JPH08104923A - Production of non-oriented silicon steel sheet - Google Patents

Production of non-oriented silicon steel sheet

Info

Publication number
JPH08104923A
JPH08104923A JP6242521A JP24252194A JPH08104923A JP H08104923 A JPH08104923 A JP H08104923A JP 6242521 A JP6242521 A JP 6242521A JP 24252194 A JP24252194 A JP 24252194A JP H08104923 A JPH08104923 A JP H08104923A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
cold rolling
annealing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6242521A
Other languages
Japanese (ja)
Other versions
JP3178270B2 (en
Inventor
Mitsuyo Doi
光代 土居
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24252194A priority Critical patent/JP3178270B2/en
Publication of JPH08104923A publication Critical patent/JPH08104923A/en
Application granted granted Critical
Publication of JP3178270B2 publication Critical patent/JP3178270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To provide a method for producing a non-oriented silicon steel sheet low in core loss particularly in the use of high frequency and good in workability. CONSTITUTION: This is the method for producing a non-oriented silicon steel sheet low in core loss in which the slab of a steel having a compsn. contg. <=0.010% C, 2.75 to 3.5% Si, 0.6 to 2.5% Mn, <=0.02% P, <=0.006% S, <=0.006% N and 1.5 to 2.5% Al, furthermore satisfying Si(%)+0.5Al(%) >=4.0, and the balance Fe with inevitable impurities is subjected to hot rolling, and the hot rolled sheet is annealed according to necessary, which is subjected to cold rolling at 40 to 80% rolling ratio, is subjected to process annealing at 650 to 1000 deg.C, is moreover subjected to cold rolling at 40 to 80% rolling ratio and is thereafter subjected to finish annealing. Thus, the non-oriented silicon steel sheet excellent in cold workability and punching workability and low in core loss in a high frequency region can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機器の鉄心として
広く用いられる鉄損の低い無方向性電磁鋼板の製造方法
であって、とりわけ高周波条件下で使用される電気機器
の鉄心に適した無方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a low iron loss, which is widely used as an iron core for electric equipment, and is particularly suitable for an iron core for electric equipment used under high frequency conditions. The present invention relates to a method for manufacturing a non-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】電気機器を取り巻く環境としては、機器
の効率化、小型軽量化が全般的な傾向であり、より効率
のよいインバータ制御も普及し始めている。周波数を高
くすると効率が向上し、小型化が可能になることから、
現在商用周波数で使用されている電気機器でも、今後高
い周波数を適用するものが増加していくと予想される。
2. Description of the Related Art As an environment surrounding electrical equipment, there is a general tendency toward efficiency, size reduction and weight reduction of equipment, and more efficient inverter control is also becoming popular. Higher frequencies improve efficiency and enable downsizing,
It is expected that even among electric devices currently used at commercial frequencies, those to which high frequencies are applied will increase in the future.

【0003】そのため高周波条件下でのエネルギー損失
の低い電気部品が求められ、その鉄心に用いられる電磁
鋼板も高周波域での鉄損の低いものが必要になる。
Therefore, an electric component having a low energy loss under high frequency conditions is required, and an electromagnetic steel sheet used for the iron core is also required to have a low iron loss in a high frequency region.

【0004】電磁鋼板の鉄損は、周波数が高くなるにつ
れて増大する。これは、鉄損がヒシテリシス損と渦電流
損の和になっていて、どちらの損失も用いられる周波数
が高くなると増大するためである。特に渦電流損は周波
数の二乗に比例して増大するので、高周波域では鉄損の
大半は渦電流損になっている。つまり、渦電流損を小さ
くすれば、高周波鉄損を低くできるのである。
Iron loss of electromagnetic steel sheets increases as the frequency increases. This is because iron loss is the sum of hysteresis loss and eddy current loss, and both losses increase as the frequency used increases. In particular, since eddy current loss increases in proportion to the square of the frequency, most of iron loss in the high frequency range is eddy current loss. That is, if the eddy current loss is reduced, the high frequency iron loss can be reduced.

【0005】渦電流損を低くするために、鋼板の電気抵
抗を高めたり、積層鉄心の板厚を薄くすることがおこな
われる。電気抵抗を高くするにはSiが他のどの元素の
添加よりも効果があるが、Siを 4%以上添加すると、
材質が硬くなるばかりでなく脆くなってくる。このため
通常の工業生産のプロセスでの鋼板の圧延、とくに冷間
圧延で割れが発生しやすく、その上、薄い板厚が好まし
いとなればますます製造が困難になる。板厚を薄くする
ことは、使用する方も積層枚数が増えて手間がかかり、
その上占積率が低下するので限界がある。
In order to reduce the eddy current loss, the electrical resistance of the steel sheets is increased and the thickness of the laminated core is reduced. Si is more effective in increasing the electric resistance than any other element is added, but if Si is added at 4% or more,
Not only the material becomes hard, but it becomes brittle. For this reason, cracking is likely to occur in the rolling of steel sheets in the ordinary industrial production process, particularly in cold rolling, and further, it becomes more difficult to manufacture if a thin sheet thickness is preferable. Thinning the plate thickness also increases the number of layers to be used by the user,
In addition, there is a limit because the space factor decreases.

【0006】Siの添加量を増していくと、約 6.5%で
磁歪は殆どゼロになり、透磁率は極大を示し、ヒシテリ
シス損が著しく低くなることは以前から知られている。
そして、この場合Siが多量に含まれるので、電気抵抗
は高く、Fe−Siの合金系においては最良の磁気特性
を持つ材料になる。ところがSiが 6.5%にもなると極
めて脆く、通常の薄板の製造方法の圧延は不可能であ
る。このような高Si含有鋼板の製造方法として、溶湯
超急冷法や滲珪法が検討され、一部すでに実用化されて
いるが、そのためには特殊な製造設備が必要になる。
It has been known for a long time that when the amount of Si added is increased, the magnetostriction becomes almost zero at about 6.5%, the magnetic permeability shows a maximum, and the hysteresis loss becomes extremely low.
In this case, since a large amount of Si is contained, the electric resistance is high and the material has the best magnetic characteristics in the Fe-Si alloy system. However, if Si is 6.5%, it is extremely brittle, and it is impossible to carry out rolling by the usual method for manufacturing a thin plate. As a method for manufacturing such a high Si-containing steel sheet, a molten metal ultra-quenching method and a siliconizing method have been studied, and some have already been put into practical use, but for that purpose, special manufacturing equipment is required.

【0007】加工性のよくない高Si鋼を、圧延にて製
造する方法が特開昭 62-103321号公報に示されている。
これはSiを 4〜 7%含む鋼を、熱間圧延の際、低温域
で大きな圧下を加えて結晶粒を微細化し、その後の冷間
圧延の割れを抑制しようとするものである。しかし、製
品になった鋼板にて良好な磁気特性を得るには、充分に
焼鈍して結晶粒を大きくしなければならない。そうする
と極めて脆くなり、これを加工するには特殊な工具や設
備が必要になってくる。
Japanese Unexamined Patent Publication (Kokai) No. 62-103321 discloses a method for producing high Si steel having poor workability by rolling.
This is intended to suppress cracking in the subsequent cold rolling by applying a large reduction in a low temperature region to a steel containing 4 to 7% of Si in a low temperature region to make the crystal grains fine. However, in order to obtain good magnetic properties in the finished steel sheet, it is necessary to anneal sufficiently to increase the crystal grains. This makes them extremely brittle and requires special tools and equipment to process them.

【0008】電気抵抗を増すには、Si添加とほぼ同じ
の効果のあるAlを多量に添加する方法が考えられる。
無方向性電磁鋼板においては、電気抵抗を増したり、磁
壁の移動を阻害して磁化特性を悪くする微細なAlNの
析出を阻止する目的で、Si添加に加えて1%までのA
lが添加される。さらに、大量のAlの添加を提案した
例として特開平3-24251 公報がある。これにはSiを
3.3%以下におさえ、Alを 1.5〜 8%添加した無方向
性電磁鋼板が提示されていて、Siの比率を下げてAl
の比率を高くすると、加工性が改善され磁気特性が向上
し、特にモータ用に好ましい 100 <001>集合組織が発達
しやすいとしている。この公報は先行引例にフランス国
特許出願第 2,316,338号のSi: 2.5〜 3.5%にAl:
0.3〜 1.5%を添加した場合を紹介し、このSi量では
Alが 1.5%を超えると合金が極端に脆化すると指摘し
ている。
In order to increase the electric resistance, a method of adding a large amount of Al, which has almost the same effect as adding Si, can be considered.
In the non-oriented electrical steel sheet, in order to increase the electric resistance and prevent the precipitation of fine AlN which hinders the movement of the domain wall and deteriorates the magnetization characteristics, the addition of Si up to 1% A
1 is added. Further, Japanese Patent Laid-Open No. 3-24251 discloses an example of proposing addition of a large amount of Al. Si for this
A non-oriented electrical steel sheet in which Al is added in an amount of 1.5 to 8% at a content of 3.3% or less has been proposed.
It is said that when the ratio of is higher, the workability is improved and the magnetic properties are improved, and a 100 <001> texture, which is particularly preferable for motors, is likely to develop. In this publication, as a prior reference, French patent application No. 2,316,338 has Si: 2.5 to 3.5% and Al:
The case where 0.3 to 1.5% is added is introduced, and it is pointed out that the alloy becomes extremely brittle when Al exceeds 1.5% in this Si amount.

【0009】このようにSi添加量を増せば、電気抵抗
が増して特に高周波領域の使用に適した性能が得られる
ことはわかっていても、材料の加工性は大幅に劣化する
と言う問題があり、その対策にSi添加量を抑えてAl
を多量に添加することが考えられる。しかしながら、充
分に電気抵抗を増した上で加工性を確保するには限界が
ある。
Although it has been known that an increase in the amount of Si added in this way increases the electric resistance and obtains a performance particularly suitable for use in a high frequency region, there is a problem that the workability of the material is significantly deteriorated. To prevent this, the amount of Si added should be suppressed and Al
It is possible to add a large amount of. However, there is a limit to ensuring workability while sufficiently increasing the electric resistance.

【0010】[0010]

【発明が解決しようとする課題】本発明はこのような問
題を解消することを目的としてなされたものであり、現
状の薄鋼板の製造設備で実現可能な条件の範囲で製造す
ることができ、製品鋼板の打抜き加工が容易で、磁気特
性に優れた、とりわけ高周波域において鉄損の低い、無
方向性電磁鋼板の製造方法を提供するものである。
The present invention has been made for the purpose of solving such a problem, and can be manufactured within a range of conditions that can be realized by the current thin steel plate manufacturing equipment. It is intended to provide a method for producing a non-oriented electrical steel sheet which is easy to punch a product steel sheet and has excellent magnetic properties and which has a low iron loss particularly in a high frequency range.

【0011】[0011]

【課題を解決するための手段】本発明者らは、特に高周
波域の磁気特性が優れ、その上で製造時の冷間圧延性
や、鋼板製品の打ち抜き性の良好な無方向性電磁鋼板の
製造方法について、いろいろ検討した結果、下記のよう
ないくつかの新しい知見を得た。
DISCLOSURE OF THE INVENTION The inventors of the present invention have developed a non-oriented electrical steel sheet which has excellent magnetic properties particularly in a high frequency range, and on which cold rolling property at the time of production and punching property of a steel plate product are good. As a result of various studies on the manufacturing method, the following new findings were obtained.

【0012】(a) 高周波での鉄損の低減を目的に、渦電
流損をできるだけ低くするため、電気抵抗を増す効果が
Siに近いAlの複合添加を検討の結果、適切な量のA
lの添加により良好な磁気特性が得られることがわかっ
た。
(A) To reduce the eddy current loss as much as possible for the purpose of reducing the iron loss at high frequencies, as a result of studying a composite addition of Al, which has an effect of increasing electric resistance, which is close to that of Si, a suitable amount of A
It has been found that the addition of 1 l gives good magnetic properties.

【0013】(b) 加工性の劣化が許容できる限界近くま
でSi量を増したところへAlを添加し、加工性劣化を
調査した結果、同じ電気抵抗であれば、Si添加だけよ
りもAlを複合添加した方が加工性が良好であることが
わかった。しかし、Alも添加量が増えると加工性は劣
化してくるので、添加量には限界がある。
(B) Al was added to a place where the amount of Si was increased to a limit near the allowable workability deterioration, and the workability deterioration was investigated. As a result, if the electric resistance was the same, Al was added more than Si addition alone. It was found that the workability was better with the composite addition. However, since the workability deteriorates as the addition amount of Al increases, there is a limit to the addition amount.

【0014】(C) このSiとAlの複合添加に加えてさ
らにMnを添加すると、冷間圧延時や打抜き加工時の耐
割れ性が改善され、その添加量を増していけば加工性を
損なうことなく高周波での磁気特性も向上することがわ
かった。
(C) When Mn is added in addition to the composite addition of Si and Al, the crack resistance during cold rolling and punching is improved, and if the addition amount is increased, the workability is impaired. It was found that the magnetic characteristics at high frequencies were improved without any increase.

【0015】(d) Si、AlおよびMnを複合添加した
素材による鋼板の製造方法として、熱間圧延後、冷間圧
延→中間焼鈍→冷間圧延→最終焼鈍という工程を取るこ
とが磁気特性に好ましい集合組織を得るのに最適であっ
た。
(D) As a method for producing a steel sheet using a material to which Si, Al, and Mn are added in combination, it is necessary to take steps of cold rolling → intermediate annealing → cold rolling → final annealing after hot rolling to obtain magnetic properties. It was optimal for obtaining the desired texture.

【0016】(e) さらに上記 (d)に加えて熱間圧延後の
冷間圧延の前に、熱延板焼鈍を入れた工程にすることに
よって、磁気特性はさらに向上し、製品の鋼板にてリジ
ングが問題になる場合はその抑制にも有効であることが
わかった。
(E) Further, in addition to the above (d), the hot rolling is followed by cold rolling after the hot rolling, so that the hot rolling sheet annealing is performed. When ridging becomes a problem, it was found to be effective in suppressing it.

【0017】以上のような知見にもとづいて、(1)重
量%で、C: 0.010%以下、Si:2.75〜 3.5%、M
n: 0.6〜 2.5%、P:0.02%以下、S: 0.006%以
下、N: 0.006%以下、Al: 1.5%以上2.5 %未満を
含有し、かつSi( %) + 0.5Al( %) ≧ 4.0を満足
し、残部はFeおよび不可避的不純物からなる鋼のスラ
ブを熱間圧延後、圧延率40〜80%の冷間圧延をおこな
い、ついで 650〜1000℃にて中間焼鈍して、さらに圧延
率40〜80%の冷間圧延後、仕上焼鈍をおこなう鉄損の低
い無方向性電磁鋼板の製造方法、および(2)上記
(1)に記載の組成の鋼のスラブを熱間圧延後、その熱
延鋼板を 650〜1000℃にて焼鈍し、圧延率40〜80%の冷
間圧延をおこない、ついで 650〜1000℃にて中間焼鈍し
て、さらに圧延率40〜80%の冷間圧延後、仕上焼鈍をお
こなう鉄損の低い無方向性電磁鋼板の製造方法、の発明
を完成した。
Based on the above findings, (1) in wt%, C: 0.010% or less, Si: 2.75 to 3.5%, M
n: 0.6 to 2.5%, P: 0.02% or less, S: 0.006% or less, N: 0.006% or less, Al: 1.5% or more and less than 2.5%, and Si (%) + 0.5Al (%) ≥ 4.0 The steel slab, which has Fe and unavoidable impurities in the balance, is hot-rolled, cold-rolled at a rolling rate of 40 to 80%, then annealed at 650 to 1000 ° C, and then rolled at a further rolling rate. After cold rolling at 40 to 80%, finish annealing is performed to produce a non-oriented electrical steel sheet with low iron loss, and (2) after hot rolling a slab of steel having the composition described in (1) above, The hot rolled steel sheet is annealed at 650 to 1000 ℃, cold rolled at a rolling rate of 40 to 80%, then annealed at 650 to 1000 ℃, and then cold rolled at a rolling rate of 40 to 80%. , A method of manufacturing a non-oriented electrical steel sheet having low iron loss, which is subjected to finish annealing.

【0018】[0018]

【作用】以下本発明の方法の構成要件ごとに作用効果お
よび限定理由を説明する。
The operation and effect and the reason for limitation will be described below for each constituent element of the method of the present invention.

【0019】(1)素材スラブまたは製品鋼板の化学組
成 (1) C量 Cは磁気特性を大きく劣化させるのでできるだけ低くす
る。このため含有量を0.010%以下にするが、少なくで
きればそれだけ磁気特性は向上するので、望ましくは
0.005%以下である。
(1) Chemical composition of material slab or product steel sheet (1) C content C is greatly deteriorated in magnetic properties, so it is made as low as possible. For this reason, the content should be 0.010% or less, but if it can be reduced, the magnetic properties will be improved, so it is desirable.
It is 0.005% or less.

【0020】(2) Si量 Siは、電気抵抗の上昇に大きな効果のある元素であ
り、含有量が増すほど渦電流損が低下し、鋼板の鉄損が
減少する。しかし、含有量の増加にともなって硬く脆く
なり、 3.5%を超えると冷間圧延で割れが発生したり圧
下が困難になってくる。また、鋼板製品をモータの鉄心
などに打ち抜く際、工具摩耗の増加や形状不良あるいは
割れなど生じやすくなる。一方、2.75%未満の含有量で
は鉄損の低減が不十分である。したがって、Si含有量
の範囲を2.75〜 3.5%とする。
(2) Si content Si is an element which has a great effect on the increase of electric resistance, and as the content increases, the eddy current loss decreases and the iron loss of the steel sheet decreases. However, as the content increases, it becomes hard and brittle, and if it exceeds 3.5%, cracking occurs in cold rolling or reduction becomes difficult. Further, when a steel sheet product is punched into a motor core or the like, tool wear is likely to increase and a defective shape or crack is likely to occur. On the other hand, if the content is less than 2.75%, the reduction of iron loss is insufficient. Therefore, the Si content range is 2.75 to 3.5%.

【0021】(3) Mn量 Mnを多めに添加すると、SiとAlの含有量を増した
ことによる、冷間圧延や製品打ち抜き時の割れ発生など
の加工性劣化を改善できる。これは、Mnを多く固溶さ
せることによって、熱間圧延時の結晶粒径の粗大化が抑
制されたり、製品の結晶粒が適正化され、脆化が抑えら
れことが一つの理由であろう。その上、添加量を増す
と、電気抵抗も上昇し、加工性を損なうことなく磁気特
性が向上する。ただし過剰の添加は材質が硬くなりすぎ
るので、 2.5%をこえるのは好ましくない。
(3) Mn amount If Mn is added in a large amount, it is possible to improve workability deterioration such as cracking at the time of cold rolling or punching of the product due to the increase of Si and Al contents. One of the reasons for this is that the solid solution of Mn can suppress the coarsening of the crystal grain size during hot rolling, optimize the crystal grains of the product, and suppress the embrittlement. . Moreover, if the amount of addition is increased, the electrical resistance also rises, and the magnetic characteristics are improved without impairing the workability. However, excessive addition makes the material too hard, so it is not preferable to exceed 2.5%.

【0022】このような理由からMnの添加範囲を 0.6
〜 2.5%とする。
For this reason, the addition range of Mn is set to 0.6.
~ 2.5%

【0023】(4) S量 Sは鋼中でMnと結合してMnS析出物となり、磁気特
性を劣化させるので少ないほどよい。このために許容で
きる限度は 0.006%以下であるが、望ましくは0.003%
以下である。
(4) S content The S content is preferably as small as possible because it combines with Mn in steel to form MnS precipitates and deteriorates the magnetic properties. The acceptable limit for this is 0.006% or less, but preferably 0.003%
It is the following.

【0024】(5) Al量 Alの添加は、Siとほぼ同じ程度に電気抵抗を増加さ
せる。そして、Si添加だけ電気抵抗を増した場合より
も、SiとAlを複合添加して、同程度の電気抵抗値に
する方が加工性が良好である。Alの添加の限界量はS
i量により異なるが、 3.5%までのSi量の場合、 1.5
%以下の添加では充分な磁気特性は得られない。また、
多量の添加は磁歪を増大させる傾向にあり、特に、含有
量 2.5%以上になると顕著に増大する。磁歪は騒音の原
因であると言われており、そのうえ、磁歪の増大はヒシ
テリシス損を増加を招くことにもなる。このような理由
から、Alの添加の範囲は 1.5%以上 2.5%未満とす
る。
(5) Amount of Al Addition of Al increases the electric resistance to the same extent as Si. Then, rather than the case where the electrical resistance is increased only by adding Si, the workability is better when the Si and Al are added in combination so that the electrical resistance values are about the same. The limit amount of addition of Al is S
Depending on the i content, up to 3.5% Si content is 1.5
%, Sufficient magnetic properties cannot be obtained. Also,
Addition of a large amount tends to increase the magnetostriction, and especially when the content is 2.5% or more, it increases remarkably. Magnetostriction is said to be a cause of noise, and moreover, an increase in magnetostriction also causes an increase in hysteresis loss. For this reason, the range of addition of Al is 1.5% or more and less than 2.5%.

【0025】(6) N量 NはAlと結合して微細なAlN析出物となり磁気特性
を阻害する。したがって低ければ低いほど好ましい。
0.006%は許容上限値である。
(6) N content N combines with Al to form fine AlN precipitates, which impairs magnetic properties. Therefore, the lower the better.
0.006% is the upper limit of tolerance.

【0026】(7) SiとAlの複合効果 Mn量が多くない場合、割れ発生による冷間加工の限界
から、SiとAlの含有量を増すことが困難であった
が、Mnを多く加えることによって加工性が改善され
た。さらに、上記の添加量の限界内で充分優れた磁気特
性を発揮させるためには、Si量とAl量が Si( %) + 0.5Al( %) ≧ 4.0 であることが必要である。この限界を下回る場合、Mn
量が少なくても加工性は維持できるが、磁気特性は不十
分である。
(7) Combined effect of Si and Al When the amount of Mn is not large, it was difficult to increase the contents of Si and Al because of the limit of cold working due to cracking. Improves workability. Further, in order to exhibit sufficiently excellent magnetic properties within the above-mentioned limit of the added amount, it is necessary that the Si amount and the Al amount are Si (%) + 0.5Al (%) ≧ 4.0. Below this limit, Mn
The workability can be maintained even if the amount is small, but the magnetic properties are insufficient.

【0027】(9) 不可避的不純物元素 上に述べた元素以外の不可避的不純物元素は、いずれも
磁気特性を劣化させるので、少なければ少ないほど望ま
しい。特に磁気特性や加工性ににおよぼす影響の大きい
元素、例えばO、Ti、Nb、V等は低減のために充分
な注意が必要である。
(9) Inevitable Impurity Elements Any unavoidable impurity elements other than the above-mentioned elements deteriorate the magnetic properties, so the smaller the smaller the better. In particular, it is necessary to pay sufficient attention to reduce elements having a great influence on magnetic properties and workability, such as O, Ti, Nb and V.

【0028】(2)製造条件 (a) 熱間圧延 熱間圧延に用いるスラブは、連続鋳造スラブまたは分塊
圧延スラブの何れを用いてもよく、連続鋳造で得たスラ
ブを直送圧延してもよいし一旦冷却されたスラブを再加
熱してもよい。熱間圧延条件については特に限定しない
が、磁気特性からはスラブ加熱温度は1200℃以下、仕上
温度は750 〜850 ℃が望ましい。
(2) Manufacturing conditions (a) Hot rolling The slab used for hot rolling may be either a continuously cast slab or a slab of slabs, and the slab obtained by continuous casting may be directly rolled. The slab once cooled may be reheated. The hot rolling conditions are not particularly limited, but it is desirable that the slab heating temperature is 1200 ° C. or less and the finishing temperature is 750 to 850 ° C. from the magnetic characteristics.

【0029】巻取り温度は特に規制しないが、高温ほど
磁気特性は向上する傾向がある。しかし、巻取り温度を
高温にすると表面の酸化層が増し、その除去が困難にな
ってくる。ただし、請求項2に示した熱延板で焼鈍を行
なう方法においては、巻取温度の影響が小さいので、低
温で巻取るほうが酸化層の発達が少なく、望ましくは60
0℃以下である。
The winding temperature is not particularly limited, but the magnetic properties tend to improve as the temperature increases. However, when the coiling temperature is increased, the oxide layer on the surface increases and it becomes difficult to remove it. However, in the method of annealing a hot-rolled sheet according to claim 2, since the influence of the coiling temperature is small, coiling at a low temperature causes less development of an oxide layer, and is preferably 60%.
It is 0 ° C or lower.

【0030】(b) 冷間圧延 熱延鋼板を冷間圧延した後、焼鈍して充分再結晶させ、
さらに冷間圧延を行ない最終製品の板厚に仕上げること
により、優れた磁気特性が得られる。始めの冷間圧延を
一次冷圧、中間の燒鈍後の冷間圧延を二次冷圧と言う。
中間の焼鈍を挟んで2回冷間圧延すると、最終製品の磁
気特性が向上するのは、 110 <001>方位や 100 <001>方
位等の磁気特性に好ましい集合組織が発達しやすいため
である。
(B) Cold rolling After cold rolling the hot rolled steel sheet, it is annealed to be sufficiently recrystallized,
Further, cold rolling is performed to finish the plate thickness of the final product, whereby excellent magnetic properties can be obtained. The first cold rolling is called primary cold rolling, and the cold rolling after the intermediate annealing is called secondary cold rolling.
The magnetic properties of the final product are improved by cold rolling twice with an intermediate anneal in between, because the textures favorable for magnetic properties such as 110 <001> orientation and 100 <001> orientation tend to develop. .

【0031】冷間圧延の圧下率は一次冷圧、二次冷圧と
も40〜80%とするが、この圧下率の範囲を外れると充分
な磁気特性が得られない。
The reduction ratio of cold rolling is set to 40 to 80% for both the primary cold pressure and the secondary cold pressure. However, if the reduction ratio is out of this range, sufficient magnetic properties cannot be obtained.

【0032】冷間圧延は室温でもよいが、割れ防止を確
実にするために鋼板を 350℃以下に加熱して実施しても
よい。 350℃をこえると圧延時の鋼板の形状制御が困難
になるとともに、圧延油も特殊な性状のものを用いる必
要がある。
The cold rolling may be carried out at room temperature, but may be carried out by heating the steel sheet to 350 ° C. or lower in order to ensure prevention of cracking. If the temperature exceeds 350 ° C, it becomes difficult to control the shape of the steel sheet during rolling, and it is necessary to use rolling oil with special properties.

【0033】(c) 中間焼鈍 硬い材料の圧延に、中間で焼鈍軟化させて圧延を容易に
する目的もあるが、これによって磁気特性が向上する。
これは、磁気的に好ましい集合組織を発達させることが
できるためである。焼鈍の方法は、箱焼鈍、連続焼鈍の
どちらの方式でもよく、材料が焼鈍温度に到達すればよ
いので均熱時間を特定する必要はない。
(C) Intermediate Annealing For the purpose of rolling a hard material, there is also the purpose of facilitating rolling by annealing and softening in the middle, but this improves the magnetic properties.
This is because a magnetically favorable texture can be developed. The annealing method may be either box annealing or continuous annealing, and it is not necessary to specify the soaking time as long as the material reaches the annealing temperature.

【0034】焼鈍温度が 650℃未満では、再結晶が十分
に進行せず、焼鈍の効果が得られない。一方、焼鈍温度
が1000℃を超えると、結晶粒が粗大化し過ぎて冷間圧延
時に割れが生じやすくなる。したがって、中間焼鈍温度
は、 650〜1000℃とする。箱焼鈍の場合には 650〜 900
℃が、連続焼鈍の場合には 750〜1000℃がそれぞれ望ま
しい。
If the annealing temperature is less than 650 ° C., recrystallization does not proceed sufficiently and the effect of annealing cannot be obtained. On the other hand, if the annealing temperature exceeds 1000 ° C., the crystal grains become too coarse and cracks are likely to occur during cold rolling. Therefore, the intermediate annealing temperature is 650 to 1000 ° C. 650 to 900 for box annealing
In the case of continuous annealing, 750 to 1000 ° C is desirable.

【0035】(d) 仕上焼鈍 二次冷圧で目的とする板厚に仕上げた後、製品としての
磁気特性を得るための仕上焼鈍をおこなう。再結晶が充
分行なわれ適度に結晶粒が成長するのであれば、その条
件は特には制約しないが、焼鈍温度として望ましいのは
700℃〜1250℃である。また必要に応じ表面に、絶縁、
防錆、または打ち抜き加工性向上を目的にして、薄い被
膜を塗布し焼き付けてもよい。
(D) Finish annealing After finishing to a desired plate thickness by secondary cold pressure, finish annealing is performed to obtain magnetic properties as a product. The conditions are not particularly limited as long as the recrystallization is sufficiently performed and the crystal grains are appropriately grown, but the preferable annealing temperature is
700 to 1250 ℃. Insulation, if necessary, on the surface
A thin film may be applied and baked for the purpose of preventing rust or improving punching workability.

【0036】(e) 熱延板焼鈍 上述の製造工程において、熱間圧延後の冷間圧延の前
に、熱延板の焼鈍をおこなうと、磁気特性がさらに向上
する。これは、磁気的に好ましい集合組織が発達しやす
くなるためと考えられる。また、熱延板焼鈍をおこなう
ことで、表面に発生しやすい凹凸状の欠陥の、リジング
を軽減することができる。リジングは、鋼板製品として
外観上好ましくないばかりでなく、最終製品の積層鉄心
の占積率を低下させ、その磁気特性を悪くする。
(E) Annealing of hot-rolled sheet In the above manufacturing process, if the hot-rolled sheet is annealed before the cold rolling after the hot rolling, the magnetic properties are further improved. It is considered that this is because a magnetically favorable texture easily develops. Further, by performing the hot-rolled sheet annealing, it is possible to reduce the ridging of the uneven defects that are likely to occur on the surface. Not only is the ridging unfavorable in appearance as a steel sheet product, but it also lowers the space factor of the laminated core of the final product and deteriorates its magnetic properties.

【0037】このような効果を得るための熱延板焼鈍温
度は 650℃〜1000℃が適当である。
The annealing temperature of the hot-rolled sheet for obtaining such effects is suitably 650 ° C to 1000 ° C.

【0038】保持時間は、材料がこの温度に到達すれば
よく、均熱保持は必ずしも必要としない。焼鈍温度が 6
50℃未満では再結晶が不十分で磁気特性が改善されず、
1000℃を超えると、結晶粒が粗大化し過ぎて機械的特性
は劣化し、割れやリジングの抑制に対して効果がなくな
る。これらの効果を充分発揮させるためには 700〜 900
℃が望ましい。
The holding time is sufficient if the material reaches this temperature, and soaking holding is not always necessary. Annealing temperature 6
If it is less than 50 ° C, recrystallization is insufficient and the magnetic properties are not improved.
If the temperature exceeds 1000 ° C, the crystal grains become too coarse and the mechanical properties deteriorate, and the effect of suppressing cracking and ridging is lost. 700 to 900 to maximize these effects
℃ is desirable.

【0039】[0039]

【実施例】【Example】

〔実施例1〕表1に示す組成の鋼を、高周波加熱真空溶
解炉で溶製し、それらの鋼片を1200℃に加熱後、仕上げ
温度 850℃として熱間圧延により厚さ 2.3mmの熱延板に
した。これを一次冷間圧延として圧下率65%で0.80mm厚
まで圧延した後、 750℃で 1時間以上の均熱による中間
焼鈍を行ない、圧下率56%の二次冷間圧延にて0.35mm厚
にした。冷間圧延で割れが発生した試験片は、 300℃の
温間圧延にて所定の板厚まで圧延をおこなった。
[Example 1] Steels having the compositions shown in Table 1 were melted in a high-frequency vacuum melting furnace, and those steel pieces were heated to 1200 ° C, and then hot rolled at a finishing temperature of 850 ° C to a thickness of 2.3 mm. It was a rolled sheet. This is used as primary cold rolling to reduce the thickness to 0.80 mm at a reduction of 65%, then perform intermediate annealing by soaking for 1 hour or more at 750 ° C, and to reduce the thickness to 0.35 mm at a secondary cold rolling of 56%. I chose The test piece in which cracking occurred in cold rolling was hot-rolled at 300 ° C to a predetermined plate thickness.

【0040】圧延後の鋼板は、1000℃で1分間均熱の焼
鈍を行なってから、圧延方向および圧延直角方向を長手
方向とした、幅30mm、長さ 280mmのエプスタイン磁気特
性測定試験片を、打抜き加工により作製した。打抜き時
に割れが発生した試験片については、放電加工により試
験片を作製した。
The rolled steel sheet was annealed at 1000 ° C. for 1 minute, and then subjected to Epstein magnetic property measurement test pieces having a width of 30 mm and a length of 280 mm with the rolling direction and the direction perpendicular to the rolling as longitudinal directions. It was produced by punching. As for the test piece in which cracking occurred during punching, a test piece was prepared by electrical discharge machining.

【0041】これらの試験片を用いて、 800℃で 2時間
の歪取り焼鈍を実施した後、磁気特性を測定した。通
常、無方向性電磁鋼板は50〜60ヘルツの商用周波数にて
鉄損の測定が行なわれるが、高周波での性能を知るた
め、 400ヘルツでの鉄損を測定した。これらの一連の試
験結果も表1に示す。なお、磁気特性としては、鉄損が
低く、磁束密度の高い方が優れている。
After using these test pieces for strain relief annealing at 800 ° C. for 2 hours, the magnetic properties were measured. In general, non-oriented electrical steel sheets are measured for iron loss at a commercial frequency of 50 to 60 hertz, but in order to know the performance at high frequencies, iron loss at 400 hertz was measured. The results of these series of tests are also shown in Table 1. It should be noted that the magnetic properties are better when the iron loss is low and the magnetic flux density is high.

【0042】[0042]

【表1】 [Table 1]

【0043】本発明で定める条件を全て満たした鋼種A
〜Eから製造された鋼板では、良好な磁気特性を示すと
ともに、室温における冷間圧延や打抜き加工時において
割れの発生はなく、良好な加工性を有していた。
Steel type A which satisfies all the conditions defined in the present invention
The steel sheets manufactured from ~ E exhibited good magnetic properties, and had no cracks during cold rolling or punching at room temperature, and had good workability.

【0044】Si(%)+ 0.5Al(%)が 4.0を下ま
わる鋼種H〜Jでは、上記A〜Eに比較し鉄損は高く磁
束密度は低く、磁気特性が劣っている。また、Si
(%)+0.5Al(%)が 4.0以上であっても、Si量
やAl量が規制値をこえる鋼種FおよびGでは、冷間圧
延時に端部から亀裂が発生し、また試験片打ち抜きの際
にはコーナー部から割れが発生した。
In steel types H to J in which Si (%) + 0.5 Al (%) is less than 4.0, iron loss is high, magnetic flux density is low, and magnetic properties are inferior to those of A to E. Also, Si
Even if (%) + 0.5Al (%) is 4.0 or more, in steel types F and G in which the amount of Si or the amount of Al exceeds the regulated values, cracks are generated from the end during cold rolling, and At that time, a crack was generated from the corner.

【0045】〔実施例2〕Mn添加量の効果を見るた
め、実施例1の鋼種AまたはEと、Si量およびAl量
を同じにして、Mn量を変えた鋼を高周波加熱真空溶解
炉で溶製し、試験1と同じ方法で薄板にした後、磁気特
性を測定した。結果を表2に示す。
[Embodiment 2] In order to see the effect of the amount of Mn added, steels having the same Si content and Al content and different Mn contents were used in the high-frequency heating vacuum melting furnace with the steel types A or E of Embodiment 1. After being melted and made into a thin plate by the same method as in Test 1, the magnetic characteristics were measured. Table 2 shows the results.

【0046】[0046]

【表2】 [Table 2]

【0047】Mn量が本発明で規制する範囲より低い鋼
種A0およびE0では、冷間圧延は問題なくおこなえたが、
打ち抜き加工するとエッジ部から微細な割れが生じた。
このため、これらの試験片については磁気特性を測定し
なかった。
With the steel types A0 and E0 in which the amount of Mn was lower than the range regulated by the present invention, cold rolling could be carried out without problems.
When the punching process was performed, fine cracks were generated from the edge part.
Therefore, the magnetic properties of these test pieces were not measured.

【0048】また、Mn量が本発明で規制する量をこえ
る鋼種A3およびE3では、冷間圧延で目標の板厚に減圧で
きなかった。
Further, with steel types A3 and E3 in which the amount of Mn exceeds the amount regulated by the present invention, it was not possible to reduce the pressure to the target thickness by cold rolling.

【0049】〔実施例3〕冷間圧延の圧下率の効果を知
るため、実施例1の鋼種A、および実施例2の鋼種A1に
ついて、試験1と同様の方法で、板厚 2.3mmの熱延板に
仕上げた後、表3に示すような一次冷間圧延、中間焼鈍
および二次冷間圧延をおこない、0.35mm厚の鋼板に仕上
げた。一次、二次冷間圧延はいずれも室温とし、中間焼
鈍は 850℃で1時間の均熱とした。二次冷間圧延の後
に、実施例1と同様の方法で試験片を作製して、磁気特
性を測定した。
[Example 3] In order to know the effect of the reduction ratio of cold rolling, the steel type A of Example 1 and the steel type A1 of Example 2 were heat-treated at a plate thickness of 2.3 mm in the same manner as in Test 1. After finishing the rolled sheet, primary cold rolling, intermediate annealing and secondary cold rolling as shown in Table 3 were performed to finish a steel sheet having a thickness of 0.35 mm. Both the primary and secondary cold rolling were performed at room temperature, and the intermediate annealing was performed at 850 ° C for 1 hour. After the secondary cold rolling, a test piece was prepared in the same manner as in Example 1 and its magnetic characteristics were measured.

【0050】[0050]

【表3】 [Table 3]

【0051】一次あるいは二次の冷間圧延において、本
発明の範囲外の圧下率で製造された鋼板は、本発明のも
のに比較し、いずれも鉄損が大きく磁束密度が低い。ま
た、中間焼鈍なしに一回の冷間圧延で目標の板厚に仕上
げようとした条件6では、冷間圧延時に割れが発生し
た。
In the primary or secondary cold rolling, the steel sheets produced with the rolling reduction outside the range of the present invention have large iron loss and low magnetic flux density as compared with those of the present invention. Further, under the condition 6 in which it was attempted to finish the target sheet thickness by one cold rolling without intermediate annealing, cracking occurred during cold rolling.

【0052】〔実施例4〕実施例1にて用いた鋼種A、
および実施例2の鋼種A1の鋼片により、実施例1と同様
の方法で板厚 2.3mmの熱延板にした後、一次冷間圧延の
圧下率を65%とし、表4に示すように温度を変え中間焼
鈍して、さらに圧下率56%の二次冷間圧延をおこない板
厚0.35mmに仕上げた。中間焼鈍は1分間均熱の連続焼鈍
とした。中間焼鈍温度が1030℃の場合、二次冷間圧延で
割れが発生した。これは焼鈍温度が高すぎ、結晶粒が粗
大化して脆くなったためと思われた。二次冷間圧延後、
1000℃で1分間均熱の焼鈍を行なって、実施例1と同様
にして磁気特性を調査した。
Example 4 Steel type A used in Example 1,
And a hot rolled sheet having a plate thickness of 2.3 mm was prepared by the same method as in Example 1 using the steel piece of the steel type A1 of Example 2, and the reduction ratio of the primary cold rolling was set to 65%, as shown in Table 4. Intermediate annealing was performed at different temperatures, and secondary cold rolling with a reduction rate of 56% was performed to finish the sheet thickness to 0.35 mm. The intermediate annealing was a continuous annealing for 1 minute soaking. When the intermediate annealing temperature was 1030 ℃, cracking occurred in the secondary cold rolling. This was probably because the annealing temperature was too high and the crystal grains became coarse and brittle. After the secondary cold rolling,
Annealing was performed for 1 minute at 1000 ° C., and the magnetic characteristics were investigated in the same manner as in Example 1.

【0053】これらの結果をまとめて表4に示す。表に
見られるように、中間焼鈍の温度が低すぎる場合、充分
な磁気特性が得られなかった。
The results are summarized in Table 4. As can be seen from the table, when the temperature of the intermediate annealing was too low, sufficient magnetic properties could not be obtained.

【0054】[0054]

【表4】 [Table 4]

【0055】〔実施例5〕実施例1にて用いた鋼種A、
および実施例2の鋼種A1の鋼片により、実施例1と同様
の方法で板厚 2.3mmの熱延板にした後、表5に示す条件
の熱延板焼鈍をおこなった。次いで、実施例1と同じ工
程および条件で一次冷延、中間焼鈍、二次冷延を経た
後、1000℃で1分間均熱の焼鈍により鋼板製品を製造し
た。この鋼板から、実施例1と同様に試験片を作製し、
磁気測定と、JISC2550に規定された占積率試験をお
こなった。
Example 5 Steel type A used in Example 1,
Then, a hot rolled sheet having a plate thickness of 2.3 mm was formed from the steel piece of the steel type A1 of Example 2 by the same method as in Example 1, and then hot rolled sheet annealing was performed under the conditions shown in Table 5. Then, after undergoing primary cold rolling, intermediate annealing, and secondary cold rolling in the same steps and conditions as in Example 1, a steel sheet product was manufactured by soaking annealing at 1000 ° C. for 1 minute. A test piece was prepared from this steel sheet in the same manner as in Example 1,
Magnetic measurements and space factor tests specified in JIS C2550 were performed.

【0056】[0056]

【表5】 [Table 5]

【0057】表5に示す条件10は、熱延板焼鈍をおこな
っていない本発明例で、比較として示す。条件11は、熱
延板焼鈍を行なってはいても温度が不十分で、その効果
は現われていない。これら2つの条件は、本発明の請求
項2には該当せず、熱延板焼鈍の効果は得られていない
が、請求項1に含まれるもので、磁気特性としては充分
な値が得られている。
Condition 10 shown in Table 5 is an example of the present invention in which hot-rolled sheet annealing is not performed, and is shown as a comparison. In condition 11, the temperature was insufficient even when hot-rolled sheet annealing was performed, and the effect was not exhibited. These two conditions do not correspond to claim 2 of the present invention, and the effect of hot-rolled sheet annealing is not obtained, but they are included in claim 1, and a sufficient value is obtained as magnetic characteristics. ing.

【0058】本発明の請求項2に相当する条件で熱延板
を焼鈍した条件12では、磁気特性の向上ばかりでなく、
占積率も向上した。ただし、焼鈍温度の高すぎる条件13
は、脆くなって冷間圧延時に割れが発生した。
Under the condition 12 in which the hot-rolled sheet was annealed under the conditions corresponding to claim 2 of the present invention, not only the magnetic characteristics were improved but also
The space factor has also improved. However, the annealing temperature is too high 13
Became brittle and cracked during cold rolling.

【0059】[0059]

【発明の効果】本発明の方法によれば、電磁鋼板の磁気
特性向上、特に高周波領域における鉄損の低減を、冷間
加工性を劣化させることなく実現できる。このため、低
損失の無方向性電磁鋼板を特殊な設備を用いずに製造す
ること、および製品鋼板の所要形状へ加工することが可
能になる。
According to the method of the present invention, it is possible to improve the magnetic properties of the electromagnetic steel sheet, particularly to reduce the iron loss in the high frequency range without deteriorating the cold workability. Therefore, it becomes possible to manufacture a low-loss non-oriented electrical steel sheet without using special equipment and to process the product steel sheet into a required shape.

【0060】[0060]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.010%以下、Si:2.75
〜 3.5%、Mn: 0.6〜 2.5%、P:0.02%以下、S:
0.006%以下、N: 0.006%以下、Al: 1.5%以上
2.5%未満を含有し、かつSi( %)+ 0.5Al( %)
≧ 4.0を満足し、残部はFeおよび不可避的不純物から
なる鋼のスラブを熱間圧延後、圧延率40〜80%の冷間圧
延をおこない、ついで 650〜1000℃にて中間焼鈍して、
さらに圧延率40〜80%の冷間圧延後、仕上焼鈍をおこな
う鉄損の低い無方向性電磁鋼板の製造方法。
1. By weight%, C: 0.010% or less, Si: 2.75
~ 3.5%, Mn: 0.6 ~ 2.5%, P: 0.02% or less, S:
0.006% or less, N: 0.006% or less, Al: 1.5% or more
Contains less than 2.5%, and Si (%) + 0.5Al (%)
A steel slab satisfying ≧ 4.0 with the balance being Fe and inevitable impurities is hot-rolled, cold-rolled at a rolling rate of 40 to 80%, and then annealed at 650 to 1000 ° C.,
Furthermore, after cold rolling with a rolling rate of 40 to 80%, finish annealing is performed to produce a non-oriented electrical steel sheet with low iron loss.
【請求項2】重量%で、C: 0.010%以下、Si:2.75
〜 3.5%、Mn: 0.6〜 2.5%、P:0.02%以下、S:
0.006%以下、N: 0.006%以下、Al: 1.5%以上
2.5%未満を含有し、かつSi( %) + 0.5Al( %)
≧ 4.0を満足し、残部はFeおよび不可避的不純物から
なる鋼のスラブを熱間圧延後、その熱延鋼板を 650〜10
00℃にて焼鈍し、圧延率40〜80%の冷間圧延をおこな
い、ついで 650〜1000℃にて中間焼鈍して、さらに圧延
率40〜80%の冷間圧延後、仕上焼鈍を行う鉄損の低い無
方向性電磁鋼板の製造方法。
2. By weight%, C: 0.010% or less, Si: 2.75
~ 3.5%, Mn: 0.6 ~ 2.5%, P: 0.02% or less, S:
0.006% or less, N: 0.006% or less, Al: 1.5% or more
Contains less than 2.5%, and Si (%) + 0.5Al (%)
Satisfying ≧ 4.0, the balance is Fe and unavoidable impurities. After hot rolling a steel slab, the hot rolled steel sheet is
Iron that is annealed at 00 ℃, cold-rolled at a rolling rate of 40-80%, then intermediate-annealed at 650-1000 ° C, then cold-rolled at a rolling rate of 40-80%, and then finish-annealed. Manufacturing method of non-oriented electrical steel sheet with low loss.
JP24252194A 1994-10-06 1994-10-06 Manufacturing method of non-oriented electrical steel sheet Expired - Fee Related JP3178270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24252194A JP3178270B2 (en) 1994-10-06 1994-10-06 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24252194A JP3178270B2 (en) 1994-10-06 1994-10-06 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH08104923A true JPH08104923A (en) 1996-04-23
JP3178270B2 JP3178270B2 (en) 2001-06-18

Family

ID=17090349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24252194A Expired - Fee Related JP3178270B2 (en) 1994-10-06 1994-10-06 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3178270B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet
WO2012017933A1 (en) * 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
WO2015170271A1 (en) * 2014-05-08 2015-11-12 Centro Sviluppo Materiali S.P.A. Process for the production of grain non- oriented electric steel strip, with an high degree of cold reduction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet
WO2012017933A1 (en) * 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
CN103052722A (en) * 2010-08-04 2013-04-17 新日铁住金株式会社 Process for producing non-oriented electromagnetic steel sheet
JP5437476B2 (en) * 2010-08-04 2014-03-12 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
TWI457443B (en) * 2010-08-04 2014-10-21 Nippon Steel & Sumitomo Metal Corp Manufacturing method of non - directional electromagnetic steel sheet
KR101453224B1 (en) * 2010-08-04 2014-10-22 신닛테츠스미킨 카부시키카이샤 Process for producing non-oriented electromagnetic steel sheet
EP2602335A4 (en) * 2010-08-04 2016-11-30 Nippon Steel & Sumitomo Metal Corp Process for producing non-oriented electromagnetic steel sheet
US9579701B2 (en) 2010-08-04 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of non-oriented electrical steel sheet
WO2015170271A1 (en) * 2014-05-08 2015-11-12 Centro Sviluppo Materiali S.P.A. Process for the production of grain non- oriented electric steel strip, with an high degree of cold reduction
US10337080B2 (en) 2014-05-08 2019-07-02 Centro Sviluppo Materiali S.P.A. Process for the production of grain non-oriented electric steel strip, with an high degree of cold reduction

Also Published As

Publication number Publication date
JP3178270B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JP2700505B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
JP7153076B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2006501361A5 (en)
JP2020509184A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP2018178196A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2861787B2 (en) Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2003293101A (en) Nonoriented silicon steel sheet having excellent magnetic property and corrosion resistance after stress relieving annealing
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP7231116B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH08246108A (en) Nonoriented silicon steel sheet reduced in anisotropy and its production
JPH09228005A (en) Non-oriented silicon steel sheet of high magnetic flux density and low core loss excellent in heat conductivity, and its manufacture
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JP2718340B2 (en) Manufacturing method of non-oriented electrical steel sheet with low iron loss
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP4123505B2 (en) Non-oriented electrical steel sheet with excellent high frequency characteristics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees