JP2012046825A - Heat resistant adhesive insulating film - Google Patents
Heat resistant adhesive insulating film Download PDFInfo
- Publication number
- JP2012046825A JP2012046825A JP2011214497A JP2011214497A JP2012046825A JP 2012046825 A JP2012046825 A JP 2012046825A JP 2011214497 A JP2011214497 A JP 2011214497A JP 2011214497 A JP2011214497 A JP 2011214497A JP 2012046825 A JP2012046825 A JP 2012046825A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- heat
- resistant adhesive
- steel sheet
- insulating coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J1/00—Adhesives based on inorganic constituents
- C09J1/02—Adhesives based on inorganic constituents containing water-soluble alkali silicates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J1/00—Adhesives based on inorganic constituents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/02—Cores, Yokes, or armatures made from sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Soft Magnetic Materials (AREA)
- Laminated Bodies (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
本発明は、積層後、加圧及び加熱(本発明においては、特に断らない限り室温以上300℃以下の加熱処理をいう。)により接着でき、さらにその後歪取焼鈍等の焼鈍処理(本発明においては、特に断らない限り300℃超の加熱処理をいう。)を施しても接着能が維持できる耐熱接着性被膜組成物、および表面被覆された電磁鋼板に関するものである。 The present invention can be bonded after lamination by pressurization and heating (in the present invention, it refers to a heat treatment at room temperature or higher and 300 ° C. or lower unless otherwise specified), and thereafter annealing treatment such as strain relief annealing (in the present invention Refers to a heat-resistant adhesive coating composition that can maintain the adhesive ability even if it is subjected to a heat treatment of more than 300 ° C. unless otherwise specified, and a surface-coated electrical steel sheet.
電磁鋼板は、主にモーターやトランス等の鉄心として用いられる。通常、電磁鋼板の表面は絶縁被膜が形成されており、所定の形状に連続的に打ち抜きを行った後、積層して溶接、またはかしめとよばれる凹凸部を嵌合させる方法等により一体化して鉄心を形成するのが一般的である。 Electrical steel sheets are mainly used as iron cores for motors and transformers. Usually, the surface of an electromagnetic steel sheet is formed with an insulating coating, and after being continuously punched into a predetermined shape, it is integrated by a method such as stacking and welding, or by fitting uneven portions called caulking. It is common to form an iron core.
一体化された鉄心は、そのまま電気機器に組み込まれて使用されるものと、700℃から800℃前後の温度で焼鈍された後、電気機器に組み込まれるものとがある。後者の焼鈍は歪取焼鈍といわれるもので、打ち抜き/せん断時に鋼板に導入されたせん断歪、端面部の溶接により発生する熱歪、さらにはかしめ部の塑性変形歪などを焼鈍により除去ないしは低減し、鉄心としての磁気特性を高めることが目的で、高い電気効率が要求される電気機器用途に使用される鉄心に実施される。 The integrated iron core may be used by being incorporated in an electric device as it is, or may be incorporated in an electric device after being annealed at a temperature of about 700 ° C. to 800 ° C. The latter annealing is called strain relief annealing, and it removes or reduces the shear strain introduced into the steel sheet during punching / shearing, thermal strain generated by welding of the end faces, and plastic deformation strain of the caulking portion by annealing. In order to enhance the magnetic characteristics of the iron core, the iron core is used for electric equipment applications that require high electric efficiency.
溶接やかしめにより積層した電磁鋼板を一体化する方法では、鉄心エッジ部が短絡され絶縁性が低下するという問題や、加工歪により磁気特性が劣化するという問題がある。溶接やかしめによる欠点を回避する方法として、熱圧着により接着性を発揮する絶縁被膜を予め電磁鋼板上に成膜し、打ち抜き又はせん断加工後、積層して熱圧着する技術が提案されている。 In the method of integrating the magnetic steel sheets laminated by welding or caulking, there are problems that the core edge portion is short-circuited and insulation is lowered, and that magnetic properties are deteriorated due to processing strain. As a method for avoiding defects due to welding or caulking, a technique has been proposed in which an insulating coating exhibiting adhesiveness is formed on a magnetic steel sheet in advance by thermocompression bonding, and after stamping or shearing, is laminated and thermocompression bonded.
例えば、潜在性硬化剤を配合したアクリル変成エポキシ樹脂エマルジョンを主成分とする混合液を塗布し、不完全に焼き付けることを特徴とする接着用表面被覆電磁鋼板の製造方法(特許文献1)や発泡剤を含有する接着性樹脂で被覆された絶縁被膜つき電磁鋼板(特許文献2)、さらには特許文献3や特許文献4の技術が提案されている。これらのいわゆる接着コーティング技術は、かしめや溶接で生じる問題を軽減できるが、いずれも有機物のみで鋼板表面が被覆されているため、多くは300℃以上の温度では分解してしまい、歪取焼鈍を施すと接着力を保つことができない。このため、歪取焼鈍を行わない鉄心については接着コーティングを施した電磁鋼板が用いることが可能であるが、鉄損低減のための歪取燒鈍をする鉄心については使用することができないという問題があった。 For example, a method for producing a surface-coated electrical steel sheet for bonding (Patent Document 1) or foaming, characterized in that a mixed liquid mainly composed of an acrylic modified epoxy resin emulsion containing a latent curing agent is applied and incompletely baked. A magnetic steel sheet with an insulating coating coated with an adhesive resin containing an agent (Patent Document 2), and also the techniques of Patent Document 3 and Patent Document 4 have been proposed. These so-called adhesive coating technologies can alleviate the problems caused by caulking and welding, but since the surface of the steel sheet is coated only with organic matter, many of them decompose at temperatures of 300 ° C or higher, and strain relief annealing is performed. If applied, the adhesive strength cannot be maintained. For this reason, it is possible to use a magnetic steel sheet with an adhesive coating for an iron core that does not undergo strain relief annealing, but it cannot be used for an iron core that undergoes strain relief to reduce iron loss. was there.
一方、所定の形状に打ち抜き等で加工した電磁鋼板を歪取焼鈍してから、接着剤により固着する方法も考えられるが、小さな打ち抜き片一枚毎に接着剤を塗布する必要があるため、作業性が悪い。 On the other hand, it is also possible to use a method in which an electrical steel sheet processed by punching or the like into a predetermined shape is subjected to strain relief annealing and then fixed by an adhesive, but it is necessary to apply an adhesive to each small punched piece. The nature is bad.
また、特許文献5〜7には、いわゆる無機被膜とよばれる、樹脂成分を含まない被膜が開示されている。特許文献5は、鋼板同士の接着機能を有したものではないため、かしめや溶接など接着以外の固定法を行わなければ一体型の鉄心を得ることができない。特許文献6および特許文献7は、低融点ガラス成分のみから成る無機皮膜であるため膜が硬く打ち抜き金型に悪影響を及ぼす上、発塵も多いという問題があった。 Patent Documents 5 to 7 disclose so-called inorganic coating films that do not contain a resin component. Since Patent Document 5 does not have a bonding function between steel plates, an integrated iron core cannot be obtained unless a fixing method other than bonding such as caulking or welding is performed. Patent Documents 6 and 7 have the problem that the film is hard because it is an inorganic film composed only of a low-melting glass component, and the punching die is adversely affected, and there is also a large amount of dust generation.
本発明は、接着性絶縁被膜付き電磁鋼板の接着性絶縁被膜の耐熱性を向上させ、歪取燒鈍を行っても接着状態および絶縁性が保たれる耐熱接着性絶縁被膜およびそれを被覆した耐熱接着性被膜付き電磁鋼板ならびに当該電磁鋼板を用いた鉄心およびその製造方法を提供するものである。 The present invention improves the heat resistance of the adhesive insulating coating of the electrical steel sheet with the adhesive insulating coating, and the heat-resistant adhesive insulating coating that maintains the adhesive state and the insulating property even after strain relief is applied, and the same The present invention provides an electromagnetic steel sheet with a heat-resistant adhesive coating, an iron core using the electromagnetic steel sheet, and a method for producing the same.
前記課題を解決するために、本発明は以下のような手段を用いる。
(1) 軟化点温度が室温以上300℃以下の樹脂と軟化点温度が1000℃以下の低融点無機成分とを含む耐熱接着性絶縁被膜。
(2) 250℃接着強度=10kg/cm2以上、750℃接着強度=1kg/cm2以上であることを特徴とする(1)に記載の耐熱接着性絶縁被膜。
(3) 30℃から300℃における線熱膨張係数が10×10-7(℃-1)以上150×10-7 (℃-1)以下であることを特徴とする(1)に記載の耐熱接着性絶縁被膜。
(4) 低融点無機成分が、低融点ガラスフリット、水ガラス、あるいはそれらにコロイダルシリカをさらに混合したものである(1)に記載の耐熱接着性絶縁被膜。
In order to solve the above problems, the present invention uses the following means.
(1) A heat resistant adhesive insulating coating comprising a resin having a softening point temperature of room temperature to 300 ° C. and a low melting point inorganic component having a softening point temperature of 1000 ° C. or less.
(2) 250 ° C. adhesive strength = 10 kg / cm 2 or more and 750 ° C. adhesive strength = 1 kg / cm 2 or more.
(3) The heat resistance according to (1), wherein the linear thermal expansion coefficient at 30 to 300 ° C. is 10 × 10 −7 (° C. −1 ) or more and 150 × 10 −7 (° C. −1 ) or less. Adhesive insulating coating.
(4) The heat-resistant adhesive insulating coating according to (1), wherein the low-melting-point inorganic component is a low-melting-point glass frit, water glass, or a mixture of them with colloidal silica.
(5) 低融点無機成分が平均粒径20μm以下であることを特徴とする(4)に記載の耐熱接着性絶縁被膜。
(7) 低融点無機成分がSiO2-B2O3-R2O系低融点ガラス(Rはアルカリ金属)であることを特徴とする(4)に記載の耐熱接着性絶縁被膜。
(8) 水ガラスが珪酸ソーダであることを特徴とする(4)に記載の耐熱接着性絶縁被膜。
(9) 樹脂が、エポキシ樹脂、アクリル樹脂、フェノール樹脂、予め潜在性硬化剤を配合したアクリル変成エポキシ樹脂エマルジョンを主成分とする混合液を不完全状態に焼き付けた樹脂、または、シロキサンポリマー、から選ばれる1種または2種以上を含むことを特徴とする(1)記載の耐熱接着性絶縁被膜。
(10) 鋼板の少なくとも片面に、(1)に記載の被膜を有する、耐熱接着性絶縁被膜付き電磁鋼板。
(11) 耐熱接着性絶縁被膜の膜厚が0.5μm以上20μm以下であることを特徴とする(10)に記載の耐熱接着性絶縁被膜付き電磁鋼板。
(12) (10)に記載の耐熱接着性絶縁被膜付き電磁鋼板を用いた鉄心。
(13) (10)に記載の電磁鋼板を、積層、加圧固定して、電磁鋼板積層体を作製後、600〜900℃の焼鈍を行い、一体化された鉄心を得る、耐熱接着性絶縁被膜付き電磁鋼板を用いた鉄心の製造方法。
(14) 少なくとも加圧固定の段階において、加熱を行い接着固定するか、かしめまたは治具により固定を行うか、あるいはこれらを併用する、(13)に記載の耐熱接着性絶縁被膜付き電磁鋼板を用いた鉄心の製造方法。
(5) The heat-resistant adhesive insulating coating according to (4), wherein the low melting point inorganic component has an average particle size of 20 μm or less.
(7) The heat-resistant adhesive insulating coating according to (4), wherein the low-melting-point inorganic component is SiO 2 —B 2 O 3 —R 2 O-based low-melting glass (R is an alkali metal).
(8) The heat-resistant adhesive insulating coating according to (4), wherein the water glass is sodium silicate.
(9) The resin is an epoxy resin, an acrylic resin, a phenol resin, a resin in which a mixed liquid mainly composed of an acrylic modified epoxy resin emulsion previously blended with a latent curing agent is baked in an incomplete state, or a siloxane polymer. The heat-resistant adhesive insulating coating according to (1), comprising one or more selected.
(10) A magnetic steel sheet with a heat-resistant adhesive insulating coating, having the coating according to (1) on at least one side of the steel plate.
(11) The electrical steel sheet with a heat resistant adhesive insulating coating according to (10), wherein the thickness of the heat resistant adhesive insulating coating is 0.5 μm or more and 20 μm or less.
(12) An iron core using the electrical steel sheet with a heat-resistant adhesive insulating coating according to (10).
(13) Heat-resistant adhesive insulation in which the magnetic steel sheet according to (10) is laminated and pressure-fixed to produce an electromagnetic steel sheet laminate, which is then annealed at 600 to 900 ° C. to obtain an integrated iron core. A method of manufacturing an iron core using a coated electromagnetic steel sheet.
(14) At least in the stage of pressure fixation, heating and adhesive fixing, fixing by caulking or a jig, or a combination thereof, the electrical steel sheet with a heat-resistant adhesive insulating coating according to (13) The manufacturing method of the iron core used.
本発明は、電磁鋼板の絶縁被膜の組成を複合化して2種類の接着能を発揮させるものであり、その具体的手段として、室温以上300℃以下で軟化する樹脂と示差熱分析法で測定した軟化点温度が1000℃以下である低融点無機成分を含む被膜であることを特徴とするものである。被膜の樹脂は、熱プレス時に軟化して鉄心を接着一体化する機能を果たし、低融点無機成分は鉄心の歪取燒鈍時に鉄心を一体化された状態に維持する機能を果たすものである。 In the present invention, the composition of the insulating coating of the electrical steel sheet is combined to exhibit two types of adhesiveness, and as a specific means, it is measured by a resin that softens at room temperature to 300 ° C. and differential thermal analysis. It is a film containing a low-melting-point inorganic component having a softening point temperature of 1000 ° C. or lower. The resin of the coating serves to soften and integrate the iron core during hot pressing, and the low melting point inorganic component serves to maintain the iron core in an integrated state when the iron core is strain-relieved.
鋼板から歪みを除去するには、焼鈍温度として通常700℃から800℃程度の温度が必要である。こうした焼鈍温度では、有機物は分解してしまい、構造を維持することができないため接着性も維持することはできない。発明者らは700℃から800℃の高温でも構造を維持でき、鋼板間の接着性を発揮できるのは無機化合物が好適と考え、各種の無機化合物について検討を重ねた。その結果、いわゆる低融点ガラスフリットと呼ばれる一群の低融点無機成分や、水ガラス、コロイダルシリカ等の低融点無機成分が焼鈍温度条件750℃付近で鋼板間の良好な接着性を示すことを見出した。しかし、これらの低融点無機成分のみでは、焼鈍完了前の段階においては接着能が発揮されないため鉄心の一体保持が果たせない。そこで、これらに樹脂を複合させることにより、歪取焼鈍を行う前から接着固定が可能で、かつ歪取焼鈍後も接着固定能が維持される鉄心を得ることができることを見出した。 In order to remove the strain from the steel plate, a temperature of about 700 to 800 ° C. is usually required as the annealing temperature. At such an annealing temperature, the organic matter is decomposed and the structure cannot be maintained, so that the adhesion cannot be maintained. The inventors considered that an inorganic compound is suitable for maintaining the structure even at a high temperature of 700 ° C. to 800 ° C. and exhibiting the adhesiveness between the steel plates, and studied various inorganic compounds. As a result, it was found that a group of low-melting-point inorganic components called so-called low-melting-point glass frit and low-melting-point inorganic components such as water glass and colloidal silica exhibit good adhesion between steel plates at around 750 ° C annealing temperature condition. . However, these low-melting-point inorganic components alone cannot achieve the integral holding of the iron core because the adhesive ability is not exhibited in the stage before the completion of annealing. Thus, it has been found that by combining a resin with these, an iron core can be obtained which can be bonded and fixed before the strain relief annealing and can maintain the adhesion fixing ability even after the strain relief annealing.
以下、まず低融点無機成分について説明する。発明者らは、歪取焼鈍温度域における接着作用の良否を支配するのは低融点無機成分の軟化点温度であることを突き止めた。
以下、発明を完成するために行なった実験内容を詳細に説明する。
Hereinafter, the low melting point inorganic component will be described first. The inventors have found that it is the softening point temperature of the low-melting-point inorganic component that dominates the adhesiveness in the strain relief annealing temperature range.
The details of experiments conducted to complete the invention will be described below.
発明者らは上述の軟化点温度の重要性を確認するため、次のような条件で試料を作製し、その接着強度を調査した。まず、板厚が0.5mmで、表面に絶縁性被膜を持たない無方向性電磁鋼板を多数用意した。これらに対し、低融点無機成分として、平均粒径が5μmで、種々の軟化点温度を持つ低融点ガラスフリット、樹脂としてエポキシ樹脂:アクリル樹脂:フェノール樹脂=15:3:3(質量%)で固形分分率20質量%の水エマルジョン液を用い、両者を混合し、ロールコータを用いて塗布した。ガラスフリットに対する樹脂の混合割合は固形分比率で100%、つまり、同じ質量になるようにした。被膜量は片面当たり8g/m2になるようにし、板温160℃で乾燥した。こうして作製した試料から試験片を切り出した。ついで、250℃接着強度と750℃接着強度を測定した。 In order to confirm the importance of the above-mentioned softening point temperature, the inventors prepared a sample under the following conditions and investigated its adhesive strength. First, a large number of non-oriented electrical steel sheets having a plate thickness of 0.5 mm and having no insulating coating on the surface were prepared. On the other hand, the low melting point inorganic component is a low melting point glass frit having an average particle size of 5 μm and various softening point temperatures, and the resin is epoxy resin: acrylic resin: phenol resin = 15: 3: 3 (mass%) Both were mixed using the water emulsion liquid of 20 mass% of solid content, and it apply | coated using the roll coater. The mixing ratio of the resin to the glass frit was 100% in terms of solid content, that is, the same mass. The coating amount was 8 g / m 2 per side and dried at a plate temperature of 160 ° C. A test piece was cut out from the sample thus prepared. Subsequently, 250 degreeC adhesive strength and 750 degreeC adhesive strength were measured.
ここで軟化点温度とは、図1に示す示差熱分析法の測定曲線において、測定開始後、第4番目に観測された変曲点の温度、あるいはJIS-R3103-1「硝子軟化点試験方法」(ISO 7884-6:1987、ASTM C338)のいずれか低い方の温度であるが、これらのいずれの方法でも測定が困難な場合は、他の軟化点温度で代替しても良い。 Here, the softening point temperature is the temperature of the fourth inflection point observed after the start of measurement in the differential thermal analysis measurement curve shown in FIG. 1, or JIS-R3103-1 “Glass softening point test method”. (ISO 7884-6: 1987, ASTM C338), whichever is the lower temperature, but if any of these methods are difficult to measure, other softening point temperatures may be substituted.
また、250℃接着強度とは、圧延方向長さ10cm、圧延方向に対し直角方向の長さ3cmの2枚の試料について、短辺部を1cm、面積3cm2で重ね合わせた状態で加圧力10kg/3cm2、加熱温度250℃、加熱時間60秒の条件で、接着した後、室温において圧延方向に引張り、剥離した時の強度を面積3cm2で除した値である。なお、本発明において、加圧力、接着強度は、ばね秤の指示値(kg)を面積で除した値で、kg/cm2と記すが、これは9.8×104Paに相当する。 The 250 ° C adhesive strength is 10 kg in the rolling direction and 3 cm long in the direction perpendicular to the rolling direction. The applied pressure is 10 kg with the short side overlapped by 1 cm and area of 3 cm 2. / 3 cm 2 , heating temperature 250 ° C., heating time 60 seconds, after bonding, the value when it was pulled in the rolling direction at room temperature and peeled was divided by an area of 3 cm 2 . In the present invention, the applied pressure and adhesive strength are values obtained by dividing the indicated value (kg) of the spring balance by the area, and expressed as kg / cm 2 , which corresponds to 9.8 × 10 4 Pa.
また、750℃接着強度とは上記低温接着条件で接着させた試料に対し、更に、加圧しない状態で、加熱温度750℃、加熱時間2時間の条件で加熱した後、室温において圧延方向に引張り、剥離した時の強度を面積3cm2で除した値である。結果を表1に示す。 The 750 ° C adhesive strength refers to a sample bonded under the above-mentioned low temperature bonding conditions, further heated in the condition of a heating temperature of 750 ° C and a heating time of 2 hours without being pressurized, and then pulled in the rolling direction at room temperature. The strength when peeled is divided by an area of 3 cm 2 . The results are shown in Table 1.
表1から、条件番号1から条件番号8で、軟化点温度が1000℃以下のガラスフリットを使用した時、250℃接着強度が10kg/cm2以上で、かつ、750℃接着強度が1 kg/cm2と、両方の値が良好であることがわかる。一方、条件番号9の軟化点温度が1050℃のガラスフリットを使用した時は250℃接着強度は10kg/cm2と良好であるが、750℃接着強度は焼鈍後、接着面が簡単に剥離し、測定できないほど弱いものであった。以上のことから、軟化点温度が1000℃以下のガラスフリットを使用した時、250℃接着強度が10kg/cm2以上、750℃接着強度が1kg/cm2と両方の特性が良好であることが判明した。 From Table 1, when using a glass frit with a condition number 1 to condition number 8 and a softening point temperature of 1000 ° C. or less, the 250 ° C. bond strength is 10 kg / cm 2 or more and the 750 ° C. bond strength is 1 kg / cm 2. It can be seen that cm 2 and both values are good. On the other hand, when a glass frit with a softening point temperature of 1050 ° C in Condition No. 9 is used, the adhesive strength at 250 ° C is 10kg / cm 2 , but the adhesive strength at 750 ° C is easily peeled off after annealing. It was so weak that it could not be measured. Based on the above, when using a glass frit with a softening point temperature of 1000 ° C or less, the 250 ° C adhesive strength is 10 kg / cm 2 or more and the 750 ° C adhesive strength is 1 kg / cm 2 , both of which are good. found.
次に、750℃接着強度が低融点無機成分の軟化点温度に依存する理由について、発明者らは次のような機構を考えている。250℃付近での加圧・加熱接着時には、樹脂が軟化・溶融し、両面塗布の場合は被膜界面が消失し、被膜間接着が達成される。但し、この段階では温度安定性の高い、低融点無機成分はほとんど反応を起こしてはいない。次いで、750℃での加熱時に、今度は低融点無機成分が軟化、低融点無機成分種によっては溶融し、接触する低融点無機成分同士が結合する。その結果、相対する被膜が一体化し、鋼板どうしの接着が完成する。従って、750℃付近の加熱段階においては、低融点無機成分が軟化ないしは溶融することが重要である。 Next, the inventors consider the following mechanism as to the reason why the 750 ° C. adhesive strength depends on the softening point temperature of the low melting point inorganic component. The resin softens and melts at the time of pressurizing and heating at around 250 ° C., and in the case of double-sided coating, the film interface disappears, and the adhesion between the films is achieved. However, at this stage, the low-melting point inorganic component having high temperature stability hardly causes the reaction. Next, at the time of heating at 750 ° C., the low-melting-point inorganic component is softened and melts depending on the low-melting-point inorganic component species, and the low-melting-point inorganic components that are in contact with each other are bonded. As a result, the opposing coatings are integrated to complete the bonding between the steel plates. Therefore, it is important that the low-melting point inorganic component softens or melts in the heating stage near 750 ° C.
表1の条件番号9のように、軟化点温度が高い低融点無機成分では、低融点無機成分同士が例え接触していたとしても、750℃の温度域では軟化が進行しないので、低融点無機成分間において十分な接触面積を得ることができない。そのため、低融点無機成分間結合が十分に形成されない。その結果、接着強度を得ることができない。 In the low melting point inorganic component having a high softening point temperature as in Condition No. 9 in Table 1, even if the low melting point inorganic components are in contact with each other, the softening does not proceed in the temperature range of 750 ° C. A sufficient contact area cannot be obtained between the components. Therefore, the bonds between the low melting point inorganic components are not sufficiently formed. As a result, the adhesive strength cannot be obtained.
一方、表1の条件番号1から条件番号8のように、軟化点温度が低い低融点無機成分では、低融点無機成分同士が接触していれば、750℃の温度域で軟化が進行するので、低融点無機成分間において一定の接触面積を得ることができる。そのため、低融点無機成分間結合が形成される。その結果、接着強度を得ることができる。 On the other hand, in the low melting point inorganic component having a low softening point temperature as in condition number 1 to condition number 8 in Table 1, if the low melting point inorganic components are in contact with each other, the softening proceeds in the temperature range of 750 ° C. A constant contact area can be obtained between the low melting point inorganic components. Therefore, a bond between the low melting point inorganic components is formed. As a result, adhesive strength can be obtained.
なお、880℃や1000℃といった加熱温度である750℃よりも高い軟化点温度を持つ低融点無機成分においても、一定の750℃接着強度が得られる理由は完全には解明できていないが、軟化点温度が880℃や1000℃の低融点無機成分でも750℃の温度域において、ある種の軟化様反応が起き、低融点無機成分同士が結合し、被膜一体化・鋼板接着が実現するのでないかと推測している。 The reason why a certain 750 ° C adhesive strength can be obtained even for low melting point inorganic components with a softening point temperature higher than 750 ° C, which is a heating temperature such as 880 ° C and 1000 ° C, has not been fully elucidated, but softening Even with low melting point inorganic components with a spot temperature of 880 ° C or 1000 ° C, some kind of softening-like reaction occurs in the temperature range of 750 ° C, and the low melting point inorganic components bind to each other, so film integration and steel plate adhesion are not realized. I guess.
250℃接着強度を10kg/cm2以上としたのは、低温での接着による仮固定の後、本固定するまでの間の製造工程において、剥離せずに取り扱いできる接着強度を規定したものである。また750℃接着強度を1kg/cm2以上としたのは、電気機器に組み込んだ後に剥離しない接着強度を規定したものである。 The reason why the adhesive strength at 250 ° C is 10 kg / cm 2 or more is that the adhesive strength that can be handled without peeling is specified in the manufacturing process after temporary fixing by low-temperature bonding and until final fixing. . The adhesive strength of 1 kg / cm 2 or higher at 750 ° C. is defined as the adhesive strength that does not peel off after being incorporated in an electrical device.
本発明の低融点無機成分には、低融点ガラスフリット、水ガラスまたはこれらコロイダルシリカを混合したもの等を用いることができる。
使用する低融点無機成分が無機物粉末の場合は、その粒径も重要である。粒径が大き過ぎると被膜表面に粗大な突起を形成してしまい、被膜間での接触が妨けられてしまう。被膜間あるいは粉末間において十分な接触を実現するためには、使用する低融点無機成分の平均粒径は20μm以下であることが望ましい。特に、平均粒径4μm以下、さらには3μm以下であることが望ましい。
As the low melting point inorganic component of the present invention, a low melting point glass frit, water glass or a mixture of these colloidal silicas can be used.
When the low-melting-point inorganic component to be used is an inorganic powder, the particle size is also important. If the particle size is too large, coarse protrusions are formed on the surface of the film, and contact between the films is hindered. In order to achieve sufficient contact between the coatings or between the powders, the average particle size of the low-melting-point inorganic component used is desirably 20 μm or less. In particular, the average particle size is desirably 4 μm or less, and more desirably 3 μm or less.
次いで、本発明者らは低融点無機成分と樹脂の混合比率について検討した。
まず、板厚が0.35mmで表面にクロム酸マグネシウムを主体とする絶縁被膜を持つ無方向性電磁鋼板を多数用意した。これらに対し、低融点無機成分として、平均粒径が3μmで、軟化点温度が550℃の低融点ガラスフリット(B2O3=30%、SiO2=20%、BaO=30%、Na2O=10%、ZnO=10%)と、樹脂組成がエポキシ樹脂:アクリル樹脂:フェノール樹脂=20:5:3(質量%)で固形分分率20質量%の水エマルジョン液とを混合しロールコータを用いて塗布した。この時、ガラスフリットに対する樹脂の混合比率が種々の値になるように調製した。被膜量は片面当たり5g/m2になるようにし、板温150℃で乾燥した。こうして作製した試料から試験片を切り出した。ついで、250℃接着強度と750℃接着強度を測定した。結果を第2表に示す。
Next, the present inventors examined the mixing ratio of the low melting point inorganic component and the resin.
First, a number of non-oriented electrical steel sheets having a plate thickness of 0.35 mm and an insulating coating mainly composed of magnesium chromate on the surface were prepared. On the other hand, as a low melting point inorganic component, a low melting point glass frit (B 2 O 3 = 30%, SiO 2 = 20%, BaO = 30%, Na 2 with an average particle diameter of 3 μm and a softening point temperature of 550 ° C. O = 10%, ZnO = 10%) and a water emulsion liquid with a resin composition of epoxy resin: acrylic resin: phenolic resin = 20: 5: 3 (mass%) and a solid fraction of 20 mass%. It applied using the coater. At this time, it prepared so that the mixing ratio of resin with respect to a glass frit might become various values. The coating amount was adjusted to 5 g / m 2 per side and dried at a plate temperature of 150 ° C. A test piece was cut out from the sample thus prepared. Subsequently, 250 degreeC adhesive strength and 750 degreeC adhesive strength were measured. The results are shown in Table 2.
表2より、条件番号2から条件番号6、すなわち、樹脂/ガラスフリット混合比率が20%以上500%以下である時、250℃接着強度が10kg/cm2以上で、かつ、750℃接着強度が1kg/cm2と、両方の値が良好であることがわかる。一方、条件番号1の樹脂/ガラスフリット混合比率が10%の条件では250℃接着強度が5kg/cm2、750℃接着強度が0.5kg/cm2といずれも低い。また、条件番号7の樹脂/ガラスフリット混合比率が700%の条件では250℃接着強度は40kg/cm2と良好であるものの、750℃接着が0.5kg/cm2と低くかった。
以上のことから、樹脂/ガラスフリットの混合比率は20%以上500%以下の条件の時、250℃接着強度と750℃接着強度の両方が良好であることがわかった。
From Table 2, from Condition No. 2 to Condition No. 6, that is, when the resin / glass frit mixing ratio is 20% or more and 500% or less, the 250 ° C. adhesive strength is 10 kg / cm 2 or more and the 750 ° C. adhesive strength is It can be seen that both values are good at 1 kg / cm 2 . On the other hand, when the resin / glass frit mixing ratio of Condition No. 1 is 10%, the 250 ° C. adhesive strength is 5 kg / cm 2 and the 750 ° C. adhesive strength is 0.5 kg / cm 2 , which are both low. Further, in the condition No. 7 where the resin / glass frit mixing ratio was 700%, the 250 ° C. adhesive strength was as good as 40 kg / cm 2 , but the 750 ° C. adhesion was as low as 0.5 kg / cm 2 .
From the above, it was found that both the 250 ° C. adhesive strength and the 750 ° C. adhesive strength were good when the resin / glass frit mixing ratio was 20% to 500%.
また、接着強度が低融点無機成分に対する樹脂比率に依存する理由について、本発明者らは次のような機構を考えている。樹脂は250℃加熱時の接着機能を、低融点無機成分は750℃加熱時の接着機能を、それぞれ分担している。そのため、それぞれの加熱温度において、両者が機能を発揮できる状態にあるかどうかを考察することで、接着強度に対する樹脂/低融点無機成分比率依存性機構を推測できる。即ち、250℃接着強度は250℃加熱時に接着機能を果たす有機樹脂の、また、750℃接着強度は750℃加熱時に接着機能を果たす低融点無機成分の、それぞれの表面占有状態を考えれば良い。 Moreover, the present inventors consider the following mechanism about the reason why the adhesive strength depends on the resin ratio to the low-melting-point inorganic component. The resin shares the adhesive function when heated at 250 ° C., and the low melting point inorganic component shares the adhesive function when heated at 750 ° C. Therefore, by considering whether or not the two are in a state where they can function at each heating temperature, a mechanism of the resin / low-melting-point inorganic component ratio dependence on the adhesive strength can be estimated. That is, the surface occupancy state of the organic resin that performs the adhesive function when heated at 250 ° C. and the low melting point inorganic component that performs the adhesive function when heated at 750 ° C. may be considered.
低融点無機成分に対し、樹脂の比率が少ない場合、例えば、表2の条件番号1のような場合、表面の大部分を低融点無機成分が占め、表面には樹脂がほとんど顔を覗かせていない。このような状態で被膜同志を重ね合わせ加圧した状態で、250℃で加熱したとしても、樹脂どうしで十分な接触面積を稼ぐことができないので、被膜間接着を果たすべき樹脂が十分に機能できない。そのため、250℃接着強度は小さい値となる(条件番号1の場合、250℃接着強度=5kg/cm2)。250℃加熱時に十分な接着が実現されていない状態で750℃加熱を実施し、低融点無機成分が軟化・溶融しても、予め、250℃加熱時に被膜間接触が十分に実現されていなければ、低融点無機成分どうしの接触・結合が十分に実現できない。その結果、750℃接着強度も小さな値になってしまう(条件番号1の場合、750℃接着強度=0.5kg/cm2)。このような機構により、低融点無機成分に対し、樹脂の比率が小さ過ぎる場合、250℃接着強度、750℃接着強度の両方とも低い値を示す。 When the ratio of the resin to the low melting point inorganic component is small, for example, in the case of condition number 1 in Table 2, the low melting point inorganic component occupies most of the surface, and the resin is almost peeped on the surface. Absent. In such a state, even if the coatings are overlaid and pressurized, even if heated at 250 ° C., a sufficient contact area cannot be obtained between the resins, so that the resin that should achieve adhesion between the coatings cannot function sufficiently. . Therefore, the adhesive strength at 250 ° C. is a small value (in the case of condition number 1, 250 ° C. adhesive strength = 5 kg / cm 2 ). Even if the low-melting point inorganic component is softened and melted in the state where sufficient adhesion is not realized when heated at 250 ° C and the low-melting inorganic component is softened and melted, contact between the coatings is not realized sufficiently when heated at 250 ° C in advance. However, contact and bonding between low melting point inorganic components cannot be realized sufficiently. As a result, the 750 ° C. adhesive strength also becomes a small value (in the case of condition number 1, 750 ° C. adhesive strength = 0.5 kg / cm 2 ). By such a mechanism, when the ratio of the resin is too small with respect to the low melting point inorganic component, both the 250 ° C. adhesive strength and the 750 ° C. adhesive strength show low values.
一方、低融点無機成分に対する樹脂の混合比率が大きい場合、被膜表面には樹脂が十分に存在し、250℃加熱時には樹脂が十分に接着機能を果たすので、大きな接着強度を得ることができる(条件7の場合、250℃接着強度=40kg/cm2)。しかしながら、750℃加熱時には、接着機能を発揮すべき低融点無機成分が被膜表面に十分には存在しないため、750℃接着強度は小さな値になる(条件番号7の場合、750℃接着強度=0.5kg/cm2)。
なお、低融点無機成分の30℃から300℃における線熱膨張係数を10×10-7(℃-1)以上150×10-7 (℃-1)以下にすることで、鉄心成形時における磁気特性のばらつきをも防止できる。
On the other hand, when the mixing ratio of the resin to the low-melting-point inorganic component is large, the resin is sufficiently present on the surface of the coating, and the resin performs a sufficient adhesive function when heated at 250 ° C., so that a large adhesive strength can be obtained (conditions In the case of 7, 250 ° C. adhesive strength = 40 kg / cm 2 ). However, when heating at 750 ° C., the low melting point inorganic component that should exhibit an adhesive function is not sufficiently present on the surface of the coating, so the 750 ° C. adhesive strength is small (in the case of condition number 7, 750 ° C. adhesive strength = 0.5 kg / cm 2 ).
In addition, by setting the coefficient of linear thermal expansion of the low-melting-point inorganic component from 30 ° C to 300 ° C to 10 × 10 -7 (° C -1 ) or more and 150 × 10 -7 (° C -1 ) or less, it is Variations in characteristics can also be prevented.
本発明者らは、次のような条件で被膜付き鋼板とその鋼板を素材とする鉄心を作製し、その磁気特性を調べた。まず、板厚が0.5mmで、表面に絶縁性被膜を持たない無方向性電磁鋼板を多数用意した。これらに対し、低融点無機成分として、平均粒径が5μmで、種々の熱膨張係数を持つ低融点ガラスフリットと、樹脂組成がエポキシ樹脂:アクリル樹脂:フェノール樹脂=10:4:5(質量%)で固形分分率20質量%の水エマルジョン液とを混合しロールコータを用いて塗布した。ガラスフリットに対する樹脂の混合割合は固形分比率で200%になるようにした。被膜量は片面当たり10g/m2になるようにし、板温150℃で乾燥した。 The inventors prepared a coated steel sheet and an iron core made of the steel sheet under the following conditions, and investigated the magnetic properties. First, a large number of non-oriented electrical steel sheets having a plate thickness of 0.5 mm and having no insulating coating on the surface were prepared. On the other hand, as a low melting point inorganic component, a low melting point glass frit having an average particle diameter of 5 μm and various thermal expansion coefficients, and a resin composition of epoxy resin: acrylic resin: phenol resin = 10: 4: 5 (mass%) ) And a water emulsion solution having a solid fraction of 20% by mass were mixed and applied using a roll coater. The mixing ratio of the resin to the glass frit was set to 200% as a solid content ratio. The coating amount was 10 g / m 2 per side, and the film was dried at a plate temperature of 150 ° C.
これらの試料から、内径10.16cm(4インチ)、外径12.7cm(5インチ)のリング状の試料を作製し、20枚積層した状態で加圧力10kg/cm2、温度250℃で4時間加熱し、被膜接着型鉄心を作製した。次いで、この鉄心を加圧しない状態で温度750℃で2時間焼鈍した。最後に周波数50Hz、磁束密度1.5テスラで鉄損値を測定した。結果を表3に示す。 A ring-shaped sample with an inner diameter of 10.16 cm (4 inches) and an outer diameter of 12.7 cm (5 inches) was prepared from these samples, and 20 sheets were stacked and heated at a pressure of 10 kg / cm 2 and a temperature of 250 ° C for 4 hours. Thus, a film-bonded iron core was produced. Next, the iron core was annealed at a temperature of 750 ° C. for 2 hours without being pressurized. Finally, the iron loss value was measured at a frequency of 50 Hz and a magnetic flux density of 1.5 Tesla. The results are shown in Table 3.
表3から条件番号2から条件番号9で、低融点無機成分の30℃から300℃における線熱膨張係数が10×10-7(℃-1)以上150×10-7(℃-1)以下である時、焼鈍後の鉄心成形時の鉄損が3.1(W/kg)よりも小さく良好であることがわかる。一方、条件番号1の線熱膨張係数が160×10-7(℃-1)のガラスフリットを使用した時は鉄損値が3.27(W/kg)と大きく、また、条件番号10の線熱膨張係数が5×10-7(℃-1)のガラスフリットを使用した時も鉄損値が3.26(W/kg)と大きかった。以上のことから、低融点無機成分の30℃から300℃における線熱膨張係数が10×10-7(℃-1)以上150×10-7(℃-1)以下である時、焼鈍後の鉄心成形時の鉄損が良好であることが判明した。 From Table 3 to Condition No. 2 to Condition No. 9, the coefficient of linear thermal expansion of the low melting point inorganic component from 30 ° C to 300 ° C is 10 × 10 -7 (° C -1 ) or more and 150 × 10 -7 (° C -1 ) or less. It can be seen that the iron loss in forming the iron core after annealing is smaller than 3.1 (W / kg) and good. On the other hand, when a glass frit with a linear thermal expansion coefficient of condition number 1 of 160 x 10 -7 (° C -1 ) is used, the iron loss value is large at 3.27 (W / kg). Even when a glass frit with an expansion coefficient of 5 × 10 −7 (° C. −1 ) was used, the iron loss value was 3.26 (W / kg). From the above, when the linear thermal expansion coefficient of the low melting point inorganic component from 30 ° C to 300 ° C is 10 × 10 -7 (° C -1 ) or more and 150 × 10 -7 (° C -1 ) or less, It was found that the iron loss during iron core molding was good.
焼鈍後の鉄心状態での鉄損が低融点無機成分の線熱膨張係数に依存する理由について、本発明者らは次のような機構を考えている。250℃での加圧・加熱接着により、被膜中の樹脂が軟化・溶融し、両面塗布の場合は、被膜界面が消失し、被膜間接着が実現される。但し、この段階では温度安定性の高い、低融点無機成分はほとんど反応を起こしてはいない。次いで、750℃での加熱時に、今度は低融点無機成分が軟化、低融点無機成分種によっては溶融し、接触する低融点無機成分同士が結合する。その結果、相対する被膜が一体化し、鋼板どうしの接着が完成する。そして、室温まで冷却された後、鉄損値の測定がなされる。ここで考察すべきは750℃と言う高温状態において鋼板表面が全面接着され、室温まで冷却された時、成形鉄心に発生する応力の問題である。 The present inventors consider the following mechanism as to why the iron loss in the iron core after annealing depends on the linear thermal expansion coefficient of the low melting point inorganic component. Pressurization and heating adhesion at 250 ° C. softens and melts the resin in the film, and in the case of double-sided coating, the film interface disappears and adhesion between the films is realized. However, at this stage, the low-melting point inorganic component having high temperature stability hardly causes the reaction. Next, at the time of heating at 750 ° C., the low-melting-point inorganic component is softened and melts depending on the low-melting-point inorganic component species, and the low-melting-point inorganic components that are in contact with each other are bonded. As a result, the opposing coatings are integrated to complete the bonding between the steel plates. Then, after cooling to room temperature, the iron loss value is measured. What should be considered here is the problem of stress generated in the formed iron core when the steel sheet surface is fully bonded at a high temperature of 750 ° C. and cooled to room temperature.
一般に、鉄心に対し応力が作用すると磁気特性は劣化する。ここで、まず物質の熱膨張係数と応力の関係について述べる。一般に熱膨張係数の大きな物質と熱膨張係数の小さな物質とを高温で接着させ、室温まで冷却すると、熱膨張係数の大きな物質には引張り応力が、また、熱膨張係数の小さな物質には圧縮応力がそれぞれ働く。電磁鋼板の線熱膨張係数は方向性電磁鋼板も無方向性電磁鋼板もおおよそ100×10-7(℃-1)である。一方、実験に使用した低融点無機成分の熱膨張係数は5×10-7(℃-1)から160×10-7(℃-1)である。従って、鋼板よりも小さな熱膨張係数を持つ無機粉末を使用した場合は引張り応力が、また鋼板よりも大きな熱膨張係数を持つ無機粉末を使用した場合は圧縮応力がそれぞれ、成形鉄心に働いていることになる。 In general, when a stress acts on an iron core, the magnetic properties deteriorate. Here, first, the relationship between the thermal expansion coefficient of the substance and the stress will be described. In general, when a substance with a large coefficient of thermal expansion and a substance with a small coefficient of thermal expansion are bonded at a high temperature and cooled to room temperature, a substance with a large coefficient of thermal expansion has a tensile stress, and a substance with a small coefficient of thermal expansion has a compressive stress. Each work. The linear thermal expansion coefficient of electrical steel sheets is approximately 100 × 10 −7 (° C. −1 ) for both directional and non-oriented electrical steel sheets. On the other hand, the coefficient of thermal expansion of the low melting point inorganic component used in the experiment is 5 × 10 −7 (° C. −1 ) to 160 × 10 −7 (° C. −1 ). Therefore, tensile stress acts on the formed iron core when using inorganic powder with a smaller thermal expansion coefficient than steel plate, and compressive stress when using inorganic powder with larger thermal expansion coefficient than steel plate. It will be.
本実験について考えてみると、条件番号1で、最も大きな線熱膨張係数を持つ無機粉末の場合には、成形鉄心に対し大きな圧縮力が、また、条件番号10で最も小さな線熱膨張係数を持つ無機粉末の場合には、成形鉄心に対し大きな引張り応力が、それぞれ作用しているものと推定される。鋼板と最も大きな線熱膨張係数の差を持ち、そのため、最も大きな応力が生じているものと推測される、条件番号1と条件番号10の成形鉄心は、この応力付与が原因で鉄損値が大きかったものと考えられる。一方、条件番号2から条件番号9の場合においては、使用した無機粉末の熱膨張係数は、鋼板のそれと異なるものではあるが、その差異が小さかったため、成形鉄心に対する引っ張り応力や圧縮応力がたとえ作用していたとしてもその値は小さく、その結果、鉄損値に対し大きな影響が表れなかったのではないかと推定できる。
Considering this experiment, in the case of inorganic powder having the largest linear thermal expansion coefficient under condition number 1, a large compressive force is exerted on the formed iron core, and the smallest linear thermal expansion coefficient is obtained under condition number 10. In the case of the inorganic powder, it is presumed that a large tensile stress acts on the formed iron core. Because of the difference in the coefficient of linear thermal expansion between the steel sheet and the largest thermal stress, the molded cores of Condition No. 1 and Condition No. 10, which are presumed to have the largest stress, have an iron loss value due to this stress application. It is thought that it was big. On the other hand, in the case of
本発明の低融点無機成分は、歪取焼鈍後の接着性発現に寄与するものであり、軟化点が通常の歪取焼鈍温度である750℃以下の低融点ガラスであることが好ましい。低融点ガラスは、歪取焼鈍中に軟化・溶融し、冷却により固化して、歪取焼鈍後に2枚の板を接着することができる。低融点ガラスの組成としては、SiO2-B2O3-R2O(Rはアルカリ金属)系、P2O5-R2O(Rはアルカリ金属)系、SiO2-PbO-B2O3系、B2O3-Bi2O3系、SiO2-B2O3-ZnO系、SnO-P2O5系、SiO2-B2O3-ZrO2系等が挙げられる。特に、SiO2-B2O3-R2O(Rはアルカリ金属)系は、無鉛である上、歪取焼鈍後の接着力が高いので好ましい。 The low-melting-point inorganic component of the present invention contributes to adhesion development after strain relief annealing, and is preferably a low-melting glass having a softening point of 750 ° C. or lower, which is a normal strain relief annealing temperature. The low melting point glass can be softened and melted during strain relief annealing, solidified by cooling, and the two plates can be bonded after strain relief annealing. The composition of the low melting point glass is SiO 2 -B 2 O 3 -R 2 O (R is alkali metal), P 2 O 5 -R 2 O (R is alkali metal), SiO 2 -PbO-B 2 Examples thereof include O 3 series, B 2 O 3 —Bi 2 O 3 series, SiO 2 —B 2 O 3 —ZnO series, SnO—P 2 O 5 series, SiO 2 —B 2 O 3 —ZrO 2 series. In particular, the SiO 2 —B 2 O 3 —R 2 O (R is alkali metal) system is preferable because it is lead-free and has high adhesive strength after strain relief annealing.
低融点無機成分は、水ガラスのように液体で添加しても良い。水ガラスは、珪酸ソーダが特に好ましい。水ガラスを使用する利点として、粉末粒子を含まないため、塗布面に粒子に起因する凹凸がなく、平滑面が得られやすいことが挙げられる。特に、珪酸ソーダを利用した場合は、歪取焼鈍後の接着強度として1.0MPa以上の高い強度が得られる。また、珪酸カリウムを利用した場合は、歪取焼鈍前の接着強度として4.0〜7.0MPa程度の高い強度が得られる。 The low melting point inorganic component may be added as a liquid like water glass. The water glass is particularly preferably sodium silicate. As an advantage of using water glass, since the powder particles are not included, there is no unevenness due to the particles on the coated surface, and a smooth surface can be easily obtained. In particular, when sodium silicate is used, a high strength of 1.0 MPa or more can be obtained as the adhesive strength after strain relief annealing. Further, when potassium silicate is used, a high strength of about 4.0 to 7.0 MPa is obtained as the adhesive strength before strain relief annealing.
本発明の低融点無機成分として、上述の無機成分にさらにコロイダルシリカを混合したものを用いることもできる。コロイダルシリカなどを混合することにより、歪取焼鈍中に無機成分が軟化したときの粘度を調整することができる。また、コロイダルシリカは歪取焼鈍中に軟化せず残った場合も、膜中の骨材として機能しており歪取焼鈍後の接着強度を高めることができる。 As the low-melting-point inorganic component of the present invention, a material obtained by further mixing colloidal silica with the above-described inorganic component can also be used. By mixing colloidal silica or the like, the viscosity when the inorganic component is softened during strain relief annealing can be adjusted. Further, even when colloidal silica remains unsoftened during strain relief annealing, it functions as an aggregate in the film, and can increase the adhesive strength after strain relief annealing.
本発明に適用できる樹脂は、フェノール樹脂やエポキシ樹脂のような加圧・加熱により鋼板どうしを接着させる際、硬化反応を起こす熱硬化性樹脂が適用できるのは勿論のこと、アクリル樹脂やメタクリル樹脂のような加熱しても硬化反応の起こらない熱可塑性樹脂も適用できる。熱可塑性、熱硬化性いずれの樹脂でも適用できるが、接着作用を有するものであることが望ましい。 The resin that can be applied to the present invention is not limited to a thermosetting resin that causes a curing reaction when steel plates are bonded to each other by pressure and heating, such as a phenol resin or an epoxy resin, an acrylic resin or a methacrylic resin. A thermoplastic resin that does not cause a curing reaction even when heated can be applied. Either thermoplastic or thermosetting resin can be applied, but it is desirable to have an adhesive action.
本発明の樹脂は、室温以上300℃以下で軟化するが、ブロッキング性等を考慮して、好ましくは50℃以上、80℃以上、100℃以上、特に、120℃以上300℃以下の加熱で、流動性が発現する程度に軟化することが好ましい。流動性が発現する程度の軟化とは、粘度が1×108dPa・s以下になることを目安とする。鋼板表面上に焼き付けにより硬化させた樹脂が300℃以下の加熱により軟化する機構としては、硬化させた樹脂が熱可塑性樹脂であり、かつ、熱可塑性の発現する温度が120℃以上300℃以下にある場合が挙げられる。 The resin of the present invention is softened at room temperature to 300 ° C., but in consideration of blocking properties, etc., preferably 50 ° C. or more, 80 ° C. or more, 100 ° C. or more, in particular, heating at 120 ° C. or more and 300 ° C. or less, It is preferable to soften to such an extent that fluidity is exhibited. The softening to such an extent that the fluidity is expressed is based on a viscosity of 1 × 10 8 dPa · s or less. As a mechanism that the resin cured by baking on the steel sheet surface is softened by heating at 300 ° C. or less, the cured resin is a thermoplastic resin, and the temperature at which the thermoplastic develops is 120 ° C. or more and 300 ° C. or less. There are some cases.
また、樹脂が熱硬化性であるときの軟化の機構としては、ガラス転移温度より高温に加熱することによりゴム状態あるいは流動状態に軟化する場合が挙げられる。特に、200℃以下の低温で数十秒以下の短時間焼き付け処理で硬化させた樹脂の場合、加熱により三次元的な骨格を形成する架橋反応が進みながらも、ガラス転移を経ることにより一度軟化し、さらに高温に加熱すると再度架橋反応が進んで硬化することがある。 Further, as a softening mechanism when the resin is thermosetting, there is a case where the resin is softened to a rubber state or a fluid state by heating to a temperature higher than the glass transition temperature. In particular, in the case of a resin cured by baking at a low temperature of 200 ° C or less for a short time of several tens of seconds or less, the resin undergoes a glass transition while softening once through a crosslinking reaction that forms a three-dimensional skeleton by heating. However, when heated to a higher temperature, the crosslinking reaction may proceed again to be cured.
本発明の樹脂として用いる、予め潜在性硬化剤を配合したアクリル変成エポキシ樹脂エマルジョンとは、エポキシ樹脂に潜在性硬化剤を配合した後、アクリル樹脂を化学反応させて、エポキシ樹脂と潜在性硬化剤の混合物の周囲を被覆し、エマルジョンとしたものである。ここで言うエポキシ樹脂とは、モノマー中に2つ以上のエポキシ基を有する樹脂を指し、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ナフタレン型、フェノールノボラック型、オルソクレゾールノボラック型、グリシジルエステル型、脂環型等がある。潜在性硬化剤としては、ジシアンジアミド、メラミン、有機酸ジヒドラジド、アミンイミド、ケラミン、第3アミン塩、イミダゾール塩、3フッ化ホウ素アミン塩、マイクロカプセル型硬化剤、モレキュラーシーブ型硬化剤等が挙げられる。上記エポキシ樹脂とエポキシ樹脂硬化剤の混合系にアクリル樹脂を変成させる。 The acrylic modified epoxy resin emulsion previously blended with the latent curing agent used as the resin of the present invention is a compound in which the latent curing agent is blended with the epoxy resin, and then the acrylic resin is chemically reacted to form the epoxy resin and the latent curing agent. The mixture was coated to make an emulsion. The epoxy resin here refers to a resin having two or more epoxy groups in the monomer, and is bisphenol A type, bisphenol F type, bisphenol AD type, naphthalene type, phenol novolak type, orthocresol novolak type, glycidyl ester type. And alicyclic type. Examples of the latent curing agent include dicyandiamide, melamine, organic acid dihydrazide, amine imide, keramine, tertiary amine salt, imidazole salt, boron trifluoride amine salt, microcapsule type curing agent, molecular sieve type curing agent and the like. The acrylic resin is transformed into a mixed system of the epoxy resin and the epoxy resin curing agent.
ここで言う変成とは、エポキシ樹脂とエポキシ樹脂硬化剤混合物の表面に、化学的にアクリル樹脂を結合させることを言う。このような変成に供するアクリル樹脂としては、メタクリル酸、メタクリル酸エステル、アクリル酸、アクリル酸エステル、スチレン、酢酸ビニル等の1種もしくは2種以上を重合あるいは共重合したものである。エポキシ樹脂と潜在性エポキシ樹脂硬化剤の配合比は、エポキシ樹脂の種類、硬化剤の種類により大きく変動するが、通常、エポキシ樹脂1質量部に対し、0.05〜2質量部が適当である。予め潜在性硬化剤を配合したアクリル変性エポキシ樹脂エマルジョンを主成分とする混合液は、鋼板表面に塗布後、不完全状態に焼き付けることが必須であるが、不完全状態とは、べとつきやブロッキングの発生が無く、しかも、せん断加工し、積層した後、加圧加熱により接着する状態のことである。通常は、100〜300℃の炉温で10〜90秒間乾燥することで、不完全状態に焼き付けることができる。 The term “modification” as used herein refers to chemically bonding an acrylic resin to the surface of the epoxy resin and epoxy resin curing agent mixture. As the acrylic resin used for such modification, one or more of methacrylic acid, methacrylic acid ester, acrylic acid, acrylic acid ester, styrene, vinyl acetate and the like are polymerized or copolymerized. The mixing ratio of the epoxy resin and the latent epoxy resin curing agent varies greatly depending on the type of epoxy resin and the type of curing agent, but usually 0.05 to 2 parts by mass is appropriate for 1 part by mass of the epoxy resin. It is essential that the mixed liquid mainly composed of an acrylic-modified epoxy resin emulsion with a latent curing agent in advance be baked in an incomplete state after being applied to the steel sheet surface. There is no generation, and after being sheared and laminated, it is in a state of being bonded by pressure and heating. Usually, it can be baked in an incomplete state by drying at a furnace temperature of 100 to 300 ° C. for 10 to 90 seconds.
更に、加熱により軟化する樹脂としてシロキサンポリマーを用いることができる。シロキサンポリマーは、Si-O-Siの無機結合で主骨格が構成されているポリマーである。Siは、Cと同様に、Si-CH3、Si-C6H5、Si-Hのように、Siが直接、有機基やHと化学結合することができるので、有機基やHで骨格が修飾されたシロキサンポリマーを得ることができる。 Furthermore, a siloxane polymer can be used as a resin that is softened by heating. A siloxane polymer is a polymer whose main skeleton is composed of inorganic bonds of Si—O—Si. Si, like C, like Si-CH 3 , Si-C 6 H 5 , and Si-H, Si can be directly chemically bonded to organic groups and H. A modified siloxane polymer can be obtained.
Siの4つの結合手の内、1個がSi-R(Rは有機基又はH)結合を形成し、残りの3個がSi-O結合になっているものをT核と言う。T核の中で、Oを介してSiと結合している数が3個のもの、即ちRsi(-O-Si)3をT3核と呼ぶ。Si核種は、NMRによって調べることができる。一般に、シロキサンポリマーを形成するSi核としては、T核以外に、D核とQ核が挙げられる。D核はSiの4つの結合手の内、2個がSi-R(Rは有機基又はH)結合を形成し、残りの2個がSi-O結合になっているものである。Q核はSiの4つの結合手の内、4個がSi-O結合になっているものである。 Of the four bonds of Si, one of which forms a Si-R bond (R is an organic group or H) and the remaining three are Si-O bonds is called a T nucleus. Among the T nuclei, those having 3 bonded to Si via O, that is, Rsi (-O-Si) 3 are called T3 nuclei. Si nuclides can be examined by NMR. In general, Si nuclei forming a siloxane polymer include D nuclei and Q nuclei in addition to T nuclei. In the D nucleus, two of Si's four bonds form Si-R (R is an organic group or H) bond, and the remaining two are Si-O bonds. The Q nucleus is a Si-O bond in four of the four Si bonds.
T3画のSiが一定の規則に従って結合を繰り返した場合、図2に示したような梯子状分子が形成される。
梯子状分子からなる重合体は、塗布・焼き付けによって梯子状分子鎖の絡み合い等が起こり、べとつきやブロッキングの発生のない硬化した表面状態が得られる。100℃以上で絡み合っていた分子鎖が解けて、流動性を示すようになる。流動性を示す範囲であれば、メチル基が結合したSi核以外に、エポキシ基が結合したSi核を含んでもよい。
When Si in the T3 drawing repeats bonding according to a certain rule, a ladder molecule as shown in FIG. 2 is formed.
A polymer composed of ladder-like molecules is entangled with ladder-like molecular chains by coating and baking, and a hardened surface state without stickiness or blocking is obtained. Molecular chains that have been entangled at 100 ° C or higher will break and become fluid. As long as fluidity is exhibited, Si nuclei bonded with epoxy groups may be included in addition to Si nuclei bonded with methyl groups.
本発明のシロキサンポリマーは、オルガノトリアルコキシシラン又はオルガノトリクロロシランの一方又は双方を出発原料として、塩酸触媒下で加水分解して得る。オルガノトリアルコキシシランとしては、トリエトキシシラン、トリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン等が挙げられる。オルガノトリクロロシランとしては、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン等が挙げられる。 The siloxane polymer of the present invention is obtained by hydrolysis in the presence of one or both of organotrialkoxysilane and organotrichlorosilane under a hydrochloric acid catalyst. Organotrialkoxysilanes include triethoxysilane, trimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, Isobutyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, aminopropyltrimethoxysilane And aminopropyltriethoxysilane. Examples of the organotrichlorosilane include methyltrichlorosilane, ethyltrichlorosilane, and phenyltrichlorosilane.
オルガノトリアルコキシシラン又はオルガノトリクロロシランの一方又は双方は、有機溶媒に分散させてから加水分解しても良い。溶媒としては、メタノール、エタノール、プロパノール、ブタノール等の各種アルコール、アセトン、トルエン、キシレン等を用いることができる。加水分解時のオルガノアルコキシシランに対する有機溶媒の質量比は、1:0.5〜1:2であることが望ましい。 One or both of organotrialkoxysilane and organotrichlorosilane may be hydrolyzed after being dispersed in an organic solvent. As the solvent, various alcohols such as methanol, ethanol, propanol and butanol, acetone, toluene, xylene and the like can be used. The mass ratio of the organic solvent to the organoalkoxysilane at the time of hydrolysis is desirably 1: 0.5 to 1: 2.
加水分解は、出発原料中の全アルコキシ基のモル数に対して0.1〜1倍の水を添加して行う。加水分解の触媒として塩酸を添加する。オルガノトリクロロシランを原料に用いたときは、水を加えることにより塩酸が副生成物として生成し、特に手を加えなくても塩酸触媒下で加水分解を行うことになるので、塩酸を加えなくても良いこともある。 Hydrolysis is performed by adding 0.1 to 1 times as much water as the number of moles of all alkoxy groups in the starting material. Hydrochloric acid is added as a hydrolysis catalyst. When organotrichlorosilane is used as a raw material, hydrochloric acid is produced as a by-product by adding water, and hydrolysis is carried out under a hydrochloric acid catalyst without any special treatment. There are also good things.
加水分解したゾルは、通常、濃縮等のプロセスにより重縮合反応を促進させ、シロキサンポリマーとする。濃縮は、ロータリーエバポレータ等で有機溶媒や副生成物のアルコール等を除去し、濃縮物の質量が濃縮前の溶液質量の15〜60%程度になるように行うことが、加熱による軟化性の発現の観点から好ましい。濃縮以外の方法として、KOH等のアルカリを添加して窒素雰囲気下等で還流を行って、重縮合反応を促進させ、シロキサンポリマーを得ることもできる。得られたシロキサンポリマーは、有機溶媒や水で1.5〜10倍程度に希釈し、塗布液とする。通常、100℃〜200℃で15〜120秒間焼き付けることにより、加圧加熱により接着する状態が得られる。 The hydrolyzed sol is usually converted into a siloxane polymer by promoting the polycondensation reaction by a process such as concentration. Concentration is performed by removing the organic solvent and by-product alcohol with a rotary evaporator, etc., so that the mass of the concentrate is about 15 to 60% of the mass of the solution before concentration. From the viewpoint of As a method other than concentration, an alkali such as KOH may be added and refluxed under a nitrogen atmosphere or the like to promote the polycondensation reaction, thereby obtaining a siloxane polymer. The obtained siloxane polymer is diluted about 1.5 to 10 times with an organic solvent or water to obtain a coating solution. Usually, the state which adhere | attaches by pressurization heating is obtained by baking at 100 to 200 degreeC for 15 to 120 second.
なお、本発明における樹脂や低融点無機成分は、加熱、焼鈍の雰囲気等の条件によっては、本発明の被膜中において少なくとも外見的な溶融が見られず、粒がそのままの状態で残存しているように見える場合もあるが、当該加熱、焼鈍により接着機能が発現すれば、本発明において何ら問題はない。 The resin and the low-melting-point inorganic component in the present invention do not show at least apparent melting in the film of the present invention depending on conditions such as heating and annealing atmosphere, and the grains remain as they are. Although it may appear, there is no problem in the present invention as long as the bonding function is exhibited by the heating and annealing.
本発明は通常の圧延・焼鈍により製造された電磁鋼板であれば方向性電磁鋼板、無方向性電磁鋼板など種類を問わず適用できるが、特に、モーター鉄心用の無方向性電磁鋼板に適用する場合、その効果が最も発揮できる。 The present invention can be applied to any type of magnetic steel sheet produced by ordinary rolling / annealing, such as a directional magnetic steel sheet and a non-oriented magnetic steel sheet, but is particularly applicable to a non-oriented electrical steel sheet for motor cores. In that case, the effect can be exhibited most.
方向性電磁鋼板や無方向性電磁鋼板の通常の製造法においては、双方の鋼板とも、仕上げ焼鈍に鋼板表面に表面被膜が形成される。方向性電磁鋼板の場合にはシリカ成分を含有したリン酸塩系の被膜が、また、無方向性電磁鋼の場合には、クロム酸塩系の被膜がそれぞれ形成される。特に、方向性電磁鋼板の場合は、仕上げ焼鈍中にフォルステライト質の珪酸塩を主体とした被膜を形成させる製法、意図的に形成させない製法、生成しているフォルステライト質被膜を酸洗等の手段で除去する製法などがある。本発明はこうした種々の表面被膜の有無に関わらず、適用することができる。 In a normal manufacturing method for grain-oriented electrical steel sheets and non-oriented electrical steel sheets, a surface coating is formed on the steel sheet surface by finish annealing for both steel sheets. In the case of a grain-oriented electrical steel sheet, a phosphate-based film containing a silica component is formed, and in the case of a non-oriented electrical steel, a chromate-based film is formed. In particular, in the case of grain-oriented electrical steel sheets, a manufacturing method that forms a film mainly composed of forsterite silicate during finish annealing, a manufacturing method that does not intentionally form the film, and a forsterite film that has been formed is pickled. There is a manufacturing method that removes by means. The present invention can be applied with or without these various surface coatings.
本発明の耐熱接着性絶縁被膜付き電磁鋼板は、耐熱接着性絶縁被膜組成物を含む塗布液を、ロールコータ、バーコータ、フローコータ、ディップコータ、スプレー等の方法で、電磁鋼板に塗布する。塗布量は1g/m2以上30g/m2以下、特に2g/m2以上10g/m2以下であることが好ましい。 The electrical steel sheet with a heat-resistant adhesive insulating coating of the present invention is applied to the electrical steel sheet with a coating solution containing the heat-resistant adhesive insulating coating composition by a method such as a roll coater, bar coater, flow coater, dip coater or spray. The coating amount is preferably 1 g / m 2 or more and 30 g / m 2 or less, particularly preferably 2 g / m 2 or more and 10 g / m 2 or less.
耐熱接着性絶縁被膜組成物は、樹脂と低融点無機成分が混合されたものが好ましいが、両者が塊状に分散混合しているものや、あるいは両者が二層分離塗布されているものでも良い。有機成分によるマトリックスの中に低融点無機成分が点状・縞状などの形状で分散していてもよいし、シロキサン結合などによる無機マトリックスの中に有機成分が点状・縞状に分散していてもよい。 The heat-resistant adhesive insulating coating composition is preferably a mixture of a resin and a low-melting-point inorganic component, but may be a mixture in which both are dispersed in a lump form, or a mixture in which both layers are separated and applied. Low-melting-point inorganic components may be dispersed in the form of dots or stripes in the organic matrix, or the organic components are dispersed in dots or stripes in the inorganic matrix due to siloxane bonds. May be.
膜厚は片面当たり0.5μm以上20μm以下が望ましい。膜厚は0.5μm未満では鋼板上表面全体を十分に被覆しにくいため十分な接着強度が得られず、一方20μmより多いと加圧・加熱した際、占積率が大きく低下してしまう。そのため、膜厚は0.5μm以上20μm以下が良い。 The film thickness is desirably 0.5 μm or more and 20 μm or less per side. If the film thickness is less than 0.5 μm, it is difficult to sufficiently cover the entire surface of the steel sheet, so that sufficient adhesive strength cannot be obtained. On the other hand, if the film thickness is more than 20 μm, the space factor greatly decreases when pressed and heated. Therefore, the film thickness is preferably 0.5 μm or more and 20 μm or less.
本発明の被膜組成物は、電磁鋼板表面に塗布後、べたつきやブロッキングが起きないように、先ず、焼き付けて硬化させる。塗布後、50〜200℃で焼き付けることにより、耐熱接着性絶縁被膜付き電磁鋼板を作製することができる。この工程は、鉄心打ち抜きあるいは鉄心積層の直前であってもよいが、鋼板製造時に塗布しておきいわゆるプレコート状態の電磁鋼板としておくのが、鉄心製造工程が簡便になるという意味で特に好ましい。この鋼板から所要の形状に打ち抜いた鋼板片を積層してブロック化するに際し、前記の焼き付け温度より高温に加熱することで樹脂が軟化する。 The coating composition of the present invention is first baked and cured after application to the surface of the magnetic steel sheet so that stickiness and blocking do not occur. After application, an electrical steel sheet with a heat-resistant adhesive insulating coating can be produced by baking at 50 to 200 ° C. This step may be performed immediately before punching out the iron core or laminating the iron core, but it is particularly preferable to apply the magnetic steel sheet in a so-called pre-coated state at the time of manufacturing the steel sheet in terms of simplifying the core manufacturing process. When the steel sheet pieces punched out from the steel sheet into a desired shape are laminated and blocked, the resin is softened by heating to a temperature higher than the baking temperature.
本発明の被膜を両面に有する電磁鋼板片を積層して、熱プレスを行った場合、熱プレス時の加熱により軟化した樹脂が一体となるため、冷却時に電磁鋼板片を接着することが可能になる。 When the magnetic steel sheet pieces having the coating of the present invention on both sides are laminated and hot pressing is performed, the resin softened by heating at the time of the hot pressing is integrated, so that the electromagnetic steel sheet pieces can be bonded during cooling. Become.
また、本発明の被膜を片面にのみ有する電磁鋼板片を同じ向きに積層した場合、本発明の被膜層の無い電磁鋼板片の表面に、加熱により軟化した樹脂成分が一様に広がるため、冷却時に接着することができる。高温の熱プレスになると高コストになるので、熱プレス温度は300℃以下であることが望ましい。熱プレスの圧力は、0.1MPa以上50MPa以下であることが望ましく、1MPa以上20MPa以下であることが特に望ましい。熱プレスの圧力が低い場合は、十分な接着性を得ることができないため、鉄心として一体化することが困難になる。熱プレスの圧力が高い場合は、接着層が流動して、層間からはみ出すことがある。 In addition, when magnetic steel sheet pieces having the coating of the present invention only on one side are laminated in the same direction, the resin component softened by heating spreads uniformly on the surface of the electromagnetic steel sheet pieces without the coating layer of the present invention. Sometimes it can be glued. Since a high temperature hot press is expensive, the hot press temperature is desirably 300 ° C. or lower. The pressure of the hot press is preferably 0.1 MPa or more and 50 MPa or less, and particularly preferably 1 MPa or more and 20 MPa or less. When the pressure of the hot press is low, sufficient adhesiveness cannot be obtained, so that it is difficult to integrate as an iron core. When the pressure of hot pressing is high, the adhesive layer may flow and protrude from the interlayer.
本発明の電磁鋼板は、所望の形状に打ち抜いた後、積層して加圧、加熱を行えば、鉄心として一体化することができる。その後、必要に応じて歪取焼鈍を施した場合でも、積層鋼板間の接着能は維持される。歪取焼鈍の温度は、通常650℃以上850℃以下であり、700℃以上800℃以下で行うことが多い。 The electromagnetic steel sheet of the present invention can be integrated as an iron core by punching into a desired shape and then laminating, pressing and heating. Thereafter, even when strain relief annealing is performed as necessary, the adhesion between the laminated steel sheets is maintained. The temperature for strain relief annealing is usually 650 ° C. or higher and 850 ° C. or lower, and often 700 ° C. or higher and 800 ° C. or lower.
なお、本発明の被膜は、歪取焼鈍等の焼鈍を行わなくても接着能を有しているので、歪取焼鈍を行わない鉄心にも利用できる。すなわち、歪取焼鈍用、非歪取焼鈍用兼用の接着被膜として利用可能である。
また、歪取焼鈍用の場合において、加圧、加熱による固定に際し、かしめや治具による固定を併用することも可能である。
In addition, since the coating film of this invention has adhesiveness even if annealing, such as strain relief annealing, is not performed, it can be utilized also for the iron core which does not perform strain relief annealing. That is, it can be used as an adhesive coating for both strain relief annealing and non-strain relief annealing.
In the case of strain relief annealing, it is also possible to use caulking or fixing with a jig together when fixing by pressurization or heating.
アクリル樹脂:エポキシ樹脂:フェノール樹脂=10:4:3(質量%)組成で固形分比率20質量%の樹脂水分散液に、軟化点温度が450℃で種々の粒径を持つガラスフリットを配合した液を調製した。ガラスフリットを配合した液における、樹脂/ガラスフリット混合比率は200%になるようにした。この塗布液を板厚が0.5mmで鋼板表面に絶縁被膜を持たない仕上げ焼鈍済みの無方向性電磁鋼板に対し、ロールコータを用いて被膜量が片面当たり6g/m2になるよう塗布した。次いで乾燥温度150℃で乾燥し、冷却した。片面当たりの被膜厚さは10μmであった。こうして作製した試料から圧延方向長さ10cm、圧延方向に直角方向の長さ3cmの寸法の試験片を切り出した。そして、短辺部で長さ1cm、重なり面積3cm2で2枚の試験片を重ね10kg/cm2で加圧した状態で250℃まで加熱し、60秒間保持し、冷却し、250℃接着強度測定用の試験片を調製した。更に、250℃接着強度測定用試験片の一部について、荷重のかからない状態で750℃まで加熱し、2時間保持し、冷却し、750℃接着強度測定用の試験片を調製した。このようにして調製した試験片について引っ張り試験機を用いて接着強度を測定した。結果を表4に示す。 Acrylic resin: Epoxy resin: Phenolic resin = 10: 4: 3 (mass%) Composition with glass frit with various particle sizes at a softening point temperature of 450 ° C in a resin water dispersion with a solid content ratio of 20 mass% A prepared liquid was prepared. The resin / glass frit mixing ratio in the liquid containing glass frit was set to 200%. This coating solution was applied to a non-oriented electrical non-oriented electrical steel sheet having a plate thickness of 0.5 mm and no insulating coating on the steel sheet surface using a roll coater so that the coating amount was 6 g / m 2 per side. Subsequently, it dried at the drying temperature of 150 degreeC, and cooled. The film thickness per side was 10 μm. A test piece having a length of 10 cm in the rolling direction and a length of 3 cm in the direction perpendicular to the rolling direction was cut out from the sample thus prepared. Then, heated to 250 ° C. at 1cm long in the short side portions, pressurized with overlapping area 3 cm 2 overlapped two specimens at 10 kg / cm 2 state, held for 60 seconds, cooled, 250 ° C. adhesion strength A test specimen for measurement was prepared. Further, a part of the test piece for measuring the adhesive strength at 250 ° C. was heated to 750 ° C. under no load, kept for 2 hours, and cooled to prepare a test piece for measuring the adhesive strength at 750 ° C. The test piece thus prepared was measured for adhesive strength using a tensile tester. The results are shown in Table 4.
表4から、条件番号1から条件番号5のガラスフリットの平均粒径が2μmから20μmの試料群においては、250℃接着強度が10kg/cm2以上で、かつ、750℃接着強度も1kg/cm2以上と良好であるのに対し、条件番号6のガラスフリットの平均粒径が25μmの試料については、250℃接着強度が5kg/cm2で750℃接着強度は測定できないほど小さい値となり、良好ではなかった。
ガラスフリットの平均粒径が20μm以下である実施例の方が、平均粒径が25μmである比較例に比べ優れている。
From Table 4, in the sample group in which the average particle diameter of the glass frit of Condition No. 1 to Condition No. 5 is 2 μm to 20 μm, the 250 ° C. adhesive strength is 10 kg / cm 2 or more and the 750 ° C. adhesive strength is also 1 kg / cm. for two or more and in the range of good, for samples average particle size of the glass frit 25μm of conditions No. 6, becomes a smaller value as 250 ° C. adhesion strength can not be measured 750 ° C. the adhesive strength at 5 kg / cm 2, better It wasn't.
The example in which the average particle size of the glass frit is 20 μm or less is superior to the comparative example in which the average particle size is 25 μm.
アクリル樹脂:エポキシ樹脂:フェノール樹脂=11:3:4(質量%)組成で固形分比率20質量%の樹脂水分散液に、組成がB2O3=25質量%、SiO2=65質量%、Na2O=10質量%で、30℃から300℃における線熱膨張係数が40×10-7(℃-1)のガラスフリット(実施例)を配合した液と、同樹脂水分散液に、組成がB2O3=50質量%、SiO2=25質量%、K2O=25質量%で、30℃から300℃の線熱膨張係数が170×10-7(℃-1)のガラスフリット(比較例)を混合した液を調製した。ガラスフリットはいずれも平均粒径が10μmのものを使用した。また、ガラスフリットを配合した液における、樹脂/ガラスフリット混合比率はいずれも100%になるようにした。 Acrylic resin: Epoxy resin: Phenolic resin = 11: 3: 4 (mass%) Composition in a resin water dispersion with a solid content ratio of 20 mass%, composition is B 2 O 3 = 25 mass%, SiO 2 = 65 mass% , Na 2 O = 10% by mass, and a mixture of glass frit (Example) having a coefficient of linear thermal expansion of 40 × 10 −7 (° C. −1 ) at 30 ° C. to 300 ° C. The composition is B 2 O 3 = 50 mass%, SiO 2 = 25 mass%, K 2 O = 25 mass%, and the linear thermal expansion coefficient from 30 ° C. to 300 ° C. is 170 × 10 −7 (° C. −1 ). A liquid in which glass frit (comparative example) was mixed was prepared. Glass frit having an average particle diameter of 10 μm was used. In addition, the resin / glass frit mixing ratio in the liquid containing glass frit was set to 100%.
この塗布液を板厚が0.5mmで鋼板表面にクロム酸マグネシウム系の絶縁被膜を持つ仕上げ焼鈍済みの無方向性電磁鋼板に対し、ロールコータを用いて被膜量が片面当たり8g/m2になるよう塗布した。ついで乾燥温度140℃で乾燥し、冷却した。片面当たりの被膜厚さは6μmであった。こうして作製した試料から、内径10.16cm(4インチ)、外径12.7cm(5インチ)のリング状の試料を作製し、20枚積層した状態で加圧力10kg/cm2、温度250℃で4時間加熱し、被膜接着型鉄心を作製した。次いで、この鉄心を加圧しない状態で温度750℃で2時間焼鈍した。最後に周波数50Hz、磁束密度1.5テスラで鉄損値を測定した。結果を表5に示す。 Using a roll coater, the coating amount is 8 g / m 2 per side for a finish annealed non-oriented electrical steel sheet with a thickness of 0.5 mm and a magnesium chromate-based insulation coating on the steel sheet surface. It was applied as follows. Subsequently, it dried at the drying temperature of 140 degreeC, and cooled. The film thickness per side was 6 μm. A ring-shaped sample with an inner diameter of 10.16 cm (4 inches) and an outer diameter of 12.7 cm (5 inches) was prepared from the sample thus prepared, and 20 sheets were stacked, with a pressure of 10 kg / cm 2 and a temperature of 250 ° C. for 4 hours. It heated and produced the film adhesion type iron core. Next, the iron core was annealed at a temperature of 750 ° C. for 2 hours without being pressurized. Finally, the iron loss value was measured at a frequency of 50 Hz and a magnetic flux density of 1.5 Tesla. The results are shown in Table 5.
表5から、条件番号1の線熱膨張係数が40×10-7(℃-1)のガラスフリットを使用して作製した鉄心の鉄損が3.05(W/kg)と良好であるのに対し、条件番号2の線熱膨張係数が170×10-7(℃-1)のガラスフリットを使用して作製した鉄心の鉄損が3.27(W/kg)と大きい値となり、良好ではなかった。このように、本発明による実施例の方が比較例に比べ優れていることが分かる。 From Table 5, the iron loss of the iron core made using glass frit with a linear thermal expansion coefficient of condition number 1 of 40 × 10 -7 (° C -1 ) is good at 3.05 (W / kg) The iron loss of an iron core produced using a glass frit with a linear thermal expansion coefficient of 170 × 10 −7 (° C. −1 ) in Condition No. 2 was a large value of 3.27 (W / kg), which was not good. Thus, it can be seen that the example according to the present invention is superior to the comparative example.
塗布液として、以下の4種類を作製した。
塗布液A
水100質量部に対して、潜在性硬化剤を20質量%配合したアクリル変成エポキシ樹脂エマルジョン40質量部、メチルエチルケトン5質量部を配合した。この塗布液を塗布・焼き付けして得られた樹脂のガラス転移温度は104℃であり、120℃以上で軟化した。
The following four types of coating solutions were prepared.
Coating liquid A
40 parts by mass of an acrylic modified epoxy resin emulsion containing 20% by mass of a latent curing agent and 5 parts by mass of methyl ethyl ketone were blended with 100 parts by mass of water. The glass transition temperature of the resin obtained by applying and baking this coating solution was 104 ° C. and softened at 120 ° C. or higher.
塗布液B
水100質量部、アクリル樹脂エマルジョン40質量部、エポキシ樹脂エマルジョン40質量部、アミン系エポキシ硬化剤4質量部を配合した。この塗布液を塗布・焼き付けして得られた樹脂は150℃以上で軟化した。
Coating solution B
100 parts by weight of water, 40 parts by weight of an acrylic resin emulsion, 40 parts by weight of an epoxy resin emulsion, and 4 parts by weight of an amine epoxy curing agent were blended. The resin obtained by applying and baking this coating solution was softened at 150 ° C. or higher.
塗布液C
メチルトリエトキシシラン178gとエタノール138gの混合用液中に、水35.3gと35%塩酸1.04gとを混合した水溶液を滴下して、加水分解を行った。加水分解した液は、ロータリーエバポレータを用いて、58℃で溶媒が出なくなるまで、濃縮を行った。濃縮物の質量は、濃縮前の溶液質量の30%であった。この濃縮物の質量平均分子量は10000であった。この濃縮物はえい糸性を示したので、鎖状高分子の形にメチルトリエトキシシランが重合していると考えられる。この濃縮物に対して、70℃で15分の熱処理を行うと固化したが、180℃付近から軟化した。この濃縮物100質量部に対してエタノールを200質量部配合した。
Coating liquid C
Hydrolysis was performed by adding dropwise an aqueous solution prepared by mixing 35.3 g of water and 1.04 g of 35% hydrochloric acid into a liquid for mixing 178 g of methyltriethoxysilane and 138 g of ethanol. The hydrolyzed liquid was concentrated using a rotary evaporator until the solvent disappeared at 58 ° C. The mass of the concentrate was 30% of the solution mass before concentration. The mass average molecular weight of this concentrate was 10,000. Since this concentrate showed a yarn property, it is considered that methyltriethoxysilane is polymerized in the form of a chain polymer. When this concentrate was heat-treated at 70 ° C. for 15 minutes, it solidified, but softened from around 180 ° C. 200 parts by mass of ethanol was blended with 100 parts by mass of the concentrate.
塗布液D
メチルトリエトキシシラン178g、テトラメトキシシラン152gを、2-エトキシエタノール270.3g中に分散させる。酢酸4.8gを触媒とし、水36gを加えて加水分解することにより、塗布液を調製した。このシロキサンポリマーは、加熱により軟化しなかった。
Coating liquid D
178 g of methyltriethoxysilane and 152 g of tetramethoxysilane are dispersed in 270.3 g of 2-ethoxyethanol. A coating solution was prepared by using 4.8 g of acetic acid as a catalyst and hydrolyzing by adding 36 g of water. This siloxane polymer was not softened by heating.
表6において、塗布液の中段のガラス組成の後ろの括弧内に記載した温度は、ガラスの軟化温度である。表6に記載したガラスは、いずれも平均粒径2μmの粉末である。実施例及び比較例は、厚さ0.5mmの無方向性電磁鋼板の両面に、それぞれの塗布液をロールコータで塗布し、70℃に設定した炉で15分焼き付けた。塗布量は7g/m2であった。いずれも焼き付け後の膜表面のべたつきはなかった。 In Table 6, the temperature described in parentheses after the glass composition in the middle stage of the coating solution is the glass softening temperature. All the glasses described in Table 6 are powders having an average particle diameter of 2 μm. In Examples and Comparative Examples, each coating solution was applied to both surfaces of a non-oriented electrical steel sheet having a thickness of 0.5 mm with a roll coater and baked in a furnace set at 70 ° C. for 15 minutes. The coating amount was 7 g / m 2 . In any case, there was no stickiness of the film surface after baking.
幅3cm、長さ10cmの試験片を2枚用いて、接着部分の面積が6cm2になるように、試験片の一部を重ねて、熱プレスを行った。熱プレスの前に、接着部分以外に塗布された膜は、削り落とした。200℃、1分、10MPaの熱プレスにより、2枚の試験片を接着させた。歪取焼鈍は、窒素中で750℃2時間行った。歪取焼鈍前後の接着強度は、接着した面の水平方向強度であるせん断引張強度を用いて評価した。 Using two test pieces having a width of 3 cm and a length of 10 cm, a part of the test piece was overlapped so that the area of the bonded portion was 6 cm 2 and hot pressing was performed. Prior to hot pressing, the film applied to areas other than the bonded area was scraped off. Two test pieces were bonded by a hot press at 200 ° C. for 1 minute and 10 MPa. The strain relief annealing was performed in nitrogen at 750 ° C. for 2 hours. The adhesive strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface.
比較例1は、軟化温度が歪取焼鈍温度より高いガラスなので、焼鈍後の接着性が無かった。比較例2は、樹脂が加熱により軟化しないタイプのものなので、熱プレスによって接着することができなかった。比較例3は、低融点ガラスを含まないため、歪取焼鈍後の接着性が得られなかった。 In Comparative Example 1, since the glass had a softening temperature higher than the stress relief annealing temperature, there was no adhesion after annealing. Since Comparative Example 2 was a type in which the resin was not softened by heating, it could not be bonded by hot pressing. Since Comparative Example 3 did not contain low-melting glass, adhesion after strain relief annealing could not be obtained.
塗布液として、以下の4種類を作製した。
塗布液A
水100質量部に対して、潜在性硬化剤を20質量%配合したアクリル変成エポキシ樹脂エマルジョン40質量部、メチルエチルケトン5質量部を配合した。この塗布液を塗布・焼き付けして得られた樹脂のガラス転移温度は104℃であり、120℃以上で軟化した。
The following four types of coating solutions were prepared.
Coating liquid A
40 parts by mass of an acrylic modified epoxy resin emulsion containing 20% by mass of a latent curing agent and 5 parts by mass of methyl ethyl ketone were blended with 100 parts by mass of water. The glass transition temperature of the resin obtained by applying and baking this coating solution was 104 ° C. and softened at 120 ° C. or higher.
塗布液B
水100質量部、アクリル樹脂エマルジョン40質量部、エポキシ樹脂エマルジョン40質量部、アミン系エポキシ硬化剤4質量部を配合した。この塗布液を塗布・焼き付けして得られた樹脂は150℃以上で軟化した。
Coating liquid B
100 parts by weight of water, 40 parts by weight of an acrylic resin emulsion, 40 parts by weight of an epoxy resin emulsion, and 4 parts by weight of an amine epoxy curing agent were blended. The resin obtained by applying and baking this coating solution was softened at 150 ° C. or higher.
塗布液C
メチルトリエトキシシラン178gとエタノール138gの混合用液中に、水35.3gと35%塩酸1.04gとを混合した水溶液を滴下して加水分解を行った。加水分解した液は、ロータリーエバポレータを用いて58℃で溶媒が出なくなるまで濃縮を行った。濃縮物の質量は、濃縮前の溶液質量の30%であった。この濃縮物の質量平均分子量は10000であった。この濃縮物はえい糸性を示したので、鎖状高分子の形にメチルトリエトキシシランが重合していると考えられる。この濃縮物に対して70℃で15分の熱処理を行うと固化したが、180℃付近から軟化した。この濃縮物100質量部に対してエタノールを200質量部配合した。
Coating liquid C
Hydrolysis was performed by adding dropwise an aqueous solution prepared by mixing 35.3 g of water and 1.04 g of 35% hydrochloric acid into a liquid for mixing 178 g of methyltriethoxysilane and 138 g of ethanol. The hydrolyzed solution was concentrated using a rotary evaporator at 58 ° C. until no solvent was produced. The mass of the concentrate was 30% of the solution mass before concentration. The mass average molecular weight of this concentrate was 10,000. Since this concentrate showed a yarn property, it is considered that methyltriethoxysilane is polymerized in the form of a chain polymer. When this concentrate was heat-treated at 70 ° C. for 15 minutes, it solidified, but softened from around 180 ° C. 200 parts by mass of ethanol was blended with 100 parts by mass of the concentrate.
実施例において塗布液A〜Cを水で希釈後、種々の水ガラスを添加して塗布液を作製した。実施例および比較例は、厚さ0.5mmの無方向性電磁鋼板の両面に、それぞれの塗布液をロールコータで塗布し、70℃に設定した炉で15分焼き付けた。塗布量は10g/m2であった。いずれも焼き付け後の膜表面のべたつきはなかった。 In Examples, the coating solutions A to C were diluted with water, and various water glasses were added to prepare coating solutions. In Examples and Comparative Examples, each coating solution was applied on both sides of a 0.5 mm-thick non-oriented electrical steel sheet with a roll coater and baked in a furnace set at 70 ° C. for 15 minutes. The coating amount was 10 g / m 2 . In any case, there was no stickiness of the film surface after baking.
幅3cm、長さ10cmの試験片を2枚用いて、接着部分の面積が6cm2になるように試験片の一部を重ねて熱プレスを行った。熱プレスの前に、接着部分以外に塗布された膜は削り落とした。200℃、1分、10MPaの熱プレスにより2枚の試験片を接着させた。歪取焼鈍は窒素中で750℃2時間行った。歪取焼鈍前後の接着強度は、接着した面の水平方向強度であるせん断引張強度を用いて評価した。 Using two test pieces each having a width of 3 cm and a length of 10 cm, a part of the test piece was overlapped and subjected to hot pressing so that the area of the bonded portion was 6 cm 2 . Prior to hot pressing, the applied film other than the bonded part was scraped off. Two test pieces were bonded by hot pressing at 200 ° C. for 1 minute and 10 MPa. The strain relief annealing was performed in nitrogen at 750 ° C. for 2 hours. The adhesive strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface.
実施例3で記載した塗布液Dを作製した。塗布液D100質量部に対して、平均粒径4μmで軟化温度が200℃のポリエステルの球状粒子10質量部を混合・分散させた。ロールコータで無機−有機混合処理液による表面皮膜のついた無方向性電磁鋼板に塗布後、100℃に設定した炉で2分焼き付けた。塗布量は10g/m2であった。幅3cm、長さ10cmの試験片を2枚用いて、接着部分の面積が6cm2になるように試験片の一部を重ねて熱プレスを行った。熱プレスの前に、接着部分以外に塗布された膜は削り落とした。230℃、1分、10MPaの熱プレスにより2枚の試験片を接着させた。歪取焼鈍は窒素中で750℃2時間行った。歪取焼鈍前後の接着強度は、接着した面の水平方向強度であるせん断引張強度を用いて評価した。歪取焼鈍前後の接着強度はそれぞれ1.0MPa,2.1MPaであった。 The coating liquid D described in Example 3 was produced. 10 parts by mass of polyester spherical particles having an average particle diameter of 4 μm and a softening temperature of 200 ° C. were mixed and dispersed with respect to 100 parts by mass of the coating solution D. After applying to a non-oriented electrical steel sheet having a surface coating with an inorganic-organic mixed treatment solution with a roll coater, it was baked for 2 minutes in a furnace set at 100 ° C. The coating amount was 10 g / m 2 . Using two test pieces each having a width of 3 cm and a length of 10 cm, a part of the test piece was overlapped and subjected to hot pressing so that the area of the bonded portion was 6 cm 2 . Prior to hot pressing, the applied film other than the bonded part was scraped off. Two test pieces were bonded by a hot press at 230 ° C. for 1 minute and 10 MPa. The strain relief annealing was performed in nitrogen at 750 ° C. for 2 hours. The adhesive strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface. The adhesive strength before and after strain relief annealing was 1.0 MPa and 2.1 MPa, respectively.
本発明によれば、打ち抜き又はせん断加工後、加圧及び加熱により接着して、鉄心として一体化でき、その後、更に歪取焼鈍を施しても接着能が維持できる、耐熱接着性絶縁被膜付き電磁鋼板を提供することができる。溶接、かしめを行うことなく鉄心の一体化ができ、溶接やかしめによる鉄損劣化が回避可能となり、また、歪取焼鈍後も接着状態及び絶縁性が保たれるので、磁気特性に優れた鉄心を作製することができる。 According to the present invention, after punching or shearing, it can be bonded by pressurization and heating to be integrated as an iron core, and the adhesive ability can be maintained even after further strain relief annealing. A steel plate can be provided. Iron core can be integrated without welding and caulking, and iron loss deterioration due to welding and caulking can be avoided. Adhesion and insulation are maintained even after strain relief annealing, so the iron core has excellent magnetic properties. Can be produced.
本発明は、電気鋼板を積層後、加圧及び加熱(本発明においては、特に断らない限り室温以上300℃以下の加熱処理をいう。)により接着でき、さらにその後歪取焼鈍等の焼鈍処理(本発明においては、特に断らない限り300℃超の加熱処理をいう。)を施しても接着能が維持できる耐熱接着性被膜組成物に関するものである。 In the present invention, electrical steel sheets can be laminated and then bonded by pressurization and heating (in the present invention, it refers to a heat treatment at room temperature or higher and 300 ° C. or lower unless otherwise specified), and thereafter annealing treatment such as strain relief annealing ( in the present invention, in particular it refers to a heat treatment at 300 ° C. greater unless otherwise specified.) be subjected to those about the heat adhesive coating compositions which can maintain adhesion ability.
本発明は、接着性絶縁被膜付き電磁鋼板の接着性絶縁被膜の耐熱性を向上させ、歪取燒鈍を行っても接着状態および絶縁性が保たれる耐熱接着性絶縁被膜を提供するものである。 Things present invention, the heat resistance of the adhesive insulating coating of adhesive insulating film having an electromagnetic steel sheet is improved, even if the stress relief燒鈍provide heat adhesive insulating the film adhesion state and the insulating properties are maintained It is.
前記課題を解決するために、本発明は以下のような手段を用いる。
(1) 軟化点温度が室温以上300℃以下の樹脂と軟化点温度が1000℃以下の低融点無機成分とを含む耐熱接着性絶縁被膜であって、
前記低融点無機成分に対する前記樹脂の混合比率が質量分率で100%以上500%以下であり、
前記低融点無機成分が、低融点ガラスフリット、水ガラス、またはあるいはそれらにコロイダルシリカをさらに混合したものであるとともに、該低融点無機成分の平均粒径が20μm以下で、30℃から300℃における線熱膨張係数が10×10 -7 (℃ -1 )以上150×10 -7 (℃ -1 )以下であり、
さらに、250℃接着強度=10kg/cm 2 以上、750℃接着強度=1kg/cm 2 以上であることを特徴とする耐熱接着性絶縁被膜。
In order to solve the above problems, the present invention uses the following means.
(1) A heat resistant adhesive insulating coating comprising a resin having a softening point temperature of room temperature to 300 ° C. and a low melting point inorganic component having a softening point temperature of 1000 ° C. or less ,
The mixing ratio of the resin to the low melting point inorganic component is 100% or more and 500% or less by mass fraction,
The low-melting-point inorganic component is a low-melting-point glass frit, water glass, or a mixture of them with colloidal silica, and the average particle size of the low-melting-point inorganic component is 20 μm or less at 30 ° C. to 300 ° C. The coefficient of linear thermal expansion is not less than 10 × 10 -7 (° C -1 ) and not more than 150 × 10 -7 (° C -1 ),
Furthermore, 250 ° C. adhesive strength = 10 kg / cm 2 or more and 750 ° C. adhesive strength = 1 kg / cm 2 or more .
(2) 前記低融点無機成分がSiO2-B2O3-R2O系低融点ガラス(Rはアルカリ金属)であることを特徴とする(1)に記載の耐熱接着性絶縁被膜。
(3) 前記水ガラスが珪酸ソーダであることを特徴とする(1)に記載の耐熱接着性絶縁被膜。
(4) 前記樹脂が、エポキシ樹脂、アクリル樹脂、フェノール樹脂、予め潜在性硬化剤を配合したアクリル変成エポキシ樹脂エマルジョンを主成分とする混合液を不完全状態に焼き付けた樹脂、または、シロキサンポリマー、から選ばれる1種または2種以上を含むことを特徴とする(1)記載の耐熱接着性絶縁被膜。
( 2 ) The heat-resistant adhesive insulating coating according to ( 1 ), wherein the low-melting-point inorganic component is SiO 2 —B 2 O 3 —R 2 O-based low-melting glass (R is an alkali metal).
( 3 ) The heat-resistant adhesive insulating coating according to ( 1 ), wherein the water glass is sodium silicate.
(4) the resin is an epoxy resin, an acrylic resin, a phenol resin, previously latent acrylic curing agent was formulated modified epoxy resin emulsion was baked in incomplete mixing solution mainly composed resins or siloxane polymer, They comprise one or more selected from and wherein (1), wherein the heat-adhesive insulating film.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011214497A JP5494602B2 (en) | 2004-10-18 | 2011-09-29 | Heat-resistant adhesive insulation coating |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004302920 | 2004-10-18 | ||
JP2004302920 | 2004-10-18 | ||
JP2004308069 | 2004-10-22 | ||
JP2004308015 | 2004-10-22 | ||
JP2004308069 | 2004-10-22 | ||
JP2004308015 | 2004-10-22 | ||
JP2011214497A JP5494602B2 (en) | 2004-10-18 | 2011-09-29 | Heat-resistant adhesive insulation coating |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006543048A Division JP4860480B2 (en) | 2004-10-18 | 2005-10-13 | Electrical steel sheet with heat-resistant adhesive coating coated with heat-resistant adhesive film, iron core using the electrical steel sheet, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012046825A true JP2012046825A (en) | 2012-03-08 |
JP5494602B2 JP5494602B2 (en) | 2014-05-21 |
Family
ID=36203027
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006543048A Active JP4860480B2 (en) | 2004-10-18 | 2005-10-13 | Electrical steel sheet with heat-resistant adhesive coating coated with heat-resistant adhesive film, iron core using the electrical steel sheet, and manufacturing method thereof |
JP2011214497A Active JP5494602B2 (en) | 2004-10-18 | 2011-09-29 | Heat-resistant adhesive insulation coating |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006543048A Active JP4860480B2 (en) | 2004-10-18 | 2005-10-13 | Electrical steel sheet with heat-resistant adhesive coating coated with heat-resistant adhesive film, iron core using the electrical steel sheet, and manufacturing method thereof |
Country Status (6)
Country | Link |
---|---|
JP (2) | JP4860480B2 (en) |
KR (2) | KR100886236B1 (en) |
CN (1) | CN101040022B (en) |
MY (1) | MY142207A (en) |
TW (1) | TWI328235B (en) |
WO (1) | WO2006043612A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104804690A (en) * | 2015-04-28 | 2015-07-29 | 广西德骏门窗幕墙有限公司 | Adhesive of aluminium curtain wall and preparation method of adhesive |
JP2016029205A (en) * | 2014-07-25 | 2016-03-03 | Jfeスチール株式会社 | Magnetic steel sheet having insulating cover sheet, and laminated electromagnetic steel sheet |
JP2016196701A (en) * | 2015-04-06 | 2016-11-24 | 小林 博 | Method for manufacturing iron core having interlayer of laminated electromagnetic steel sheet insulated by granular iron oxide (iii) particle |
KR101728027B1 (en) * | 2015-12-24 | 2017-04-18 | 주식회사 포스코 | Adhesive coating composition for electrical steel, electrical steel with adhesive coating layer, electrical steel product, and method for manufacturing the product |
KR101817967B1 (en) * | 2016-11-07 | 2018-01-12 | 한국생산기술연구원 | Water glass-based organic-inorganic hybrid adhesives and manufacturing method thereof |
KR20190078168A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Electrical steel sheet product, and method for manufacturing the electrical steel sheet product |
JP2020503452A (en) * | 2016-12-23 | 2020-01-30 | ポスコPosco | Non-oriented electrical steel sheet adhesive coating composition and method for producing non-oriented electrical steel sheet product |
US10832841B2 (en) | 2018-04-27 | 2020-11-10 | Toyota Jidosha Kabushiki Kaisha | Electromagnetic steel sheet |
KR20210005896A (en) * | 2018-04-20 | 2021-01-15 | 뵈스트알파인 스탈 게엠베하 | Coated sheet metal band and manufacturing method |
JP2021036591A (en) * | 2016-12-23 | 2021-03-04 | ポスコPosco | Electrical steel sheet product |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5212000B2 (en) * | 2008-10-01 | 2013-06-12 | 新日鐵住金株式会社 | Silicon steel laminate with simple vibration transmission waveform |
JP2011127038A (en) * | 2009-12-18 | 2011-06-30 | Nitto Denko Corp | Water-dispersible pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet |
KR101561280B1 (en) | 2013-11-27 | 2015-10-16 | 주식회사 포스코 | Coating composition for non-oriented electrical steel, method of manufacturing non-oriented electrical product and non-oriented electrical product |
JP6056782B2 (en) * | 2014-02-07 | 2017-01-11 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP6032230B2 (en) * | 2014-03-06 | 2016-11-24 | Jfeスチール株式会社 | Electrical steel sheet and laminated electrical steel sheet with insulation coating |
JP6304208B2 (en) * | 2015-03-19 | 2018-04-04 | Jfeスチール株式会社 | Electrical steel sheet with insulating coating, laminated electrical steel sheet, and manufacturing method thereof |
KR101797129B1 (en) | 2015-12-21 | 2017-11-13 | 주식회사 포스코 | Adhesive coating composition for non-oriented electrical steel, non-oriented electrical steel product, and method for manufacturing the product |
KR101796234B1 (en) * | 2015-12-22 | 2017-11-09 | 주식회사 포스코 | Insulation coating composite for oriented electrical steel steet, forming method of insulation coating using the same, and oriented electrical steel steet |
KR102114810B1 (en) | 2017-12-26 | 2020-05-25 | 주식회사 포스코 | Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing the electrical steel sheet product |
KR102112171B1 (en) | 2017-12-26 | 2020-05-18 | 주식회사 포스코 | Adhesive coating composition for electrical steel sheet, electrical steel sheet product, and method for manufacturing the same |
CN110317532B (en) * | 2018-03-30 | 2021-07-16 | 宝山钢铁股份有限公司 | Water-soluble environment-friendly self-bonding insulating coating for silicon steel |
WO2021125900A1 (en) * | 2019-12-20 | 2021-06-24 | 주식회사 포스코 | Composition for forming oriented electrical steel sheet insulation film, oriented electrical steel sheet, and method for producing oriented electrical steel sheet |
MX2022010916A (en) | 2020-06-17 | 2022-09-29 | Nippon Steel Corp | Layered core manufacturing method. |
CN115768924A (en) * | 2020-06-17 | 2023-03-07 | 日本制铁株式会社 | Coating composition for electromagnetic steel sheet, surface-coated electromagnetic steel sheet for adhesion, and laminated iron core |
JP7473813B2 (en) | 2020-10-02 | 2024-04-24 | 日本製鉄株式会社 | Film-coated metal foil and method for producing film-coated metal foil |
CN116144240B (en) * | 2021-11-22 | 2024-04-05 | 宝山钢铁股份有限公司 | Light-viscosity silicon steel environment-friendly insulating paint, silicon steel plate and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09323066A (en) * | 1996-06-07 | 1997-12-16 | Kawasaki Steel Corp | Silicon steel sheet capable of stress relief annealing and provided with insulating coating film excellent in resistance to corrosion and solvent and formation of the insulating coating film |
JP2000282249A (en) * | 1999-03-29 | 2000-10-10 | Kawasaki Steel Corp | Insulated coating film of grain oriented silicon electric steel sheet and its formation |
JP2001240916A (en) * | 2000-02-29 | 2001-09-04 | Kawasaki Steel Corp | Electro-magnetic steel sheet having insulated film, annealable for strain-removal and having excellent blanking size stability |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57174365A (en) * | 1981-04-21 | 1982-10-27 | Fuji Electric Co Ltd | Adhesive |
JPS5978275A (en) * | 1982-10-28 | 1984-05-07 | Shinto Paint Co Ltd | Adhesive composition for clad steel stock preparation |
JPS6163004A (en) * | 1984-09-05 | 1986-04-01 | Kawasaki Steel Corp | Laminated directional silicon steel plate |
JPS6173778A (en) * | 1984-09-19 | 1986-04-15 | Sekisui Plastics Co Ltd | Water glass adhesive |
JPS6212651A (en) * | 1985-03-06 | 1987-01-21 | テイカ株式会社 | Composite type curable composition |
CN1052686A (en) * | 1990-12-14 | 1991-07-03 | 刘传校 | A kind of double-component insulated tackiness agent |
JP3243099B2 (en) * | 1993-12-29 | 2002-01-07 | 日本鋼管株式会社 | Manufacturing method of laminated electromagnetic steel sheet |
JPH07336969A (en) * | 1994-06-09 | 1995-12-22 | Nkk Corp | Electromagnet steel plate bonded core and manufacturing method |
JPH11246834A (en) | 1997-11-21 | 1999-09-14 | Lintec Corp | Tacky body containing inorganic powder and fusion of its inorgnic powder |
JP3595481B2 (en) * | 1999-12-28 | 2004-12-02 | アルプス電気株式会社 | Dust core and method of manufacturing dust core |
JP4572474B2 (en) * | 2001-02-28 | 2010-11-04 | Jfeスチール株式会社 | Electrical steel sheet with insulating coating with excellent adhesion |
JP4221933B2 (en) * | 2002-01-28 | 2009-02-12 | Jfeスチール株式会社 | Method for producing electrical steel sheet with insulating coating excellent in weldability and punchability |
JP2003282330A (en) * | 2002-03-27 | 2003-10-03 | Jfe Steel Kk | Adhesive-fixed laminated iron core and its manufacturing method |
-
2005
- 2005-10-13 CN CN2005800348428A patent/CN101040022B/en active Active
- 2005-10-13 WO PCT/JP2005/019264 patent/WO2006043612A1/en active Application Filing
- 2005-10-13 JP JP2006543048A patent/JP4860480B2/en active Active
- 2005-10-13 KR KR1020077005434A patent/KR100886236B1/en active IP Right Grant
- 2005-10-13 KR KR1020087024912A patent/KR100921015B1/en active IP Right Grant
- 2005-10-17 MY MYPI20054868A patent/MY142207A/en unknown
- 2005-10-17 TW TW094136171A patent/TWI328235B/en active
-
2011
- 2011-09-29 JP JP2011214497A patent/JP5494602B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09323066A (en) * | 1996-06-07 | 1997-12-16 | Kawasaki Steel Corp | Silicon steel sheet capable of stress relief annealing and provided with insulating coating film excellent in resistance to corrosion and solvent and formation of the insulating coating film |
JP2000282249A (en) * | 1999-03-29 | 2000-10-10 | Kawasaki Steel Corp | Insulated coating film of grain oriented silicon electric steel sheet and its formation |
JP2001240916A (en) * | 2000-02-29 | 2001-09-04 | Kawasaki Steel Corp | Electro-magnetic steel sheet having insulated film, annealable for strain-removal and having excellent blanking size stability |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016029205A (en) * | 2014-07-25 | 2016-03-03 | Jfeスチール株式会社 | Magnetic steel sheet having insulating cover sheet, and laminated electromagnetic steel sheet |
JP2016196701A (en) * | 2015-04-06 | 2016-11-24 | 小林 博 | Method for manufacturing iron core having interlayer of laminated electromagnetic steel sheet insulated by granular iron oxide (iii) particle |
CN104804690A (en) * | 2015-04-28 | 2015-07-29 | 广西德骏门窗幕墙有限公司 | Adhesive of aluminium curtain wall and preparation method of adhesive |
KR101728027B1 (en) * | 2015-12-24 | 2017-04-18 | 주식회사 포스코 | Adhesive coating composition for electrical steel, electrical steel with adhesive coating layer, electrical steel product, and method for manufacturing the product |
WO2017111471A1 (en) * | 2015-12-24 | 2017-06-29 | 주식회사 포스코 | Electrical steel sheet adhesive coating composition, electrical steel sheet having adhesive coating layer formed thereon, electrical steel sheet product, and manufacturing method therefor |
KR101817967B1 (en) * | 2016-11-07 | 2018-01-12 | 한국생산기술연구원 | Water glass-based organic-inorganic hybrid adhesives and manufacturing method thereof |
JP7069174B2 (en) | 2016-12-23 | 2022-05-17 | ポスコ | Manufacturing method of non-oriented electrical steel sheet adhesive coating composition and non-oriented electrical steel sheet product |
JP2020503452A (en) * | 2016-12-23 | 2020-01-30 | ポスコPosco | Non-oriented electrical steel sheet adhesive coating composition and method for producing non-oriented electrical steel sheet product |
JP2021036591A (en) * | 2016-12-23 | 2021-03-04 | ポスコPosco | Electrical steel sheet product |
US11505723B2 (en) | 2016-12-23 | 2022-11-22 | Posco | Adhesive coating composition for non-oriented electrical steel sheet, and method for manufacturing non-oriented electrical steel sheet |
JP7324183B2 (en) | 2016-12-23 | 2023-08-09 | ポスコ カンパニー リミテッド | Magnetic steel sheet products |
US11807922B2 (en) | 2016-12-23 | 2023-11-07 | Posco Co., Ltd | Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor |
KR102091123B1 (en) * | 2017-12-26 | 2020-03-19 | 주식회사 포스코 | Electrical steel sheet product, and method for manufacturing the electrical steel sheet product |
KR20190078168A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Electrical steel sheet product, and method for manufacturing the electrical steel sheet product |
KR20210005896A (en) * | 2018-04-20 | 2021-01-15 | 뵈스트알파인 스탈 게엠베하 | Coated sheet metal band and manufacturing method |
KR102566470B1 (en) * | 2018-04-20 | 2023-08-10 | 뵈스트알파인 스탈 게엠베하 | Coated Sheet Metal Bands and Manufacturing Methods |
US10832841B2 (en) | 2018-04-27 | 2020-11-10 | Toyota Jidosha Kabushiki Kaisha | Electromagnetic steel sheet |
Also Published As
Publication number | Publication date |
---|---|
TW200618000A (en) | 2006-06-01 |
CN101040022A (en) | 2007-09-19 |
KR100886236B1 (en) | 2009-03-02 |
WO2006043612A1 (en) | 2006-04-27 |
JP5494602B2 (en) | 2014-05-21 |
JP4860480B2 (en) | 2012-01-25 |
KR20070042198A (en) | 2007-04-20 |
KR100921015B1 (en) | 2009-10-09 |
MY142207A (en) | 2010-10-29 |
KR20080104061A (en) | 2008-11-28 |
TWI328235B (en) | 2010-08-01 |
CN101040022B (en) | 2012-12-12 |
JPWO2006043612A1 (en) | 2008-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5494602B2 (en) | Heat-resistant adhesive insulation coating | |
CN108473819B (en) | Adhesive coating composition for electrical steel sheet, electrical steel sheet having adhesive coating formed thereon, electrical steel sheet product, and method for manufacturing the same | |
EP3858601A1 (en) | Method for manufacturing electrical steel sheet product | |
US12018181B2 (en) | Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate and method for manufacturing electrical steel sheet product | |
KR102365884B1 (en) | Method of manufacturing electrical steel sheet with adhesive insulating coating and method of manufacturing stacked electrical steel sheet | |
JP2005503467A5 (en) | ||
JP2008270539A (en) | Dust core, manufacturing method thereof, motor, and reactor | |
JP6368733B2 (en) | Heat-resistant adhesive insulating coating composition and electrical steel sheet with insulating coating | |
JP4571838B2 (en) | Electrical steel sheet with heat-resistant adhesive insulating film and method for producing the same | |
JP4885164B2 (en) | Magnetic steel sheet with heat-resistant adhesive insulation coating for laminated thermocompression bonding | |
JP7510506B2 (en) | Adhesive coating composition for electrical steel sheets, electrical steel sheet laminate and method for producing same | |
JP2000173815A (en) | Bonded steel sheet for stacked core | |
KR102382698B1 (en) | Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing the electrical steel sheet product | |
JP5750275B2 (en) | Insulated steel sheet and laminated iron core | |
KR102091123B1 (en) | Electrical steel sheet product, and method for manufacturing the electrical steel sheet product | |
JP2613726B2 (en) | Manufacturing method of surface coated electrical steel sheet for bonding | |
JP2613725B2 (en) | Manufacturing method of surface coated electrical steel sheet for bonding | |
JP2004346348A (en) | Insulating film excellent in tension-imparting property, grain-oriented magnetic steel sheet with low iron loss and its production method | |
JP2024506447A (en) | Electromagnetic steel sheet laminate and its manufacturing method | |
JP2928034B2 (en) | Manufacturing method of laminated core | |
JP2012188480A (en) | Composition and composite of polyphenylene sulfide resin, and method for producing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140217 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5494602 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |