JP2008036671A - Laminated steel plate of electromagnetic steel having high resistance between steel plates at shear surface thereof, and method for caulking the same - Google Patents

Laminated steel plate of electromagnetic steel having high resistance between steel plates at shear surface thereof, and method for caulking the same Download PDF

Info

Publication number
JP2008036671A
JP2008036671A JP2006213516A JP2006213516A JP2008036671A JP 2008036671 A JP2008036671 A JP 2008036671A JP 2006213516 A JP2006213516 A JP 2006213516A JP 2006213516 A JP2006213516 A JP 2006213516A JP 2008036671 A JP2008036671 A JP 2008036671A
Authority
JP
Japan
Prior art keywords
caulking
laminated
steel sheet
thickness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006213516A
Other languages
Japanese (ja)
Other versions
JP5309431B2 (en
Inventor
Tsutomu Kaido
力 開道
Yosuke Kurosaki
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006213516A priority Critical patent/JP5309431B2/en
Publication of JP2008036671A publication Critical patent/JP2008036671A/en
Application granted granted Critical
Publication of JP5309431B2 publication Critical patent/JP5309431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out caulking of a laminated steel plate without generating breakage of an insulating film when a steel plate having an insulating film on a surface of an electromagnetic steel plate is punched and the punched steel plates are laminated and are fixed with each other by caulking. <P>SOLUTION: A part of an electromagnetic steel plate is pressed into a die with a punch, and a concavoconvex part for caulking is formed in a part of the steel plate. In this case, the clearance between the punch and the die is made to not less than 3% and less than 7% of the steel plate thickness, so that the insulating film comes into intimate contact with the steel plate shear surface to avoid breakage thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼板剪断面の鋼板間抵抗が高い電磁鋼の積層鋼板およびそのカシメ方法に関するものである。   The present invention relates to a laminated steel plate of electromagnetic steel having a high steel plate shear surface resistance between steel plates and a caulking method thereof.

電磁機器には、電動機、アクチュエータ、発電機、変圧器、リアクトル、センサなどがあり、これらには電磁鋼板などを積層した積層鉄心が多く使用されている。また、鋼板を積層して構造部材として使用する場合もある。この場合、積層した鋼板間が短絡して電流が流れると、積層鋼板を使用した装置や部品が性能を発揮できないことがある。   Electromagnetic devices include electric motors, actuators, generators, transformers, reactors, sensors, etc., and many of these are laminated iron cores laminated with electromagnetic steel sheets. Moreover, a steel plate may be laminated | stacked and used as a structural member. In this case, if the laminated steel plates are short-circuited and a current flows, an apparatus or a component using the laminated steel plates may not be able to exhibit performance.

電動機の鉄心では、多くはカシメなどで積層鋼板間を結束して固定する手段が使用されている。また、電動機の鉄心に分割鉄心が多用されるようになると、取り扱い上の必要性や歯先機械剛性の確保のため、歯先の結束が必須である場合も多い。
これらの場合、カシメによって鋼板の一部が剪断され、結束後に積層鋼板の剪断面間が接触するようになり、使用時に短絡電流が流れて鉄損が増加することが多くある。
In many iron cores of electric motors, means for binding and fixing laminated steel plates by caulking or the like is used. In addition, when a split iron core is frequently used in an iron core of an electric motor, it is often necessary to bind tooth tips in order to ensure the necessity for handling and rigidity of the tooth tip machine.
In these cases, a part of the steel sheet is sheared by caulking, the shearing surfaces of the laminated steel sheets come into contact after binding, and a short-circuit current flows during use, often resulting in an increase in iron loss.

また、構造部材の一部に積層体を使用している場合でも、隣接する箇所で発生する磁界や電磁波によって積層体に電位が生じることがあり、その場合、積層剪断面間が接触していると不必要な電流が装置や部材中に流れ、損失の原因になるだけでなくノイズが発生し易くなる。   Further, even when a laminated body is used as a part of the structural member, a potential may be generated in the laminated body by a magnetic field or an electromagnetic wave generated at an adjacent location, and in that case, the laminated shear planes are in contact with each other. Unnecessary current flows in the apparatus and members, which not only causes loss but also easily generates noise.

本発明は、上記のような問題が生じないように、電磁鋼板表面に絶縁被膜が形成されている鋼板を打抜き、積層し、カシメで鋼板を結束する際に、絶縁被膜が鋼板の剪断面表面に密着して破断せず、剪断面間に電流が導通するのを防ぐように積層鋼板のカシメを実施する方法と、電磁鋼板剪断面の層間抵抗が高い積層電磁鋼板とを提供することを課題とするものである。   In the present invention, when the steel sheet having the insulating coating formed on the surface of the magnetic steel sheet is punched out and laminated, and the steel sheet is bound by caulking, the insulating coating is applied to the shear surface of the steel sheet so that the above-described problems do not occur. It is an object to provide a method for caulking a laminated steel sheet so as to prevent electrical current from being conducted between shear planes, and a laminated electrical steel sheet having high interlaminar resistance on the electrical steel sheet shear plane. It is what.

上記課題を解決するため、本発明の特徴とするところは以下のとおりである。
(1)表面に絶縁被膜が形成されている電磁鋼板を打抜き、積層し、カシメで鋼板を結束して積層電磁鋼板を製造する際に用いられるカシメ方法であって、ポンチにより該鋼板の一部をダイス内に押し込んで鋼板の一部にカシメ用の凹凸部を形成する際、前記ポンチと前記ダイスとのクリアランスを鋼板板厚の3%以上7%未満とすることにより、鋼板剪断面の絶縁被膜を破断しないようにして積層鋼板の剪断面間に電流が導通するのを防ぐことを特徴とするカシメ方法である。
(2)前記ポンチにより鋼板の一部を前記ダイス内に押し込む際に、ポンチの板厚方向の押し込み量を、板厚の20%以上80%以下とすることを特徴とする(1)記載の電磁鋼板のカシメ方法である。
(3)表面に絶縁被膜が形成されている電磁鋼板を打抜き、積層し、カシメで鋼板を結束した積層電磁鋼板であって、前記カシメ後の電磁鋼板の板厚断面形状において、板厚方向で板破断した箇所がなく、剪断面に絶縁被膜があり、積層した鋼板の剪断面間に導通のないことを特徴とする積層電磁鋼板である。
(4)表面に絶縁被膜が形成されている電磁鋼板を打抜き、積層し、カシメで鋼板を結束した積層電磁鋼板であって、積層電磁鋼板が複数の箇所でカシメられており、その少なくとも1箇所が(1)または(2)に記載のカシメ方法によりカシメられていることを特徴とする積層電磁鋼板である。
(5)前記積層電磁鋼板が電動機や発電機に使用される鉄心であり、その歯部が(1)または(2)に記載のカシメ方法によりカシメられていることを特徴とする(4)に記載の積層電磁鋼板である。
(6)前記絶縁被膜の厚さが2μm以上、板厚の1%以下であることを特徴とする(3)〜(5)のいずれかに記載の積層電磁鋼板である。
(7)前記カシメの結束強度を補うために、積層鋼板間またはカシメ部の剪断面間に接着剤が注入されていることを特徴とする(3)〜(6)のいずれかに記載の積層電磁鋼板である。
In order to solve the above problems, the features of the present invention are as follows.
(1) A caulking method used when a laminated electromagnetic steel sheet is manufactured by punching and laminating an electromagnetic steel sheet having an insulating coating formed on the surface thereof, and binding the steel sheets by caulking, wherein a part of the steel sheet is punched Is formed into a part of the steel sheet to form a rugged portion for caulking, so that the clearance between the punch and the die is 3% or more and less than 7% of the steel sheet thickness, thereby insulating the steel sheet shear plane. The caulking method is characterized in that current is prevented from being conducted between the shearing surfaces of the laminated steel plates without breaking the coating.
(2) When a part of the steel sheet is pushed into the die by the punch, the pushing amount in the thickness direction of the punch is set to 20% to 80% of the plate thickness. This is a caulking method for electrical steel sheets.
(3) A laminated electrical steel sheet obtained by punching, laminating and laminating electrical steel sheets having an insulating coating formed on the surface, and binding the steel sheets with caulking, in the thickness direction of the electrical steel sheet after caulking, in the thickness direction It is a laminated electrical steel sheet characterized in that there is no location where the plate is broken, there is an insulating coating on the shearing surface, and there is no conduction between the shearing surfaces of the laminated steel plates.
(4) A laminated electrical steel sheet obtained by punching and laminating electrical steel sheets having an insulating coating formed on the surface, and binding the steel sheets by caulking, wherein the laminated electrical steel sheets are crimped at a plurality of locations, at least one of which Is a laminated electrical steel sheet characterized by being caulked by the caulking method described in (1) or (2).
(5) The laminated magnetic steel sheet is an iron core used for an electric motor or a generator, and a tooth portion thereof is caulked by a caulking method according to (1) or (2). It is a laminated electromagnetic steel sheet of description.
(6) The laminated electrical steel sheet according to any one of (3) to (5), wherein the insulating coating has a thickness of 2 μm or more and 1% or less of the plate thickness.
(7) The lamination according to any one of (3) to (6), wherein an adhesive is injected between the laminated steel plates or between the shearing surfaces of the crimping portions in order to supplement the caulking binding strength. It is a magnetic steel sheet.

本発明のカシメ方法及び積層電磁鋼板は、鋼板の剪断面の絶縁被膜を破断させないため、結束される上下鋼板の剪断面間の絶縁性が保たれ、層間抵抗を高く維持した状態でカシメ結束が可能である。
従って、カシメが多く使用される電動機や発電機の鉄心などに使用すると、剪断面に絶縁被膜があるため、剪断面に通電することがなく機器の鉄損を低減できる。特に、高周波で励磁される高周波モータあるいは高速モータに使用するとより効果が大きい。
The caulking method and laminated electrical steel sheet according to the present invention do not break the insulating coating on the shearing surface of the steel sheet, so that the insulation between the shearing surfaces of the upper and lower steel sheets to be bound is maintained, and the caulking binding is performed while maintaining a high interlayer resistance. Is possible.
Therefore, when used for an electric core or a generator core that often uses caulking, since there is an insulating coating on the shearing surface, it is possible to reduce the iron loss of the equipment without energizing the shearing surface. In particular, it is more effective when used for a high-frequency motor or a high-speed motor excited at a high frequency.

また、本発明のカシメ方法及び積層電磁鋼板は、通常の絶縁被膜でも、ポンチとダイスのクリアランス、板厚方向へのポンチの押し込み量、さらには絶縁被膜の膜厚を規制することにより、絶縁被膜を破断させず板間の層間抵抗を高く保つことができる。さらに、熱硬化性樹脂あるいは熱可塑性樹脂を含有した絶縁被膜を用いると、剪断面の層間抵抗も高められかつ剪断面間の接着能も高められた積層電磁鋼板を得ることができる。   In addition, the caulking method and laminated electrical steel sheet of the present invention can be applied to a normal insulating film by regulating the punch-to-die clearance, the punch push-in amount in the plate thickness direction, and the insulating film thickness. The interlaminar resistance between the plates can be kept high without breaking. Furthermore, when an insulating coating containing a thermosetting resin or a thermoplastic resin is used, a laminated electrical steel sheet having an increased interlayer resistance on the shear plane and an increased adhesion between the shear planes can be obtained.

また、本発明のカシメ方法及び積層電磁鋼板を、磁束の集中により鉄損の影響をより受けやすい部分、たとえば電動機や発電機の鉄心の歯部の結束に適用することにより、より鉄損の低減した鉄心などを得ることができる。   Further, by applying the caulking method and laminated electrical steel sheet according to the present invention to a part that is more susceptible to iron loss due to concentration of magnetic flux, for example, binding of teeth of an iron core of a motor or a generator, iron loss is further reduced. Can be obtained.

本発明は、表面に絶縁被膜が形成されている電磁鋼板を打抜き、積層し、カシメで鋼板を結束するに際し、ポンチによって電磁鋼板の一部をダイスに押し込む時、絶縁被膜が鋼板剪断表面に密着して破断せず、剪断面間に電流が導通するのを防ぐことを特徴とする電磁鋼板のカシメ方法であり、そのようなカシメ方法を適用して結束した積層電磁鋼板である。   In the present invention, when an electromagnetic steel sheet having an insulating coating formed on the surface is punched and laminated, and the steel sheets are bundled by caulking, the insulating coating adheres to the shear surface of the steel sheet when a part of the electromagnetic steel sheet is pushed into the die by a punch. Thus, there is a caulking method for an electrical steel sheet characterized by preventing current from being conducted between shear planes without breaking, and a laminated electrical steel sheet bound by applying such caulking method.

電磁鋼板を打抜き、積層し、カシメで結束するに際し、電磁鋼板1を打抜く前に、図1に示すように、凸型ポンチ2によって電磁鋼板の一部をダイス3に押し込んで、あらかじめ凹凸部を形成する。この凹凸部を形成された電磁鋼板は、次いで所定形状に打抜かれ、同時に、直前に打抜かれた鋼板上に積層される。このとき、前に打抜かれた鋼板の凹部に、今回打抜かれた鋼板の凸部を嵌合させ、これら鋼板はカシメられる。このカシメは、通常、積層鋼板の複数個所で行われる。   When punching, laminating and binding the electromagnetic steel sheets by caulking, before punching the electromagnetic steel sheet 1, as shown in FIG. Form. The electromagnetic steel sheet on which the uneven portions are formed is then punched into a predetermined shape and simultaneously laminated on the steel sheet punched immediately before. At this time, the convex portions of the steel plate punched this time are fitted into the concave portions of the steel plate previously punched, and these steel plates are caulked. This caulking is usually performed at a plurality of locations on the laminated steel sheet.

以上の動作が所定回繰り返されて、図2に示すような所定枚数の電磁鋼板が積層結束された積層電磁鋼板が製造される。
用いられるカシメの形態としては、図2(a)に示すような円又は楕円形ポンチを用いた丸平カシメや、図2(b)に示すように先端がV字形のポンチを用いたVカシメなどがある。
ここで、カシメとは、図2に示すような積層電磁鋼板特有のカシメを意味するもので、「金属便覧(改訂4版)」(丸善発行)1711頁、図15.105の(d)〜(h)のようなカシメとは異なる技術である。
The above operation is repeated a predetermined number of times to produce a laminated electrical steel sheet in which a predetermined number of electrical steel sheets as shown in FIG.
As the form of caulking used, round flat caulking using a circular or elliptical punch as shown in FIG. 2 (a), or V caulking using a V-shaped punch as shown in FIG. 2 (b). and so on.
Here, caulking means caulking peculiar to laminated electromagnetic steel sheets as shown in FIG. 2, and “Metal Handbook (4th revised edition)” (issued by Maruzen), page 1711, (d) to (h) in FIG. ) Is a different technology from caulking.

上述のように、積層電磁鋼板のカシメのために、凸型ポンチ2によって電磁鋼板の一部をダイス3に押し込んで凹凸部を形成するが、その際、丸平カシメの場合は凹凸部の側壁の内外周に剪断面4が形成され、Vカシメの場合は、凹凸部の左右の側壁に剪断面4が形成される。
本発明では、カシメ加工時に鋼板剪断面の絶縁被膜が破断せず残っているようにして、積層鋼板間の層間抵抗が高く保たれようにする。
As described above, for the crimping of the laminated electrical steel sheet, a part of the electrical steel sheet is pushed into the die 3 by the convex punch 2 to form the uneven part. In this case, in the case of round flat caulking, the side wall of the uneven part is formed. In the case of V caulking, the shear surface 4 is formed on the left and right side walls of the uneven portion.
In the present invention, the interlaminar resistance between the laminated steel sheets is kept high so that the insulating coating on the shear surface of the steel sheet remains unbroken during caulking.

以下、そのようにするためのカシメの条件について説明する。
カシメ加工時に鋼板剪断面の絶縁被膜が破断せず残るようするためには、特に、カシメに用いる凸形ポンチとダイスの間のクリアランス、凸形ポンチの押し込み量が重要である。
Hereinafter, caulking conditions for doing so will be described.
In order to keep the insulating coating on the shear surface of the steel sheet without breaking during the caulking process, the clearance between the convex punch and the die used for caulking and the pushing amount of the convex punch are particularly important.

従来の電磁鋼板の加工の際のクリアランスとしては、前記「金属便覧(改訂4版」」の1711頁の表15.8にあるように板厚の7%〜11%といわれているが、電磁鋼板を積層して結束する際のカシメにおいて、絶縁被膜の破断をさせないためには、従来の加工型のクリアランス7%〜11%より小さい、3%以上7%未満とすると良いことがわかった。
ここでクリアランスとは、図3に示すように、凸形ポンチとダイスの間の隙間(ポンチの幅とダイスの内幅の差の2分の1)を鋼板の板厚(図1のt)で割った値(%)をクリアランスと定義する。
It is said that the clearance at the time of processing the conventional electrical steel sheet is 7% to 11% of the plate thickness as shown in Table 15.8 on page 1711 of the "Metal Handbook (4th revised edition)". In order to prevent the insulating coating from being broken in the caulking when laminating and bundling, it has been found that the clearance should be 3% or more and less than 7%, which is smaller than the clearance of 7% to 11% of the conventional processing die.
Here, as shown in FIG. 3, the clearance refers to the gap between the convex punch and the die (half of the difference between the width of the punch and the inner width of the die) and the thickness of the steel plate (t in FIG. 1). The value (%) divided by is defined as clearance.

上記の範囲で絶縁被膜の破断が生じないのは、クリアランスが3%未満となると、電磁鋼板の凸部と凹部の隙間があまりにも小さすぎて、絶縁被膜がこすれて破断する場合が多くなり、また、クリアランスが7%以上になると、それらの間がかけ離れすぎてカシメ自体がうまく会合せず絶縁被膜も破断することが多くなるためと考えられる。   If the clearance is less than 3%, the insulating film does not break in the above range, and the gap between the convex portion and the concave portion of the electromagnetic steel sheet is too small, and the insulating coating is often rubbed and broken. Further, it is considered that when the clearance is 7% or more, the gap between them is too far and the caulking itself does not associate well, and the insulating coating often breaks.

また、凸形ポンチにより鋼板の一部をダイス内に押し込む際に、凸形ポンチの板厚方向の押し込み量(図1のs)を、板厚の20%以上80%以下とするのがよい。
カシメ深さは、加工ダレ以上であれば積層形状を維持できるが、通常の加工ダレの大きさは板厚の1/5より小さいので、ポンチの押し込み量は板厚の20%以上であればよい。また、カシメ部の爪(凸部)が鋼板から分離しないためにはカシメ深さは板厚の80%以下が好ましい。逆に、20%未満であれば、カシメ深さが浅いため、積層鋼板が外れてカシメの自体の意味がなくなるし、また、80%を超えると、板自体が破断して破断面を形成してしまうため、絶縁被膜も当然破断してしまい、剪断面の層間抵抗が保たれなくなる。
Further, when a part of the steel plate is pushed into the die by the convex punch, the pushing amount in the thickness direction of the convex punch (s in FIG. 1) is preferably 20% or more and 80% or less of the plate thickness. .
If the caulking depth is equal to or greater than the processing sag, the laminated shape can be maintained, but since the size of the normal processing sag is smaller than 1/5 of the plate thickness, if the pushing amount of the punch is 20% or more of the plate thickness Good. In addition, the caulking depth is preferably 80% or less of the plate thickness so that the claws (projections) of the caulking portion do not separate from the steel plate. On the contrary, if it is less than 20%, the caulking depth is shallow, so that the laminated steel plate is detached and the caulking itself is no longer meaningful, and if it exceeds 80%, the plate itself breaks to form a fracture surface. Therefore, the insulating coating is naturally broken, and the interlayer resistance of the shearing surface cannot be maintained.

鋼板表面に形成されている絶縁皮膜の厚さは、カシメ加工後の板剪断面の層間抵抗が高く維持できれば薄くても良いが、カシメ加工後の層間抵抗を高く維持するには2μm以上とするのが好ましい。また、皮膜厚さが厚すぎると磁性部材としての機能(占積率)が低下するので、積層電磁鋼板の占積率が98%以上を考慮して、その占積率に相当する板厚の1%以下が好ましい。
よって、絶縁被膜の厚さは、2μm以上、板厚の1%以下とするのがよい。
The thickness of the insulating film formed on the surface of the steel plate may be thin as long as the interlayer resistance of the plate sheared surface after crimping can be maintained high, but to keep the interlayer resistance after crimping high, the thickness is 2 μm or more. Is preferred. Moreover, since the function (space factor) as a magnetic member will fall if the film thickness is too thick, considering the space factor of the laminated electromagnetic steel sheet to be 98% or more, the plate thickness corresponding to the space factor 1% or less is preferable.
Therefore, the thickness of the insulating coating is preferably 2 μm or more and 1% or less of the plate thickness.

絶縁皮膜の種類としては、絶縁性酸化膜、有機系や無機系の絶縁皮膜、あるいは半有機絶縁皮膜など、いずれの皮膜でもよい。絶縁性酸化膜は、電磁鋼板の製造プロセスにおける熱処理で生じるものやブル−イング等で形成されるもののいずれであってもよい。
また、絶縁皮膜に熱硬化性樹脂あるいは熱可塑性樹脂を含有させてもよい。この熱硬化性樹脂あるいは熱可塑性樹脂を含有した絶縁被膜としては、加熱により接着能を発揮する接着被膜がある。これは、熱硬化性樹脂あるいは熱可塑性樹脂を含むもので具体的には、アクリル樹脂やエポキシ樹脂を主成分とするものがある。
The insulating film may be any film such as an insulating oxide film, an organic or inorganic insulating film, or a semi-organic insulating film. The insulating oxide film may be any of those generated by heat treatment in the manufacturing process of the electrical steel sheet and those formed by blueing or the like.
Further, the insulating film may contain a thermosetting resin or a thermoplastic resin. As the insulating film containing the thermosetting resin or the thermoplastic resin, there is an adhesive film that exhibits adhesive ability by heating. This includes a thermosetting resin or a thermoplastic resin, and specifically includes an acrylic resin or an epoxy resin as a main component.

また、カシメ深さが浅い場合は、積層鋼板間の結束強度が小さくなるので、結束強度を補うために、別の積層鋼板間結束方法をさらに付与しても良い。別の結束方法としては、積層電磁鋼板をモールド(どぶつけ)したり、接着剤を板層間に浸し乾燥させて、板積層間を接着しても良く、また、加熱により接着能を発揮する接着被膜が施されている電磁鋼板を用いて加熱後、結束力を高めても良い。即ち、接着剤としては、前記のような硬化性樹脂あるいは熱可塑性樹脂を含有した絶縁被膜で接着能を発揮する接着被膜でも良い。   In addition, when the caulking depth is shallow, the binding strength between the laminated steel plates becomes small. Therefore, in order to supplement the binding strength, another method of binding between the laminated steel plates may be further provided. As another bundling method, laminated magnetic steel sheets may be molded (bumped), or the adhesive may be bonded by dipping the adhesive between the board layers to dry them, or bonding that exhibits adhesive ability by heating. The bundling force may be increased after heating using a magnetic steel sheet provided with a coating. That is, the adhesive may be an adhesive film that exhibits adhesive ability with an insulating film containing a curable resin or a thermoplastic resin as described above.

上記で説明したカシメ方法を効率よく活用するには、カシメ部に誘起起電力が生じる部分にのみに適用するのが良い。例えば、インナー界磁ロータで、アウター電機子のステータの電動機におけるアウターステータには、ごく外周部分に施されたカシメと、歯部に施されたカシメがあり、外周部のカシメには殆ど、誘起起電力が生じないが、歯部のカシメは誘起起電力が大きくなるので、歯部のカシメに本発明のカシメ方法を活用すると効果がある。
従って、後述する実施例4のように、本発明のカシメを誘起起電力が大きくなる部分のみに施しても良い。
In order to efficiently use the caulking method described above, it is preferable to apply only to a portion where an induced electromotive force is generated in the caulking portion. For example, in the outer field stator of the motor of the outer armature stator, there is a caulking applied to the outer peripheral portion and a caulking applied to the tooth portion, and almost no induction is applied to the caulking of the outer peripheral portion. Although no electromotive force is generated, the induced electromotive force is increased in the caulking of the tooth portion. Therefore, the caulking method of the present invention is effective for caulking the tooth portion.
Therefore, as in Example 4 to be described later, the caulking of the present invention may be applied only to a portion where the induced electromotive force is increased.

本発明のカシメ方法を用いた積層電磁鋼板は、交番磁束励磁で使用される場合に、短絡電流を抑制できる効果があるので、トランス、電動機や発電機、また、チョッパなどの電磁エネルギー変換機器用鉄心やリゾルバの鉄心に使用すると、渦電流損を抑制することができる。カシメによる結束は、電動機や発電機の製造の際に通常使用されることが多く、本発明のカシメ方法が好適に使用できるが、特に、コアの歯部に適用すると電動機や発電機の効率を高くできる。   The laminated electrical steel sheet using the caulking method of the present invention has an effect of suppressing a short-circuit current when used in alternating magnetic flux excitation, so that it can be used for transformers, electric motors and generators, and electromagnetic energy conversion devices such as choppers. When used for an iron core or a resolver iron core, eddy current loss can be suppressed. Bundling by caulking is usually used in the manufacture of electric motors and generators, and the caulking method of the present invention can be suitably used, but the efficiency of electric motors and generators is particularly improved when applied to the teeth of the core. Can be high.

さらに、本発明は破断面を形成させずに、剪断面に被膜が残存し板層間に導通がないことを前提としているが、破断面が存在したとしても、その破断面が接触せず(空間を入れるだけでもよい)或いはその間に上記のような積層鋼板間結束方法で導通がないようにしてもかまわない。要は、カシメ後に積層鋼板間で導通がないようにすればよい。   Furthermore, the present invention is based on the premise that a film remains on the shearing surface and no electrical conduction exists between the plate layers without forming a fracture surface, but even if a fracture surface exists, the fracture surface does not contact (space). Alternatively, it may be possible to prevent continuity by the method of binding between laminated steel plates as described above. In short, it is only necessary to prevent conduction between laminated steel plates after crimping.

以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、特許請求の範囲の請求項に記載される事項によってのみ規定されており、本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not something. The present invention is defined only by the matters described in the claims of the claims, and various conditions can be adopted as long as the object of the present invention is achieved without departing from the present invention. .

この実施例では、カシメに使用する凸形ポンチとダイスの間のクリアランスを2%〜10%に変化させたときの例を示す。
板厚0.35mmの電磁鋼板10枚を用い、板厚方向への凸形ポンチの押し込み量50%で丸平カシメして積層電磁鋼板を作成し、積層間短絡抵抗を測定した。その結果、上記クリアランスを板厚の2%、10%とした従来のカシメ方法では、10枚の積層鋼板の積層間短絡抵抗は1.0〜1.2mΩであったが、クリアランスを本発明の3%、5%、6.9%にした場合には、短絡抵抗は20〜40mΩとなった。
In this embodiment, an example is shown in which the clearance between the convex punch used for caulking and the die is changed from 2% to 10%.
Using 10 electromagnetic steel sheets with a thickness of 0.35 mm, a laminated electromagnetic steel sheet was prepared by round flat caulking with a pressing amount of a convex punch in the thickness direction of 50%, and the short circuit resistance between the laminates was measured. As a result, in the conventional caulking method in which the clearance is 2% and 10% of the plate thickness, the short-circuit resistance between the laminates of the ten laminated steel sheets was 1.0 to 1.2 mΩ. In the case of 3%, 5%, and 6.9%, the short-circuit resistance was 20 to 40 mΩ.

本発明例の場合では、図4(b)に示すように、カシメ部の鋼板は破断していなく、剪断面のみで接触している。この剪断面は平滑で電磁鋼板の絶縁皮膜が残存しており、接触する電磁鋼板の絶縁層を損なうことがないので接触抵抗を高く保持できると考えられる。   In the case of the example of the present invention, as shown in FIG. 4 (b), the steel plate in the crimped portion is not broken and is in contact only with the shear plane. This sheared surface is smooth and the insulation film of the electromagnetic steel sheet remains, and it is considered that the contact resistance can be kept high because the insulating layer of the electromagnetic steel sheet that comes in contact is not damaged.

一方、従来の場合のうち、クリアランスが大きい加工(クリアランス10%)では、図4(a)に示すように、カシメ部の多くが破断しており、加工面における剪断部と破断部の境界が大きく波打ち、しかも、その破断面は粗く電磁鋼板の絶縁皮膜が付着することがないので、鋼板間の剪断部と破断部同士が接触したり、接触する電磁鋼板の絶縁被膜を破ったりするため、電磁鋼板間の抵抗がなくなり導通が起こると考えられる。
また、クリアランスが小さい加工(クリアランス2%)でも、あまりにも隙間が小さすぎて、積層時に絶縁被膜がこすれて破断し、同様に導通が起こると考えられる。
On the other hand, in the conventional case, in the machining with a large clearance (clearance 10%), as shown in FIG. 4A, most of the caulking parts are broken, and the boundary between the sheared part and the broken part on the machined surface is broken. Since the corrugated surface is rough and the insulating coating of the electromagnetic steel sheet is not attached, the sheared part between the steel sheets and the fractured part are in contact with each other, or the insulating coating of the contacting electromagnetic steel sheet is torn, It is thought that conduction occurs because there is no resistance between the electrical steel sheets.
In addition, it is considered that even in processing with a small clearance (clearance of 2%), the gap is too small, and the insulating coating is rubbed and broken during lamination, thus causing conduction.

以上の結果をまとめて表1に示す。

Figure 2008036671
The above results are summarized in Table 1.
Figure 2008036671

この実施例では、板厚方向に凸形ポンチを押し込む量を板厚の10%〜90%に変化させたときの例を示す。
実施例1と同様に、板厚0.35mmの電磁鋼板10枚を、上記クリアランス5%で丸平カシメして積層電磁鋼板を作成し、積層鋼板間の短絡抵抗を測定した。
In this embodiment, an example is shown in which the amount of pushing the convex punch in the thickness direction is changed from 10% to 90% of the thickness.
In the same manner as in Example 1, ten electromagnetic steel plates having a thickness of 0.35 mm were rounded and flattened with the clearance of 5% to prepare laminated electromagnetic steel plates, and the short circuit resistance between the laminated steel plates was measured.

押し込み量が90%の場合は、積層間短絡抵抗は1.0〜1.2mΩであり、カシメ部の多くが破断していた。
一方、押し込み量を本発明の20%〜80%に変化させた場合は、短絡抵抗は20〜40mΩであり、カシメ部には破断は認められなかった。
なお、押し込み量が10%の場合は、短絡抵抗は20〜40mΩであり、カシメ部に破断も認められなかったが、押し込み量が少なく積層鋼板が簡単に外れた。
When the push-in amount was 90%, the short circuit resistance between the layers was 1.0 to 1.2 mΩ, and most of the crimped portions were broken.
On the other hand, when the pushing amount was changed from 20% to 80% of the present invention, the short circuit resistance was 20 to 40 mΩ, and no breakage was observed in the crimped portion.
When the indentation amount was 10%, the short circuit resistance was 20 to 40 mΩ, and no breakage was observed in the crimped portion, but the indentation amount was small and the laminated steel plate was easily removed.

以上の結果をまとめて表2に示す。

Figure 2008036671
The above results are summarized in Table 2.
Figure 2008036671

この実施例では、絶縁被膜の厚みを1.5μm〜4μm(板厚の1.1%)に変化させたときの例を示す。
実施例1と同様に、板厚0.35mmの電磁鋼板10枚を、上記クリアランス5%、凸形ポンチの押し込み量50%で丸平カシメして積層電磁鋼板を作成し、積層鋼板間の短絡抵抗を測定した。
In this example, an example in which the thickness of the insulating coating is changed to 1.5 μm to 4 μm (1.1% of the plate thickness) is shown.
In the same manner as in Example 1, ten electromagnetic steel sheets having a thickness of 0.35 mm were rounded and caulked with the clearance of 5% and the protruding amount of the convex punch of 50% to prepare a laminated electromagnetic steel sheet, and a short circuit between the laminated steel sheets. Resistance was measured.

絶縁被膜の厚みが薄い1.5μmの場合を除いて、積層間短絡抵抗は20〜40mΩであり、クリアランス、凸形ポンチの押し込み量とも本発明の範囲にあるためカシメ部には破断は認められなかった。絶縁被膜の厚みが4μm(板厚の1.1%)と厚い場合については、占積率が低下する。   Except for the case where the thickness of the insulating coating is 1.5 μm, the short circuit resistance between the layers is 20 to 40 mΩ, and the clearance and the push-in amount of the convex punch are within the range of the present invention. There wasn't. When the thickness of the insulating coating is as thick as 4 μm (1.1% of the plate thickness), the space factor decreases.

以上の結果をまとめて表3に示す。

Figure 2008036671
The above results are summarized in Table 3.
Figure 2008036671

図5に示すように、ブラシレスDC電動機において、インナーロータが界磁であり、アウターステータが電機子である場合、ステータコア11の外周からコア継鉄部幅の1/10の場所13、14とコア歯部12とに、条件を変えてカシメを施した。
表4のように、コアに生じる損失を鉄損トルクで測定し、二周波数法で鉄損分離を行い、渦電流損を求めたところ、凸形ポンチとダイスの間のクリアランスの大きい従来のカシメ(従来法カシメ)を用いたコアの渦電流損を100とすると、全カシメに、前記クリアランスが本発明で規定する条件を満たしたカシメ(本発明カシメ)を用いた場合は平均で47であり、継鉄部外周部13、14のカシメは従来法カシメを用い、歯部12には本発明カシメを用いたものは平均で49であった。
As shown in FIG. 5, in the brushless DC motor, when the inner rotor is a field and the outer stator is an armature, the locations 13 and 14 of the core yoke portion width 1/10 from the outer periphery of the stator core 11 and the core The teeth 12 were crimped under different conditions.
As shown in Table 4, when the loss generated in the core was measured by the iron loss torque, the iron loss was separated by the two-frequency method, and the eddy current loss was obtained, the conventional caulking with a large clearance between the convex punch and the die was obtained. Assuming that the eddy current loss of the core using (conventional caulking) is 100, when caulking (the caulking of the present invention) that satisfies the conditions defined by the present invention is used for all caulking, the average is 47. For the caulking of the yoke outer peripheral parts 13 and 14, the conventional caulking was used, and for the tooth part 12, the caulking of the present invention was 49 on average.

Figure 2008036671
Figure 2008036671

この実施例では、カシメ深さ(押し込み量)が浅い場合に、積層鋼板間の結束強度が小さくなるので、結束強度を補うために、積層電磁鋼板をモールド(どぶつけ)したり、接着剤を積層鋼板の間に注入して乾燥させ、積層鋼板間を接着したときの例を示す。
カシメ加工の板厚方向に、凸形ポンチを押し込む量を20%としたときに、上記の方法で層間結束力を高めた結果を表5に示す。
積層電磁鋼板をワニスにどぶ付けした例、及び、積層鋼板間に接着剤としてアクリル樹脂あるいはエポキシ樹脂を注入した例とも、層間結束力が向上していた。
In this embodiment, when the caulking depth (indentation amount) is shallow, the binding strength between the laminated steel sheets becomes small. Therefore, in order to supplement the binding strength, the laminated electrical steel sheets are molded (striking) or an adhesive is used. An example is shown in which the laminated steel sheets are injected and dried to bond the laminated steel sheets.
Table 5 shows the results of increasing the interlaminar binding force by the above method when the amount of pushing the convex punch in the caulking thickness direction is 20%.
The interlaminar binding force was improved in both the case where the laminated electromagnetic steel sheet was applied to the varnish and the case where acrylic resin or epoxy resin was injected as an adhesive between the laminated steel sheets.

Figure 2008036671
Figure 2008036671

埋め込み磁石型同期電動機に使用される分割鉄心に、図6に示すようにカシメを実施した。図6において、分割鉄心11の継鉄部分には、Vカシメ16、17を用い、歯部には実施例1と同様に本発明の丸平カシメ15を用いた。
歯部のカシメ15を従来の丸平カシメとしたものと電動機の無負荷鉄損を比較したところ、本発明の丸平カシメを用いたものは鉄損が約20%低減できた。
As shown in FIG. 6, caulking was performed on the split iron core used in the embedded magnet type synchronous motor. In FIG. 6, V caulking 16, 17 was used for the yoke portion of the split core 11, and the round flat caulking 15 of the present invention was used for the tooth portion in the same manner as in Example 1.
When comparing the no-load iron loss of the motor with the conventional round flat caulking of the tooth portion 15, the iron loss was reduced by about 20% when the round flat caulking of the present invention was used.

実施例6の分割鉄心を作るにあたり、乾燥するのみで絶縁接着できる溶液に浸漬させ、その後、乾燥させた。カシメでは、前記押し込み量を積層鉄心形状を維持できる板厚の1/4ほどの深さに留めたが、乾燥したのみで絶縁接着できる溶液により積層間が接着結束できるので、巻線工程で鉄心にかかる応力に十分耐えられるようになった。
従来より、カシメなしで、乾燥したのみで絶縁接着できる溶液で積層間結束する方法があるが、本実施例では、打抜き工程で本発明カシメを使用することで鉄心形状を維持し、乾燥したのみで絶縁接着できる絶縁被膜を使用することで、積層間短絡を抑制した高強度の鉄心が実現できた。
In making the split iron core of Example 6, it was immersed in a solution that could be insulated and bonded only by drying, and then dried. In the caulking, the amount of pushing is kept to a depth of about 1/4 of the thickness that can maintain the shape of the laminated core. However, since the laminate can be bonded and bonded by a solution that can be insulated and bonded only by drying, the iron core is used in the winding process. Can withstand the stress applied to
Conventionally, there is a method of binding between layers with a solution that can be insulated and bonded only by drying without caulking, but in this example, the core shape is maintained by using the caulking of the present invention in the punching process and only dried. By using an insulating coating that can be insulated and bonded, a high-strength iron core that suppresses a short circuit between layers can be realized.

実施例6の分割鉄心を作るにあたり、接着皮膜電磁鋼板を用い、カシメ後、200℃で接着処理した。従来の皮膜が施された電磁鋼板を使用した分割鉄心と比較して、積層間抵抗は殆ど差がなかったが、1m落下試験で、従来の皮膜が施された電磁鋼板を使用した分割鉄心は、カシメ深さが従来より浅いため分離破壊したが、接着皮膜電磁鋼板を用いた鉄心は問題なかった。   In making the split iron core of Example 6, an adhesive-coated magnetic steel sheet was used, and after caulking, an adhesive treatment was performed at 200 ° C. Compared with the split iron core using the magnetic steel sheet with the conventional coating, there was almost no difference in resistance between the laminations, but in the 1m drop test, the split iron core using the magnetic steel sheet with the conventional coating was However, although the caulking depth was shallower than before, it was separated and destroyed, but there was no problem with the iron core using the adhesive-coated magnetic steel sheet.

実施例6の分割鉄心を作るにあたり、表面に施される皮膜を従来の1.5μmより厚い2.5μmにした電磁鋼板を用いた。従来の厚みの皮膜が施された電磁鋼板を使用した分割鉄心と比較して、積層間抵抗が1.3倍になった。   In making the split iron core of Example 6, a magnetic steel sheet having a coating applied to the surface of 2.5 μm thicker than the conventional 1.5 μm was used. Compared with a split iron core using a magnetic steel sheet coated with a conventional thickness, the resistance between the layers was 1.3 times.

珪素を殆ど含まない1mm厚の普通鋼板を用いた螺旋鉄心において、ノッチングによるスロット製作と同時に、カシメ部を本発明のカシメ方法で加工を行い、螺旋曲げ加工後、積層方向に加圧し、積層間を結束した。この鉄心を螺旋加工発電機ケースに圧入して発電機を作った。カシメは鉄心継鉄部の中心に3ヶ所施した。発電特性よりロストルクを求めたところ、従来の打抜積層カシメ結束の場合より、渦電流損が14%低減できた。   In a spiral iron core using a normal steel plate with a thickness of 1 mm that contains almost no silicon, simultaneously with slot production by notching, the caulking part is processed by the caulking method of the present invention, and after spiral bending, pressurization in the laminating direction is performed. United. The iron core was press-fitted into the spiral generator case to make a generator. The caulking was performed at three locations in the center of the iron core relay section. When the loss torque was obtained from the power generation characteristics, the eddy current loss was reduced by 14% compared to the case of the conventional punched laminated caulking.

モータのセンサとして使用されるレゾルバの鉄心に、本発明のカシメ方法を用いたところ、積層間短絡抵抗が高くなり、積層間短絡抵抗バラツキによる電気誤差が従来のカシメの場合より約10%低減できた。   When the caulking method of the present invention is applied to a resolver iron core used as a sensor of a motor, the short circuit resistance between layers increases, and the electrical error due to variation in the short circuit resistance between layers can be reduced by about 10% compared to the conventional caulking. It was.

リアクトルの鉄心に本発明を採用した。リアクトルには、I型を4個使用して組み合わせたものであるが、鉄心を構成している積層鋼板の振動を抑えるため、I鉄心の4コーナーにカシメを施した。従来のクリアランスを板厚の10%でカシメ加工したものと比較すると、本発明のクリアランス5%で行ったカシメ加工したものでは、損失が約1/3に低減できた。   The present invention is adopted for the core of the reactor. The reactor is a combination of four I-types, but in order to suppress the vibration of the laminated steel sheets that make up the iron core, the four corners of the I iron core were crimped. Compared with the case where the conventional clearance was crimped at 10% of the plate thickness, the loss was reduced to about 1/3 in the case where the clearance was performed with the clearance of 5% of the present invention.

本発明のカシメ方法を説明するための図である。It is a figure for demonstrating the crimping method of this invention. 積層鋼板のカシメを説明するための図であり、(a)は丸平カシメの場合の断面図と正面図、(b)はVカシメの場合の断面図と正面図である。It is a figure for demonstrating the crimping of a laminated steel plate, (a) is sectional drawing and front view in the case of a round flat crimping, (b) is sectional drawing and a front view in the case of V crimping. クリアランスを説明するための図である。It is a figure for demonstrating clearance. カシメ後の断面を拡大して示す模式図であり、(a)は従来のカシメ方法による断面図、(b)は本発明のカシメ方法による断面図である。It is a schematic diagram which expands and shows the cross section after crimping, (a) is sectional drawing by the conventional crimping method, (b) is sectional drawing by the crimping method of this invention. ステータコアのカシメ部の説明図である。It is explanatory drawing of the crimping part of a stator core. ステータコアのカシメ部の他の例の説明図である。It is explanatory drawing of the other example of the crimping part of a stator core.

符号の説明Explanation of symbols

1 電磁鋼板
2 凸型ポンチ
3 ダイス
4 剪断面
11 分割コア
12〜17 カシメ箇所
DESCRIPTION OF SYMBOLS 1 Magnetic steel plate 2 Convex punch 3 Dies 4 Shear surface 11 Divided core 12-17 Caulking location

Claims (7)

表面に絶縁被膜が形成されている電磁鋼板を打抜き、積層し、カシメで該鋼板を結束して積層電磁鋼板を製造する際に用いられるカシメ方法であって、ポンチにより鋼板の一部をダイス内に押し込んで鋼板の一部にカシメ用の凹凸部を形成する際、前記ポンチと前記ダイスとのクリアランスを鋼板板厚の3%以上7%未満とすることにより、鋼板剪断面の絶縁被膜を破断しないようにして積層鋼板の剪断面間に電流が導通するのを防ぐことを特徴とするカシメ方法。   A caulking method used to produce a laminated electrical steel sheet by punching, laminating and laminating electrical steel sheets having an insulating coating formed on the surface thereof, and binding the steel sheets with caulking. When forming the rugged portion for caulking on a part of the steel sheet by pushing into the steel sheet, the insulation film on the shear surface of the steel sheet is broken by setting the clearance between the punch and the die to be 3% or more and less than 7% of the steel sheet thickness A caulking method characterized in that current is prevented from being conducted between the shearing surfaces of the laminated steel sheets. 前記ポンチにより鋼板の一部を前記ダイス内に押し込む際に、ポンチの板厚方向の押し込み量を、鋼板板厚の20%以上80%以下とすることを特徴とする請求項1記載のカシメ方法。   2. The caulking method according to claim 1, wherein when a part of the steel plate is pushed into the die by the punch, the pushing amount in the thickness direction of the punch is set to 20% to 80% of the steel plate thickness. . 表面に絶縁被膜が形成されている電磁鋼板を打抜き、積層し、カシメで鋼板を結束した積層電磁鋼板であって、カシメ後の電磁鋼板の板厚断面形状において、板厚方向で板破断した箇所がなく、剪断面に絶縁被膜があり、積層した鋼板の剪断面間に導通のないことを特徴とする積層電磁鋼板。   A laminated electromagnetic steel sheet in which an electromagnetic steel sheet having an insulating coating formed on the surface is punched and laminated, and the steel sheets are bound by caulking, where the plate is broken in the thickness direction in the thickness cross-sectional shape of the electric steel sheet after caulking A laminated electrical steel sheet characterized by having no insulation film on the shearing surface and no conduction between the sheared surfaces of the laminated steel sheets. 表面に絶縁被膜が形成されている電磁鋼板を打抜き、積層し、カシメで鋼板を結束した積層電磁鋼板であって、該積層電磁鋼板が複数の箇所でカシメられており、その少なくとも1箇所が請求項1または2に記載のカシメ方法によりカシメられていることを特徴とする積層電磁鋼板。   A laminated electrical steel sheet obtained by punching and laminating electrical steel sheets having an insulating coating formed on the surface, and binding the steel sheets with caulking, the laminated electrical steel sheets being crimped at a plurality of locations, at least one of which is claimed 3. A laminated electrical steel sheet characterized by being caulked by the caulking method according to item 1 or 2. 前記積層電磁鋼板が電動機や発電機に使用される鉄心であり、その歯部が請求項1または2に記載のカシメ方法によりカシメられていることを特徴とする請求項4に記載の積層電磁鋼板。   The laminated electromagnetic steel sheet according to claim 4, wherein the laminated electromagnetic steel sheet is an iron core used for an electric motor or a generator, and a tooth portion thereof is caulked by a caulking method according to claim 1 or 2. . 前記絶縁被膜の厚さが2μm以上、鋼板板厚の1%以下であることを特徴とする請求項3〜5のいずれかに記載の積層電磁鋼板。   The laminated electrical steel sheet according to any one of claims 3 to 5, wherein the thickness of the insulating coating is 2 µm or more and 1% or less of the steel sheet thickness. 積層鋼板間またはカシメ部の剪断面間に接着剤が注入されていることを特徴とする請求項3〜6のいずれかに記載の積層電磁鋼板。   The laminated electrical steel sheet according to any one of claims 3 to 6, wherein an adhesive is injected between the laminated steel sheets or between the shearing surfaces of the crimped portions.
JP2006213516A 2006-08-04 2006-08-04 Laminated steel sheet of electromagnetic steel having high resistance between steel sheets on shear plane of steel sheet and caulking method thereof Active JP5309431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213516A JP5309431B2 (en) 2006-08-04 2006-08-04 Laminated steel sheet of electromagnetic steel having high resistance between steel sheets on shear plane of steel sheet and caulking method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213516A JP5309431B2 (en) 2006-08-04 2006-08-04 Laminated steel sheet of electromagnetic steel having high resistance between steel sheets on shear plane of steel sheet and caulking method thereof

Publications (2)

Publication Number Publication Date
JP2008036671A true JP2008036671A (en) 2008-02-21
JP5309431B2 JP5309431B2 (en) 2013-10-09

Family

ID=39172282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213516A Active JP5309431B2 (en) 2006-08-04 2006-08-04 Laminated steel sheet of electromagnetic steel having high resistance between steel sheets on shear plane of steel sheet and caulking method thereof

Country Status (1)

Country Link
JP (1) JP5309431B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105350A1 (en) * 2011-02-03 2012-08-09 株式会社三井ハイテック Laminated iron core and method for manufacturing same
JP5451934B1 (en) * 2012-11-06 2014-03-26 株式会社三井ハイテック Manufacturing method of laminated iron core
JP2015142448A (en) * 2014-01-29 2015-08-03 Jfeスチール株式会社 Laminated core manufacturing method and laminated core manufacturing device
WO2016035191A1 (en) * 2014-09-04 2016-03-10 株式会社安川電機 Rotating electric machine and method for manufacturing rotor core
US9455612B2 (en) 2010-12-07 2016-09-27 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US9705369B2 (en) 2012-10-12 2017-07-11 Mitsui High-Tec, Inc. Method of resin-sealing laminated core
US9947464B2 (en) 2010-12-14 2018-04-17 Mitsui High-Tec, Inc. Method of manufacturing laminated core
JPWO2017033873A1 (en) * 2015-08-21 2018-08-09 吉川工業株式会社 Stator core and motor including the same
WO2020129925A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Stator adhesive laminated core and rotating electric machine
JP2020202314A (en) * 2019-06-11 2020-12-17 鈴木 茂 Method for manufacturing plate material for laminate iron core, plate material for laminate iron core, and laminate iron core
WO2022195079A1 (en) * 2021-03-19 2022-09-22 Che-Motor Ag Ring cylindrical casing and method for producing a ring cylindcrical casing of a rotating electomechanical apparatus
US11513101B2 (en) * 2018-01-24 2022-11-29 Jfe Steel Corporation Elastic matrix determination method and vibration analysis method for laminated iron core

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156091A (en) * 1988-12-09 1990-06-15 Kawasaki Steel Corp Electrical steel sheet for laminated iron core having superior suitability to automatic caulking
JPH10243614A (en) * 1997-02-26 1998-09-11 Kuroda Precision Ind Ltd Progressive die device for laminated iron core
JP2000034573A (en) * 1998-07-15 2000-02-02 Nkk Corp Electromagnetic steel sheet excellent in odor resistance, sticking resistance and corrosion resistance
JP2000173815A (en) * 1998-12-09 2000-06-23 Sumitomo Metal Ind Ltd Bonded steel sheet for stacked core
JP2003027193A (en) * 2001-07-10 2003-01-29 Nkk Corp Nonoriented silicon steel sheet having excellent calking property
JP2004320878A (en) * 2003-04-15 2004-11-11 Mitsui High Tec Inc Manufacturing method of laminated core and laminated core
JP2005168097A (en) * 2003-11-28 2005-06-23 Mitsubishi Electric Corp Motor and rotary compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156091A (en) * 1988-12-09 1990-06-15 Kawasaki Steel Corp Electrical steel sheet for laminated iron core having superior suitability to automatic caulking
JPH10243614A (en) * 1997-02-26 1998-09-11 Kuroda Precision Ind Ltd Progressive die device for laminated iron core
JP2000034573A (en) * 1998-07-15 2000-02-02 Nkk Corp Electromagnetic steel sheet excellent in odor resistance, sticking resistance and corrosion resistance
JP2000173815A (en) * 1998-12-09 2000-06-23 Sumitomo Metal Ind Ltd Bonded steel sheet for stacked core
JP2003027193A (en) * 2001-07-10 2003-01-29 Nkk Corp Nonoriented silicon steel sheet having excellent calking property
JP2004320878A (en) * 2003-04-15 2004-11-11 Mitsui High Tec Inc Manufacturing method of laminated core and laminated core
JP2005168097A (en) * 2003-11-28 2005-06-23 Mitsubishi Electric Corp Motor and rotary compressor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455612B2 (en) 2010-12-07 2016-09-27 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US10177636B2 (en) 2010-12-07 2019-01-08 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US10283264B2 (en) 2010-12-14 2019-05-07 Mistui High-Tec, Inc. Method of manufacturing laminated core
US9947464B2 (en) 2010-12-14 2018-04-17 Mitsui High-Tec, Inc. Method of manufacturing laminated core
WO2012105350A1 (en) * 2011-02-03 2012-08-09 株式会社三井ハイテック Laminated iron core and method for manufacturing same
US9318923B2 (en) 2011-02-03 2016-04-19 Mitsui High-Tec, Inc. Laminated iron core and method for manufacturing same
US9705369B2 (en) 2012-10-12 2017-07-11 Mitsui High-Tec, Inc. Method of resin-sealing laminated core
US9564790B2 (en) 2012-11-06 2017-02-07 Mitsui High-Tec, Inc. Method for manufacturing laminated core
CN103812285A (en) * 2012-11-06 2014-05-21 株式会社三井高科技 Method for manufacturing laminated core
JP5451934B1 (en) * 2012-11-06 2014-03-26 株式会社三井ハイテック Manufacturing method of laminated iron core
JP2015142448A (en) * 2014-01-29 2015-08-03 Jfeスチール株式会社 Laminated core manufacturing method and laminated core manufacturing device
WO2016035191A1 (en) * 2014-09-04 2016-03-10 株式会社安川電機 Rotating electric machine and method for manufacturing rotor core
JPWO2017033873A1 (en) * 2015-08-21 2018-08-09 吉川工業株式会社 Stator core and motor including the same
US11513101B2 (en) * 2018-01-24 2022-11-29 Jfe Steel Corporation Elastic matrix determination method and vibration analysis method for laminated iron core
WO2020129925A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Stator adhesive laminated core and rotating electric machine
JPWO2020129925A1 (en) * 2018-12-17 2021-09-27 日本製鉄株式会社 Adhesive laminated core for stator and rotary electric machine
JP2020202314A (en) * 2019-06-11 2020-12-17 鈴木 茂 Method for manufacturing plate material for laminate iron core, plate material for laminate iron core, and laminate iron core
JP7271064B2 (en) 2019-06-11 2023-05-11 茂 鈴木 METHOD FOR MANUFACTURING PLATE MATERIAL FOR LAMINATED CORE, PLATE MATERIAL FOR LAMINATED CORE, AND LAMINATED CORE
WO2022195079A1 (en) * 2021-03-19 2022-09-22 Che-Motor Ag Ring cylindrical casing and method for producing a ring cylindcrical casing of a rotating electomechanical apparatus

Also Published As

Publication number Publication date
JP5309431B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5309431B2 (en) Laminated steel sheet of electromagnetic steel having high resistance between steel sheets on shear plane of steel sheet and caulking method thereof
JP4938389B2 (en) Laminated core and stator
JP5285020B2 (en) Laminated iron core and manufacturing method thereof
JP5859297B2 (en) Rotating electric machine
KR102607589B1 (en) Laminated core and rotating electrical machines
KR20210082509A (en) Laminated Cores, Core Blocks, Rotating Electric Machines and Methods for Manufacturing Core Blocks
KR20210095185A (en) Laminated Core and Rotating Electric Machines
KR20240052877A (en) Stator adhesive laminated core and rotating electrical machine
JPWO2017033873A1 (en) Stator core and motor including the same
KR20210083349A (en) Adhesive laminated cores for stators and rotating electric machines
JP2011182552A (en) Rotor core, and core for rotary electric machine
JP6069475B2 (en) Rotating electric machine
JP6024919B2 (en) Motor with low iron loss deterioration due to shrink fitting
JP2005268589A (en) Simple manufacturing method of magnetic member for energy converter
WO2013121786A1 (en) Stator core for motor
JP2013021802A (en) Rotor and rotary electric machine with the same
JP5146089B2 (en) motor
JP6024918B2 (en) Motor with low iron loss deterioration due to shrink fitting
CN115398568A (en) Electromagnetic steel sheet, laminated iron core, and rotating electrical machine
JP2001231191A (en) Stator core and small-sized motor mounting it
JP2005130605A (en) Piece for stator core, stator, rotary machine, and vehicle employing rotary machine
JP2013099089A (en) Rotor for motor and method of manufacturing the same
JP2003274616A (en) Method of suppressing deterioration of annealed core due to fixing
JP2003259610A (en) Method and device of manufacturing laminated core
JP2022001013A (en) Laminated core and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5309431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350