ鉄心
2 カシメ
1 Stator core 2 Caulking

Claims (2)

異なる2種以上の電磁鋼板の面同士が互いに接着されることによって形成された電磁鋼板であって、
2種以上の電磁鋼板のうちの1種の電磁鋼板は伸びが7%以下の鋼板であり、さらに伸びが7%以下の電磁鋼板には伸びが9%以上の電磁鋼板が隣接し、且つ、電磁鋼板の接触面のうちの20%以上が接着されていることを特徴とする電磁鋼板。
It is an electrical steel sheet formed by bonding the surfaces of two or more different electrical steel sheets to each other,
One of the two or more types of electrical steel sheet is a steel sheet having an elongation of 7% or less, and further, an electrical steel sheet having an elongation of 9% or more is adjacent to the electrical steel sheet having an elongation of 7% or less, and An electrical steel sheet, wherein 20% or more of the contact surface of the electrical steel sheet is bonded.
電磁鋼板同士の接着面となる隣接する電磁鋼板の片面又は両面に層間抵抗が0.7Ω・cm以上の絶縁被膜が形成されていることを特徴とする請求項1に記載の電磁鋼板。 2. The electrical steel sheet according to claim 1, wherein an insulating coating having an interlayer resistance of 0.7 Ω · cm 2 or more is formed on one surface or both surfaces of adjacent electrical steel sheets serving as bonding surfaces between the electrical steel sheets.
JP2018042641A 2018-03-09 2018-03-09 Manufacturing method of electrical steel sheet Active JP7096016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018042641A JP7096016B2 (en) 2018-03-09 2018-03-09 Manufacturing method of electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018042641A JP7096016B2 (en) 2018-03-09 2018-03-09 Manufacturing method of electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2019161766A true JP2019161766A (en) 2019-09-19
JP7096016B2 JP7096016B2 (en) 2022-07-05

Family

ID=67996490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042641A Active JP7096016B2 (en) 2018-03-09 2018-03-09 Manufacturing method of electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7096016B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071994A (en) * 2007-09-13 2009-04-02 Denso Corp Stator of rotary electric machine, and rotary electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369433B2 (en) 2007-12-21 2013-12-18 パナソニック株式会社 motor
JP6184708B2 (en) 2013-03-15 2017-08-23 相互 秋田 Perm solution and hair conditioner
JP5958565B2 (en) 2015-01-14 2016-08-02 Jfeスチール株式会社 Punching method, punching apparatus, and method for manufacturing laminated iron core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071994A (en) * 2007-09-13 2009-04-02 Denso Corp Stator of rotary electric machine, and rotary electric machine

Also Published As

Publication number Publication date
JP7096016B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
TWI742488B (en) Adhesive laminated iron core for stator and rotating electric machine
TWI717940B (en) Adhesive laminated iron core for stator and rotating electric machine
TWI733277B (en) Adhesive laminated iron core for stator and rotating electric machine
JP6940007B2 (en) Manufacturing method of laminated core, core block, rotary electric machine and core block
JP2017011863A (en) Laminated electrical steel plate for motor core and production method therefor
JP5285020B2 (en) Laminated iron core and manufacturing method thereof
EP3902108B1 (en) Laminated core and rotating electric machine
JP6064923B2 (en) Manufacturing method of laminated iron core
WO2020129937A1 (en) Laminated core and rotating electric machine
JP6086098B2 (en) Laminated electrical steel sheet and manufacturing method thereof
JP5104111B2 (en) Stator core manufacturing method
JP2009072014A (en) Core block, core, stator for electric motor, and its electric motor
JP2008036671A (en) Laminated steel plate of electromagnetic steel having high resistance between steel plates at shear surface thereof, and method for caulking the same
JP2005287134A (en) Method of manufacturing motor core, motor core and high frequency motor
JP2019161766A (en) Electromagnetic steel sheet
JP2019161765A (en) Electromagnetic steel sheet
TWI792355B (en) Electromagnetic steel sheets, laminated iron cores, and rotating electrical machines
JP2015198475A (en) rotor core
JP2000173815A (en) Bonded steel sheet for stacked core
JP5750275B2 (en) Insulated steel sheet and laminated iron core
JP3842146B2 (en) Manufacturing method of laminated iron core
WO2024116815A1 (en) Method for manufacturing amorphous metal alloy article
TWI782582B (en) Coating composition for electromagnetic steel sheet, electromagnetic steel sheet, laminated iron core and rotating electrical machine
US20220209592A1 (en) Core block, laminated core, and electric motor
JP4844181B2 (en) Manufacturing method of laminated core having excellent dimensional accuracy and laminated core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210706

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210713

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211022

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211026

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211109

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220517

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220524

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220621

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220623

R150 Certificate of patent or registration of utility model

Ref document number: 7096016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150