JP6024918B2 - Motor with low iron loss deterioration due to shrink fitting - Google Patents

Motor with low iron loss deterioration due to shrink fitting Download PDF

Info

Publication number
JP6024918B2
JP6024918B2 JP2013170164A JP2013170164A JP6024918B2 JP 6024918 B2 JP6024918 B2 JP 6024918B2 JP 2013170164 A JP2013170164 A JP 2013170164A JP 2013170164 A JP2013170164 A JP 2013170164A JP 6024918 B2 JP6024918 B2 JP 6024918B2
Authority
JP
Japan
Prior art keywords
motor
shrink fitting
iron loss
housing
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013170164A
Other languages
Japanese (ja)
Other versions
JP2015042014A (en
Inventor
尾田 善彦
善彦 尾田
善彰 財前
善彰 財前
千田 邦浩
邦浩 千田
広朗 戸田
広朗 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013170164A priority Critical patent/JP6024918B2/en
Publication of JP2015042014A publication Critical patent/JP2015042014A/en
Application granted granted Critical
Publication of JP6024918B2 publication Critical patent/JP6024918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、ステータを焼き嵌めによりハウジングに固定することによる鉄損劣化の小さいモータに関するものである。   The present invention relates to a motor with small iron loss deterioration by fixing a stator to a housing by shrink fitting.

電気自動車等のモータでは、ステータ(固定子)をハウジングに固定するため、焼き嵌めが行われることがある。焼き嵌めを行うと、ステータには50〜100MPa程度の圧縮応力が付与されるため、モータ効率は著しく低下することが知られている。   In a motor such as an electric vehicle, shrink fitting may be performed in order to fix a stator (stator) to a housing. It is known that when shrink fitting is performed, the stator is applied with a compressive stress of about 50 to 100 MPa, so that the motor efficiency is significantly reduced.

このような焼き嵌めによるモータ効率の低下を防止する技術として、例えば、特許文献1には、分割コアにおいて、ティースとヨークの嵌合部にヤング率が1MPa以上20GPa以下の弾性体を挿入することによって、圧縮応力を低減する技術が開示されている。また、特許文献2には、ステータ外周部に空隙部を設けることによって、ステータに加わる圧縮応力を低減し、モータ効率を向上させる技術が開示されている。   As a technique for preventing a reduction in motor efficiency due to such shrink fitting, for example, in Patent Document 1, in a split core, an elastic body having a Young's modulus of 1 MPa or more and 20 GPa or less is inserted into a fitting portion between a tooth and a yoke. Discloses a technique for reducing compressive stress. Patent Document 2 discloses a technique for reducing the compressive stress applied to the stator and improving the motor efficiency by providing a gap in the outer periphery of the stator.

特開2006−296075号公報JP 2006-296075 A 特開2005−354870号公報JP 2005-354870 A

しかしながら、上記の従来技術は、いずれも、焼き嵌めに起因した圧縮応力を低減することによって、ステータの鉄損劣化を低減しようとする技術であり、焼き嵌めによる鉄損劣化をある程度までは低減できるものの、その改善効果は十分に満足できるほどのものではないのが実状である。   However, each of the above conventional techniques is a technique for reducing the iron loss deterioration of the stator by reducing the compressive stress caused by shrink fitting, and can reduce the iron loss deterioration due to shrink fitting to some extent. However, the actual situation is that the improvement effect is not sufficiently satisfactory.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、焼き嵌めによるモータ特性の劣化を、圧縮応力を低減するという従来技術とは異なる観点から、焼き嵌めによる鉄損劣化の小さいモータを提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to reduce deterioration of motor characteristics due to shrink fitting from a viewpoint different from the conventional technique of reducing compressive stress. The object is to provide a motor with low iron loss deterioration.

発明者らは、上記課題の解決に向け、焼き嵌めによる圧縮応力を低減するという観点ではなく、鉄損特性の劣化原因を解明し、その原因を除去することが重要であるとの技術思想の下、鋭意検討を重ねた。
その結果、焼き嵌めによる鉄損劣化は、圧縮残留応力によるものよりも、積層した電磁鋼板を締結しステータコアを組立てるために設けられたかしめ部と、ステータコアをモータのハウジングに固定する際に形成される焼き嵌め部を介して短絡回路が形成され、これにより渦電流が増大し、モータ効率の低下が引き起こされていること、したがって、上記短絡回路を遮断するためには、ステータコアとハウジングとの間(焼き嵌め部)に何らかの絶縁層を形成してやることが有効であることを見出し、本発明を開発するに至った。
In order to solve the above-mentioned problems, the inventors have not thought of reducing the compressive stress due to shrink fitting, but elucidating the cause of deterioration of the iron loss characteristics and removing the cause of the technical idea that it is important. Below, intensive study was repeated.
As a result, iron loss deterioration due to shrink fitting is formed when fastening the laminated electromagnetic steel sheets and assembling the stator core and fixing the stator core to the motor housing rather than due to compressive residual stress. A short circuit is formed through the shrink-fitting portion, which increases eddy currents and causes a reduction in motor efficiency.Therefore, in order to interrupt the short circuit, there is a problem between the stator core and the housing. The inventors have found that it is effective to form some kind of insulating layer in the (shrink-fitted portion), and have developed the present invention.

すなわち、本発明は、電磁鋼板を積層し、かしめにより締結されたステータをハウジングに焼き嵌めで固定してなるモータであって、上記ハウジングの内周面に絶縁被膜層が形成されてなることを特徴とするモータである。
本発明の上記モータは、上記ハウジングの内周面に加えて、ステータの外周面に絶縁被膜層が形成されてなることを特徴とする。
That is, the present invention is a motor in which electromagnetic steel plates are laminated and a stator fastened by caulking is fixed to the housing by shrink fitting, and an insulating coating layer is formed on the inner peripheral surface of the housing. This is a featured motor.
The motor according to the present invention is characterized in that an insulating coating layer is formed on the outer peripheral surface of the stator in addition to the inner peripheral surface of the housing.

また、本発明のモータにおける上記絶縁被膜は、絶縁塗料被膜であることを特徴とする。 The insulating coating in the motor of the present invention is an insulating paint coating.

本発明によれば、ステータを焼き嵌めによりハウジングに固定するモータの効率を向上することができるので、例えば、ハイブリッド自動車や電気自動車、燃料電池電気自動車等の駆動モータ、エアコン用コンプレッサーモータ、高速発電機等の効率向上に大いに寄与する。   According to the present invention, the efficiency of a motor for fixing the stator to the housing by shrink fitting can be improved. For example, a drive motor for a hybrid vehicle, an electric vehicle, a fuel cell electric vehicle, etc., a compressor motor for an air conditioner, a high-speed power generation This greatly contributes to improving the efficiency of machines.

ステータコアをハウジングに焼き嵌めで固定する形式のモータ断面図である。It is a motor sectional view of a type which fixes a stator core to a housing by shrink fitting. ハウジングとステータコア間に形成される短絡回路を説明する図である。It is a figure explaining the short circuit formed between a housing and a stator core.

本発明を開発するに至った実験について説明する。
焼き嵌めに起因したモータの効率低下、即ち、鉄損特性の劣化原因を調査するため、Siを3mass%含有する板厚0.35mmの無方向性電磁鋼板を積層して、ステータ外径120mm、ステータ内径(ティース先端の内径)60mmの12スロットのステータコアを作製した。なお、上記ステータコアの締結は、図1に示すように、ステータコアの外周から7mmの位置の12箇所に、台形かしめを施すことにより行った。
The experiment that led to the development of the present invention will be described.
In order to investigate the motor efficiency decrease due to shrink fitting, that is, the cause of deterioration of iron loss characteristics, a non-oriented electrical steel sheet having a thickness of 0.35 mm containing 3 mass% of Si was laminated, and the stator outer diameter was 120 mm. A 12-slot stator core having a stator inner diameter (inner diameter at the tip of the teeth) of 60 mm was produced. The stator core was fastened by trapezoidal caulking at 12 locations 7 mm from the outer periphery of the stator core, as shown in FIG.

次いで、上記ステータコアをモータハウジングに、焼き嵌めで、焼き嵌め代を30μmとして固定し、IPMモデルモータを製造した。なお、上記モータのハウジングには、Si:0.1mass%を含有する板厚2.6mmの熱延鋼板を、深絞り成形で円筒状にしたものを用いた。   Subsequently, the stator core was fixed to the motor housing by shrink fitting, with a shrinkage allowance of 30 μm, and an IPM model motor was manufactured. The motor housing was a hot-rolled steel plate having a thickness of 2.6 mm containing Si: 0.1 mass% and formed into a cylindrical shape by deep drawing.

上記ステータコアについて、焼き嵌め前後における磁束密度1.0T、周波数50Hzでの鉄損W10/50を測定し、焼き嵌めによる鉄損の変化を調査した。なお、上記鉄損の測定は、ステータコアのバックヨークに1次100ターン、二次36ターンの巻き線を施して測定した。この際、バックヨークの外周部に溝を設け、この部分に巻き線を通すことによって、ハウジングの磁束を検出しないように配慮した。 For the stator core, the iron loss W 10/50 at a magnetic flux density of 1.0 T and a frequency of 50 Hz before and after shrink fitting was measured, and the change in iron loss due to shrink fitting was investigated. The iron loss was measured by winding a primary yoke of 100 turns and a secondary 36 turns on the back yoke of the stator core. At this time, consideration was given to avoid detecting the magnetic flux of the housing by providing a groove in the outer peripheral portion of the back yoke and passing the winding through this portion.

表1に、焼き嵌め前後におけるステータコアの鉄損値を示した。この表から、焼き嵌めによって、ステータコアの鉄損W10/50が1.5倍程度に増加していることがわかった。そこで、発明者らは、さらに上記測定した鉄損値について、鉄損分離を行い、その結果を表1に併記して示した。この結果から、焼き嵌めによって、ヒステリシス損は25%、渦電流損は300%増加していることがわかった。 Table 1 shows the iron loss values of the stator core before and after shrink fitting. From this table, it was found that the iron loss W 10/50 of the stator core was increased by about 1.5 times by shrink fitting. Therefore, the inventors further performed iron loss separation on the measured iron loss values, and the results are also shown in Table 1. From this result, it was found that the shrinkage loss increased the hysteresis loss by 25% and the eddy current loss by 300%.

Figure 0006024918
Figure 0006024918

従来、電磁鋼板のヒステリシス損および渦電流損は、圧縮応力により増加することは知られているが、その増加率は同程度であると考えられていた。しかし、上記のように、ステータコアを焼き嵌めで固定したモータでは、渦電流損が著しく増加している。   Conventionally, it has been known that the hysteresis loss and eddy current loss of an electrical steel sheet increase due to compressive stress, but the increase rate has been considered to be comparable. However, as described above, in the motor in which the stator core is fixed by shrink fitting, the eddy current loss is remarkably increased.

発明者らは、上記のように渦電流損が異常に増加する原因について、何らかの短絡現象が生じているものと考え、さらに検討を重ねた。その結果、ステータコアの外周面(打抜加工時の剪断面)およびステータコアのかしめ部には絶縁被膜が欠落していることから、図2に示したように、「鋼板−かしめ部−鋼板−焼き嵌め部−ハウジング−焼き嵌め部−鋼板」という短絡回路が形成され、これにより渦電流損の異常な増加が引き起こされている可能性が最も高いと考えた。   The inventors considered that the cause of the abnormal increase in eddy current loss as described above is that some short-circuit phenomenon has occurred, and further studied. As a result, the outer peripheral surface of the stator core (sheared surface at the time of punching) and the caulking portion of the stator core lack an insulating coating. As shown in FIG. 2, “steel plate-caulking portion-steel plate-baking” It was considered that the shortest circuit of “fitting part—housing—shrink fitting part—steel plate” was formed, and this was most likely to cause an abnormal increase in eddy current loss.

そこで、上述したIPMモータにおいて、ステータコアをハウジングに焼き嵌めする際、ハウジングの内周面にシリコンポリマー系の絶縁塗料(パイロコート(登録商標))を10μmの厚さで塗布した後、ステータコアを焼き嵌めし、バックヨーク部の鉄損を、前述した実験と同様にして測定した。その結果、表2に示したように、絶縁塗料を塗布する前と比較し、焼き嵌め後の鉄損を大幅に改善することができることがわかった。   Therefore, in the above-described IPM motor, when the stator core is shrink-fitted into the housing, a silicon polymer insulating paint (Pyrocoat (registered trademark)) is applied to the inner peripheral surface of the housing to a thickness of 10 μm, and then the stator core is baked. The iron loss of the back yoke portion was measured in the same manner as in the experiment described above. As a result, as shown in Table 2, it was found that the iron loss after shrink fitting can be greatly improved as compared with before applying the insulating paint.

Figure 0006024918
Figure 0006024918

そこで、本発明は、上記実験結果を基に、ステータコアをモータハウジングに焼き嵌めする際、ステータコアの外周面および/またはモータハウジングの内周面に絶縁被膜層を形成することで、焼き嵌め部における短絡を防止し、渦電流損の増加を抑制することとした。   Therefore, according to the present invention, when the stator core is shrink-fitted to the motor housing based on the above experimental results, an insulating coating layer is formed on the outer peripheral surface of the stator core and / or the inner peripheral surface of the motor housing. It was decided to prevent short circuit and suppress increase in eddy current loss.

ここで、上記絶縁被膜層としては、絶縁性の塗料を用いることが好ましい。絶縁性塗料は、特に規定するものではないが、シリコン変成エポキシ樹脂、シリコン変成ポリエステル樹脂、ポリイミド樹脂であれば好適に用いることができる。   Here, as the insulating coating layer, an insulating paint is preferably used. The insulating paint is not particularly specified, but any silicon-modified epoxy resin, silicon-modified polyester resin, or polyimide resin can be suitably used.

また、上記絶縁塗料の膜厚は、0.5〜30μmの範囲とするのが好ましい。0.5μm未満では、安定して絶縁性を確保することが困難であり、焼き嵌め後の鉄損が増加するおそれがある。一方、30μmを超えると、塗料の硬化時間が長くなり、生産性を阻害するようになる。絶縁性および作業性を確保する観点からは、より好ましくは1〜10μmの範囲である。   Moreover, it is preferable that the film thickness of the said insulating paint shall be the range of 0.5-30 micrometers. If the thickness is less than 0.5 μm, it is difficult to stably ensure insulation, and iron loss after shrink fitting may increase. On the other hand, when it exceeds 30 μm, the curing time of the paint becomes long, and the productivity is inhibited. From the viewpoint of ensuring insulation and workability, it is more preferably in the range of 1 to 10 μm.

なお、上記絶縁塗料を塗布する面は、モータハウジングの内周面、ステータコアの外周面のいずれでもよく、また、上記の両面に塗布してもよい。ただし、モータハウジングの内周面に塗布する場合には、焼き嵌め時の加熱(300〜500℃)を考慮し、例えば、前述したパイロコートのように耐熱性のある塗料を用いることが好ましい。一方、ステータコアの外周面の形成する場合には、塗膜が受ける加熱は一時的であるため、上記ほどの耐熱性は要求されない。   The surface to which the insulating paint is applied may be either the inner peripheral surface of the motor housing or the outer peripheral surface of the stator core, or may be applied to both the above surfaces. However, in the case of applying to the inner peripheral surface of the motor housing, it is preferable to use a heat-resistant paint such as the above-described pyrocoat in consideration of heating (300 to 500 ° C.) during shrink fitting. On the other hand, when the outer peripheral surface of the stator core is formed, the heat received by the coating film is temporary, and the heat resistance as described above is not required.

板厚0.35mmの無方向性電磁鋼板を、外形が120mm、ロータ外形が60mmのステータ形状に打抜加工し、積み厚50mmに積層して、8極、12スロットのステータコアを組み立てた。積層した鋼板の締結は、図1に示すように、ステータの外周に12箇所の台形かしめを施すことで行った。
次いで、上記ステータコアを、モータハウジングに焼き嵌め代を30μmとした焼き嵌めにより固定し、IPMモータを作製した。なお、上記モータハウジングには、Siが0.1mass%で、板厚が2.6mmの熱延鋼板を深絞り成形して円筒状としたものを用いた。
また、上記焼き嵌めは、上記ハウジングの内面および/またはステータコアの外周面に、シリコン変性エポキシ樹脂、シリコン変性ポリエステル樹脂、ポリイミド樹脂およびシリコンポリマー樹脂のうちのいずれかを絶縁塗料として表3に示した膜厚で塗布した後、行った。
A non-oriented electrical steel sheet having a plate thickness of 0.35 mm was punched into a stator shape having an outer shape of 120 mm and a rotor outer shape of 60 mm and laminated to a stack thickness of 50 mm to assemble an 8-pole, 12-slot stator core. As shown in FIG. 1, the laminated steel plates were fastened by applying 12 trapezoidal caulks to the outer periphery of the stator.
Next, the stator core was fixed to the motor housing by shrink fitting with a shrinkage allowance of 30 μm to produce an IPM motor. As the motor housing, a hot rolled steel sheet having a Si content of 0.1 mass% and a thickness of 2.6 mm was formed by deep drawing and formed into a cylindrical shape.
In addition, the shrink fit is shown in Table 3 as an insulating paint on the inner surface of the housing and / or the outer peripheral surface of the stator core, and any one of silicon-modified epoxy resin, silicon-modified polyester resin, polyimide resin, and silicon polymer resin is used. After coating with a film thickness, it was performed.

上記ステータコアについて、焼き嵌め前後における磁束密度1.0T、周波数50Hzでの鉄損W10/50を測定し、焼き嵌めによる鉄損の変化を調査した。なお、上記鉄損の測定は、ステータコアのバックヨークに1次100ターン、二次36ターンの巻き線を施して測定した。この際、バックヨークの外周部に溝を設け、この部分に巻き線を通すことによって、ハウジングの磁束を検出しないように配慮した。 For the stator core, the iron loss W 10/50 at a magnetic flux density of 1.0 T and a frequency of 50 Hz before and after shrink fitting was measured, and the change in iron loss due to shrink fitting was investigated. The iron loss was measured by winding a primary yoke of 100 turns and a secondary 36 turns on the back yoke of the stator core. At this time, consideration was given to avoid detecting the magnetic flux of the housing by providing a groove in the outer peripheral portion of the back yoke and passing the winding through this portion.

表3に、焼き嵌め前後におけるステータコアの鉄損W10/50の測定結果を示した。この表から、ハウジングの内面および/またはステータコアの外周面に絶縁塗料を塗布することで、焼き嵌めに伴うモータ鉄損特性の劣化を大幅に低減できることがわかる。 Table 3 shows the measurement results of the iron loss W 10/50 of the stator core before and after shrink fitting. From this table, it can be seen that by applying an insulating paint to the inner surface of the housing and / or the outer peripheral surface of the stator core, the deterioration of the motor iron loss characteristic due to shrink fitting can be significantly reduced.

Figure 0006024918
Figure 0006024918

本発明の技術は、誘導モータ、エアコンコンプレッサーモーター、HEVモータ等にも(の分野にも)適用(利用)することができる。   The technology of the present invention can also be applied (utilized) to (in the field of) induction motors, air conditioner compressor motors, HEV motors, and the like.

Claims (3)

電磁鋼板を積層し、かしめにより締結されたステータをハウジングに焼き嵌めで固定してなるモータであって、
上記ハウジングの内周面に絶縁被膜層が形成されてなることを特徴とするモータ。
It is a motor formed by laminating electromagnetic steel plates and fixing a stator fastened by caulking to the housing by shrink fitting,
A motor comprising an insulating coating layer formed on an inner peripheral surface of the housing.
上記ハウジングの内周面に加えて、ステータの外周面に絶縁被膜層が形成されてなることを特徴とする請求項1に記載のモータ。The motor according to claim 1, wherein an insulating coating layer is formed on the outer peripheral surface of the stator in addition to the inner peripheral surface of the housing. 上記絶縁被膜は、絶縁塗料被膜であることを特徴とする請求項1または2に記載のモータ。 The insulating coating is motor according to claim 1 or 2, characterized in that an insulating coating film.
JP2013170164A 2013-08-20 2013-08-20 Motor with low iron loss deterioration due to shrink fitting Active JP6024918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013170164A JP6024918B2 (en) 2013-08-20 2013-08-20 Motor with low iron loss deterioration due to shrink fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013170164A JP6024918B2 (en) 2013-08-20 2013-08-20 Motor with low iron loss deterioration due to shrink fitting

Publications (2)

Publication Number Publication Date
JP2015042014A JP2015042014A (en) 2015-03-02
JP6024918B2 true JP6024918B2 (en) 2016-11-16

Family

ID=52695899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170164A Active JP6024918B2 (en) 2013-08-20 2013-08-20 Motor with low iron loss deterioration due to shrink fitting

Country Status (1)

Country Link
JP (1) JP6024918B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562196B (en) * 2016-09-08 2020-03-04 Protean Electric Ltd A method and arrangement for assembling an electric motor or generator
GB2573185B (en) * 2018-12-18 2020-12-16 Protean Electric Ltd A method for assembling a stator for an electric motor or generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193778A (en) * 2007-02-02 2008-08-21 Mitsubishi Electric Corp Stator and enclosed compressor and rotating machine
JP5733556B2 (en) * 2010-09-17 2015-06-10 並木精密宝石株式会社 Inner rotor type brushless motor and method for manufacturing the inner rotor type brushless motor

Also Published As

Publication number Publication date
JP2015042014A (en) 2015-03-02

Similar Documents

Publication Publication Date Title
KR102605370B1 (en) Laminated core and rotating electrical machines
JP7173162B2 (en) Laminated core and rotating electric machine
EP3872963A1 (en) Laminated core, core block, rotating electric machine, and method of manufacturing core block
KR102643516B1 (en) Laminated core and rotating electric machines
EP3902108B1 (en) Laminated core and rotating electric machine
KR102485638B1 (en) Laminated core and rotating electric machines
JP2022044777A (en) Sleeve rotor synchronous reluctance electric machine
WO2017033873A1 (en) Stator core and motor equipped with same
JP5651924B2 (en) Stator core and motor
JP6024919B2 (en) Motor with low iron loss deterioration due to shrink fitting
JP6024918B2 (en) Motor with low iron loss deterioration due to shrink fitting
JP5531841B2 (en) Electric motor
WO2013121786A1 (en) Stator core for motor
JP2013099089A (en) Rotor for motor and method of manufacturing the same
JP2024001799A (en) stator and motor
JP4264273B2 (en) Method for manufacturing stator core of motor
KR20220010609A (en) Core blocks, laminated cores and rotating electric machines
JP2023060136A (en) Laminate core and rotary electric machine
EA042110B1 (en) PLATED CORE AND ELECTRIC MOTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6024918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250