JPH07201551A - Laminated electromagnetic steel plate - Google Patents

Laminated electromagnetic steel plate

Info

Publication number
JPH07201551A
JPH07201551A JP34965493A JP34965493A JPH07201551A JP H07201551 A JPH07201551 A JP H07201551A JP 34965493 A JP34965493 A JP 34965493A JP 34965493 A JP34965493 A JP 34965493A JP H07201551 A JPH07201551 A JP H07201551A
Authority
JP
Japan
Prior art keywords
steel sheet
laminated
electromagnetic steel
thickness
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34965493A
Other languages
Japanese (ja)
Other versions
JP3243099B2 (en
Inventor
Kunikazu Tomita
邦和 冨田
Toshiharu Iizuka
俊治 飯塚
Yoshihiko Oda
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP34965493A priority Critical patent/JP3243099B2/en
Publication of JPH07201551A publication Critical patent/JPH07201551A/en
Application granted granted Critical
Publication of JP3243099B2 publication Critical patent/JP3243099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a laminated electromagnetic steel plate excellent in punchability by a method wherein the surface of a steel plate is prescribed in average crystal grain diameter. CONSTITUTION:A laminated electromagnetic steel plate 1 is composed of insulating coatings 2, non-oriented electromagnetic steel plate layers 3, and adhesive insulating layers 4. Provided that the average crystal grain diameter and the number of the laminated steel plate layers 3 are represented by dmum and n respectively, d and n are set so as to satisfy a formula, d>=2Xn. The non- oriented electromagnetic steel plate 3 is 0.08mm to 0.25mm in thickness t., and the Si and Al content of the steel plate 3 amounts to 1% or above by weight. The thickness tRmum of the adhesive insulating layer 4 is determined by a formula, 1<=tR<=100Xt0/m (t0: thickness in mm of a laminated electromagnetic steel plate 1, m: number of adhesive insulating layers 4 contained in the steel plate 1), and m is two or more. Moreover, the thickness t0 of the laminated electromagnetic steel plate 1 is set to 0.35mm to 0.65mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄芯製造時の生産性を
低下させることなく磁気特性の向上が可能な積層型電磁
鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electromagnetic steel sheet capable of improving magnetic properties without lowering productivity during iron core production.

【0002】[0002]

【従来の技術】近年、電気自動車用モーターを始めとす
る小型高速回転モーターや、インテリジェントビルの蛍
光燈安定器等の小型高効率トランス、更にはロボット制
御用モーター等が急速に注目され始めている。これら電
気機器に用いられる鉄芯は、機器の小型化、高効率化、
あるいは制御精度向上の観点から数百Hz乃至は数kH
zの高周波域で使用されるため、高周波特性に優れるこ
とが不可欠となる。具体的には、周波数の増加に伴なう
鉄損の急激な増加が問題となり、鉄芯材料としては高周
波域での鉄損特性に優れることが第一に重要となる。
2. Description of the Related Art In recent years, small high-speed rotating motors such as motors for electric vehicles, small high-efficiency transformers such as fluorescent lamp ballasts for intelligent buildings, and robot control motors are rapidly gaining attention. The iron cores used in these electric devices are compact, highly efficient,
Alternatively, from the viewpoint of improving control accuracy, several hundred Hz or several kHz
Since it is used in the high frequency range of z, it is essential to have excellent high frequency characteristics. Specifically, a sharp increase in iron loss with an increase in frequency becomes a problem, and it is important for the iron core material to have excellent iron loss characteristics in a high frequency range.

【0003】こうした背景のもと、無方向性電磁鋼板の
板厚を薄くし渦流損を低減することで高周波鉄損に優れ
た材料を提供せんとする技術が、例えば、特開平3−2
23445号公報に開示されている。しかしながら、こ
のような薄手無方向性電磁鋼板では、高周波鉄損は効果
的に低減されるものの、鉄芯製造時に生産性が低下して
しまう。すなわち、ある積み厚の鉄芯を製造しようとす
る場合、それに用いる鋼板の板厚が薄くなると、これに
比例して必要枚数が増加し、必然的に打ち抜き工数と積
層組み工数の増加をもたらしてしまう。
Against this background, a technique for reducing the eddy current loss by reducing the thickness of the non-oriented electrical steel sheet to provide a material excellent in high frequency iron loss is disclosed in, for example, Japanese Patent Laid-Open No. 3-2.
It is disclosed in Japanese Patent No. 23445. However, in such a thin non-oriented electrical steel sheet, high-frequency iron loss is effectively reduced, but productivity is reduced during iron core production. That is, in the case of manufacturing an iron core having a certain stacking thickness, when the plate thickness of the steel plate used for the iron core becomes thin, the required number of sheets increases in proportion to this, which inevitably results in an increase in the number of punching steps and the number of stacking steps. I will end up.

【0004】こうした問題を回避するためには、鋼板メ
ーカー側で予め数枚の薄手無方向性電磁鋼板を接着絶縁
層を介して積層一体化してしまう方法が有効であり、こ
のような方法を電磁鋼板に応用した技術が例えば特開昭
59−41808号公報や特開昭61−73304号公
報等に開示されている。
In order to avoid such a problem, it is effective for a steel plate manufacturer to preliminarily laminate several thin non-oriented electrical steel plates together with an adhesive insulating layer. Techniques applied to steel sheets are disclosed in, for example, JP-A-59-41808 and JP-A-61-73304.

【0005】[0005]

【発明が解決しようとする課題】ところが、実際に薄手
無方向性電磁鋼板を接着絶縁層を介して積層一体化し積
層型電磁鋼板とした場合、上記生産性低下の問題は回避
されるものの、打ち抜き性が通常材に比べて極端に劣化
するため、打ち抜き型寿命の著しい低下を招いてしま
う。これは製造設備上看過できない問題であるが、積層
型電磁鋼板の打ち抜き性改善に関する技術は未だ提案さ
れておらず、積層型電磁鋼板が広く使用されるために
は、これを解決することがなによりも重要となる。この
発明はかかる事情に鑑みてなされたものであって、打ち
抜き性が良好な積層型電磁鋼板を提供することを目的と
する。
However, when a thin non-oriented electrical steel sheet is actually laminated and integrated with an adhesive insulating layer to form a laminated electrical steel sheet, the above-mentioned problem of reduced productivity is avoided, but punching is performed. Since the properties are extremely deteriorated as compared with the normal material, the life of the punching die is remarkably reduced. This is a problem that cannot be overlooked in manufacturing equipment, but a technology for improving the punchability of laminated electromagnetic steel sheets has not been proposed yet, and this cannot be solved because laminated electromagnetic steel sheets are widely used. Will also be important. The present invention has been made in view of the above circumstances, and an object thereof is to provide a laminated electromagnetic steel sheet having good punchability.

【0006】[0006]

【課題を解決するための手段】そこで本発明者らは、積
層型電磁鋼板の打ち抜き性を改善すべく鋭意検討を重ね
た結果、以下のような結論を得た。 (1)積層型電磁鋼板で打ち抜き性が劣化するのは、通
常材は単層であり、打ち抜き時にクラックが板厚方向に
連続して伝播するのに対して、積層型電磁鋼板では、ク
ラックが無方向性電磁鋼板層から次の無方向性電磁鋼板
層に伝播していく際に、クラックの伝播が不連続となり
易いためである。
The inventors of the present invention have made intensive studies to improve the punching properties of laminated electrical steel sheets, and have come to the following conclusions. (1) In the laminated electromagnetic steel sheet, the punching property is deteriorated because the normal material is a single layer and cracks propagate continuously in the sheet thickness direction during punching, whereas in the laminated electromagnetic steel sheet, cracks are generated. This is because the cracks are likely to be discontinuous when propagating from the non-oriented electrical steel sheet layer to the next non-oriented electrical steel sheet layer.

【0007】(2)クラック伝播が無方向性電磁鋼板各
層の間で不連続となり易いのは、クラックが層間を連続
的に伝播しようとした際、伝播先の無方向性電磁鋼板に
存在する結晶粒界が伝播の抵抗として働き、クラックが
層間を連続的に伝播するを妨げるためである。
(2) The crack propagation is likely to be discontinuous between the layers of the non-oriented electrical steel sheet because the crystals existing in the non-oriented electrical steel sheet to which the crack propagates when the cracks try to propagate continuously between the layers. This is because the grain boundaries act as a resistance against propagation and cracks prevent continuous propagation between layers.

【0008】(3)従って、クラックの伝播抵抗となる
無方向性電磁鋼板各層の結晶粒界を減らしてやれば、ク
ラックの伝播が層間で連続的となりやすく、積層型電磁
鋼板の打ち抜き性が向上する。その際、問題となるのは
層間の伝播抵抗であるため、これに寄与する各層表層部
の結晶粒界を減らしてやれば良い。各層中央部の結晶粒
界については、ここでのクラックの伝搬は通常の単層材
と変わりないため、特段の工夫は必要ない。
(3) Therefore, if the crystal grain boundaries of each layer of the non-oriented electrical steel sheet that becomes the propagation resistance of cracks are reduced, the propagation of cracks tends to be continuous between the layers, and the punchability of the laminated electrical steel sheet is improved. . In that case, the problem is the propagation resistance between the layers, so it is sufficient to reduce the crystal grain boundaries of the surface layer portions of each layer that contribute to this. Regarding the crystal grain boundary in the central part of each layer, crack propagation here is no different from that of a normal single layer material, so no special measures are necessary.

【0009】(4)無方向性電磁鋼板各層の表層部に存
在する結晶粒界を減少させるには、無方向性電磁鋼板の
板面粒径(無方向性電磁鋼板の板面で測定した平均結晶
粒径)を大きくすれば良い。その際、その程度は、積層
数(積層型電磁鋼板に含まれる無方向性電磁鋼板の枚
数)が増え、クラックの伝播の連続性が問題となる層境
界の数が増えるに比例して大きくする必要がある。
(4) In order to reduce the crystal grain boundaries existing in the surface layer portion of each layer of the non-oriented electrical steel sheet, the grain size of the sheet surface of the non-oriented electrical steel sheet (average measured on the sheet surface of the non-oriented electrical steel sheet) The crystal grain size) may be increased. At that time, the degree is increased in proportion to the increase in the number of laminated layers (the number of non-oriented electrical steel sheets included in the laminated electrical steel sheet) and the number of layer boundaries in which continuity of crack propagation becomes a problem. There is a need.

【0010】本発明は上記知見に基づいてなされたもの
であり、無方向性電磁鋼板を接着絶縁層を介して積層し
一体化した積層型電磁鋼板であって、鋼板面の平均結晶
粒径d(μm)がd≧20×n(n:積層数=積層型電
磁鋼板に含まれる無方向性電磁鋼板の枚数)であること
を特徴とする積層型電磁鋼板を提供するものである。
The present invention has been made on the basis of the above findings, and is a laminated type electromagnetic steel sheet in which non-oriented electrical steel sheets are laminated and integrated with an adhesive insulating layer, and the average crystal grain size d of the steel sheet surface. (Μm) is d ≧ 20 × n (n: the number of laminated layers = the number of non-oriented electrical steel sheets included in the laminated electrical steel sheet).

【0011】また、上記積層型電磁鋼板に対しさらに、
表面に絶縁皮膜を有し、無方向性電磁鋼板の板厚tS
0.08mm以上0.25mm以下であり、かつ鋼板中
のSiとAl量の和が重量%で1%以上4%以下であ
り、積層絶縁層の厚みtR (μm)が1≦tR ≦100
×tO /mであり(tO :積層型電磁鋼板の全体の厚み
(mm)、m:積層型電磁鋼板に含まれる接着絶縁層の
層の数)、積層数nが2枚以上であることを付加したこ
とを特徴とする積層型電磁鋼板を提供するものである。
Further, in addition to the laminated type electromagnetic steel sheet,
It has an insulating film on the surface, the thickness t S of the non-oriented electrical steel sheet is 0.08 mm or more and 0.25 mm or less, and the sum of the amounts of Si and Al in the steel sheet is 1% or more and 4% or less by weight%. And the thickness t R (μm) of the laminated insulating layer is 1 ≦ t R ≦ 100.
× t O / m (t O : total thickness (mm) of laminated electromagnetic steel sheet, m: number of layers of adhesive insulating layers included in laminated electromagnetic steel sheet), and the number n of laminated layers is 2 or more. The present invention provides a laminated electromagnetic steel sheet characterized by the addition of the above.

【0012】さらに、上記積層型電磁鋼板に対し、積層
型電磁鋼板全体の厚みtO が0.35mm以上0.65
mm以下であることを付加したことを特徴とする積層型
電磁鋼板を提供するものである。
Further, in comparison with the above laminated electromagnetic steel sheet, the total thickness t O of the laminated electromagnetic steel sheet is 0.35 mm or more and 0.65 or more.
It is intended to provide a laminated electromagnetic steel sheet characterized in that the thickness is less than or equal to mm.

【0013】さらにまた、上記いずれかの積層型電磁鋼
板において、前記無方向性電磁鋼板が、重量%で、C:
0.005%以下、Si+Al:1〜4%、Mn:0.
1〜1.5%、P:0.15%以下、S:0.015%
以下、N:0.005%以下、残部Fe及び不可避的不
純物から実質的になることを特徴とする積層型電磁鋼板
を提供するものである。
Furthermore, in any one of the above-mentioned laminated type electromagnetic steel sheets, the non-oriented electrical steel sheet is C:% by weight.
0.005% or less, Si + Al: 1 to 4%, Mn: 0.
1 to 1.5%, P: 0.15% or less, S: 0.015%
The present invention is to provide a laminated electromagnetic steel sheet characterized by comprising N: 0.005% or less and the balance Fe and unavoidable impurities.

【0014】[0014]

【作用】本発明を詳細に説明するに先立って、本発明に
おける積層型電磁鋼板について、その層構成を説明す
る。図1は、積層数(積層型電磁鋼板に含まれる無方向
性電磁鋼板の枚数)が3枚の例を模式的に示したもので
あるが、ここで、1が積層型電磁鋼板全体であり、これ
は2の絶縁皮膜と3の無方向性電極鋼板層と4の接着絶
縁層から構成されることになる。次に、本発明の限定理
由及び作用について説明する。
Before describing the present invention in detail, the layer structure of the laminated electromagnetic steel sheet according to the present invention will be described. FIG. 1 schematically shows an example in which the number of laminated layers (the number of non-oriented electrical steel sheets included in the laminated electrical steel sheet) is three, where 1 is the entire laminated electrical steel sheet. This is composed of 2 insulating films, 3 non-oriented electrode steel plate layers and 4 adhesive insulating layers. Next, the reasons and effects of the present invention will be described.

【0015】本発明においては、打ち抜き性改善のた
め、積層型電磁鋼板を構成する無方向性電磁鋼板の平均
板面粒径d(μm)を、積層数nとした場合に、d≧2
0×nとする必要があるが、これは以下の検討結果に基
づく。まず、全厚、積層数と無方向性電磁鋼板層の成
分、厚み、並びに接着絶縁層の成分、膜厚に関し、種々
の組み合せで積層型電磁鋼板を作製するとともに、各々
の積層型電磁鋼板において、無方向性電磁鋼板層の板面
粒径を広範に変化させた。
In the present invention, in order to improve the punching property, d ≧ 2 when the average plate surface grain diameter d (μm) of the non-oriented electrical steel sheet constituting the laminated electrical steel sheet is the number of layers n.
It should be 0 × n, but this is based on the following examination results. First, with respect to the total thickness, the number of laminated layers and the composition and thickness of the non-oriented electrical steel sheet layer, and the composition and thickness of the adhesive insulating layer, the laminated electromagnetic steel sheet is produced in various combinations, and in each laminated electromagnetic steel sheet, , The grain size of the non-oriented electrical steel sheet layer was widely changed.

【0016】次に、比較として、これら積層型電磁鋼板
と同一の板厚、鋼成分、板面粒径をもつ通常の単層材を
作製し、両者を連続打ち抜き試験に供することで、打ち
抜き性に対する無方向性電磁鋼板層の板面粒径の影響を
調査した。
Next, as a comparison, an ordinary single-layer material having the same plate thickness, steel composition, and plate surface grain size as those of these laminated electromagnetic steel sheets was prepared, and both were subjected to a continuous punching test to obtain punchability. The effect of grain size of the non-oriented electrical steel sheet layer was investigated.

【0017】その際に用いた無方向性電磁鋼板層の組成
を表1に示し、積層型電磁鋼板の実際の構成及び打ち抜
き性の評価結果を図2〜5に示す。ここで、打ち抜き性
については、同一板厚、鋼成分、板面粒径をもつ通常材
の型寿命に対しての積層型電磁鋼板の型寿命の比をもっ
て評価した。具体的には、外径50mmのローター及び
外径80mmのステーターを連続して打ち抜き、バリ高
さが30μmを超えたときを型寿命として上記比を求め
た。
The composition of the non-oriented electrical steel sheet layer used at that time is shown in Table 1, and the actual construction of the laminated electrical steel sheet and the evaluation results of punchability are shown in FIGS. Here, the punchability was evaluated by the ratio of the die life of the laminated electromagnetic steel sheet to the die life of a normal material having the same plate thickness, steel composition, and plate surface grain size. Specifically, the rotor having an outer diameter of 50 mm and the stator having an outer diameter of 80 mm were continuously punched, and when the burr height exceeded 30 μm, the mold life was determined, and the above ratio was determined.

【0018】なお、積層型電磁鋼板及び通常の単層材と
もに、その表面に無機−有機系の絶縁皮膜を1μm塗布
し、打ち抜き試験に供している。図2〜5より、積層型
電磁鋼板の全厚、積層数や、無方向性電磁鋼板層の成
分、厚み、あるいは接着絶縁層の成分、膜厚等には拘わ
りなく、積層型電磁鋼板の打ち抜き性(通常材の型寿命
に対する積層型電磁鋼板の型寿命の比)は無方向性電磁
鋼板層の板面粒径に依存することが解かる。そして、積
層数によって打ち抜き性の値そのものは異なるものの、
いずれの積層数の場合にも、d/n≧20で急激に打ち
抜き性が向上しているのが分かる。すなわち、前述した
ように、板面粒径を積層数との関係で適正に制御するこ
とにより、打ち抜き性すなわち型寿命は著しく向上する
ことが確認された。従って、本発明ではこのような実験
結果に基づき、無方向性電磁鋼板層の板面粒径d(μ
m)を積層数nとの関係でd≧20×nと規定した。こ
こで、このように規定することにより打ち抜き性が改善
されるのは、前述したように板面粒径を積層数に応じて
大きくした場合にクラックの層間の伝播に対して抵抗と
して作用する表層結晶粒界の数が減少し、これによって
層間のクラック伝播の連続性が上昇した結果と考えられ
る。
Both the laminated type electromagnetic steel sheet and the ordinary single layer material are coated with an inorganic-organic insulating film having a thickness of 1 μm and subjected to a punching test. From FIGS. 2 to 5, punching of the laminated electromagnetic steel sheet is performed regardless of the total thickness of the laminated electromagnetic steel sheet, the number of laminated layers, the component and thickness of the non-oriented electrical steel sheet layer, the component of the adhesive insulating layer, the film thickness, and the like. It can be seen that the property (ratio of die life of laminated electromagnetic steel sheet to die life of ordinary material) depends on the grain size of the non-oriented electrical steel sheet layer. And, although the value of punchability itself differs depending on the number of layers,
It can be seen that the punching property is sharply improved when d / n ≧ 20 regardless of the number of stacked layers. That is, as described above, it was confirmed that the punching property, that is, the mold life was remarkably improved by appropriately controlling the plate surface grain diameter in relation to the number of stacked layers. Therefore, in the present invention, based on such experimental results, the plate surface grain size d (μ
m) was defined as d ≧ 20 × n in relation to the number of stacked layers n. Here, the punchability is improved by defining in this way that the surface layer that acts as a resistance against the propagation of cracks between layers when the plate surface grain size is increased according to the number of stacked layers as described above. It is considered that this is because the number of grain boundaries is reduced, which increases the continuity of crack propagation between layers.

【0019】なお、積層数については、積層型電磁鋼板
というためには2以上であることが必要である。また、
図2〜5にも示すように、積層数が増加するに伴って当
然に打ち抜き性の値そのものは低下するが、積層数によ
らずd/n≧20で打ち抜き性が急激に向上するから、
積層数の上限は特に規定する必要はない。ただし、積層
数が5までは、d/n≧20とした場合に通常材の70
〜100%の高い型寿命(すなわち打ち抜き性)が得ら
れる。
It is necessary that the number of laminated layers is 2 or more in order to be a laminated electromagnetic steel sheet. Also,
As shown in FIGS. 2 to 5, the punchability value itself naturally decreases as the number of layers increases, but the punchability sharply improves at d / n ≧ 20 regardless of the number of layers.
It is not necessary to specify the upper limit of the number of stacked layers. However, if the number of layers is up to 5, 70% of the normal material is used when d / n ≧ 20.
A high die life of 100% (that is, punchability) can be obtained.

【0020】また、本発明にあっては、打ち抜き性の確
保が重要であり、そのためには表面に絶縁皮膜を有する
ことが好ましい。その場合、絶縁皮膜を表面に有しさえ
すれば、これが無いものに比べ打ち抜き性が格段に向上
するため、皮膜の種類や膜厚は特に限定されない。ただ
し、打ち抜き性を一層良好なものにする観点からは、無
機系のものより無機−有機系のもの、あるいは有機系の
ものが好ましく、一方、膜厚については、積層型電磁鋼
板を鉄芯に組んだ際の、鋼板間の絶縁抵抗を確保する観
点から0.3μm以上とすることが望ましい。
Further, in the present invention, it is important to secure punching property, and for that purpose, it is preferable to have an insulating film on the surface. In that case, as long as an insulating film is provided on the surface, the punching property is markedly improved as compared with the case where the insulating film is not provided. Therefore, the type and film thickness of the film are not particularly limited. However, from the viewpoint of further improving the punchability, an inorganic-organic type or an organic type is preferable to an inorganic type, while the film thickness of the laminated electromagnetic steel sheet is the iron core. From the viewpoint of ensuring the insulation resistance between the steel plates when assembled, it is preferably 0.3 μm or more.

【0021】積層型電磁鋼板の打ち抜き性向上の観点か
らは、上述したように無方向性電磁鋼板層の板面粒径を
適正化することが最も重要であり、さらに表面に絶縁皮
膜を付与することが好ましいが、他の特性を考慮する
と、さらに以下のような条件設定を行うことが好まし
い。
From the viewpoint of improving the punchability of the laminated electromagnetic steel sheet, it is most important to optimize the grain size of the non-oriented electrical steel sheet layer as described above, and further, an insulating coating is applied to the surface. However, considering other characteristics, it is preferable to further set the following conditions.

【0022】まず、無方向性電磁鋼板層の板厚について
は、これを0.08mm以上0.25mm以下とするこ
とが好ましい。後にもう一度述べるが、積層型電磁鋼板
の製造方法としては、所定厚あるいは所定厚近くとした
無方向性電磁鋼板を用意し、これを接着絶縁層を介して
積層一体化することが一般的であると考えられるが、そ
の場合、無方向性電磁鋼板層の板厚が0.08mm未満
では、素材となる無方向性電磁鋼板を製造する際、冷間
圧延でのミル負荷の著しい増大や鋼板が破断する恐れ等
を生じるため適当でない。一方、板厚が0.25mmを
超えると、渦流損の増大に起因して、無方向性電磁鋼板
層の高周波鉄損が急増し、その結果、積層型電磁鋼板全
体としての鉄損も急増してしまい、好ましくない。
First, the thickness of the non-oriented electrical steel sheet layer is preferably 0.08 mm or more and 0.25 mm or less. As will be described later again, as a method of manufacturing a laminated electromagnetic steel sheet, it is general to prepare a non-oriented electrical steel sheet having a predetermined thickness or a thickness close to the predetermined thickness, and laminate and integrate this with an adhesive insulating layer. However, in that case, when the thickness of the non-oriented electrical steel sheet layer is less than 0.08 mm, when the non-oriented electrical steel sheet used as a raw material is manufactured, a significant increase in the mill load in cold rolling and the steel sheet Not suitable as it may cause breakage. On the other hand, when the plate thickness exceeds 0.25 mm, the high frequency iron loss of the non-oriented electrical steel sheet layer sharply increases due to the increase of the eddy current loss, and as a result, the iron loss of the whole laminated electromagnetic steel sheet also sharply increases. This is not desirable.

【0023】同様の理由から、無方向性電磁鋼板層のS
iとAlの量の和を適正化することが好ましい。すなわ
ち、無方向性電磁鋼板にあっては、変形抵抗と鉄損に関
してはSi及びAlの影響が支配的であり、加えて両者
の影響の程度が同程であるため、SiとAlの量を両者
の和を適正な値とすることが好ましい。具体的には、S
i及びAlの量の和が重量%で1%未満であると固有抵
抗の低下に起因して、渦流損が増加し、無方向性電磁鋼
板層の高周波鉄損が急増する。一方、Si及びAlの量
の和が4%を超えると、素材となる無方向性電磁鋼板を
冷間圧延とする際、ミル負荷の増大や破断の恐れ等を生
じる。従って、Si+Al量は重量%で1〜4%である
ことが好ましい。
For the same reason, the S of the non-oriented electrical steel sheet layer is
It is preferable to optimize the sum of the amounts of i and Al. That is, in the non-oriented electrical steel sheet, the influence of Si and Al is dominant in the deformation resistance and the iron loss, and in addition, the degree of the influence of both is about the same. It is preferable that the sum of both is set to an appropriate value. Specifically, S
If the sum of the amounts of i and Al is less than 1% by weight, the eddy current loss increases due to the decrease in specific resistance, and the high-frequency iron loss of the non-oriented electrical steel sheet layer rapidly increases. On the other hand, when the sum of the amounts of Si and Al exceeds 4%, when the non-oriented electrical steel sheet used as the raw material is cold-rolled, there is a risk of an increase in mill load, a risk of breakage, and the like. Therefore, the amount of Si + Al is preferably 1 to 4% by weight.

【0024】なお、製造の安定性や特性の一層の向上を
図る観点から、以下のようにSiとAl以外の成分に関
しても以下のように規定することが好ましい。 C:磁気時効の防止や鉄損の一層の低減の点より0.0
05重量%以下が好ましい。
From the viewpoint of further improving manufacturing stability and characteristics, it is preferable that the components other than Si and Al are defined as follows. C: 0.0 from the viewpoint of preventing magnetic aging and further reducing iron loss
It is preferably not more than 05% by weight.

【0025】Mn:熱間延性向上の点から0.1重量%
以上の添加が必要であり、またMnの添加により鉄損の
一層の低下がもたらされるが、添加量が1.5重量%を
超えると熱間延性に対する効果が飽和するのみならず磁
束密度が低下する。従って、0.1〜1.5重量%が好
ましい。
Mn: 0.1% by weight from the viewpoint of improving hot ductility
The above additions are required, and the addition of Mn further reduces the iron loss. However, if the addition amount exceeds 1.5% by weight, the effect on hot ductility is saturated and the magnetic flux density decreases. To do. Therefore, 0.1 to 1.5% by weight is preferable.

【0026】P:硬度の上昇を通して無方向性電磁鋼板
層自体の打ち抜き性を向上させるとともに、鉄損の一層
の低下をもたらすため必要に応じて0.15重量%まで
添加してよい。但し、添加量が0.15重量%を超える
と打ち抜き性に対する効果が飽和する。
P: In order to improve the punchability of the non-oriented electrical steel sheet layer itself by increasing the hardness and to further reduce the iron loss, it may be added up to 0.15 wt% if necessary. However, if the addition amount exceeds 0.15% by weight, the effect on the punchability is saturated.

【0027】S:MnS等の硫化物を形成し磁気特性を
劣化させるため、0.015重量%以下とすることが好
ましい。 N:鉄損の一層の低減の点より、0.005重量%以下
とすることが好ましい。
S: MnS and other sulfides are formed to deteriorate the magnetic properties, so the content is preferably 0.015% by weight or less. N: From the viewpoint of further reducing iron loss, it is preferably 0.005% by weight or less.

【0028】次に、接着絶縁層に関しては、接着強度と
して鉄芯打ち抜き時に剥離を生じないだけの強度があれ
ばよく、層間の絶縁抵抗に関しても、一般的な絶縁性を
示せば十分であり、さらに、接着絶縁層の打ち抜き性へ
の影響は前記したように小さいため、特段これの成分組
成や厚さを規定する必要はない。すなわち、接着絶縁層
としては、エポキシ樹脂、フェノール樹脂、ポリアミド
樹脂、アクリル樹脂等からなる有機系のものであって
も、コロイダルシリカ、リン酸塩、けい酸ナトリウムや
けい酸カリウムに代表されるアルカリ金属けい酸塩等か
らなる無機系のものであっても、また両者が混合した無
機−有機系のものであってもよい。
Next, regarding the adhesive insulating layer, it is sufficient that the adhesive strength is such that peeling does not occur at the time of punching the iron core, and regarding the insulation resistance between layers, it is sufficient to show general insulating properties. Further, since the influence of the adhesive insulating layer on the punching property is small as described above, it is not necessary to specify the component composition and thickness of the adhesive insulating layer. That is, as the adhesive insulating layer, even if it is an organic type composed of epoxy resin, phenol resin, polyamide resin, acrylic resin, etc., an alkali represented by colloidal silica, phosphate, sodium silicate or potassium silicate. It may be an inorganic type such as metal silicate or the like, or an inorganic-organic type in which both are mixed.

【0029】接着絶縁層の厚さに関しても、上述のよう
に、接着強度や絶縁抵抗、あるいは打ち抜き性の点から
は特に限定されないが、上下にある無方向性電磁鋼板層
の表面粗さが通常は0.2〜0.3μm以上あるため、
これと厚さの均一性や製造安定性を考慮すると、事実上
は1μm以上となる。また厚さが1μm以上あれば、接
着強度上、あるいは層間の絶縁抵抗上、十分である。
The thickness of the adhesive insulating layer is not particularly limited in terms of adhesive strength, insulation resistance, or punchability as described above, but the surface roughness of the non-oriented electrical steel sheet layers above and below is usually Is 0.2 to 0.3 μm or more,
Considering this and the uniformity of thickness and the manufacturing stability, the thickness is practically 1 μm or more. Further, if the thickness is 1 μm or more, it is sufficient in terms of adhesive strength or insulation resistance between layers.

【0030】一方、接着絶縁層の厚さが増加すると積層
型電磁鋼板の占積率(積層型電磁鋼板全体に占める無方
向性電磁鋼板層の合計厚さの割合)が低下し、磁気特性
上好ましくない。占積率としは90%以上が望ましく、
この点を考慮すると接着絶縁層の厚さは、100×tO
/m(μm)(ただし、tO :積層型電磁鋼板の全体の
厚み(mm)、m:接着絶縁層の数)とすることが望ま
しい。
On the other hand, when the thickness of the adhesive insulating layer is increased, the space factor of the laminated electromagnetic steel sheet (the ratio of the total thickness of the non-oriented electrical steel sheet layer to the entire laminated electromagnetic steel sheet) is decreased, and the magnetic characteristics are reduced. Not preferable. 90% or more is desirable as the space factor,
Considering this point, the thickness of the adhesive insulating layer is 100 × t O
/ M ([mu] m) (provided that, t O: total thickness of the laminated electromagnetic steel plates (mm), m: number of adherent insulating layer) is preferably set to.

【0031】積層型電磁鋼板の全体の厚さについては、
前述したように、通常の単層材との比という点で打ち抜
き性(型寿命)に影響を及ぼさず、加えて、無方向性電
磁鋼板層の間に層間絶縁が施こされているため磁気特性
に対しても影響を及ぼさない。従って、本発明にあって
は積層型電磁鋼板の板厚は特段規定の必要はなく、板厚
の如何に拘らず本発明は適用可能である。しかしなが
ら、薄物電磁鋼板を積層一体化することで打ち抜き工数
と積層組み工数を減らさんとする主旨からは、積層型電
磁鋼板の板厚としては、下限を、汎用的に用いられてい
る無方向性電磁鋼板の板厚の下限である0.35mmと
することが適当である。同様に、汎用的に用いられてい
る無方向性電磁鋼板の板厚の上限である0.65mmを
超えると、新規に専用の打ち抜き型の作製が必要になる
等の問題を生じるため、積層型電磁鋼板の板厚の上限と
しては0.65mmが適当である。
Regarding the total thickness of the laminated electromagnetic steel sheet,
As mentioned above, the punchability (die life) is not affected in terms of the ratio with the ordinary single-layer material, and in addition, since the interlayer insulation is applied between the non-oriented electrical steel sheet layers, the magnetic properties It does not affect the characteristics. Therefore, in the present invention, the plate thickness of the laminated electromagnetic steel plate does not need to be specified particularly, and the present invention can be applied regardless of the plate thickness. However, from the point of reducing the punching man-hours and the stacking assembling man-hours by laminating thin electromagnetic steel plates, the lower limit of the thickness of laminated electromagnetic steel plates is the non-directionality that is generally used. It is suitable to set the lower limit of the thickness of the electromagnetic steel sheet to 0.35 mm. Similarly, when the upper limit of the thickness of the non-oriented electrical steel sheet used for general purpose is more than 0.65 mm, there arises a problem that a new dedicated punching die needs to be produced. 0.65 mm is suitable as the upper limit of the thickness of the electromagnetic steel sheet.

【0032】なお、積層型電磁鋼板を構成する無方向性
電磁鋼板層としては、成分、厚さ、粒径等、同一のもの
を用いるのが通常であるが、これらが本発明の範囲にあ
る限りは、成分、厚さ、粒径等が異なる無方向性電磁鋼
板層を組み合せて積層型電磁鋼板とすることを除外する
ものではない。同様に、接着絶縁層の成分組成、厚さに
ついても通常は同一とするが、これらを変えて積層型電
磁鋼板を構成することを除外するものではない。
As the non-oriented electrical steel sheet layer constituting the laminated electromagnetic steel sheet, it is usual to use the same components, thicknesses, grain sizes, etc., but these are within the scope of the present invention. As long as the non-oriented electrical steel sheet layers having different components, thicknesses, grain sizes, etc. are combined to form a laminated electrical steel sheet. Similarly, the component composition and thickness of the adhesive insulating layer are usually the same, but it is not excluded that these are changed to form a laminated electromagnetic steel sheet.

【0033】次に、本発明の積層型電磁鋼板の製造方法
について述べる。本発明にあっては、以上述べたような
積層型電磁鋼板が得られる限りにおいて製造方法につい
て特に限定する必要はないが、製造の安定性や経済性を
考えると、以下に述べる方法が適当である。
Next, a method of manufacturing the laminated electromagnetic steel sheet of the present invention will be described. In the present invention, there is no particular limitation on the manufacturing method as long as the laminated electromagnetic steel sheet as described above is obtained, but considering the manufacturing stability and economy, the method described below is suitable. is there.

【0034】(1)所定厚近くまで冷間圧延した無方向
性電磁鋼板と接着絶縁層を交互に積層し、これらを冷間
軽圧下圧延にて圧延、一体化し、続いて仕上焼鈍、絶縁
皮膜塗布、焼付けを行なう方法。
(1) Non-oriented electrical steel sheets cold-rolled to near a predetermined thickness and adhesive insulating layers are alternately laminated, and these are rolled and integrated by cold light reduction rolling, followed by finish annealing and insulation coating. Method of coating and baking.

【0035】(2)所定厚に冷間圧延した無方向性電磁
鋼板と接着絶縁層を交互に積層し、これらをロール成形
により一体化し、続いて仕上焼鈍、絶縁皮膜塗布、焼付
けを行なう方法。
(2) A method in which non-oriented electrical steel sheets cold-rolled to a predetermined thickness and adhesive insulating layers are alternately laminated, and these are integrated by roll forming, followed by finish annealing, insulating film coating and baking.

【0036】(3)所定厚に冷間圧延し、仕上焼鈍を施
した無方向性電磁鋼板と接着絶縁層を交互に積層し、こ
れらをロール成形により一体化し、続いて絶縁皮膜塗
布、焼付けを行なう方法。
(3) Non-oriented electrical steel sheets which have been cold-rolled to a predetermined thickness and have undergone finish annealing and adhesive insulating layers are alternately laminated, and these are integrated by roll forming, followed by applying an insulating film and baking. How to do.

【0037】(4)上記(3)の方法において、ロール
成形の後、あるいは絶縁皮膜塗布、焼付けの後、歪取焼
鈍を行なう方法。
(4) In the above method (3), strain relief annealing is performed after roll forming, or after insulating film coating and baking.

【0038】[0038]

【実施例】表1及び表2に記載された鋼A〜Pを用い
て、所定厚を有する無方向性電磁鋼板焼鈍板を作製し、
これと接着絶縁層を交互に積層し、ロール成形により一
体化した後、絶縁皮膜塗布、焼付けを行なうことで、表
3、4に示すような積層型電磁鋼板を得た。
[Examples] Using the steels A to P described in Tables 1 and 2, a non-oriented electrical steel sheet annealed sheet having a predetermined thickness was prepared,
This and adhesive insulating layers were alternately laminated and integrated by roll forming, followed by applying an insulating film and baking to obtain laminated electromagnetic steel sheets as shown in Tables 3 and 4.

【0039】その際、無方向性電磁鋼板焼鈍板の作製に
当っては、仕上焼鈍温度を変化させることで、これの板
面粒径を種々変化させた。また、絶縁皮膜に関しては、
無機−有機系のものを膜厚1μmなるよう塗布した。続
いて、これら積層型電磁鋼板の磁気特性と打ち抜き性を
評価した。
At that time, in the production of the non-oriented electrical steel sheet annealed plate, the grain size of the sheet surface was variously changed by changing the finish annealing temperature. Regarding the insulation film,
An inorganic-organic material was applied so as to have a film thickness of 1 μm. Subsequently, the magnetic properties and punchability of these laminated electromagnetic steel sheets were evaluated.

【0040】磁気特性については、内径60mm、外径
80mmのリング状試料を用い、高周波特性が重要なこ
とから、周波数400Hzでの磁束密度B10と鉄損W
10/400を測定した。なお、鉄損の算出に当っては、積層
型電磁鋼板の重量の大部分は無方向性電磁鋼板層に由来
することから、測定された損失の値を積層型電磁鋼板の
全重量で除することにより求めた。一方、磁束密度に関
しては、実用上の観点より、接着絶縁層も含めて積層型
電磁鋼板の断面積を実測し、これで磁束量を除すること
により算出した。
Regarding the magnetic characteristics, a ring-shaped sample having an inner diameter of 60 mm and an outer diameter of 80 mm was used. Since high frequency characteristics are important, magnetic flux density B 10 and iron loss W at a frequency of 400 Hz were used.
10/400 was measured. In calculating the iron loss, most of the weight of the laminated electromagnetic steel sheet is derived from the non-oriented electrical steel sheet layer, so the measured loss value is divided by the total weight of the laminated electromagnetic steel sheet. I asked for it. On the other hand, the magnetic flux density was calculated by actually measuring the cross-sectional area of the laminated electromagnetic steel sheet including the adhesive insulating layer and dividing the magnetic flux amount by this from the practical viewpoint.

【0041】打ち抜き性については、積層型電磁鋼板と
同一板厚、同一鋼成分、同一粒径を持つ通常の単層の無
方向性電磁鋼板を作製し、同じく表面に無機−有機系の
絶縁皮膜を膜厚1μm塗布した後、これと積層型電磁鋼
板を同一条件で打ち抜き、そのときの打ち抜き型寿命の
比をもって評価した。すなわち、積層型電磁鋼板と通常
の単層材につき、外径50mmのローターと外径80m
mのステーターを連続して打ち抜き、バリ高さが30μ
mを超えたときの累積打ち抜き回数をもって型寿命と
し、両者の型寿命の比を算出した。かくして得られた積
層型鋼板の磁気特性と通常材に対する打ち抜き型寿命の
比を表3、4に示す。
Regarding the punching property, a normal single-layer non-oriented electrical steel sheet having the same plate thickness, the same steel composition and the same grain size as the laminated type electromagnetic steel sheet was prepared, and an inorganic-organic insulating film was also formed on the surface. Was coated to a film thickness of 1 μm, and this and the laminated electromagnetic steel sheet were punched under the same conditions, and the punching die life ratio at that time was evaluated. That is, for a laminated electromagnetic steel sheet and an ordinary single layer material, a rotor with an outer diameter of 50 mm and an outer diameter of 80 m
Continuously punching out the stator of m, the burr height is 30μ
The mold life was defined as the cumulative number of punches when m was exceeded, and the ratio of the two mold lives was calculated. Tables 3 and 4 show the magnetic properties of the laminated steel sheet thus obtained and the punching die life ratio with respect to the ordinary material.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】同表から明らかなように、d/nの値が2
0以上、すなわちd≧20×nであれば、d/nの値が
20未満、すなわちd<20×nの場合に比較して、型
寿命比(すなわち打ち抜き性)が格段に優れたものとな
ることが確認された。さらに、無方向性電磁鋼板の板厚
S が0.08mm以上0.25mm以下であり、かつ
鋼板中のSiとAl量の和が重量%で1%以上4%以下
であり、積層絶縁層の厚みtR (μm)が1≦tR ≦1
00×tO /mであれば、打ち抜き性に加えて、優れた
磁束密度と鉄損が得られることが確認された。また、積
層数nが5以下であれば通常材の70%以上の打ち抜き
型寿命が確保されることが確認された。
As is clear from the table, the value of d / n is 2
If 0 or more, that is, d ≧ 20 × n, the die life ratio (that is, punching property) is remarkably excellent as compared with the case where the value of d / n is less than 20, that is, d <20 × n. It was confirmed that Furthermore, the plate thickness t S of the non-oriented electrical steel sheet is 0.08 mm or more and 0.25 mm or less, and the sum of the amounts of Si and Al in the steel sheet is 1% or more and 4% or less in terms of weight%. Has a thickness t R (μm) of 1 ≦ t R ≦ 1
It was confirmed that if it is 00 × t O / m, excellent magnetic flux density and iron loss can be obtained in addition to punchability. Further, it was confirmed that if the number of stacked layers n is 5 or less, the punching die life of 70% or more of the normal material is secured.

【0047】これに対して、上記条件を満たさないもの
は、打ち抜き型寿命が60%以下であったり、鉄損が2
1w/kg以上と過大であったり、あるいは磁束密度と
鉄損、両者のバランスに劣っていたりしてることが確認
された。
On the other hand, those which do not satisfy the above conditions have a punching die life of 60% or less and an iron loss of 2%.
It was confirmed that the magnetic flux density was 1 w / kg or more, which was excessive, or the magnetic flux density and iron loss were poor, and the balance between the two was poor.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
鉄芯作製時の打ち抜き工数や積層組み工数の増大といっ
た生産性の低下をきたすことなく、打ち抜き性に優れた
積層型電磁鋼板を得ることができ、その工業的価値は極
めて高い。
As described above, according to the present invention,
It is possible to obtain a laminated electromagnetic steel sheet excellent in punching property without causing a decrease in productivity such as an increase in the number of punching steps and the number of stacking and assembling steps when manufacturing an iron core, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における積層型電磁鋼板の層構成を示し
た模式図。
FIG. 1 is a schematic diagram showing a layer structure of a laminated electromagnetic steel sheet according to the present invention.

【図2】積層数2の場合の積層型電磁鋼板の打ち抜き型
寿命と無方向性電磁鋼板層の板面粒径との関係を示す
図。
FIG. 2 is a diagram showing the relationship between the punching die life of a laminated electromagnetic steel sheet and the plate surface grain size of a non-oriented electrical steel sheet layer when the number of laminated sheets is two.

【図3】積層数3の場合の積層型電磁鋼板の打ち抜き型
寿命と無方向性電磁鋼板層の板面粒径との関係を示す
図。
FIG. 3 is a diagram showing the relationship between the punching die life of a laminated electromagnetic steel sheet and the plate surface grain size of a non-oriented electrical steel sheet layer when the number of laminated sheets is three.

【図4】積層数5の場合の積層型電磁鋼板の打ち抜き型
寿命と無方向性電磁鋼板層の板面粒径との関係を示す
図。
FIG. 4 is a diagram showing a relationship between a punching die life of a laminated electromagnetic steel sheet and a sheet surface grain size of a non-oriented electrical steel sheet layer when the number of laminated sheets is five.

【図5】積層数6の場合の積層型電磁鋼板の打ち抜き型
寿命と無方向性電磁鋼板層の板面粒径との関係を示す
図。
FIG. 5 is a diagram showing a relationship between a punching die life of a laminated electromagnetic steel sheet and a plate surface grain size of a non-oriented electrical steel sheet layer when the number of laminated sheets is six.

【符号の説明】[Explanation of symbols]

1……積層型電磁鋼板、2……絶縁皮膜、3……無方向
性電磁鋼板層、4……接着絶縁層。
1 ... Laminated electromagnetic steel sheet, 2 ... Insulating film, 3 ... Non-oriented electrical steel sheet layer, 4 ... Adhesive insulating layer.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年3月29日[Submission date] March 29, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0044[Correction target item name] 0044

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0044】[0044]

【表3】 [Table 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無方向性電磁鋼板を接着絶縁層を介して
積層し一体化した積層型電磁鋼板であって、鋼板面の平
均結晶粒径d(μm)がd≧20×n(n:積層数=積
層型電磁鋼板に含まれる無方向性電磁鋼板の枚数)であ
ることを特徴とする積層型電磁鋼板。
1. A laminated electromagnetic steel sheet in which non-oriented electrical steel sheets are laminated and integrated with an adhesive insulating layer, and the average crystal grain diameter d (μm) of the steel sheet surface is d ≧ 20 × n (n: The number of laminated layers = the number of non-oriented electrical steel sheets included in the laminated electrical steel sheets).
【請求項2】 表面に絶縁皮膜を有し、無方向性電磁鋼
板の板厚tS が0.08mm以上0.25mm以下であ
り、かつ鋼板中のSiとAl量の和が重量%で1%以上
4%以下であり、積層絶縁層の厚みtR (μm)が1≦
R ≦100×tO /mであり(tO :積層型電磁鋼板
の全体の厚み(mm)、m:積層型電磁鋼板に含まれる
接着絶縁層の層の数)、積層数nが2枚以上であること
を特徴とする請求項1に記載の積層型電磁鋼板。
2. A non-oriented electrical steel sheet having an insulating coating on its surface, a thickness t S of 0.08 mm or more and 0.25 mm or less, and a sum of Si and Al in the steel sheet is 1% by weight. % Or more and 4% or less, and the thickness t R (μm) of the laminated insulating layer is 1 ≦.
t R ≦ 100 × t O / m (t O : total thickness (mm) of laminated electromagnetic steel sheet, m: number of layers of adhesive insulating layer included in laminated electromagnetic steel sheet), and the number of laminated layers n is 2 The laminated electromagnetic steel sheet according to claim 1, wherein the laminated electromagnetic steel sheet is one or more sheets.
【請求項3】 積層型電磁鋼板全体の厚みtO が0.3
5mm以上0.65mm以下であることを特徴とする請
求項2に記載の積層型電磁鋼板。
3. The total thickness t O of the laminated type electromagnetic steel sheet is 0.3.
It is 5 mm or more and 0.65 mm or less, The laminated electromagnetic steel sheet according to claim 2.
【請求項4】 前記無方向性電磁鋼板が、重量%で、
C:0.005%以下、Si+Al:1〜4%、Mn:
0.1〜1.5%、P:0.15%以下、S:0.01
5%以下、N:0.005%以下、残部Fe及び不可避
的不純物から実質的になることを特徴とする請求項2又
は3のいずれか1項に記載の積層型電磁鋼板。
4. The non-oriented electrical steel sheet, in% by weight,
C: 0.005% or less, Si + Al: 1-4%, Mn:
0.1 to 1.5%, P: 0.15% or less, S: 0.01
5% or less, N: 0.005% or less, and the balance consists essentially of Fe and unavoidable impurities, The laminated type electromagnetic steel sheet of any one of Claim 2 or 3 characterized by the above-mentioned.
JP34965493A 1993-12-29 1993-12-29 Manufacturing method of laminated electromagnetic steel sheet Expired - Fee Related JP3243099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34965493A JP3243099B2 (en) 1993-12-29 1993-12-29 Manufacturing method of laminated electromagnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34965493A JP3243099B2 (en) 1993-12-29 1993-12-29 Manufacturing method of laminated electromagnetic steel sheet

Publications (2)

Publication Number Publication Date
JPH07201551A true JPH07201551A (en) 1995-08-04
JP3243099B2 JP3243099B2 (en) 2002-01-07

Family

ID=18405202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34965493A Expired - Fee Related JP3243099B2 (en) 1993-12-29 1993-12-29 Manufacturing method of laminated electromagnetic steel sheet

Country Status (1)

Country Link
JP (1) JP3243099B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284116A (en) * 2000-04-03 2001-10-12 Toshiba Corp Magnetic thin plate, laminated core and manufacturing method for both
JP2005340709A (en) * 2004-05-31 2005-12-08 Jfe Steel Kk Laminated core improved in dimension precision
WO2006043612A1 (en) * 2004-10-18 2006-04-27 Nippon Steel Corporation Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same.
JP2010171438A (en) * 2010-03-15 2010-08-05 Jfe Steel Corp Laminated core having excellent dimension precision
WO2015080463A1 (en) * 2013-11-27 2015-06-04 주식회사 포스코 Non-oriented electrical steel plate composition, method for manufacturing non-oriented electrical steel plate product, and non-oriented electrical steel plate product
JP2015206092A (en) * 2014-04-22 2015-11-19 Jfeスチール株式会社 Laminate electrical magnetic steel sheet and manufacturing method therefor
WO2016114212A1 (en) * 2015-01-14 2016-07-21 Jfeスチール株式会社 Punching method, punching device, and method for manufacturing laminated core
KR20170021861A (en) 2014-07-29 2017-02-28 제이에프이 스틸 가부시키가이샤 Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
WO2018116881A1 (en) 2016-12-22 2018-06-28 Jfeスチール株式会社 Method for producing electromagnetic steel sheet with adhesive insulating coating film and method for producing stacked electromagnetic steel sheet
EP3561014A4 (en) * 2016-12-23 2020-05-27 Posco Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor
CN113169638A (en) * 2018-12-17 2021-07-23 日本制铁株式会社 Adhesive laminated core for stator and rotating electrical machine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284116A (en) * 2000-04-03 2001-10-12 Toshiba Corp Magnetic thin plate, laminated core and manufacturing method for both
JP4585076B2 (en) * 2000-04-03 2010-11-24 株式会社東芝 Magnetic thin plate, laminated magnetic core and manufacturing method thereof
JP2005340709A (en) * 2004-05-31 2005-12-08 Jfe Steel Kk Laminated core improved in dimension precision
WO2006043612A1 (en) * 2004-10-18 2006-04-27 Nippon Steel Corporation Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same.
JPWO2006043612A1 (en) * 2004-10-18 2008-05-22 新日本製鐵株式会社 Heat-resistant adhesive coating, electrical steel sheet with heat-resistant adhesive coating coated thereon, iron core using the electrical steel sheet, and manufacturing method thereof
KR100886236B1 (en) * 2004-10-18 2009-03-02 신닛뽄세이테쯔 카부시키카이샤 Heat resistant adhesive insulating film
KR100921015B1 (en) * 2004-10-18 2009-10-09 신닛뽄세이테쯔 카부시키카이샤 Electromagnetic steel sheet with heat resistant adhesive insulating film
JP4860480B2 (en) * 2004-10-18 2012-01-25 新日本製鐵株式会社 Electrical steel sheet with heat-resistant adhesive coating coated with heat-resistant adhesive film, iron core using the electrical steel sheet, and manufacturing method thereof
JP2010171438A (en) * 2010-03-15 2010-08-05 Jfe Steel Corp Laminated core having excellent dimension precision
US10556404B2 (en) 2013-11-27 2020-02-11 Posco Composition for non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet product, and non-oriented electrical steel sheet product
WO2015080463A1 (en) * 2013-11-27 2015-06-04 주식회사 포스코 Non-oriented electrical steel plate composition, method for manufacturing non-oriented electrical steel plate product, and non-oriented electrical steel plate product
JP2015206092A (en) * 2014-04-22 2015-11-19 Jfeスチール株式会社 Laminate electrical magnetic steel sheet and manufacturing method therefor
KR20170021861A (en) 2014-07-29 2017-02-28 제이에프이 스틸 가부시키가이샤 Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
WO2016114212A1 (en) * 2015-01-14 2016-07-21 Jfeスチール株式会社 Punching method, punching device, and method for manufacturing laminated core
JP2016129902A (en) * 2015-01-14 2016-07-21 Jfeスチール株式会社 Blanking method, blanking apparatus, and method of manufacturing laminated iron core
TWI574809B (en) * 2015-01-14 2017-03-21 Jfe Steel Corp A punching processing method, a punching processing apparatus, and a laminated core manufacturing method
KR20170094287A (en) 2015-01-14 2017-08-17 제이에프이 스틸 가부시키가이샤 Punching method, punching device, and method for manufacturing laminated core
US10919081B2 (en) 2015-01-14 2021-02-16 Jfe Steel Corporation Punching method, punching device, and method for manufacturing laminated iron core
WO2018116881A1 (en) 2016-12-22 2018-06-28 Jfeスチール株式会社 Method for producing electromagnetic steel sheet with adhesive insulating coating film and method for producing stacked electromagnetic steel sheet
KR20190085072A (en) 2016-12-22 2019-07-17 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ELECTRIC STEEL PLATE WITH ADHESIVE INSULATED COATING FILM
US11186076B2 (en) 2016-12-22 2021-11-30 Jfe Steel Corporation Method of manufacturing electrical steel sheet with adhesive insulating coating and method of manufacturing stacked electrical steel sheet
EP3561014A4 (en) * 2016-12-23 2020-05-27 Posco Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor
US11807922B2 (en) 2016-12-23 2023-11-07 Posco Co., Ltd Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor
CN113169638A (en) * 2018-12-17 2021-07-23 日本制铁株式会社 Adhesive laminated core for stator and rotating electrical machine

Also Published As

Publication number Publication date
JP3243099B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2602345A1 (en) Grain-oriented magnetic steel sheet and process for producing same
EP2623634A1 (en) Oriented electromagnetic steel plate
JP3243099B2 (en) Manufacturing method of laminated electromagnetic steel sheet
TW201928087A (en) Multilayer electromagnetic steel sheet
JP2012102395A (en) Grain-oriented electromagnetic steel sheet, and method for producing the same
WO2021019859A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JPH04361508A (en) Low noise laminated core and wound core using extra high silicon electromagnetic steel
JP5760511B2 (en) Method for producing grain-oriented electrical steel sheet
JP6943544B2 (en) Inverter power supply Reactor Electromagnetic steel sheet for iron core and its manufacturing method
JP6984998B2 (en) Non-oriented electrical steel sheets for high-performance motors
US11401589B2 (en) Multilayer electrical steel sheet
JP4437939B2 (en) Low iron loss unidirectional electrical steel sheet
WO2023132198A1 (en) Non-oriented electromagnetic steel sheet
JP3791226B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2022211004A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2001073096A (en) Nonoriented silicon steel sheet for power steering motor, and its manufacture
JP3280281B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2001303212A (en) Nonoriented silicon steel sheet excellent in high frequency magnetic property and also having high space factor occupying volume rate
JP4258853B2 (en) Low iron loss and low noise core
JP2002115035A (en) Nonoriented silicon steel sheet
JP4276618B2 (en) Low iron loss unidirectional electrical steel sheet
JPH0816258B2 (en) Clad type non-oriented electrical steel sheet
JPH08104923A (en) Production of non-oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111019

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees