JP2008193778A - Stator and enclosed compressor and rotating machine - Google Patents

Stator and enclosed compressor and rotating machine Download PDF

Info

Publication number
JP2008193778A
JP2008193778A JP2007023630A JP2007023630A JP2008193778A JP 2008193778 A JP2008193778 A JP 2008193778A JP 2007023630 A JP2007023630 A JP 2007023630A JP 2007023630 A JP2007023630 A JP 2007023630A JP 2008193778 A JP2008193778 A JP 2008193778A
Authority
JP
Japan
Prior art keywords
stator
regions
circumferential direction
contact
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007023630A
Other languages
Japanese (ja)
Inventor
Masahiro Nigo
昌弘 仁吾
Kazuhiko Baba
和彦 馬場
Yoshio Takita
芳雄 滝田
Tomoaki Oikawa
智明 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007023630A priority Critical patent/JP2008193778A/en
Publication of JP2008193778A publication Critical patent/JP2008193778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high efficiency stator which can reduce iron loss, by relaxing stress impairment of magnetic characteristics resulting from a compressive stress generated, when the stator is shrinkage fitted to the enclosed container of a compressor, and to provide an enclosed compressor and a rotating machine. <P>SOLUTION: In the stator 2 having a tubular laminated stator core 3 secured to the enclosed container 1 of an enclosed compressor by shrinkage fitting, the stator core 3 has a plurality of slots 5 arranged in the circumferential direction; magnetic pole tees 4 formed between adjoining slots 5 and around which a coil 6 is wound; a plurality of regions 12 divided in the circumferential direction by the radial center line of the magnetic pole tees 4; contact regions 13, i.e. a predetermined number of regions from among the plurality of regions 12, arranged at a fixed interval in the circumferential direction and contacting the inner circumferential surface of the enclosed container 1; and noncontact regions 14 formed between the contact regions 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、固定子外周に、密閉容器内周面と接触させた領域と、非接触にした領域とを周方向に所定の間隔で設けることにより、焼嵌時に固定子に発生する圧縮応力を緩和した固定子及び密閉型圧縮機等に関するものである。   According to the present invention, a compression stress generated in the stator at the time of shrinkage fitting is provided on the outer periphery of the stator by providing a region in contact with the inner peripheral surface of the sealed container and a region in a non-contact manner at a predetermined interval in the circumferential direction. The present invention relates to a relaxed stator and a hermetic compressor.

ハウジングの締め付け力によってステータを保持する構造を採用しながら、回転機の効率の低下を低減することができる技術を提供するために、ステータの外周面は、ハウジングの内周面と当接する当接面、ハウジングの内周面との間に空隙を形成する非当接面が形成され、当接面の中心角度が130度の範囲内に設定されるステータが提案されている(例えば、特許文献1参照)。
特開2006−191702号公報(第7頁、第3図)
In order to provide a technique capable of reducing the reduction in efficiency of the rotating machine while adopting a structure in which the stator is held by the tightening force of the housing, the outer peripheral surface of the stator is in contact with the inner peripheral surface of the housing. There has been proposed a stator in which a non-contact surface that forms a gap is formed between the surface and the inner peripheral surface of the housing, and the center angle of the contact surface is set within a range of 130 degrees (for example, Patent Documents). 1).
JP 2006-191702 (page 7, FIG. 3)

固定子を圧縮機の密閉容器に焼嵌した場合、固定子内部には締め付け力に応じた圧縮応力が発生し、この圧縮応力のベクトル方向と固定子内に発生する磁束ベクトルの方向が同じ場合、電磁鋼板の透磁率が低下し、鉄損劣化をもたらす。従来の固定子は、密閉容器焼嵌時に、磁束の通りやすいコアバック部にほぼ均一に圧縮応力が発生し、圧縮応力のベクトルの向きと磁束ベクトルの向きが共にコアバック周方向で同一方向を向いているため電磁鋼板の磁気特性が劣化し、鉄損が増加する等の課題があった。   When the stator is shrink-fitted into the compressor's sealed container, compressive stress is generated in the stator according to the tightening force, and the direction of the vector of the compressive stress and the direction of the magnetic flux vector generated in the stator are the same. In addition, the magnetic permeability of the electromagnetic steel sheet is lowered, resulting in iron loss deterioration. Conventional stators generate compressive stress almost uniformly in the core back where magnetic flux easily passes when the sealed container is fitted, and both the direction of the compressive stress vector and the direction of the magnetic flux vector are the same in the core back circumferential direction. Therefore, there are problems such as deterioration of magnetic properties of the electrical steel sheet and increase of iron loss.

この発明は、上記のよう課題を解決するためになされたもので、固定子を圧縮機の密閉容器に焼嵌した場合に発生する圧縮応力に起因する磁気特性の応力劣化を緩和し、鉄損を低減することができる高効率の固定子及び密閉型圧縮機及び回転機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and alleviates the stress deterioration of the magnetic characteristics caused by the compressive stress generated when the stator is shrink-fitted into the hermetic container of the compressor. It is an object of the present invention to provide a highly efficient stator, hermetic compressor, and rotating machine that can reduce the noise.

この発明に係る固定子は、焼嵌等により密閉型圧縮機等の密閉容器に固定される円筒状の積層された固定子鉄心を有する固定子において、
固定子鉄心は、
周方向に配置される複数のスロットと、
隣接するスロットの間に形成され、コイルが巻装される磁極ティースと、
磁極ティース又はスロットの径方向中心線により周方向に分割される複数の領域と、
複数の領域の中の所定数の領域で、周方向に一定間隔で配置される密閉容器の内周面と接触する接触領域と、
接触領域の間に形成される非接触領域とを備えたことを特徴とする。
The stator according to the present invention is a stator having a cylindrical laminated stator core that is fixed to a hermetic container such as a hermetic compressor by shrink fitting,
The stator core
A plurality of slots arranged in a circumferential direction;
Magnetic pole teeth formed between adjacent slots and wound with a coil;
A plurality of regions divided in the circumferential direction by the radial center line of the magnetic teeth or slots;
A contact region in contact with the inner peripheral surface of the sealed container that is arranged at a predetermined interval in the circumferential direction in a predetermined number of regions among the plurality of regions;
And a non-contact area formed between the contact areas.

この発明に係る固定子は、焼嵌時に発生する圧縮応力を応力分布の対称性を保ちながら磁路に影響しにくい固定子外周部のシェルとの接触端部に集中させることができ、電磁鋼板の磁気特性劣化を緩和し、鉄損を低減することができるという効果を有する。   The stator according to the present invention is capable of concentrating the compressive stress generated during shrink fitting at the contact end portion with the shell of the outer periphery of the stator that does not affect the magnetic path while maintaining symmetry of the stress distribution. This has the effect of alleviating the deterioration of the magnetic properties and reducing the iron loss.

実施の形態1.
図1乃至図7は実施の形態1を示す図で、図1は焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図、図2は焼嵌後の密閉容器1の変形量を拡大した密閉型圧縮機内の電動要素50付近の横断面図、図3は焼嵌後の固定子鉄心3の応力分布を示す図((a)は固定子鉄心3の外周が密閉容器1の内周に全接触するケース、(b)は図1のケース)、図4は電磁鋼板の圧縮応力に対する鉄損特性を示す図、図5は焼嵌代と鉄損との関係図、図6は図1の第1の変形例を示す横断面図、図7は図1の第2の変形例を示す横断面図である。
Embodiment 1 FIG.
1 to 7 are diagrams showing the first embodiment. FIG. 1 is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting, and FIG. 2 shows the deformation amount of the hermetic container 1 after shrink fitting. FIG. 3 is a cross-sectional view of the vicinity of the electric element 50 in the enlarged hermetic compressor, and FIG. (B) is the case of FIG. 1), FIG. 4 is a diagram showing the iron loss characteristic with respect to the compressive stress of the electromagnetic steel sheet, FIG. 5 is a relationship diagram between the shrinkage allowance and the iron loss, and FIG. FIG. 7 is a cross-sectional view showing a first modification of FIG. 1, and FIG. 7 is a cross-sectional view showing a second modification of FIG.

図1において、電動要素50は、固定子2と回転子8とを備える。固定子2が密閉容器1(ハウジングとも呼ぶ)に焼嵌により固定される。密閉容器1は、厚さ3mm程度の円筒形状をしており、例えば、鋼板を絞り加工することにより形成される。図1は密閉型圧縮機の例であるが、回転機であってもよい。その場合、密閉容器1をハウジングと呼ぶ。   In FIG. 1, the electric element 50 includes a stator 2 and a rotor 8. The stator 2 is fixed to the sealed container 1 (also called a housing) by shrink fitting. The sealed container 1 has a cylindrical shape with a thickness of about 3 mm, and is formed, for example, by drawing a steel plate. Although FIG. 1 shows an example of a hermetic compressor, a rotary machine may be used. In that case, the sealed container 1 is called a housing.

固定子2は、固定子鉄心3とコイル6とを備える。固定子鉄心3は、厚み0.1〜0.5mm程度の薄い電磁鋼板を一枚一枚打ち抜いて所定の枚数を積層することで構成される。焼嵌前は外径が密閉容器1の内径よりもわずかに大きい円筒形状をしている。また、固定子鉄心3は電磁鋼板積層後に、打ち抜き時の歪を緩和するために、焼鈍処理を行っている。   The stator 2 includes a stator core 3 and a coil 6. The stator core 3 is configured by punching out thin electromagnetic steel sheets having a thickness of about 0.1 to 0.5 mm one by one and laminating a predetermined number. Before shrink fitting, it has a cylindrical shape whose outer diameter is slightly larger than the inner diameter of the sealed container 1. Further, the stator core 3 is subjected to an annealing process after the lamination of the electromagnetic steel sheets in order to relieve the distortion at the time of punching.

密閉容器1は、電磁誘導加熱で200℃程度に熱せられ、膨張した状態で固定子2に焼嵌される。密閉容器1と固定子2との嵌め代(焼嵌代)は、固定子2の重量に合わせて、数十〜数百μmの範囲で適宜選択される。焼嵌とは、常温で固定子2の外径よりも密閉容器1の内径を小さく設定し、密閉容器1に固定子2を嵌合する場合に、密閉容器1を加熱して膨張させ、常温の固定子2の外径よりも密閉容器1の内径を大きくして挿入し、固定子2が常温に戻ると、両者は固定されることをいう。また、嵌め代(焼嵌代)とは、常温での固定子2の外径と密閉容器1の内径との差をいう(固定子2の外径>密閉容器1の内径)。   The sealed container 1 is heated to about 200 ° C. by electromagnetic induction heating and is shrink-fitted to the stator 2 in an expanded state. The fitting allowance (shrinkage allowance) between the hermetic container 1 and the stator 2 is appropriately selected in the range of several tens to several hundreds μm according to the weight of the stator 2. By shrink fitting, the inner diameter of the sealed container 1 is set smaller than the outer diameter of the stator 2 at room temperature, and when the stator 2 is fitted to the sealed container 1, the sealed container 1 is heated and expanded, When the stator 2 is inserted with the inner diameter of the sealed container 1 larger than the outer diameter of the stator 2, and the stator 2 returns to room temperature, both are fixed. The fitting allowance (shrinkage allowance) refers to the difference between the outer diameter of the stator 2 and the inner diameter of the sealed container 1 at room temperature (the outer diameter of the stator 2> the inner diameter of the sealed container 1).

本実施の形態の固定子2は9個のスロット5を有する。隣接するスロット5間には磁極ティース4が形成されている。磁極ティース4は、外径側から内径側にかけて略平行の形状である。そして、先端部(内側)になるにつれ、両サイドが周方向に広がるような傘状の構造となっている。   The stator 2 of the present embodiment has nine slots 5. Magnetic pole teeth 4 are formed between adjacent slots 5. The magnetic pole teeth 4 have a substantially parallel shape from the outer diameter side to the inner diameter side. And it becomes the umbrella-shaped structure where both sides spread in the circumferential direction as it becomes a front-end | tip part (inner side).

コイル6は、例えば3相Y結線の集中巻線のものである。コイル6は、磁極ティース4に所定の巻数の銅線を、絶縁部材(図示せず)を介して巻き付けている。コイル6のターン数や線径等は、要求される回転数やトルク、電圧仕様、スロット5の断面積に応じて定まる。本実施の形態の場合は、例えば線径φ0.5mm程度の銅線を100ターン程度巻き付けている。   The coil 6 is, for example, a concentrated winding having a three-phase Y connection. The coil 6 has a predetermined number of turns of copper wire wound around the magnetic pole teeth 4 via an insulating member (not shown). The number of turns, the wire diameter, etc. of the coil 6 are determined according to the required rotation speed, torque, voltage specification, and the cross-sectional area of the slot 5. In the case of the present embodiment, for example, a copper wire having a wire diameter of about 0.5 mm is wound about 100 turns.

一方、回転子8は、冷媒を圧縮し電動要素50により駆動される圧縮要素(図示せず)に嵌合し回転可能な回転子軸7を有し、回転子軸7は固定子2の軸線上に配置される。そして、回転子軸7に真円形状の回転子8が固定されている。   On the other hand, the rotor 8 has a rotor shaft 7 that can be rotated by being fitted to a compression element (not shown) that compresses the refrigerant and is driven by the electric element 50, and the rotor shaft 7 is an axis of the stator 2. Arranged on the line. A perfect circular rotor 8 is fixed to the rotor shaft 7.

回転子8と固定子2との間には、0.3〜1mm程度の空隙が設けられ、回転子8が回転子軸7を中心に回転可能な構造となっている。   A gap of about 0.3 to 1 mm is provided between the rotor 8 and the stator 2 so that the rotor 8 can rotate around the rotor shaft 7.

回転子8は回転子鉄心9を有し、回転子鉄心9は固定子鉄心3と同様に電磁鋼板を一枚一枚打ち抜いて積層することで構成されている。回転子鉄心9には、外周部付近に磁石収容穴10が設けられる。図1の例では、6個の磁石収容穴10が周方向に形成されている。   The rotor 8 has a rotor core 9, and the rotor core 9 is configured by punching and stacking electromagnetic steel sheets one by one in the same manner as the stator core 3. The rotor core 9 is provided with a magnet accommodation hole 10 in the vicinity of the outer periphery. In the example of FIG. 1, six magnet housing holes 10 are formed in the circumferential direction.

6個の磁石収容穴10の内部に、N極とS極とが交互になるように6枚の希土類永久磁石35が挿入される。希土類永久磁石35は、ネオジウム、鉄、ボロンを主成分とする。   Six rare earth permanent magnets 35 are inserted into the six magnet housing holes 10 so that the north and south poles are alternately arranged. The rare earth permanent magnet 35 is mainly composed of neodymium, iron, and boron.

次に、本実施の形態の特徴である、固定子鉄心3の外周部の形状について説明する。固定子鉄心3の外周部は、密閉容器1と接触する接触領域13と、密閉容器1と接触しない非接触領域14とを備える。   Next, the shape of the outer peripheral portion of the stator core 3 that is a feature of the present embodiment will be described. The outer periphery of the stator core 3 includes a contact region 13 that contacts the sealed container 1 and a non-contact region 14 that does not contact the sealed container 1.

固定子鉄心3の外周部を、9本ある磁極ティース4の中心線11(径方向)により、9個の円弧領域12に分割する。9個の円弧領域12の中の3個の円弧領域12を、非接触領域14とする。3個の非接触領域14を等間隔(120゜)に配置する。そして、その各非接触領域14の間の2個の円弧領域12を接触領域13としている。従って、接触領域13と非接触領域14との周方向の長さの比は、2:1となる。   The outer peripheral portion of the stator core 3 is divided into nine arc regions 12 by the center line 11 (radial direction) of nine magnetic pole teeth 4. Three arc regions 12 in the nine arc regions 12 are defined as non-contact regions 14. Three non-contact areas 14 are arranged at equal intervals (120 °). Two arc regions 12 between the non-contact regions 14 are defined as contact regions 13. Therefore, the ratio of the length in the circumferential direction between the contact area 13 and the non-contact area 14 is 2: 1.

密閉容器1内周面と接触する接触領域13の外周半径よりも、密閉容器1内周面と接触しない非接触領域14の外周半径を100〜500μm程度小さくなるように、固定子鉄心3の非接触領域14の外周部に、円弧形状の切欠き15を設ける。   The non-contact area of the stator core 3 is set so that the outer peripheral radius of the non-contact area 14 not in contact with the inner peripheral surface of the sealed container 1 is smaller than the outer peripheral radius of the contact area 13 in contact with the inner peripheral surface of the closed container 1 by about 100 to 500 μm. An arc-shaped notch 15 is provided on the outer periphery of the contact region 14.

図2は、図1に示した密閉容器1の焼嵌時の変形量を拡大して示す電動要素50付近の横断面図である。図1のように構成された固定子2を密閉容器1に焼嵌した場合、密閉容器1は、接触領域13の接触端部16a,16b,16c,16d,16e,16fを支点として変形する。このとき、非接触領域14を周方向に一定の間隔(120゜)で設けているため、圧縮応力17は応力分布の対称性を保ちながら磁路に影響しにくい固定子外周部の密閉容器1との接触端部16a,16b,16c,16d,16e,16fに集中し、磁束の通りやすいコアバック内周部18の圧縮応力は緩和される。   FIG. 2 is a cross-sectional view of the vicinity of the electric element 50 showing an enlarged deformation amount when the closed container 1 shown in FIG. 1 is shrink-fitted. When the stator 2 configured as shown in FIG. 1 is shrink-fitted into the hermetic container 1, the hermetic container 1 is deformed using the contact end portions 16a, 16b, 16c, 16d, 16e, and 16f of the contact region 13 as fulcrums. At this time, since the non-contact regions 14 are provided at a constant interval (120 °) in the circumferential direction, the compressive stress 17 keeps the symmetry of the stress distribution and does not easily affect the magnetic path. The compressive stress of the core back inner peripheral portion 18 that concentrates on the contact end portions 16a, 16b, 16c, 16d, 16e, and 16f and is easy to pass the magnetic flux is relaxed.

図3は焼嵌後の固定子鉄心3の応力分布を示す図で、(a)は固定子鉄心3の外周が密閉容器1の内周に全接触するケース、(b)は図1のケースである。圧縮応力の大きさは、濃淡で表す。濃い方が、圧縮応力は大きいことを示す。(b)の図1のケースは、(a)の全接触のケースに比べ、上記のように、圧縮応力17は応力分布の対称性を保ちながら磁路に影響しにくい固定子外周部の密閉容器1との接触端部16a,16b,16c,16d,16e,16fに集中し、磁束の通りやすいコアバック内周部18(図2参照)の圧縮応力は緩和される。   3A and 3B are diagrams showing the stress distribution of the stator core 3 after shrink fitting. FIG. 3A is a case in which the outer periphery of the stator core 3 is in full contact with the inner periphery of the hermetic container 1, and FIG. It is. The magnitude of the compressive stress is expressed by shading. The darker the color, the greater the compressive stress. In the case of FIG. 1 in (b), as described above, the compressive stress 17 does not affect the magnetic path while maintaining the symmetry of the stress distribution as compared with the case of full contact in (a). The compressive stress of the core back inner peripheral portion 18 (see FIG. 2) that concentrates on the contact end portions 16a, 16b, 16c, 16d, 16e, and 16f with the container 1 and easily passes the magnetic flux is alleviated.

図4に固定子鉄心3の電磁鋼板における圧縮応力に対する鉄損特性を示す。電磁鋼板の鉄損は圧縮応力が大きくなると飽和するという特性を持っている。局所的に鉄損が圧縮応力を接触端部16a,16b,16c,16d,16e,16fに集中させて、磁束の通りやすいコアバック内周部18の応力を緩和することで、全体的な鉄損劣化の割合を緩和することができる。また、応力分布の対称性を保つよう構成しているため、磁気的な歪を抑えることができる。   FIG. 4 shows iron loss characteristics with respect to compressive stress in the electromagnetic steel sheet of the stator core 3. The iron loss of electrical steel sheets has a characteristic that it becomes saturated when the compressive stress increases. The iron loss locally concentrates the compressive stress on the contact end portions 16a, 16b, 16c, 16d, 16e, and 16f, and relieves the stress in the core back inner peripheral portion 18 where the magnetic flux easily passes. The rate of loss deterioration can be reduced. Moreover, since it is configured to maintain the symmetry of the stress distribution, magnetic distortion can be suppressed.

また、このように構成された固定子2は、圧縮応力が接触領域13の接触端部16a,16b,16c,16d,16e,16fに集中する。そのため、圧縮応力ベクトルの向きが接触端部16a,16b,16c,16d,16e,16fの方向に傾き、周方向に発生する磁束のベクトルの方向との非平行成分が大きくなる。鉄損の増加は圧縮応力の磁束ベクトルと同一方向の成分のみが寄与するので、電磁鋼板の磁気特性劣化を緩和し、接触端部16a,16b,16c,16d,16e,16fに応力を集中させた効果と合わせて図5に示すように鉄損を低減することができる。   Further, in the stator 2 configured as described above, the compressive stress is concentrated on the contact end portions 16a, 16b, 16c, 16d, 16e, and 16f of the contact region 13. Therefore, the direction of the compressive stress vector is inclined in the direction of the contact end portions 16a, 16b, 16c, 16d, 16e, and 16f, and the non-parallel component with the direction of the magnetic flux vector generated in the circumferential direction is increased. Since the increase in the iron loss is caused only by the component in the same direction as the magnetic flux vector of the compressive stress, the magnetic characteristic deterioration of the magnetic steel sheet is alleviated and the stress is concentrated on the contact end portions 16a, 16b, 16c, 16d, 16e, and 16f. Together with the effect, the iron loss can be reduced as shown in FIG.

図1では、接触領域13と非接触領域14との周方向の長さの比が2:1となるようにしたが、図6に示すように、密閉容器1内周面と接触する接触領域13と、密閉容器1内周面と接触しない非接触領域14との周方向の長さの比が1:2となるように構成した場合でも、同様の効果を得ることができる。   In FIG. 1, the ratio of the lengths in the circumferential direction between the contact area 13 and the non-contact area 14 is 2: 1. However, as shown in FIG. 6, the contact area in contact with the inner peripheral surface of the sealed container 1. The same effect can be obtained even when the ratio of the lengths in the circumferential direction between the non-contact region 14 that does not contact the inner peripheral surface of the airtight container 1 is 1: 2.

尚、本実施の形態の固定子2は、9個のスロット5で構成されるが、スロット数に依らず、磁極ティース4の中心線11(径方向)により分割される複数の円弧領域12を、密閉容器1内周面と接触する接触領域13と、密閉容器1内周面と接触しない非接触領域14とに分け、それぞれ一定間隔に配置することで、同様の効果が得られる。   The stator 2 according to the present embodiment is configured by nine slots 5, but a plurality of arc regions 12 divided by the center line 11 (radial direction) of the magnetic teeth 4 are formed regardless of the number of slots. The same effect can be obtained by dividing the contact region 13 in contact with the inner peripheral surface of the sealed container 1 and the non-contact region 14 not in contact with the inner peripheral surface of the sealed container 1 and arranging them at regular intervals.

また、図7に示すように、固定子2の外周部に固定子2をつかむための溝30や冷媒を通すための通気穴31が設けられている場合であっても、スロット数に依らず、磁極ティース4の中心線11(径方向)により分割される複数の円弧領域12を、密閉容器1内周面と接触する接触領域13と、密閉容器1内周面と接触しない非接触領域14とに分け、それぞれ一定間隔に配置することで、同様の効果を得ることができる。   Further, as shown in FIG. 7, even when a groove 30 for holding the stator 2 and a vent hole 31 for passing a refrigerant are provided on the outer peripheral portion of the stator 2, it does not depend on the number of slots. A plurality of arc regions 12 divided by the center line 11 (radial direction) of the magnetic teeth 4 are contact regions 13 that are in contact with the inner peripheral surface of the sealed container 1 and non-contact regions 14 that are not in contact with the inner peripheral surface of the sealed container 1. The same effect can be obtained by dividing each of the above and arranging them at regular intervals.

鉄損の応力劣化は磁束密度が高いほど大きいため、固定子鉄心3の磁束密度が高いほど鉄損低減効果が高い。コイル6が巻線密度の高い集中巻であり、回転子8に磁力の高い希土類磁石35を使用した電動機で、特に大きな効果を有する。   Since the stress deterioration of the iron loss is greater as the magnetic flux density is higher, the iron loss reduction effect is higher as the magnetic flux density of the stator core 3 is higher. The coil 6 is a concentrated winding with a high winding density, and is an electric motor using a rare earth magnet 35 having a high magnetic force for the rotor 8 and has a particularly great effect.

固定子2に発生する圧縮応力は、固定子2と密閉容器1の嵌め代(焼嵌代)が大きいほど大きくなる。圧縮応力が大きいほど本実施の形態の応力緩和効果が大きいため、嵌め代(焼嵌代)が100μmよりも大きな焼嵌には、鉄損劣化の大幅な改善が期待できる。   The compressive stress generated in the stator 2 increases as the fitting allowance (shrinkage allowance) between the stator 2 and the sealed container 1 increases. Since the stress relaxation effect of the present embodiment is larger as the compressive stress is larger, a significant improvement in iron loss deterioration can be expected when the fitting allowance (shrinkage allowance) is larger than 100 μm.

本実施の形態における固定子鉄心3は、打ち抜き歪を緩和するための焼鈍処理を行っている。焼鈍していない状態で焼嵌を行った場合、電磁鋼板は焼鈍したものに比べ硬く、より大きな圧縮応力を発生するため、本実施の形態の応力緩和効果は更に高く、鉄損劣化の大幅な改善が期待できる。   The stator core 3 in the present embodiment is subjected to an annealing process for alleviating punching distortion. When shrink fitting is performed without annealing, the electrical steel sheet is harder than that annealed and generates a larger compressive stress. Therefore, the stress relaxation effect of the present embodiment is even higher, and the iron loss is greatly reduced. Improvement can be expected.

また、固定子2は、密閉容器1内周面と接触しない非接触領域14を周方向に一定の間隔で設けることにより、固定子2に発生する振動、騒音を密閉容器1に伝わりにくくし、鉄損の応力劣化を抑制するだけでなく、振動、騒音の低減にも有効である。   Further, the stator 2 is provided with non-contact areas 14 that do not contact the inner peripheral surface of the sealed container 1 at regular intervals in the circumferential direction, thereby making it difficult for vibration and noise generated in the stator 2 to be transmitted to the sealed container 1. It not only suppresses stress deterioration due to iron loss, but is also effective in reducing vibration and noise.

本実施の形態では、焼嵌の場合の効果を述べたが、冷やし嵌、あるいは圧入等の方法により固定子2を密閉容器1に固定する場合でも、圧縮応力が発生すること明らかであり、本実施の形態を適用することができる。   In the present embodiment, the effect in the case of shrink fitting has been described, but it is clear that compressive stress is generated even when the stator 2 is fixed to the closed container 1 by a method such as cold fitting or press fitting. Embodiments can be applied.

本実施の形態は、銅損よりも鉄損比率が高い条件での電動機の高効率化に有効であり、鉄損比率の高い高回転の電動機で大幅な改善効果が期待できる。   This embodiment is effective for increasing the efficiency of the motor under a condition in which the iron loss ratio is higher than the copper loss, and a significant improvement effect can be expected with a high-speed motor having a high iron loss ratio.

本実施の形態の電動機は、ブラシレスDCモータであるが、磁石の種類に依らず、また、誘導電動機等の永久磁石を用いない電動機であっても、同様の効果を得ることができる。   The electric motor of the present embodiment is a brushless DC motor, but the same effect can be obtained even if the electric motor does not use a permanent magnet such as an induction motor regardless of the type of magnet.

実施の形態2.
図8、図9は実施の形態2を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図である。
Embodiment 2. FIG.
8 and 9 show the second embodiment, and are cross-sectional views of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting.

図1、図6に示した実施の形態1では、磁極ティース4の中心線11(径方向)により分割される複数の円弧領域12を、密閉容器1内周面と接触する接触領域13と、密閉容器1内周面と接触しない非接触領域14とに分け、それぞれ一定間隔に配置するように構成した。それに対し、本実施の形態では、図8、図9に示すように、スロット5の中心線27(径方向)により分割される複数の円弧領域19を、密閉容器1内周面と接触する接触領域20と、密閉容器1内周面と接触しない非接触領域21とに分け、それぞれ一定間隔に配置するように構成しても、同様の効果を得ることができる。   In the first embodiment shown in FIGS. 1 and 6, a plurality of arc regions 12 divided by the center line 11 (radial direction) of the magnetic teeth 4 are contacted with the inner peripheral surface of the sealed container 1, The airtight container 1 is divided into non-contact areas 14 that do not come into contact with the inner peripheral surface, and each is arranged at regular intervals. On the other hand, in the present embodiment, as shown in FIGS. 8 and 9, the plurality of arc regions 19 divided by the center line 27 (radial direction) of the slot 5 are in contact with the inner peripheral surface of the sealed container 1. The same effect can be obtained by dividing the region 20 and the non-contact region 21 that is not in contact with the inner peripheral surface of the sealed container 1 and arranging them at regular intervals.

図8の例は、接触領域20と非接触領域21との周方向の長さの比が2:1である。   In the example of FIG. 8, the ratio of the length in the circumferential direction between the contact area 20 and the non-contact area 21 is 2: 1.

図9の例は、接触領域20と非接触領域21との周方向の長さの比が1:2である。   In the example of FIG. 9, the ratio of the length in the circumferential direction between the contact area 20 and the non-contact area 21 is 1: 2.

実施の形態3.
図10は実施の形態3を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図である。
Embodiment 3 FIG.
FIG. 10 shows the third embodiment, and is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting.

図1、図6に示した実施の形態1では、磁極ティース4の中心線11(径方向)により分割される複数の円弧領域12を、密閉容器1内周面と接触する接触領域13と、密閉容器1内周面と接触しない非接触領域14とに分け、それぞれ一定間隔に配置するように構成した。それに対し、本実施の形態では、図10に示すように、磁極ティース4の中心線11(径方向)により分割される複数の円弧領域12を、周方向に長く形成された切欠き穴22(応力緩和穴の一例)を設けた領域23と、切欠き穴22を設けてない領域24を周方向に一定の間隔で設けた構成にした場合でも、同様の効果を得ることができる。この切欠き穴22は、コアバックの磁気飽和を防止するという観点から、強度の許容範囲内でコアバック外周部に近い位置に配置するのが望ましい。尚、円弧領域12は、スロット5の中心線27(径方向)により分割されるものであってもよい。   In the first embodiment shown in FIGS. 1 and 6, a plurality of arc regions 12 divided by the center line 11 (radial direction) of the magnetic teeth 4 are contacted with the inner peripheral surface of the sealed container 1, The airtight container 1 is divided into non-contact areas 14 that do not come into contact with the inner peripheral surface, and each is arranged at regular intervals. On the other hand, in the present embodiment, as shown in FIG. 10, a plurality of arc regions 12 divided by the center line 11 (radial direction) of the magnetic teeth 4 are formed with notched holes 22 ( The same effect can be obtained even when the region 23 provided with an example of the stress relaxation hole and the region 24 not provided with the notch hole 22 are provided at regular intervals in the circumferential direction. From the viewpoint of preventing magnetic saturation of the core back, it is desirable that the notch hole 22 is disposed at a position close to the outer periphery of the core back within an allowable range of strength. The arc region 12 may be divided by the center line 27 (radial direction) of the slot 5.

実施の形態4.
図11は実施の形態4を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図である。
Embodiment 4 FIG.
FIG. 11 is a diagram showing the fourth embodiment, and is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting.

図1、図6に示した実施の形態1では、磁極ティース4の中心線11(径方向)により分割される複数の円弧領域12を、密閉容器1内周面と接触する接触領域13と、密閉容器1内周面と接触しない非接触領域14とに分け、それぞれ一定間隔に配置するように構成した。それに対し、本実施の形態では、それに加え、図11に示すように接触領域13の周方向両端部をひげ構造とし、ひげ部25を設けた。ひげ部25は、接触領域13の周方向両端部の締め付け力を吸収するバネの役割を果たす。   In the first embodiment shown in FIGS. 1 and 6, a plurality of arc regions 12 divided by the center line 11 (radial direction) of the magnetic teeth 4 are contacted with the inner peripheral surface of the sealed container 1, The airtight container 1 is divided into non-contact areas 14 that do not come into contact with the inner peripheral surface, and each is arranged at regular intervals. On the other hand, in the present embodiment, in addition to this, both ends in the circumferential direction of the contact region 13 have a whisker structure as shown in FIG. The whiskers 25 serve as springs that absorb the tightening forces at both ends in the circumferential direction of the contact region 13.

以上のように構成することにより、焼嵌した時に発生する接触領域13の周方向両端部の応力をひげ部25に逃がすことができ、さらに、密閉容器1との接触面積が増えるため、焼嵌による固定子2の保持力を強化することができる。   By configuring as described above, stress at both ends in the circumferential direction of the contact region 13 generated when shrink-fitting can be released to the whisker 25, and further, the contact area with the sealed container 1 is increased. The holding force of the stator 2 can be enhanced.

実施の形態5.
図12は実施の形態5を示す図で、固定子鉄心3を分割して構成する場合の、分割された固定子鉄心3a,3b,3cの平面図である。
Embodiment 5. FIG.
FIG. 12 shows the fifth embodiment, and is a plan view of the divided stator cores 3a, 3b, 3c when the stator core 3 is divided and configured.

図1、図6に示した実施の形態1では、磁極ティース4の中心線11(径方向)により分割される複数の円弧領域12を、密閉容器1内周面と接触する接触領域13と、密閉容器1内周面と接触しない非接触領域14とに分け、それぞれ一定間隔に配置するように構成した。それに対し、本実施の形態では、それに加え、固定子2を軸方向に複数に分割し、軸方向分割コアを周方向に回転して積層させて構成した。回転角度は磁極ティース4の周方向間隔(ピッチ)の倍数とする。図12の例では、磁極ティース4が9個あり、磁極ティース4の周方向間隔は40度である。従って、図12(b)の2段目は40度回転させる。また、図12(c)の3段目は80度回転させる。   In the first embodiment shown in FIGS. 1 and 6, a plurality of arc regions 12 divided by the center line 11 (radial direction) of the magnetic teeth 4 are contacted with the inner peripheral surface of the sealed container 1, The airtight container 1 is divided into non-contact areas 14 that do not come into contact with the inner peripheral surface, and each is arranged at regular intervals. In contrast, in the present embodiment, in addition to this, the stator 2 is divided into a plurality of parts in the axial direction, and the axially divided core is rotated and laminated in the circumferential direction. The rotation angle is a multiple of the circumferential interval (pitch) of the magnetic teeth 4. In the example of FIG. 12, there are nine magnetic pole teeth 4, and the circumferential interval between the magnetic pole teeth 4 is 40 degrees. Accordingly, the second stage in FIG. 12B is rotated by 40 degrees. Further, the third stage in FIG. 12C is rotated by 80 degrees.

以上のように構成することにより、焼嵌した時に発生する、密閉容器1と固定子鉄心3との接触端部の応力(例えば、図2の接触領域13の接触端部16a,16b,16c,16d,16e,16fの圧縮応力)をU,V,W相に均等に分散することができ磁気的な対称性が向上する。また、密閉容器1との接触領域13が周方向に均一に分散されるため、接触力が向上し、抜け荷重を強化することができる。尚、実施の形態3の図9に示す固定子2にも、本実施の形態は適用可能である。   By configuring as described above, stress at the contact end portion between the sealed container 1 and the stator core 3 (for example, the contact end portions 16a, 16b, 16c, and the like in the contact region 13 in FIG. 16d, 16e, and 16f) can be evenly distributed in the U, V, and W phases, and magnetic symmetry is improved. Moreover, since the contact area | region 13 with the airtight container 1 is uniformly disperse | distributed to the circumferential direction, a contact force improves and a detachment | loading load can be strengthened. It should be noted that this embodiment can also be applied to the stator 2 shown in FIG. 9 of the third embodiment.

実施の形態6.
以上の実施の形態は、固定子2が一体コア形状のものであるが、固定子2が分割コアを組み合わせて構成されるものであっても、固定子2が外径の等しい磁極ティース4と、外径の異なる磁極ティース4の2種類の分割コアで構成され、分割コア結合時に密閉容器1内周面と接触する径の大きい接触領域13と、非接触になる径の小さい非接触領域14が周方向に一定の間隔で構成されるようにすれば、同様の効果を得ることができる。尚、実施の形態3の図10に示す固定子2にも、本実施の形態は適用可能である。
Embodiment 6 FIG.
In the above embodiment, the stator 2 has an integral core shape. However, even if the stator 2 is configured by combining split cores, the stator 2 has the magnetic pole teeth 4 having the same outer diameter. A contact region 13 having a large diameter that comes into contact with the inner peripheral surface of the sealed container 1 and a non-contact region 14 having a small diameter that are not in contact with each other are formed of two types of split cores of magnetic teeth 4 having different outer diameters. The same effect can be obtained by configuring at a regular interval in the circumferential direction. In addition, this Embodiment is applicable also to the stator 2 shown in FIG. 10 of Embodiment 3. FIG.

実施の形態1を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting. 実施の形態1を示す図で、焼嵌後の密閉容器1の変形量を拡大した密閉型圧縮機内の電動要素50付近の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor in which the deformation amount of the hermetic container 1 after shrink fitting is enlarged. 実施の形態1を示す図で、焼嵌後の固定子鉄心3の応力分布を示す図((a)は固定子鉄心3の外周が密閉容器1の内周に全接触するケース、(b)は図1のケース)。The figure which shows Embodiment 1, The figure which shows the stress distribution of the stator core 3 after shrink fitting ((a) is the case where the outer periphery of the stator core 3 contacts the inner periphery of the airtight container 1, (b). Is the case of FIG. 実施の形態1を示す図で、電磁鋼板の圧縮応力に対する鉄損特性を示す図。FIG. 5 shows the first embodiment and shows iron loss characteristics with respect to compressive stress of the electromagnetic steel sheet. 実施の形態1を示す図で、焼嵌代と鉄損との関係図。FIG. 5 shows the first embodiment, and is a relationship diagram between a shrinkage allowance and an iron loss. 実施の形態1を示す図で、図1の第1の変形例を示す横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view showing a first modification of FIG. 1. 実施の形態1を示す図で、図1の第2の変形例を示す横断面図。FIG. 5 is a diagram showing the first embodiment, and is a cross-sectional view showing a second modification of FIG. 1. 実施の形態2を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図。FIG. 5 shows the second embodiment, and is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting. 実施の形態2を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図。FIG. 5 shows the second embodiment, and is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting. 実施の形態3を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図。FIG. 5 shows the third embodiment, and is a cross-sectional view of the vicinity of the electric element 50 in the hermetic compressor after shrink fitting. 実施の形態4を示す図で、焼嵌後の密閉型圧縮機内の電動要素50付近の横断面図。It is a figure which shows Embodiment 4, and is a cross-sectional view of the electric element 50 vicinity in the hermetic compressor after shrink fitting. 実施の形態5を示す図で、固定子鉄心3を分割して構成する場合の、分割された固定子鉄心3a,3b,3cの平面図。FIG. 10 is a diagram showing the fifth embodiment, and is a plan view of divided stator cores 3a, 3b, 3c when the stator core 3 is divided and configured.

符号の説明Explanation of symbols

1 密閉容器、2 固定子、3 固定子鉄心、4 磁極ティース、5 スロット、6 コイル、7 回転子軸、8 回転子、9 回転子鉄心、10 磁石収容穴、11 磁極ティース4の中心線、12 円弧領域、13 接触領域、14 非接触領域、15 切欠き、16a 接触端部、16b 接触端部、16c 接触端部、16d 接触端部、16e 接触端部、16f 接触端部、17 圧縮応力、18 コアバック内周部、19 円弧領域、20 接触領域、21 非接触領域、22 欠き穴、27 スロット5の中心線、30 溝、31 通気穴、50 電動要素。   DESCRIPTION OF SYMBOLS 1 Sealing container, 2 Stator, 3 Stator iron core, 4 Magnetic pole teeth, 5 Slots, 6 Coils, 7 Rotor shaft, 8 Rotor, 9 Rotor iron core, 10 Magnet accommodation hole, 11 Centerline of magnetic pole teeth 4 12 arc region, 13 contact region, 14 non-contact region, 15 notch, 16a contact end, 16b contact end, 16c contact end, 16d contact end, 16e contact end, 16f contact end, 17 compressive stress , 18 Core back inner periphery, 19 arc region, 20 contact region, 21 non-contact region, 22 notched hole, 27 center line of slot 5, 30 groove, 31 vent hole, 50 electric element.

Claims (10)

焼嵌等により密閉型圧縮機等の密閉容器に固定される円筒状の積層された固定子鉄心を有する固定子において、
前記固定子鉄心は、
周方向に配置される複数のスロットと、
隣接する前記スロットの間に形成され、コイルが巻装される磁極ティースと、
前記磁極ティース又は前記スロットの径方向中心線により周方向に分割される複数の領域と、
前記複数の領域の中の所定数の領域で、周方向に一定間隔で配置される前記密閉容器の内周面と接触する接触領域と、
前記接触領域の間に形成される非接触領域とを備えたことを特徴とする固定子。
In a stator having a cylindrical laminated stator core fixed to a hermetic container such as a hermetic compressor by shrinkage fitting,
The stator core is
A plurality of slots arranged in a circumferential direction;
Magnetic pole teeth formed between adjacent slots and wound with a coil;
A plurality of regions divided in the circumferential direction by a radial center line of the magnetic pole teeth or the slots;
A contact region in contact with an inner peripheral surface of the sealed container that is disposed at a predetermined interval in the circumferential direction in a predetermined number of regions of the plurality of regions;
And a non-contact region formed between the contact regions.
焼嵌等により密閉型圧縮機等の密閉容器に固定される円筒状の積層された固定子鉄心を有する固定子において、
前記固定子鉄心は、
周方向に配置される複数のスロットと、
隣接する前記スロットの間に形成され、コイルが巻装される磁極ティースと、
前記磁極ティース又は前記スロットの径方向中心線により周方向に分割される複数の領域と、
前記複数の領域の中の、周方向に一定間隔で配置される所定数の領域に設けられ、周方向に長く形成された応力緩和穴とを備えたことを特徴とする固定子。
In a stator having a cylindrical laminated stator core fixed to a hermetic container such as a hermetic compressor by shrinkage fitting,
The stator core is
A plurality of slots arranged in a circumferential direction;
Magnetic pole teeth formed between adjacent slots and wound with a coil;
A plurality of regions divided in the circumferential direction by a radial center line of the magnetic pole teeth or the slots;
A stator comprising: a stress relaxation hole provided in a predetermined number of regions arranged at regular intervals in the circumferential direction in the plurality of regions and formed long in the circumferential direction.
前記接触領域の周方向端部をひげ構造にしたことを特徴とする請求項1記載の固定子。   The stator according to claim 1, wherein a circumferential end portion of the contact region has a whisker structure. 前記固定子鉄心を軸方向に複数に分割し、該軸方向に複数に分割された鉄心を、周方向に所定角度回転して積層することを特徴とする請求項1又は請求項2記載の固定子。   The stator according to claim 1 or 2, wherein the stator core is divided into a plurality of parts in the axial direction, and the cores divided into a plurality of parts in the axial direction are stacked by being rotated by a predetermined angle in the circumferential direction. Child. 前記接触領域を構成する前記固定子鉄心の部分と、前記非接触領域を構成する前記固定子鉄心の部分とを分割して構成することを特徴とする請求項1記載の固定子。   The stator according to claim 1, wherein the stator core part constituting the contact area and the stator core part constituting the non-contact area are divided. 前記応力緩和穴を有する領域の前記固定子鉄心の部分と、他の領域の前記固定子鉄心の部分とを分割して構成することを特徴とする請求項2記載の固定子。   3. The stator according to claim 2, wherein a portion of the stator core in the region having the stress relaxation hole and a portion of the stator core in another region are divided. 積層後に焼鈍処理を施さないことを特徴とする請求項1乃至6のいずれかに記載の固定子。   The stator according to any one of claims 1 to 6, wherein annealing is not performed after lamination. 密閉容器内に、冷媒を圧縮する圧縮要素と、この圧縮要素を駆動する電動要素とを備え、この電動要素に請求項1乃至7のいずれかに記載の固定子を用いたことを特徴とする密閉型圧縮機。   A hermetic container is provided with a compression element for compressing the refrigerant and an electric element for driving the compression element, and the stator according to any one of claims 1 to 7 is used for the electric element. Hermetic compressor. 固定子と回転子とハウジングとを備え、前記固定子が前記ハウジングの締め付け力によって保持されている永久磁石型モータであって、この永久磁石型モータに請求項1乃至7のいずれかに記載の固定子を用いたことを特徴とする回転機。   A permanent magnet type motor comprising a stator, a rotor, and a housing, wherein the stator is held by a tightening force of the housing, and the permanent magnet type motor according to any one of claims 1 to 7. A rotating machine characterized by using a stator. 固定子の磁極ティースに集中巻コイルを備え、回転子の永久磁石が希土類磁石で構成される永久磁石型モータであって、この永久磁石型モータに請求項1乃至7のいずれかに記載の固定子を用いたことを特徴とする回転機。   A permanent magnet type motor comprising a concentrated magnetic coil in a magnetic teeth of a stator and a permanent magnet of a rotor made of a rare earth magnet, wherein the permanent magnet type motor is fixed to any one of claims 1 to 7. A rotating machine characterized by using a child.
JP2007023630A 2007-02-02 2007-02-02 Stator and enclosed compressor and rotating machine Pending JP2008193778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023630A JP2008193778A (en) 2007-02-02 2007-02-02 Stator and enclosed compressor and rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023630A JP2008193778A (en) 2007-02-02 2007-02-02 Stator and enclosed compressor and rotating machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010238075A Division JP2011019398A (en) 2010-10-24 2010-10-24 Stator, hermetically sealed compressor and rotating machine

Publications (1)

Publication Number Publication Date
JP2008193778A true JP2008193778A (en) 2008-08-21

Family

ID=39753340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023630A Pending JP2008193778A (en) 2007-02-02 2007-02-02 Stator and enclosed compressor and rotating machine

Country Status (1)

Country Link
JP (1) JP2008193778A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252463A (en) * 2009-04-14 2010-11-04 Jfe Steel Corp Stator core and motor
JP2011160578A (en) * 2010-02-02 2011-08-18 Jfe Steel Corp Motor core having small degradation in iron-loss under compressive stress
JP2011233731A (en) * 2010-04-28 2011-11-17 Nissan Motor Co Ltd Non-oriented magnetic steel sheet, laminate of non-oriented magnetic steel sheet, and stator core of electric motor made of the laminate
JP2013220030A (en) * 2013-08-02 2013-10-24 Fuji Electric Co Ltd Permanent magnet type synchronous motor
JP2014166095A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Stator, sealed compressor and motor equipped with the same, and mold
JP2015042014A (en) * 2013-08-20 2015-03-02 Jfeスチール株式会社 Motor with reduced iron loss deterioration caused by shrink-fit
JP2015042015A (en) * 2013-08-20 2015-03-02 Jfeスチール株式会社 Motor with reduced iron loss deterioration caused by shrink-fit
CN104753195A (en) * 2013-12-31 2015-07-01 三菱电机(广州)压缩机有限公司 Motor stator, motor and enclosed type compressor
EP2579428A4 (en) * 2010-06-02 2015-12-23 Aisin Seiki Electrical rotary machine
CN108649719A (en) * 2017-12-22 2018-10-12 沈阳中航机电三洋制冷设备有限公司 Motor stator, motor and rotary compressor
GB2579357A (en) * 2018-11-28 2020-06-24 Jaguar Land Rover Ltd A stator and stator housing
CN111987821A (en) * 2019-05-21 2020-11-24 株式会社电装 Electric motor and stator assembly
JP2020191715A (en) * 2019-05-21 2020-11-26 株式会社デンソー Stator assembly and motor
WO2020261467A1 (en) * 2019-06-27 2020-12-30 三菱電機株式会社 Stator core, stator, electric motor, and compressor
WO2023112078A1 (en) 2021-12-13 2023-06-22 三菱電機株式会社 Stator, motor, compressor, and refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614482A (en) * 1992-06-22 1994-01-21 Fuji Electric Co Ltd Stator iron core of rotary electrical equipment
JP2001008420A (en) * 1999-06-18 2001-01-12 Nippon Steel Corp High-performance rotating machine core and manufacturing method therefor
JP2006191702A (en) * 2004-12-28 2006-07-20 Aichi Elec Co Stator and rotary machine
JP2006271105A (en) * 2005-03-24 2006-10-05 Matsushita Electric Ind Co Ltd Electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614482A (en) * 1992-06-22 1994-01-21 Fuji Electric Co Ltd Stator iron core of rotary electrical equipment
JP2001008420A (en) * 1999-06-18 2001-01-12 Nippon Steel Corp High-performance rotating machine core and manufacturing method therefor
JP2006191702A (en) * 2004-12-28 2006-07-20 Aichi Elec Co Stator and rotary machine
JP2006271105A (en) * 2005-03-24 2006-10-05 Matsushita Electric Ind Co Ltd Electric motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252463A (en) * 2009-04-14 2010-11-04 Jfe Steel Corp Stator core and motor
JP2011160578A (en) * 2010-02-02 2011-08-18 Jfe Steel Corp Motor core having small degradation in iron-loss under compressive stress
JP2011233731A (en) * 2010-04-28 2011-11-17 Nissan Motor Co Ltd Non-oriented magnetic steel sheet, laminate of non-oriented magnetic steel sheet, and stator core of electric motor made of the laminate
EP2579428A4 (en) * 2010-06-02 2015-12-23 Aisin Seiki Electrical rotary machine
JP2014166095A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Stator, sealed compressor and motor equipped with the same, and mold
JP2013220030A (en) * 2013-08-02 2013-10-24 Fuji Electric Co Ltd Permanent magnet type synchronous motor
JP2015042014A (en) * 2013-08-20 2015-03-02 Jfeスチール株式会社 Motor with reduced iron loss deterioration caused by shrink-fit
JP2015042015A (en) * 2013-08-20 2015-03-02 Jfeスチール株式会社 Motor with reduced iron loss deterioration caused by shrink-fit
CN104753195A (en) * 2013-12-31 2015-07-01 三菱电机(广州)压缩机有限公司 Motor stator, motor and enclosed type compressor
CN108649719A (en) * 2017-12-22 2018-10-12 沈阳中航机电三洋制冷设备有限公司 Motor stator, motor and rotary compressor
GB2579357A (en) * 2018-11-28 2020-06-24 Jaguar Land Rover Ltd A stator and stator housing
GB2579357B (en) * 2018-11-28 2021-10-06 Jaguar Land Rover Ltd A stator and stator housing
JP2020191715A (en) * 2019-05-21 2020-11-26 株式会社デンソー Stator assembly and motor
JP2020191716A (en) * 2019-05-21 2020-11-26 株式会社デンソー Stator assembly and motor
CN111987821A (en) * 2019-05-21 2020-11-24 株式会社电装 Electric motor and stator assembly
US11398754B2 (en) 2019-05-21 2022-07-26 Denso Corporation Stator assembly and motor
US11404923B2 (en) 2019-05-21 2022-08-02 Denso Corporation Electric motor and stator assembly
JP7167849B2 (en) 2019-05-21 2022-11-09 株式会社デンソー stator assembly and motor
JP7226088B2 (en) 2019-05-21 2023-02-21 株式会社デンソー stator assembly and motor
CN111987821B (en) * 2019-05-21 2024-05-28 株式会社电装 Electric motor and stator assembly
WO2020261467A1 (en) * 2019-06-27 2020-12-30 三菱電機株式会社 Stator core, stator, electric motor, and compressor
JPWO2020261467A1 (en) * 2019-06-27 2021-11-18 三菱電機株式会社 Stator core, stator, motor, and compressor
JP7150174B2 (en) 2019-06-27 2022-10-07 三菱電機株式会社 Stator core, stator, electric motor and compressor
WO2023112078A1 (en) 2021-12-13 2023-06-22 三菱電機株式会社 Stator, motor, compressor, and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2008193778A (en) Stator and enclosed compressor and rotating machine
JP6215041B2 (en) motor
JP4813404B2 (en) Stator and hermetic compressor and rotating machine
EP1786085B1 (en) Permanent magnet rotating electric machine
JP2011019398A (en) Stator, hermetically sealed compressor and rotating machine
JPS62147938A (en) Permanent magnet rotor
CN110663158B (en) Dual magnetic phase material ring for AC motor
WO2014102950A1 (en) Rotating electrical machine
JP2011152041A (en) Stator, sealed compressor and rotating machine
JP2009055750A (en) Claw pole type pm motor and its manufacturing method
JP5381139B2 (en) Electric motor
JP5531841B2 (en) Electric motor
US10374474B2 (en) Permanent magnet motor
JP2004328859A (en) Method of manufacturing rotor of motor, and rotor of motor
JP6057777B2 (en) Stator, hermetic compressor and rotary machine including the stator, and mold
JP5674962B2 (en) Permanent magnet embedded motor
US10056792B2 (en) Interior permanent magnet electric machine
JP6661960B2 (en) Self-starting permanent magnet motor
JP5303958B2 (en) Electric motor and fixing method of electric motor stator
KR102515118B1 (en) A rotor for interior permanent magnet motors
JP6330425B2 (en) Rotating electrical machine
JP7459155B2 (en) Rotating electric machine and its field element manufacturing method
JP6291798B2 (en) Permanent magnet rotating electric machine
WO2022186058A1 (en) Field magneton
WO2016203530A1 (en) Permanent magnet-embedded motor and compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20100826

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Effective date: 20101024

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A02