JP2016196701A - Method for manufacturing iron core having interlayer of laminated electromagnetic steel sheet insulated by granular iron oxide (iii) particle - Google Patents

Method for manufacturing iron core having interlayer of laminated electromagnetic steel sheet insulated by granular iron oxide (iii) particle Download PDF

Info

Publication number
JP2016196701A
JP2016196701A JP2015087942A JP2015087942A JP2016196701A JP 2016196701 A JP2016196701 A JP 2016196701A JP 2015087942 A JP2015087942 A JP 2015087942A JP 2015087942 A JP2015087942 A JP 2015087942A JP 2016196701 A JP2016196701 A JP 2016196701A
Authority
JP
Japan
Prior art keywords
iron
iron core
insulating layer
collection
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015087942A
Other languages
Japanese (ja)
Other versions
JP6546438B2 (en
JP2016196701A5 (en
Inventor
小林 博
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015087942A priority Critical patent/JP6546438B2/en
Publication of JP2016196701A publication Critical patent/JP2016196701A/en
Publication of JP2016196701A5 publication Critical patent/JP2016196701A5/ja
Application granted granted Critical
Publication of JP6546438B2 publication Critical patent/JP6546438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an iron core, first without generating a problem on the processing of the iron core, second, having many properties required for an insulation layer, third, capable of continuously manufacturing a large number of iron cores at low cost using an inexpensive raw material.SOLUTION: The method for manufacturing an iron core comprises: applying a mixed solution of an alcohol dispersion of iron naphthenate with one of organic compounds consisting of carboxylate esters, glycols or glycol ethers on an electromagnetic steel sheet; laminating the electromagnetic steel sheet; punching the laminated sheet in the shape of the iron core by the application of a compressive load to form the iron core; manufacturing the iron core having an insulation layer consisting of an aggregate of granular fine maghemite particles and formed in an interlayer after applying a compressive load to the iron core to perform heat treatment and thermally decompose the iron naphthenate; and manufacturing the iron core having an insulation layer consisting of an aggregate of granular fine hematite particles after applying a compressive load to stress relief anneal the iron core. An inexpensive iron core can be manufactured since these iron cores does not have a problem of a conventional iron core.SELECTED DRAWING: Figure 1

Description

本発明は、電動機、変圧器などの電気機器に使用される鉄心の製造に関わり、積層した電磁鋼板の層間が、酸化鉄(III)の粒状微粒子の集まりで絶縁された鉄心を製造する。  The present invention relates to the manufacture of iron cores used in electric devices such as electric motors and transformers, and manufactures iron cores in which the layers of laminated electromagnetic steel sheets are insulated by a collection of granular particulates of iron (III) oxide.

電動機や変圧器などの電気機器に使用する鉄心は、渦電流を減少させるために絶縁被膜を電磁鋼板に施し、この後、鉄心の形状に打ち抜くまたはせん断し、さらに、加工した電磁鋼板を積層し、溶接、カシメまたは接着剤により固着して鉄心を製造する。こうして製造した鉄心の鉄損が無視できる大きさであれば、鉄心を電気機器に組み込んで使用する。
いっぽう、積層した電磁鋼板の端面を溶接で固着する場合は、鉄心のエッジ部が短絡して絶縁性が低下し、また、熱歪みの発生で電磁鋼板の鉄損が増える。また、カシメにより積層した電磁鋼板を固着する場合は、加工歪みの発生で電磁鋼板の鉄損が増え、また、電磁鋼板の厚みが薄い場合は、十分なカシメ強度が得られない。さらに、接着剤により加工した電磁鋼板を固着する場合は、加工した電磁鋼板に接着剤を塗布し、この電磁鋼板を一枚一枚積層する作業性が悪い、あるいは、十分な接着力が得られない。このように、鉄心を加工する途上で様々な問題が発生する。こうした問題は加工方法を変えない限り、つまり、新たな製造方法で鉄心を製造しない限り、根本的に問題を解決することは困難である。
Iron cores used in electrical equipment such as electric motors and transformers are coated with an insulating coating to reduce eddy currents, and then punched or sheared into the shape of the iron core. The iron core is manufactured by fixing by welding, caulking or adhesive. If the iron loss of the iron core manufactured in this way is negligible, the iron core is incorporated into an electric device for use.
On the other hand, when the end surfaces of the laminated electrical steel sheets are fixed by welding, the edge portion of the iron core is short-circuited to reduce insulation, and the iron loss of the electrical steel sheets increases due to the occurrence of thermal strain. Moreover, when the electromagnetic steel plates laminated by caulking are fixed, the iron loss of the electromagnetic steel plates increases due to the occurrence of processing distortion, and when the electromagnetic steel plates are thin, sufficient caulking strength cannot be obtained. Furthermore, when fixing a magnetic steel sheet processed with an adhesive, the workability of applying the adhesive to the processed magnetic steel sheet and laminating the magnetic steel sheets one by one is poor, or sufficient adhesive strength is obtained. Absent. As described above, various problems occur in the course of processing the iron core. It is difficult to fundamentally solve these problems unless the processing method is changed, that is, unless the iron core is manufactured by a new manufacturing method.

さらに、電磁鋼板を打ち抜きやせん断で加工する際に加工歪が発生し、溶接する際には熱歪が発生し、かしめる際にはカシメ部に塑性変形歪が発生する。このような様々な歪によって電磁鋼板の鉄損が増えるため、鉄損を減らす歪取焼鈍を行なってから鉄心を電気機器に組み込む場合がある。いっぽう歪取焼鈍は、750℃〜820℃の温度で、鉄が酸化されない雰囲気で行うため、層間の絶縁被膜は耐熱性が高いクロム化合物が用いられてきた。しかし、欧州向けの電気製品のRoHs指令(有害物質制限指令)や、国内のグリーン購入法(国による環境物品等の調達の推進に関する法律)により、環境負荷物質である重金属の使用が制限され、クロム化合物を含まない絶縁被膜が必要とされている。  Further, processing strain is generated when the electromagnetic steel sheet is processed by punching or shearing, thermal strain is generated when welding, and plastic deformation strain is generated at the crimped portion when caulking. Since the iron loss of the electrical steel sheet increases due to such various strains, the iron core may be incorporated into an electric device after performing strain relief annealing to reduce the iron loss. On the other hand, since the strain relief annealing is performed at a temperature of 750 ° C. to 820 ° C. in an atmosphere in which iron is not oxidized, a chromium compound having high heat resistance has been used for the insulating film between layers. However, the use of heavy metals, which are environmentally hazardous substances, is restricted by the RoHS Directive (Hazardous Substances Restriction Directive) for electrical products for Europe and the domestic Green Purchasing Law (Act on the Promotion of Procurement of Environmental Goods by the State) There is a need for an insulating coating that does not contain chromium compounds.

いっぽう絶縁層は、絶縁抵抗のみならず、鉄心を製造する上で、また、鉄心を組み込んだ電気機器を長期に使用する上で、以下に説明する様々な性質が絶縁層に要求される。
第一に連続打ち抜き性がある。つまり、絶縁被膜が形成された電磁鋼板を、プレス機で連続して打ち抜く際に、カッターの刃の摩耗が進む。このため、カッターの刃を攻撃しない絶縁層が望ましい。第二に溶接性がある。つまり、鉄心の端面を溶接する際に、溶接がしやすく、さらに、溶接の際に絶縁層から気化した物質が、あるいは、飛散した物質が、絶縁層を攻撃し、ピンホールを形成しないことが必要になる。第三に電磁鋼板を加工する際や積層する際に、絶縁層が剥離しない密着強度が必要になる。第四に歪取焼鈍に耐える耐熱性が必要になる。第五に、歪取焼鈍の際に、絶縁層の熱膨張率と電磁鋼板の熱膨張率との差に応じた熱歪が電磁鋼板に発生しないことが必要になる。第六に、歪取焼鈍の際に、スティッキングと呼ばれる電磁鋼板同士の焼き付きを起こさせないことが必要になる。第七に急激な温度変化でも、絶縁層が剥離しない耐熱衝撃性が必要になる。第八に水蒸気や塩水などに耐える耐食性が必要になる。第九に高温の絶縁油に長時間浸漬しても、密着強度と絶縁抵抗とが変わらないことが必要になる。いっぽう、絶縁層と電磁鋼板との密着強度が高いと、第三と第九の性質を満たすが、これに反して、第五の電磁鋼板に熱歪を発生させ、第七の耐熱衝撃性が弱くなる。
以上に説明した絶縁層に要求される性質は、性質ごとに絶縁層に求められる機能が異なるため、全ての性質を満たす絶縁層を実現することは困難を伴う。また、従来の材料からなる絶縁層では、要求される性質が両立できない場合がある。従って、従来とは全く異なる材料で絶縁層を形成しない限り、要求される全ての性質が実現できない。
On the other hand, the insulating layer is required to have various properties described below for manufacturing not only the insulation resistance but also the iron core and for using the electric device incorporating the iron core for a long period of time.
First, there is continuous punchability. That is, when the electromagnetic steel sheet on which the insulating coating is formed is continuously punched out with a press machine, the wear of the cutter blade advances. For this reason, an insulating layer that does not attack the cutter blade is desirable. Second, there is weldability. In other words, when welding the end face of the iron core, it is easy to weld, and further, the material vaporized from the insulating layer during the welding or the scattered material does not attack the insulating layer and form a pinhole. I need it. Third, when processing or laminating electromagnetic steel sheets, adhesion strength is required to prevent the insulating layer from peeling off. Fourth, heat resistance that can withstand strain relief annealing is required. Fifth, it is necessary that the thermal distortion corresponding to the difference between the thermal expansion coefficient of the insulating layer and the thermal expansion coefficient of the electrical steel sheet does not occur in the electrical steel sheet during the strain relief annealing. Sixth, it is necessary not to cause seizure of magnetic steel sheets called sticking during the strain relief annealing. Seventh, it is necessary to have thermal shock resistance so that the insulating layer does not peel off even with a sudden temperature change. Eighth, corrosion resistance that can withstand water vapor and salt water is required. Ninth, it is necessary that the adhesion strength and the insulation resistance do not change even when immersed in high-temperature insulating oil for a long time. On the other hand, if the adhesion strength between the insulating layer and the electrical steel sheet is high, the third and ninth properties are satisfied. On the other hand, thermal stress is generated in the fifth electrical steel sheet and the seventh thermal shock resistance is achieved. become weak.
Since the properties required for the insulating layer described above have different functions required for the insulating layer for each property, it is difficult to realize an insulating layer that satisfies all the properties. In addition, in the insulating layer made of a conventional material, required properties may not be compatible. Therefore, all required properties cannot be realized unless the insulating layer is formed of a material completely different from the conventional one.

このような鉄心の製造に関わる様々な問題や課題を解決する様々な提案がなされている。
例えば、特許文献1には、シラン化合物とシランカップリング剤とシリカ粒子とを含む表面処理剤を用い、スキューネスRskを1以下にした表面に前記表面処理剤で絶縁被膜を形成することで、絶縁性と耐テンションパッド性と打ち抜き性とに優れたクロムフリーの絶縁膜が形成される技術が提案されている。ここで、スキューネスRskとは、表面粗さの山部と谷部との平均線を中心にしたときの山部と谷部との対称性を表し、Rskが正であれば、平均線の下側に表面粗さ曲線が偏っていることを意味するので、表面粗さにおける山部より谷部の体積のほうが大きい。また、耐テンションパッド性とは、フェルト状のテンションパッドで絶縁被膜付き電磁鋼板表面をこする際の絶縁被膜の剥がれにくさを表す。
しかし、本絶縁被膜の熱膨張率は、電磁鋼板の熱膨張率より1桁近く小さい。このため、急激な温度変化で絶縁層が電磁鋼板から剥離し、剥離した絶被膜は耐食性と耐油性を持たない。また、歪取焼鈍の際に電磁鋼板に熱歪が発生し、歪取焼鈍の効果が得られない。
Various proposals have been made to solve various problems and problems related to the manufacture of such iron cores.
For example, in Patent Document 1, a surface treatment agent containing a silane compound, a silane coupling agent, and silica particles is used, and an insulating film is formed on the surface having a skewness Rsk of 1 or less by using the surface treatment agent. A technique has been proposed in which a chromium-free insulating film having excellent properties, tension pad resistance and punchability is formed. Here, the skewness Rsk represents the symmetry between the peak and the valley when the average line between the peak and the valley of the surface roughness is the center, and if Rsk is positive, Since it means that the surface roughness curve is biased to the side, the volume of the valley portion is larger than the peak portion in the surface roughness. Further, the tension pad resistance refers to the difficulty of peeling off the insulating coating when the felt-like tension pad rubs the surface of the electrical steel sheet with the insulating coating.
However, the thermal expansion coefficient of the insulating coating is almost an order of magnitude smaller than that of the electrical steel sheet. For this reason, the insulating layer peels from the magnetic steel sheet due to a rapid temperature change, and the peeled coating does not have corrosion resistance and oil resistance. Further, thermal distortion occurs in the electromagnetic steel sheet during the strain relief annealing, and the effect of the strain relief annealing cannot be obtained.

また、特許文献2には、強酸性でエッチング性の強い硝酸と金属硝酸塩と、金属リン酸塩とキレート剤とを用いて、リン酸化合物からなる絶縁層を形成し、製造直後の白化、保管時の白化、およびブルーイング処理後の密着性劣化が抑制されたクロムフリーの絶縁被膜が形成される技術が提案されている。ここで、白化とは、電磁鋼板を酸性のエッチング液でエッチングする際に、電磁鋼板の鉄が溶出し、絶縁被膜を形成する処理液中のリン酸塩と反応してリン酸鉄を形成する、あるいは、電磁鋼板を高温多湿の環境に長期間保管する際に、結露によって電磁鋼板の表面に水酸化物が形成され、これらによって電磁鋼板が変色することを意味する。また、切断又は打ち抜きされた電磁鋼板からモータやトランスに加工する際、端面短絡の抑制ならびに切断や打抜き端面の防錆性向上のため、表面が干渉色を呈する程度にまで鋼板を酸化処理(これをブルーイング処理ともいう)させる。このようなブルーイング処理を行うと、絶縁被膜の密着性が劣化する。
しかし、絶縁被膜が形成される電磁鋼板に要求される性質は、白化防止と絶縁膜の密着性に限らない。例えば、打ち抜き性がある。本技術だけでは十分な打ち抜き性が得られないため、水性の合成樹脂を添加する記載がある。しかし、水性の合成樹脂は歪取焼鈍における耐熱性を持たない。このため、打ち抜き性と歪取焼鈍の実施が両立できない。また、絶縁被膜の絶縁性がある。本技術だけでは十分な絶縁抵抗が得られないため、コロイダルシリカを添加する記載がある。しかし、コロイダルシリカの熱膨張率は電磁鋼板の熱膨張率より1桁近く小さいため、急激な温度変化で絶縁被膜が剥離する、また、歪取焼鈍の際に電磁鋼板に熱歪が発生し、歪取焼鈍の効果が得られない、という新たな問題を引き起こす。さらに、強酸性のエッチング液を用いるため、絶縁被膜の形成後に十分な洗浄が必要になり、また、環境面から廃液処理に多くの費用が掛かる。従って、製作費用が増大する。
Patent Document 2 discloses that an insulating layer made of a phosphoric acid compound is formed using nitric acid and metal nitrate that are strongly acidic and highly etchable, and metal phosphate and a chelating agent. There has been proposed a technique for forming a chromium-free insulating film in which the whitening at the time and the deterioration of the adhesion after the blueing treatment are suppressed. Here, whitening means that when an electromagnetic steel sheet is etched with an acidic etching solution, iron of the electromagnetic steel sheet is eluted and reacts with a phosphate in a treatment solution for forming an insulating film to form iron phosphate. Or, when the electromagnetic steel sheet is stored in a high temperature and humidity environment for a long time, it means that hydroxide is formed on the surface of the electromagnetic steel sheet due to condensation, and the electromagnetic steel sheet is discolored by these. In addition, when processing a cut or punched electromagnetic steel sheet into a motor or transformer, the steel sheet is oxidized to the extent that the surface exhibits an interference color in order to suppress end face short circuit and improve rust prevention of the cut or punched end face (this (Also referred to as blueing treatment). When such a bluing process is performed, the adhesiveness of the insulating coating is deteriorated.
However, the properties required for the electrical steel sheet on which the insulating coating is formed are not limited to whitening prevention and the adhesion of the insulating film. For example, it has punchability. There is a description that an aqueous synthetic resin is added because sufficient punchability cannot be obtained only by this technology. However, the water-based synthetic resin does not have heat resistance in strain relief annealing. For this reason, it is impossible to achieve both punchability and strain relief annealing. Further, the insulating film has insulating properties. There is a description that colloidal silica is added because sufficient insulation resistance cannot be obtained by this technology alone. However, since the thermal expansion coefficient of colloidal silica is almost an order of magnitude smaller than that of the electrical steel sheet, the insulating coating peels off due to a rapid temperature change, and thermal distortion occurs in the electrical steel sheet during stress relief annealing. This causes a new problem that the effect of strain relief annealing cannot be obtained. Furthermore, since a strongly acidic etching solution is used, sufficient cleaning is required after the formation of the insulating coating, and a lot of cost is required for waste solution treatment from an environmental point of view. Therefore, the manufacturing cost increases.

特開2015−10242号公報Japanese Patent Laying-Open No. 2015-10242 特開2013−249486号公報JP 2013-249486 A

2段落で説明したように、従来の鉄心の製造では加工方法によって様々な問題が起こり、こうした問題は加工方法を変えない限り、つまり、新たな加工方法で鉄心を製造しない限り、根本的に解決することは難しい。さらに、4段落で説明したように、絶縁層に要求される様々な性質は、性質ごとに絶縁層に求められる機能が異なり、全ての性質を満した絶縁層を実現することは難しい。このため、従来とは異なる加工方法で鉄心を製造するとともに、従来とは異なる材料で絶縁層を形成しない限り、全ての性質を満たした絶縁層は実現できない。さらに、鉄心は電動機や変圧器などの汎用電気機器に使用されるため、安価な原料を用い、安価な費用で多数個の鉄心が連続して製造できることが必要になる。
本発明が解決しようとする課題は、2段落で説明した鉄心の加工上の問題が発生せず、4段落で説明した要求される性質を兼備する絶縁層が実現でき、さらに、安価な原料を用いて、安価な費用で鉄心が製造できる鉄心の製造技術を実現することにある。
As explained in the second paragraph, various problems occur in the manufacturing of conventional iron cores depending on the processing method, and these problems can be solved fundamentally unless the processing method is changed, that is, unless the core is manufactured with a new processing method. Difficult to do. Furthermore, as described in the fourth paragraph, the various properties required for the insulating layer have different functions required for the insulating layer for each property, and it is difficult to realize an insulating layer satisfying all the properties. For this reason, unless an iron core is manufactured by a processing method different from the conventional one and an insulating layer is formed of a material different from the conventional one, an insulating layer satisfying all properties cannot be realized. Furthermore, since iron cores are used in general-purpose electrical equipment such as electric motors and transformers, it is necessary to be able to manufacture a large number of iron cores continuously at low cost using inexpensive raw materials.
The problem to be solved by the present invention is that the problem of processing of the iron core described in the second paragraph does not occur, an insulating layer having the required properties described in the fourth paragraph can be realized, and an inexpensive raw material is used. The purpose is to realize a manufacturing technique of an iron core that can be manufactured at an inexpensive cost.

本発明における鉄心の製造に関わる第一特徴手段は、電磁鋼板への被膜の形成に関わり、該電磁鋼板への被膜の形成は、熱分解で絶縁性の金属酸化物を析出する金属化合物をアルコールに分散してアルコール分散液を作成し、前記アルコールに溶解ないしは混和する第一の性質と、前記アルコールより粘度が高い第二の性質と、沸点が前記金属化合物の熱分解温度より低い第三の性質とからなる、これら3つの性質を兼備する有機化合物を、前記アルコール分散液に混合して混合液を作成し、該混合液を電磁鋼板に塗布する、これによって、前記電磁鋼板に前記混合液からなる被膜が形成される点にある。  The first characteristic means related to the production of the iron core in the present invention relates to the formation of a coating on the electromagnetic steel sheet, and the formation of the coating on the electromagnetic steel sheet is performed by alcoholizing a metal compound that precipitates an insulating metal oxide by pyrolysis. A first property of dissolving or mixing in the alcohol, a second property having a higher viscosity than the alcohol, and a third property having a boiling point lower than the thermal decomposition temperature of the metal compound. The organic compound having these three properties is mixed with the alcohol dispersion to prepare a mixed solution, and the mixed solution is applied to the electrical steel sheet, whereby the mixed liquid is applied to the electrical steel sheet. The film which consists of is in the point formed.

つまり、本特徴手段に依れば、金属化合物のアルコール分散液と有機化合物との混合液からなる被膜が、電磁鋼板に連続して形成される。いっぽう、被膜の原料は、熱分解で絶縁性の金属酸化物を析出する金属化合物と、アルコールと有機化合物とからなり、いずれも汎用的な工業薬品である。また、被膜の形成は電磁鋼板に混合液を塗布するだけの処理である。さらに、被膜を形成する電磁鋼板の大きさの制約はない。このため、安価な原料を用いて安価な費用で、電磁鋼板に連続して被膜が形成できる。
すなわち、アルコールに溶解ないしは混和し、アルコールより粘度が高い有機化合物は、金属化合物のアルコール分散液と任意の割合で混ざり合う。従って、有機化合物の混合割合に応じて混合液の粘度が増大し、混合液の粘度に応じた被膜の厚みが電磁鋼板に形成される。従って、電磁鋼板の厚みに応じて、被膜の厚みが自在に変えられる。
さらに、金属化合物と有機化合物とは、分子状態で均一に混ざり合う。つまり、金属化合物をアルコールに分散すると、金属化合物はアルコール中に分子状態で均一に分散する。さらに、アルコールに溶解ないしは混和する有機化合物を、アルコール分散液に混合すると、金属化合物と有機化合物とが分子状態で均一に混ざり合う。この結果、従来の被膜とは全く異なる、金属化合物が均一に分散された被膜が、電磁鋼板の表面に形成される。
以上に説明したように、本特徴手段に依れば、安価な原料を用いて安価な費用で、金属化合物が分子状態で均一に分散された被膜が、電磁鋼板の表面に連続して形成できる。
なお、電磁鋼板への被膜の形成は、ロールコート法、バーコート法、浸漬法、スプレー塗布法などが挙げられ、電磁鋼板の形状と大きさにとによって適宜最適な方法が選択される。また、前記の混合液からなる被膜は粘着力を持たないため、被膜が形成された電磁鋼板をコイル状に巻いても、被膜を介して電磁鋼板が接着するブロッキングが発生しない。また、コイル状に巻いた電磁鋼板を再度平板状に戻しても、被膜が電磁鋼板から剥がれない。従って、被膜が形成された電磁鋼板をコイル状に巻いて保管することができる。
That is, according to this feature means, a coating film composed of a mixed liquid of an alcohol dispersion of a metal compound and an organic compound is continuously formed on the electrical steel sheet. On the other hand, the raw material of the coating consists of a metal compound that precipitates an insulating metal oxide by thermal decomposition, an alcohol, and an organic compound, both of which are general-purpose industrial chemicals. Further, the formation of the coating is a process of simply applying the mixed solution to the electromagnetic steel sheet. Furthermore, there is no restriction | limiting of the magnitude | size of the electromagnetic steel plate which forms a film. For this reason, a film can be continuously formed on the magnetic steel sheet at a low cost using an inexpensive raw material.
That is, an organic compound that is dissolved or mixed in an alcohol and has a higher viscosity than the alcohol is mixed with the alcohol dispersion of the metal compound at an arbitrary ratio. Therefore, the viscosity of the liquid mixture increases according to the mixing ratio of the organic compound, and the thickness of the coating film according to the viscosity of the liquid mixture is formed on the electrical steel sheet. Therefore, the thickness of the coating can be freely changed according to the thickness of the electromagnetic steel sheet.
Furthermore, the metal compound and the organic compound are uniformly mixed in a molecular state. That is, when a metal compound is dispersed in alcohol, the metal compound is uniformly dispersed in the alcohol in a molecular state. Furthermore, when an organic compound that is dissolved or mixed in alcohol is mixed with an alcohol dispersion, the metal compound and the organic compound are uniformly mixed in a molecular state. As a result, a coating film in which the metal compound is uniformly dispersed, which is completely different from the conventional coating film, is formed on the surface of the electrical steel sheet.
As described above, according to this feature means, a coating in which the metal compound is uniformly dispersed in a molecular state can be continuously formed on the surface of the electrical steel sheet at a low cost using an inexpensive raw material. .
In addition, the formation of the coating on the electromagnetic steel sheet includes a roll coating method, a bar coating method, a dipping method, a spray coating method, and the like, and an optimum method is appropriately selected depending on the shape and size of the electromagnetic steel sheet. Moreover, since the coating film made of the mixed solution has no adhesive force, even when the electromagnetic steel sheet with the coating film is wound in a coil shape, blocking where the electromagnetic steel sheet adheres through the coating film does not occur. Moreover, even if the magnetic steel sheet wound in the coil shape is returned to the flat plate shape again, the coating is not peeled off from the magnetic steel sheet. Therefore, the magnetic steel sheet on which the film is formed can be wound in a coil shape and stored.

本発明における鉄心の製造に関わる第二特徴手段は、積層した電磁鋼板の層間に被膜が形成された鉄心の製作に関わり、該鉄心の製作は、前記した第一特徴手段における被膜が形成された電磁鋼板を積層し、該積層した電磁鋼板に圧縮荷重を加えて鉄心の形状に打ち抜くまたはせん断する、これによって、積層した電磁鋼板の層間に前記被膜が形成された鉄心が製作される点にある。  The second characteristic means related to the production of the iron core in the present invention relates to the production of the iron core in which a film is formed between the layers of the laminated electromagnetic steel sheets, and the production of the iron core has the film in the first characteristic means described above. Laminating electromagnetic steel sheets, applying a compressive load to the laminated electromagnetic steel sheets and punching or shearing into the shape of the iron core, thereby producing an iron core in which the coating film is formed between the layers of the laminated electromagnetic steel sheets .

つまり、本特徴手段に依れば、積層した電磁鋼板の層間に被膜が形成された鉄心が連続して製造できる。また、被膜が成された電磁鋼板を、鉄心の形状に打ち抜くまたはせん断し、この後、加工した電磁鋼板を積層して鉄心を製作する従来の分断された工程からなる製作方法より、本特徴手段は、被膜の形成から鉄心の製作までが連続する工程からなるため、鉄心の製作費用が安価になる。さらに、従来の鉄心の製作方法では、電磁鋼板を切断する際と加工した電磁鋼板を積層する際とにおいて、被膜に損傷をもたらす恐れがあるが、本特徴手段では被膜の損傷は起こらない。このため、本特徴手段に依れば、積層した電磁鋼板の層間に欠陥がない絶縁層が確実に形成される。
さらに、本特徴手段に依れば、電磁鋼板に形成される被膜は液体であり、プレス機のカッターの刃を攻撃しない。このため、被膜が形成された電磁鋼板を連続して打ち抜くあるいはせん断してもカッターの刃を傷めない。また、圧縮荷重を加えた状態で、積層した電磁鋼板を打ち抜くまたはせん断するため、被膜は飛散することがなく、確実に層間に同等な厚みの被膜が形成され、被膜の厚みは均一になる。この結果、全ての層間に、金属化合物が分子状態で均一に分散された被膜が、同等の厚みで均一な厚みとして形成される。
以上に説明したように、本特徴手段に依れば、積層した電磁鋼板からなる鉄心は、全ての層間に、金属化合物が分子状態で均一に分散された被膜が、同等の厚みで均一な厚みとして形成され、こうした鉄心が連続して安価に製作できる。
That is, according to this feature means, an iron core having a coating formed between layers of laminated electromagnetic steel sheets can be manufactured continuously. Further, the present characteristic means is more than the conventional divided method of manufacturing the iron core by punching or shearing the coated steel sheet into the shape of the iron core and then laminating the processed magnetic steel sheets to produce the iron core. Since it consists of a continuous process from the formation of the coating to the production of the iron core, the production cost of the iron core is reduced. Furthermore, in the conventional iron core manufacturing method, there is a risk of damage to the coating film when the electromagnetic steel sheet is cut and when the processed electromagnetic steel sheets are laminated, but this feature means does not damage the coating film. For this reason, according to this feature means, an insulating layer having no defect is reliably formed between the layers of the laminated electrical steel sheets.
Furthermore, according to this characteristic means, the coating film formed on the electromagnetic steel sheet is a liquid and does not attack the cutter blade of the press machine. For this reason, even if the electromagnetic steel sheet with the coating formed is continuously punched or sheared, the cutter blade is not damaged. Further, since the laminated electrical steel sheets are punched or sheared in a state where a compressive load is applied, the coating does not scatter, and a coating having an equivalent thickness is reliably formed between the layers, so that the coating has a uniform thickness. As a result, a film in which the metal compound is uniformly dispersed in a molecular state is formed with a uniform thickness and a uniform thickness between all the layers.
As described above, according to this feature means, the iron core made of laminated electromagnetic steel sheets has a uniform thickness with a uniform thickness in which a metal compound is uniformly dispersed in a molecular state between all layers. These cores can be manufactured continuously and inexpensively.

本発明における鉄心の製造に関わる第三特徴手段は、積層した電磁鋼板の層間に絶縁層を形成することに関わり、該絶縁層の形成は、前記した第二特徴手段における積層した電磁鋼板の層間に被膜が形成された鉄心を、圧縮荷重を加えて熱処理する、これによって、前記被膜を構成する金属化合物が熱分解して絶縁性の金属酸化物の微粒子が析出し、該金属酸化物の微粒子の集まりで絶縁層が形成される点にある。  The third characteristic means related to the production of the iron core in the present invention relates to forming an insulating layer between the layers of the laminated electromagnetic steel sheets, and the formation of the insulating layer is performed between the layers of the laminated electromagnetic steel sheets in the second characteristic means described above. The iron core on which the film is formed is heat-treated by applying a compressive load, whereby the metal compound constituting the film is thermally decomposed to deposit insulating metal oxide fine particles, and the metal oxide fine particles In this point, an insulating layer is formed by the gathering.

つまり、本特徴手段に依れば、鉄心に圧縮荷重を加えて熱処理するだけで、全ての層間に、同等の厚みで均一な厚みとして、金属酸化物の微粒子の集まりからなる絶縁層が形成される。また、絶縁層を介して電磁鋼板が熱圧着される。さらに、多数個の鉄心に圧縮荷重を加えて連続して熱処理すれば、層間が絶縁された多数個の鉄心が連続して製作でき、従来の鉄心の製造方法に比べて極めて安価な費用で連続して鉄心が製造できる。
すなわち、層間に圧縮荷重が加えられているため、アルコールと有機化合物とが気化すると層間の間隙が狭まり、層間に金属化合物の微細結晶が均一に残留する。さらに昇温すると、金属化合物が金属酸化物と有機物とに分解し、有機物が気化熱を奪って気化すると、層間の間隙がさらに狭まる。さらに昇温すると、有機物の気化が完了し、40nm〜60nmの大きさの金属酸化物の粒状微粒子の集まりが、均一の厚みで同等の厚みを形成して層間に析出して熱分解を終える。金属酸化物は安定した物質であるため、析出した粒状微粒子同士は接合しない。従って、層間に加えられた圧縮荷重を粒状微粒子が受け、層間の隙間を埋めるように粒状微粒子が移動して層間を埋め尽くす。また、微粒子の大きさが電磁鋼板の表面粗さより1桁以上小さいため、微粒子は電磁鋼板の表面の凹凸に入り込んで凹凸を埋め尽くす。この結果、微小な密閉空間である層間を、金属酸化物の粒状微粒子が埋め尽くす。従って、金属酸化物微粒子は層間から脱落しない。また、層間に空隙が形成されず、スティッキングは起こらない。さらに、層間は金属酸化物の粒状微粒子で高密度に充填され、金属酸化物の絶縁抵抗に近い絶縁性を持つ。いっぽう、鉄心の端面は外部に開放されているため、端面を溶接する際には、端面の微粒子は脱落し、溶接の障害にならない。また、脱落する微粒子は、極めて微細で重量を殆ど持たないため、絶縁被膜を攻撃しない。さらに、粒状微粒子は安定した金属酸化物であるため、耐熱性と耐食性と耐油性を有する。また、微粒子の集まりで埋め尽くされた層間には、表面張力で腐食性液体や絶縁油が侵入できない。さらに、微粒子同士が接合しないため、急激な温度変化に対し、微粒子が極々微量の膨張ないしは収縮するだけで、絶縁層としては耐熱衝撃性を持つ。また、鉄心を熱処理する際に、電磁鋼板は熱膨張するが、微粒子同士が接合していないため、絶縁層は電磁鋼板の熱膨張を拘束しない。このため、電磁鋼板に熱歪は発生しない。さらに、金属化合物が熱分解した後に、圧縮荷重を開放して鉄心を徐冷すれば、圧縮荷重に依る電磁鋼板の歪が解消され鉄損が低減する。従って、鉄損の大きさが問題にならなければ、歪取焼鈍を行うことなく、本特徴手段で製造した鉄心を電気機器に組み込んで使用できる。
以上に説明したように、本特徴手段に依れば、従来とは全く異なる製造方法で鉄心を製造するとともに、従来とは全く異なる金属酸化物の微粒子の集まりで絶縁層を形成するため、4段落で説明した要求される性質の中で、歪焼鈍の耐熱性を除く全ての性質を持つ。
さらに、本特徴手段に依れば、鉄心の製作から絶縁層の形成まで、鉄心に圧縮荷重を加えた状態で熱処理する。このため、積層した電磁鋼板は金属酸化物の微粒子を介して圧着される。従って、積層した電磁鋼板の端面を溶接により固着する、あるいは、カシメによって固着する必要はない。さらに、加工した電磁鋼板に接着剤を塗布し、さらに積層する面倒な工程はない。このように鉄心の製造に関わる加工方法が従来とは全く異なるため、2段落で説明した従来の鉄心の加工上の問題を起こさない。
In other words, according to this feature means, an insulating layer made up of a collection of metal oxide fine particles is formed between all the layers so as to have a uniform thickness and a uniform thickness simply by applying a compressive load to the iron core and heat-treating it. The In addition, the electromagnetic steel sheet is thermocompression bonded through the insulating layer. Furthermore, by applying a compressive load to a large number of iron cores and continuously heat-treating them, a large number of cores with insulating layers can be produced continuously, and at a very low cost compared to conventional iron core manufacturing methods. And an iron core can be manufactured.
That is, since a compressive load is applied between the layers, when the alcohol and the organic compound are vaporized, the gap between the layers is narrowed, and fine crystals of the metal compound remain uniformly between the layers. When the temperature is further increased, the metal compound is decomposed into a metal oxide and an organic substance, and when the organic substance is vaporized by taking heat of vaporization, the gap between the layers is further narrowed. When the temperature is further increased, the vaporization of the organic substance is completed, and a collection of metal oxide particulates having a size of 40 nm to 60 nm forms a uniform thickness with an equivalent thickness, and is deposited between the layers to complete the thermal decomposition. Since the metal oxide is a stable substance, the precipitated particulates are not joined together. Therefore, the granular fine particles receive a compressive load applied between the layers, and the granular fine particles move so as to fill the gaps between the layers, thereby filling the layers. In addition, since the size of the fine particles is one digit or more smaller than the surface roughness of the electrical steel sheet, the fine particles enter the unevenness on the surface of the electrical steel sheet and fill the unevenness. As a result, the particulate fine particles of the metal oxide fill up the interlayer which is a minute sealed space. Therefore, the metal oxide fine particles do not fall off from the interlayer. Further, no gap is formed between the layers, and sticking does not occur. Further, the interlayer is filled with granular fine particles of metal oxide at high density, and has an insulating property close to the insulation resistance of metal oxide. On the other hand, since the end face of the iron core is open to the outside, when welding the end face, the fine particles on the end face fall off and do not hinder the welding. Further, the fine particles that fall off are extremely fine and have almost no weight, so that they do not attack the insulating coating. Furthermore, since the particulate fine particles are stable metal oxides, they have heat resistance, corrosion resistance, and oil resistance. Further, a corrosive liquid or insulating oil cannot enter between layers filled with a collection of fine particles due to surface tension. Furthermore, since the fine particles do not join each other, the insulating layer has a thermal shock resistance only by a very small amount of expansion or contraction with respect to a rapid temperature change. Further, when the iron core is heat-treated, the electromagnetic steel sheet is thermally expanded, but since the fine particles are not joined, the insulating layer does not restrain the thermal expansion of the electromagnetic steel sheet. For this reason, thermal strain does not occur in the electromagnetic steel sheet. Furthermore, if the compression load is released and the iron core is gradually cooled after the metal compound is thermally decomposed, the distortion of the electrical steel sheet due to the compression load is eliminated and the iron loss is reduced. Therefore, if the size of the iron loss does not become a problem, the iron core manufactured by this feature means can be incorporated into an electric device and used without performing strain relief annealing.
As described above, according to this feature means, the iron core is manufactured by a manufacturing method completely different from the conventional one, and the insulating layer is formed by a collection of metal oxide fine particles completely different from the conventional one. Among the required properties described in the paragraph, it has all the properties except the heat resistance of strain annealing.
Furthermore, according to this feature means, heat treatment is performed with a compressive load applied to the iron core from the production of the iron core to the formation of the insulating layer. For this reason, the laminated electrical steel sheets are pressure-bonded via metal oxide fine particles. Therefore, it is not necessary to fix the end faces of the laminated electrical steel sheets by welding or by caulking. Furthermore, there is no troublesome process of applying an adhesive to the processed electrical steel sheet and further laminating it. As described above, since the processing method related to the manufacture of the iron core is completely different from the conventional one, the conventional iron core processing problems described in the second paragraph are not caused.

本発明における鉄心の製造に関わる第四特徴手段は、前記した第三特徴手段における金属酸化物の微粒子の集まりからなる絶縁層が、酸化鉄(II)の粒状微粒子の集まりからなる絶縁層が形成されること関わり、該絶縁層の形成は、前記した第三特徴手段における積層した電磁鋼板の層間に被膜が形成された鉄心について、前記被膜を、熱分解で酸化鉄(II)を析出する有機鉄化合物をアルコールに分散したアルコール分散液と、前記アルコールに溶解ないしは混和する第一の性質と、前記アルコールより粘度が高い第二の性質と、沸点が前記有機鉄化合物の熱分解温度より低い第三の性質とからなる、これら3つの性質を兼備する有機化合物との混合液から構成し、該混合液からなる被膜が前記積層した電磁鋼板の層間に形成された鉄心を、前記した第三特徴手段に準じて圧縮荷重を加えて熱処理する、これによって、前記有機鉄化合物が熱分解して前記酸化鉄(II)の粒状微粒子が析出し、該酸化鉄(II)の粒状微粒子の集まりが絶縁層を形成する点にある。  In the fourth feature means related to the manufacture of the iron core in the present invention, the insulating layer made up of a collection of metal oxide fine particles in the third feature means described above is formed, and the insulation layer made up of a collection of iron (II) particulate fine particles. In connection with the formation of the insulating layer, the organic core on which iron (II) oxide is deposited by pyrolysis is applied to the iron core in which the coating is formed between the layers of the laminated electrical steel sheets in the third characteristic means. An alcohol dispersion in which an iron compound is dispersed in an alcohol; a first property that dissolves or mixes in the alcohol; a second property that has a higher viscosity than the alcohol; and a boiling point that is lower than the thermal decomposition temperature of the organic iron compound. Iron composed of a mixed solution of organic compounds having these three properties and having the three properties, and a film made of the mixed solution formed between the laminated electrical steel sheets Is subjected to a heat treatment by applying a compressive load in accordance with the third characteristic means described above, whereby the organic iron compound is thermally decomposed to precipitate the fine particles of the iron (II) oxide, and the iron (II) oxide. The collection of the particulate fine particles forms an insulating layer.

つまり、本特徴手段に依れば、前記した第三特徴手段における被膜を構成する金属化合物として、熱分解で絶縁性の酸化鉄(II)FeOを析出する有機鉄化合物を用い、前記した第三特徴手段に準じて鉄心を製作すると、有機鉄化合物が熱分解して酸化鉄(II)FeOの粒状微粒子が析出し、酸化鉄(II)FeOの粒状微粒子の集まりで絶縁層が形成される。
すなわち、熱分解によって酸化鉄(II)FeOを析出する有機鉄化合物をアルコールに分散し、アルコールに溶解ないしは混和し、アルコールより粘度が高く、沸点が有機鉄化合物の熱分解温度より低い、これらの性質を兼備する有機化合物を、前記のアルコール分散液に混合して混合液を作成する。この混合液を電磁鋼板に塗布する。さらに、この電磁鋼板を積層し、圧縮荷重を加えて鉄心の形状に打ち抜くまたはせん断し、積層した電磁鋼板の層間に前記の混合液からなる被膜が形成された鉄心を作成する。この鉄心に圧縮荷重を加えて大気雰囲気で熱処理する。アルコールと有機化合物とが気化し、さらに、有機鉄化合物が酸化鉄(II)FeOと有機酸とに分解し、有機酸の気化が完了すると、40nm〜60nmの大きさからなる酸化鉄(II)FeOの粒状微粒子が析出して有機鉄化合物の熱分解が終える。
以上に説明したように、本特徴手段に依れば、積層した電磁鋼板の層間に、酸化鉄(II)FeOの粒状微粒子の集まりからなる絶縁層が形成される。
In other words, according to this feature means, an organic iron compound that precipitates insulating iron oxide (II) FeO by pyrolysis is used as the metal compound that constitutes the coating film in the third feature means, and the third feature described above. When the iron core is manufactured in accordance with the characteristic means, the organic iron compound is thermally decomposed to precipitate particulate particles of iron (II) FeO, and an insulating layer is formed by a collection of particulate particles of iron (II) FeO.
That is, an organic iron compound in which iron (II) FeO is precipitated by thermal decomposition is dispersed in alcohol, dissolved or mixed in alcohol, and has a higher viscosity than alcohol and a boiling point lower than the thermal decomposition temperature of the organic iron compound. An organic compound having properties is mixed with the alcohol dispersion to prepare a mixed solution. This mixed solution is applied to the electrical steel sheet. Furthermore, this electromagnetic steel sheet is laminated | stacked, a compressive load is applied, it punches or shears in the shape of an iron core, and the iron core in which the film which consists of the said liquid mixture was formed between the layers of the laminated | stacked electromagnetic steel sheet is created. A compression load is applied to the iron core and heat treatment is performed in an air atmosphere. When the alcohol and the organic compound are vaporized, and the organic iron compound is further decomposed into iron (II) oxide FeO and an organic acid, and the vaporization of the organic acid is completed, the iron (II) oxide having a size of 40 to 60 nm is completed. FeO granular fine particles are deposited and thermal decomposition of the organic iron compound is completed.
As described above, according to this feature means, an insulating layer made of a collection of granular fine particles of iron (II) FeO is formed between layers of laminated magnetic steel sheets.

本発明における鉄心の製造に関わる第五特徴手段は、前記した第四特徴手段における有機鉄化合物がナフテン酸鉄である点にある。  The fifth characteristic means relating to the production of the iron core in the present invention is that the organic iron compound in the fourth characteristic means is iron naphthenate.

つまり、本特徴手段におけるナフテン酸鉄は、大気雰囲気の340℃で熱分解を終え、酸化鉄(II)の粒状微粒子を析出する。このため、ナフテン酸鉄は、酸化鉄(II)FeOの粒状微粒子の原料になる。ナフテン酸は5員環をもつ飽和脂肪酸の混合物で、C2n−1COOHからなる一般式で示され、主成分は沸点が268℃で分子量が170のC17COOHからなる。
すなわち、ナフテン酸鉄は、ナフテン酸のカルボキシル基を構成する酸素イオンOが配位子になって、鉄イオンFe2+に近づいて配位結合する錯体である。つまり、最も大きいイオンである鉄イオンFe2+に酸素イオンOが近づいて配位結合するため、両者の距離は短くなる。これによって、鉄イオンFe2+に配位結合する酸素イオンOが、鉄イオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つナフテン酸鉄は、ナフテン酸の主成分の沸点を超えると、カルボキシル基を構成する酸素イオンOが鉄イオンFe2+の反対側で共有結合するイオンとの結合部が最初に分断され、鉄イオンFe2+と酸素イオンOとの化合物である酸化鉄(II)FeOとナフテン酸とに分解する。さらに昇温すると、ナフテン酸が気化熱を奪って気化し、ナフテン酸の気化が完了すると、酸化鉄(II)FeOの粒状微粒子が析出して熱分解を終える。
さらに、ナフテン酸鉄は、容易に合成できる安価な工業用薬品である。すなわち、汎用的な有機酸であるナフテン酸を、強アルカリと反応させるとナフテン酸アルカリ金属化合物が生成され、ナフテン酸アルカリ金属化合物を無機鉄化合物と反応させると、ナフテン酸鉄が合成される。従って、有機酸鉄化合物の中で最も安価である。また、原料となるナフテン酸は、有機酸の沸点の中で相対的に沸点が低いため、大気雰囲気で340℃程度の熱処理で酸化鉄(II)が析出する。このような性質を持つナフテン酸鉄は、塗料・印刷インキ用のドライヤー、ゴム・タイヤの接着剤、潤滑油の極圧剤、ポリエステルの硬化剤、助燃剤や重合触媒などに汎用的に使用されている。
以上に説明したように、本特徴手段に依れば、安価な工業用薬品であるナフテン酸鉄を用いて、酸化鉄(II)FeOの粒状微粒子の集まりからなる絶縁層が安価に形成できる。
That is, the iron naphthenate in this characteristic means finishes thermal decomposition at 340 ° C. in the air atmosphere and precipitates iron (II) oxide particulates. For this reason, iron naphthenate becomes a raw material of granular fine particles of iron oxide (II) FeO. Naphthenic acid is a mixture of saturated fatty acids having a 5-membered ring, represented by a general formula consisting of C n H 2n-1 COOH, and the main component consists of C 9 H 17 COOH having a boiling point of 268 ° C. and a molecular weight of 170.
That is, iron naphthenate is a complex in which the oxygen ion O constituting the carboxyl group of naphthenic acid becomes a ligand and coordinates with the iron ion Fe 2+ . That is, since the oxygen ion O approaches the iron ion Fe 2+ , which is the largest ion, and is coordinated, the distance between the two becomes short. As a result, the distance between the oxygen ion O coordinated to the iron ion Fe 2+ and the ion covalently bonded on the opposite side of the iron ion is the longest. When the iron naphthenate having such molecular structure features exceeds the boiling point of the main component of naphthenic acid, the oxygen ion O constituting the carboxyl group is bonded to the ion covalently bonded to the opposite side of the iron ion Fe 2+. Are first divided and decomposed into iron oxide (II) FeO, which is a compound of iron ions Fe 2+ and oxygen ions O , and naphthenic acid. When the temperature is further increased, naphthenic acid takes the heat of vaporization and vaporizes, and when vaporization of naphthenic acid is completed, granular particles of iron (II) FeO are precipitated and thermal decomposition is completed.
Furthermore, iron naphthenate is an inexpensive industrial chemical that can be easily synthesized. That is, when naphthenic acid, which is a general-purpose organic acid, is reacted with a strong alkali, an alkali metal naphthenate is produced, and when an alkali metal naphthenate is reacted with an inorganic iron compound, iron naphthenate is synthesized. Therefore, it is the cheapest among organic acid iron compounds. In addition, since naphthenic acid as a raw material has a relatively low boiling point among organic acids, iron (II) oxide is precipitated by heat treatment at about 340 ° C. in an air atmosphere. Iron naphthenate with these properties is widely used in paint / printing ink dryers, rubber / tire adhesives, lubricant extreme pressure agents, polyester curing agents, combustion aids and polymerization catalysts. ing.
As described above, according to this feature means, an insulating layer composed of a collection of iron (II) FeO granular fine particles can be formed at low cost using iron naphthenate, which is an inexpensive industrial chemical.

本発明における鉄心の製造に関わる第六特徴手段は、前記した第四特徴手段における有機化合物が、カルボン酸エステル類ないしはグリコール類ないしはグリコールエーテル類からなるいずれかの有機化合物である点にある。  The sixth characteristic means relating to the production of the iron core in the present invention is that the organic compound in the above-mentioned fourth characteristic means is any organic compound consisting of carboxylic acid esters, glycols or glycol ethers.

つまり、本特徴手段に依れば、カルボン酸エステル類、グリコール類ないしはグリコールエーテル類の中に、第一にアルコールに溶解ないしは混和し、第二にアルコールより粘度が高く、第三にナフテン酸鉄が熱分解する温度より沸点が低い、これら3つの性質を兼備する有機化合物がある。このような有機化合物はいずれも汎用的な工業用薬品である。
従って、ナフテン酸鉄のアルコール分散液に、本特徴手段におけるいずれかの有機化合物を混合すると、ナフテン酸鉄と有機化合物とが分子状態で均一に分散された混合液が作成できる。この混合液を電磁鋼板に塗布すると、電磁鋼板に被膜が形成される。
このため、本特徴手段における有機化合物は、ナフテン酸鉄と共に電磁鋼板に形成される被膜の原料になる。これによって、積層した電磁鋼板の層間に、酸化鉄(II)FeOの粒状微粒子の集まりからなる絶縁層が形成される。
That is, according to this feature means, in carboxylic acid esters, glycols or glycol ethers, firstly dissolved or mixed in alcohol, secondly higher in viscosity than alcohol, and thirdly iron naphthenate. There is an organic compound having these three properties, the boiling point of which is lower than the temperature at which pyrolysis occurs. Such organic compounds are all general industrial chemicals.
Therefore, when any one of the organic compounds in the feature means is mixed with the alcohol dispersion of iron naphthenate, a mixed solution in which the iron naphthenate and the organic compound are uniformly dispersed in a molecular state can be prepared. When this mixed solution is applied to the electrical steel sheet, a film is formed on the electrical steel sheet.
For this reason, the organic compound in this characteristic means becomes a raw material of the film formed on the magnetic steel sheet together with iron naphthenate. As a result, an insulating layer made of a collection of iron (II) FeO granular fine particles is formed between the layers of the laminated electrical steel sheets.

本発明における鉄心の製造に関わる第七特徴手段は、マグヘマイトの粒状微粒子の集まりで絶縁層を形成すること関わり、該絶縁層の形成は、前記した第四特徴手段の絶縁層の形成に準じて、酸化鉄(II)の粒状微粒子の集まりで絶縁層を形成し、さらに、圧縮荷重を加えて鉄心を昇温する、これによって、前記酸化鉄(II)が酸化鉄(III)に酸化され、前記絶縁層がマグヘマイトの粒状微粒子の集まりで形成される点にある。  The seventh characteristic means relating to the manufacture of the iron core in the present invention is related to forming an insulating layer with a collection of granular fine particles of maghemite, and the formation of the insulating layer is in accordance with the formation of the insulating layer of the fourth characteristic means described above. , Forming an insulating layer with a collection of granular particulates of iron (II), and further heating the iron core by applying a compressive load, whereby the iron (II) oxide is oxidized to iron (III), The insulating layer is formed of a collection of granular fine particles of maghemite.

つまり、本特徴手段に依れば、前記した第四特徴手段に準じて、340℃の熱処理で酸化鉄(II)の粒状微粒子の集まりで絶縁層を形成し、さらに、圧縮荷重を加えた鉄心を、昇温速度を抑えて390℃まで昇温する。この際、酸化鉄(II)FeOでは、2価の鉄イオンFe2+が3価の鉄イオンFe3+になる酸化反応が徐々に進む。この酸化反応の初期段階では、酸化鉄(II)FeOを構成する2価の鉄イオンFe2+の一部が、3価の鉄イオンFe3+になってFeになり、組成式がFeO・FeのマグネタイトFeになる。さらに、酸化反応が進むと、酸化鉄(II)FeOの全てがマグネタイトFeになる。さらに、酸化反応が進むと、マグネタイトFeO・Feを構成する2価の鉄イオンFe2+の全てが3価の鉄イオンFe3+になって酸化鉄(III)Feになって酸化反応を終える。この酸化鉄(III)Feは、マグネタイトFeと同様の立方晶系の結晶構造であるマグヘマイトγ−Feである。なお、酸化鉄(III)Feのα相であるヘマタイトα−Feの結晶構造は三方晶系であり、マグネタイトとは結晶構造が異なる。また、酸化鉄(II)が酸化鉄(III)に酸化された後に、圧縮荷重を開放して鉄心を徐冷すれば、圧縮荷重に依る電磁鋼板の歪が解消され、鉄損が低減する。従って、鉄損の大きさが問題にならなければ、歪取焼鈍を行うことなく、本特徴手段で製造した鉄心を電気機器に組み込んで使用することができる。
以上に説明したように、積層した電磁鋼板を大気中で熱処理するだけの極めて簡単な手段で、マグヘマイトの粒状微粒子の集まりで絶縁層が形成される。このマグヘマイトは、以下の4つの性質を持ち、画期的な作用効果をもたらす絶縁層を形成する。
第一に比抵抗が10Ωmの絶縁体である。従って、マグヘマイトの微粒子で埋め尽くされた層間は、マグヘマイトに近い絶縁性を持つ。ちなみに電磁鋼板の比抵抗は10−7Ωmであり、鉄心の渦電流損失は比抵抗に反比例するため、渦電流損失は著しく小さくなる。
第二に強磁性であるフェリ磁性の性質を持つ。このため、マグヘマイトの微粒子は電磁鋼板に強固に磁気吸着し、マグヘマイトの微粒子同士も磁気吸着する。一度磁気吸着したマグヘマイト微粒子は、重量を殆ど持たない微粒子であり、磁気吸着を解除することは困難である。従って、層間を埋め尽くしたマグヘマイト微粒子は、層間から脱落しない。
第三にモース硬度が6.5であり、電磁鋼板より著しく硬い物質である。このため、圧縮荷重を受けてもマグヘマイトの微粒子は破壊されず、また、マグヘマイト微粒子同士の摩擦でも破壊されない。なお、電磁鋼板と接するマグヘマイト微粒子は、電磁鋼板の表面に食い込んで磁気吸着し、これらのマグヘマイト微粒子に他のマグヘマイト微粒子が磁気吸着する。このため、磁気吸着したマグヘマイト微粒子の集まりは層間から脱落しない。
第四に安定した酸化物で、鉄の不働態皮膜を形成する物質として知られている。従って、耐食性と耐油性とを持つ。耐熱性を有するが、530℃以上でヘマタイトに相転移する。
つまり、酸化鉄(III)Feのγ相である立方晶系の結晶構造を持つマグヘマイトは、昇温速度を抑えて昇温すると、530℃付近から酸化鉄(III)Feのα相である三方晶系の結晶構造を持つヘマタイトに徐々に相転移し、670℃付近で相転移が終了する。
以上に説明したように、マグヘマイトは、電磁鋼板の層間を絶縁化する物質として画期的な作用効果をもたらし、マグヘマイトの粒状微粒子の集まりからなる絶縁層は、4段落で説明した要求される性質の中で、歪取焼鈍の耐熱性を除く全ての性質を持つ。
なお、従来のマグヘマイトγ−Feは針状微粒子として生成される。つまり、硫酸第一鉄ないしは硫酸第二鉄をアルカリ性の水溶液中で大気を送り込みながら反応させ、針状微粒子のゲータイトと呼ばれる水酸化鉄(III)α−FeOOHを析出させる。このゲータイトを、水素ガスの雰囲気で一度脱水させてヘマタイトα−Feとし、さらに、還元してマグネタイトFeを生成する。この後、マグネタイトを大気中でゆっくりと加熱酸化させると針状のマグヘマイト微粒子が生成される。針状微粒子は粒状微粒子よりアスペクト比、つまり幅に対する長さの比率が大きいため、磁気吸着した針状微粒子の集まりは、多くの間隙を形成し、絶縁性が低減する。さらに、針状のマグヘマイト微粒子を生成する製造工程は、前記した粒状のマグヘマイト微粒子を生成する製造工程に比べて、分断された多くの製造工程から構成されるため製造費用が高い。このように、微粒子の集まりを高密度で充填する事例では、粒状微粒子は針状微粒子に比べ格段に作用効果が優れる。
That is, according to the present feature means, in accordance with the fourth feature means described above, an insulating layer is formed from a collection of granular fine particles of iron (II) oxide by heat treatment at 340 ° C., and further, an iron core to which a compressive load is applied. The temperature is raised to 390 ° C. while suppressing the heating rate. At this time, in iron oxide (II) FeO, the oxidation reaction in which the divalent iron ion Fe 2+ becomes the trivalent iron ion Fe 3+ gradually proceeds. In the initial stage of this oxidation reaction, a part of the divalent iron ions Fe 2+ constituting iron (II) FeO become trivalent iron ions Fe 3+ to become Fe 2 O 3 , and the composition formula is FeO. · becomes Fe 2 O 3 of magnetite Fe 3 O 4. Furthermore, when the oxidation reaction proceeds, all of the iron (II) FeO becomes magnetite Fe 3 O 4 . Further, when the oxidation reaction proceeds, all of the divalent iron ions Fe 2+ constituting the magnetite FeO · Fe 2 O 3 become trivalent iron ions Fe 3+ and become iron oxide (III) Fe 2 O 3. Finish the oxidation reaction. This iron (III) Fe 2 O 3 is maghemite γ-Fe 2 O 3 having a cubic crystal structure similar to that of magnetite Fe 3 O 4 . Note that the crystal structure of hematite α-Fe 2 O 3 , which is the α phase of iron (III) Fe 2 O 3 , is a trigonal system, and the crystal structure is different from that of magnetite. Moreover, if iron (II) is oxidized to iron (III) and then the compression load is released and the iron core is gradually cooled, the distortion of the electrical steel sheet due to the compression load is eliminated, and the iron loss is reduced. Therefore, if the size of the iron loss does not become a problem, the iron core manufactured by this characteristic means can be incorporated into an electric device and used without performing strain relief annealing.
As described above, an insulating layer is formed from a collection of granular fine particles of maghemite by an extremely simple means by simply heat-treating laminated magnetic steel sheets in the atmosphere. This maghemite has the following four properties and forms an insulating layer that brings about an epoch-making action and effect.
The first is an insulator having a specific resistance of 10 6 Ωm. Therefore, the interlayer filled with maghemite fine particles has an insulation property similar to maghemite. Incidentally, the specific resistance of the electrical steel sheet is 10 −7 Ωm, and the eddy current loss of the iron core is inversely proportional to the specific resistance, so the eddy current loss becomes extremely small.
Second, it has ferrimagnetic properties that are ferromagnetic. For this reason, the maghemite fine particles are strongly magnetically adsorbed to the magnetic steel sheet, and the maghemite fine particles are also magnetically adsorbed. Maghemite fine particles once magnetically adsorbed are fine particles having almost no weight, and it is difficult to cancel the magnetic adsorption. Accordingly, the maghemite fine particles filled between the layers do not fall off from the layers.
Third, the Mohs hardness is 6.5, which is a material that is significantly harder than the electrical steel sheet. For this reason, even if it receives a compressive load, the fine particle of maghemite is not destroyed, and it is not destroyed even by friction between maghemite fine particles. The maghemite fine particles in contact with the magnetic steel sheet bite into the surface of the magnetic steel sheet and are magnetically adsorbed, and other maghemite fine particles are magnetically adsorbed on these maghemite fine particles. For this reason, the collection of magnetically adsorbed maghemite fine particles does not fall off from the interlayer.
It is the fourth stable oxide and is known as a substance that forms a passive film of iron. Therefore, it has corrosion resistance and oil resistance. Although it has heat resistance, it undergoes phase transition to hematite at 530 ° C or higher.
That is, maghemite having a cubic crystal structure is a γ-phase iron oxide (III) Fe 2 O 3, when the temperature is raised to suppress the Atsushi Nobori rate, the iron oxide from around 530 ℃ (III) Fe 2 O 3 The phase transition gradually proceeds to hematite having a trigonal crystal structure, which is an α phase, and the phase transition is completed at around 670 ° C.
As described above, maghemite brings about an epoch-making action and effect as a material that insulates the layers of electrical steel sheets, and the insulating layer made up of a collection of granular particles of maghemite has the required properties described in the fourth paragraph. Among them, it has all the properties except the heat resistance of strain relief annealing.
Conventional maghemite γ-Fe 2 O 3 is produced as acicular fine particles. That is, ferrous sulfate or ferric sulfate is reacted in an alkaline aqueous solution while sending air to precipitate iron (III) α-FeOOH called acicular fine particles called goethite. This goethite is dehydrated once in an atmosphere of hydrogen gas to hematite α-Fe 2 O 3, and further reduced to produce magnetite Fe 3 O 4 . Thereafter, when magnetite is slowly heated and oxidized in the atmosphere, acicular maghemite fine particles are generated. Since the acicular fine particles have a larger aspect ratio than the granular fine particles, that is, the ratio of the length to the width, the collection of magnetically adsorbed acicular fine particles forms a large number of gaps, and the insulation is reduced. Furthermore, the manufacturing process for generating the needle-shaped maghemite fine particles is more expensive than the above-described manufacturing process for generating the granular maghemite fine particles because it is composed of many divided manufacturing processes. As described above, in the case where the collection of fine particles is packed at a high density, the granular fine particles are much more effective than the acicular fine particles.

本発明における鉄心の製造に関わる第八特徴手段は、ヘマタイトの粒状微粒子の集まりで絶縁層が形成されることに関わり、該絶縁層の形成は、前記した第七特徴手段におけるマグヘマイトの粒状微粒子の集まりで絶縁層が形成された鉄心に、さらに歪取焼鈍を実施する、これによって、前記マグヘマイトがヘマタイトに相転移し、前記絶縁層が前記ヘマタイトの粒状微粒子の集まりで形成される点にある。  The eighth characteristic means relating to the production of the iron core in the present invention relates to the formation of an insulating layer by a collection of granular fine particles of hematite, and the formation of the insulating layer is based on the granular fine particles of maghemite in the seventh characteristic means described above. The iron core on which the insulating layer is formed by gathering is further subjected to strain relief annealing, whereby the maghemite is phase-transformed into hematite, and the insulating layer is formed by a collection of particulate fine particles of the hematite.

つまり、本特徴手段において、電磁鋼板への残留歪に依る鉄心の鉄損を低減させる歪取焼鈍を行う場合は、前記した第七特徴手段で製作した鉄心を、圧縮荷重を加えた状態で、鉄が酸化されにくい雰囲気の750℃〜820℃の温度に昇温し、この温度に一定時間放置した後に、圧縮荷重を開放し、その後徐冷する歪取焼鈍を実施する。この際、昇温過程で、酸化鉄(III)のγ相のマグヘマイトが酸化鉄(III)のα相のヘマタイトに相転移し、ヘマタイトの粒状微粒子の集まりで絶縁層が形成される。このヘマタイトは以下の性質を持ち、マグヘマイトよりさらに画期的な作用効果をもたらす絶縁層を形成する物質である。
ヘマタイトα−Feは10Ωmの比抵抗を持ち、歪取焼鈍の処理で層間の絶縁性がさらに一桁向上し、渦電流損失はさらに低減する。また、ヘマタイトは極めて安定した酸化物、つまり、強酸や強アルカリに侵されない不働態であり、融点の1566℃に近い耐熱性と耐食性と耐油性とを有する。このため、歪取焼鈍時にヘマタイトは化学変化せず、また、電磁鋼板との間で拡散現象などの化学反応が一切起らない。また、弱強磁性の性質を持ち、磁気キュリー点が950℃である。従って、歪取焼鈍後においても、弱い磁気吸着力ではあるが、ヘマタイトが電磁鋼板に磁気吸着し、ヘマタイト微粒子同士も磁気吸着する。さらに、ヘマタイトは、モース硬度が6の電磁鋼板より硬い物質であり、圧縮荷重で微粒子は破壊されず、また、ヘマタイト微粒子同士の摩擦でも破壊されない。また、22段落で説明したように、マグヘマイトの微粒子が、電磁鋼板の表面の凹凸に入り込んで凹凸を埋め尽くすとともに層間を埋め尽くしたため、ヘマタイトの微粒子も同様に層間を埋め尽くす。従って、重ね合わせられた電磁鋼板の間隙のどの部位にも、ヘマタイトの微粒子が確実に存在し空隙がない。これによって、歪取焼鈍時にスティッキングが起こらない。
以上に説明したように、ヘマタイトの微粒子の集まりからなる絶縁層は、マグヘマイトよりさらに画期的な作用効果をもたらし、4段落で説明した要求される全ての性質を持つ。
なお、微小な密閉空間である層間が、磁気吸着したマグヘマイト微粒子で隙間なく充填され、積層した電磁鋼板はマグヘマイト微粒子の集まりを介して圧着されていた。このような鉄心に圧縮荷重を加えた昇温過程で、マグヘマイトがヘマタイトに相転移されるため、徐冷過程で圧縮荷重を開放しても、ヘマタイト微粒子は層間から脱落しない。また、積層した電磁鋼板はヘマタイト微粒子の集まりを介して圧着される。いっぽう、鉄心の端面に存在するヘマタイト微粒子は容易に脱落し、溶接の障害にならない。
以上に説明したように、本特徴手段に依れば、鉄心に歪取焼鈍を実施すると、鉄心の鉄損が低減するだけではなく、極めて安定な不働態であるヘマタイトの粒状微粒子の集まりで絶縁層が形成されるため、鉄心の渦電流損失がさらに低減し、歪取焼鈍の耐熱性よりさらに高い耐熱性と耐食性と耐油性と耐スティキング性とを併せ持つ鉄心が製造される。
That is, in this feature means, when performing strain relief annealing to reduce the iron loss of the iron core due to the residual strain on the electromagnetic steel sheet, the iron core manufactured by the seventh feature means is in a state where a compression load is applied, The temperature is raised to a temperature of 750 ° C. to 820 ° C. in an atmosphere in which iron is not easily oxidized, and after left at this temperature for a certain period of time, the compression load is released, and then the strain relief annealing is performed to gradually cool. In this case, the γ-phase maghemite of iron (III) oxide undergoes phase transition to the α-phase hematite of iron (III) during the temperature rising process, and an insulating layer is formed by a collection of particulate hematite particles. This hematite has the following properties, and is a substance that forms an insulating layer that provides a more innovative effect than maghemite.
Hematite α-Fe 2 O 3 has a specific resistance of 10 7 Ωm, and the insulation between layers is further improved by an order of magnitude by the treatment of strain relief annealing, and the eddy current loss is further reduced. Hematite is a passive state that is not affected by a very stable oxide, that is, a strong acid or a strong alkali, and has heat resistance close to a melting point of 1566 ° C., corrosion resistance, and oil resistance. For this reason, hematite does not chemically change during strain relief annealing, and no chemical reaction such as a diffusion phenomenon occurs with the electromagnetic steel sheet. Moreover, it has weak ferromagnetism and has a magnetic Curie point of 950 ° C. Accordingly, even after the strain relief annealing, although the magnetic adsorption force is weak, hematite is magnetically adsorbed on the magnetic steel sheet, and the hematite fine particles are also magnetically adsorbed. Further, hematite is a material harder than a magnetic steel sheet having a Mohs hardness of 6, and the fine particles are not broken by a compressive load, and are not broken by friction between hematite fine particles. Further, as described in paragraph 22, since the maghemite fine particles enter the irregularities on the surface of the magnetic steel sheet to fill the irregularities and fill the layers, the hematite fine particles likewise fill the layers. Accordingly, hematite particles are surely present and no voids are present in any part of the gap between the stacked electrical steel sheets. This prevents sticking during strain relief annealing.
As described above, the insulating layer composed of a collection of fine particles of hematite brings about an epoch-making action effect as compared with maghemite, and has all the required properties described in the fourth paragraph.
In addition, the interlayer which is a minute sealed space was filled with magnetically adsorbed maghemite fine particles without gaps, and the laminated electrical steel sheets were pressure-bonded via a collection of maghemite fine particles. In such a temperature rising process in which a compressive load is applied to the iron core, maghemite undergoes a phase transition to hematite, so that even if the compressive load is released during the slow cooling process, the hematite fine particles do not fall out of the interlayer. Further, the laminated electrical steel sheets are pressure-bonded through a collection of hematite fine particles. On the other hand, the hematite particles present on the end face of the iron core easily fall off and do not hinder welding.
As described above, according to the present feature means, when the core is subjected to stress relief annealing, not only the iron loss of the iron core is reduced, but also insulation by the collection of granular particles of hematite, which is an extremely stable passive state. Since the layer is formed, the eddy current loss of the iron core is further reduced, and the iron core having both heat resistance, corrosion resistance, oil resistance and sticking resistance higher than the heat resistance of the strain relief annealing is manufactured.

本発明におけるマグヘマイトの粒状微粒子の集まりで層間が絶縁された鉄心の製造方法は、ナフテン酸鉄をアルコールに分散して分散液を作成する第一の工程と、カルボン酸エステル類、グリコール類、ないしは、グリコールエーテル類からなるいずれかの有機化合物を、前記第一の工程で作成したアルコール分散液に混合して混合液を作成する第二の工程と、該混合液を電磁鋼板に塗布する第三の工程と、該電磁鋼板を積層し、圧縮荷重を加えた状態で打ち抜きまたはせん断によって鉄心を製作する第四の工程と、該鉄心に圧縮荷重を加えた状態で熱処理する第五の工程とからなり、これら5つの工程を連続して実施する製造方法が、マグヘマイトの粒状微粒子の集まりで層間が絶縁された鉄心を製造する製造方法である点にある。  In the present invention, a method for producing an iron core in which layers are insulated by a collection of granular fine particles of maghemite includes a first step in which iron naphthenate is dispersed in alcohol to form a dispersion, and carboxylic acid esters, glycols, or A second step of mixing any organic compound consisting of glycol ethers with the alcohol dispersion prepared in the first step to prepare a mixed solution, and a third step of applying the mixed solution to the electrical steel sheet. The fourth step of laminating the magnetic steel sheets and punching or shearing the iron core in a state where a compressive load is applied, and the fifth step of heat-treating the iron core in a state where the compressive load is applied. Thus, the manufacturing method in which these five steps are continuously performed is a manufacturing method for manufacturing an iron core in which an interlayer is insulated by a collection of granular fine particles of maghemite.

つまり、本特徴手段に依れば、5つの極めて簡単な処理を連続して実施することで、2段落で説明した従来の鉄心の製造上の問題を持たず、4段落で説明した歪取焼鈍の耐熱性を除く全ての性質を満たす絶縁層が形成された鉄心が、安価な費用で連続して製造できる。従って、本特徴手段で製造した鉄心の鉄損の大きさが問題にならなければ、本特徴手段で製造した鉄心をそのまま電気機器に組み込んで鉄心として使用することができる。
第一の工程は、安価なナフテン酸鉄をアルコールに分散するだけの工程である。第二の工程は、アルコール分散液に安価な有機化合物を混合するだけの工程である。第三の工程は、混合液を電磁鋼板に塗布するだけの工程である。第四の工程は、電磁鋼板を積層し、圧縮荷重を加えた状態で、打ち抜きまたはせん断によって鉄心を製作する工程である。第五の工程は、鉄心に圧縮荷重を加えた状態で熱処理するだけの工程である。
In other words, according to this feature means, the five extremely simple processes are continuously performed, so that there is no problem in manufacturing the conventional iron core described in the second paragraph, and the stress relief annealing described in the fourth paragraph. An iron core on which an insulating layer satisfying all the properties excluding heat resistance is formed can be continuously produced at low cost. Therefore, if the magnitude of the iron loss of the iron core manufactured by this characteristic means does not become a problem, the iron core manufactured by this characteristic means can be incorporated into an electric device as it is and used as an iron core.
The first step is simply a step of dispersing inexpensive iron naphthenate in alcohol. The second step is simply a step of mixing an inexpensive organic compound into the alcohol dispersion. A 3rd process is a process only of apply | coating a liquid mixture to an electromagnetic steel plate. The fourth step is a step of manufacturing an iron core by punching or shearing in a state where magnetic steel sheets are laminated and a compressive load is applied. The fifth step is simply a heat treatment in a state where a compression load is applied to the iron core.

本発明におけるヘマタイトの粒状微粒子の集まりで層間が絶縁された鉄心の製造方法は、前記したマグヘマイトの粒状微粒子の集まりで層間が絶縁された鉄心を製造し、さらに、前記鉄心に歪取焼鈍を実施する製造方法が、ヘマタイトの粒状微粒子の集まりで層間が絶縁された鉄心を製造する製造方法である点にある。  According to the present invention, the method of manufacturing an iron core in which the interlayer is insulated by a collection of granular fine particles of hematite produces the iron core in which the interlayer is insulated by the collection of granular fine particles of maghemite, and further, the core is subjected to strain relief annealing. The manufacturing method is to manufacture an iron core whose layers are insulated with a collection of granular fine particles of hematite.

つまり、本特徴手段に依れば、マグヘマイトの粒状微粒子の集まりで層間が絶縁された鉄心に、さらに、歪取焼鈍を実施するだけで、マグヘマイトがヘマタイトに相転移し、ヘマタイトの粒状微粒子の集まりで層間が絶縁された鉄心が製造される。これによって、電磁鋼板の残留歪が解除されて鉄心の鉄損が低減するにとどまらず、鉄心の渦電流損失がさらに低減し、また、歪取焼鈍の耐熱性よりさらに高い耐熱性と耐食性と耐油性と耐スティキング性とを併せ持つ鉄心が製造される。  In other words, according to this feature means, the maghemite is phase-transformed into hematite by simply carrying out strain relief annealing on an iron core whose layers are insulated by a collection of particulate maghemite particles, and the collection of particulate hematite particles. In this way, an iron core having an insulated layer is manufactured. As a result, the residual strain of the electromagnetic steel sheet is released and the iron loss of the iron core is reduced, the eddy current loss of the iron core is further reduced, and the heat resistance, corrosion resistance and oil resistance are higher than the heat resistance of strain relief annealing. Iron cores with both properties and sticking resistance are produced.

2枚の電磁鋼板の間隙に、マグヘマイトの粒状微粒子の集まりが絶縁層を形成する状態を模式的に図示した図である。It is the figure which illustrated typically the state in which the aggregate of the granular fine particles of a maghemite forms an insulating layer in the gap | interval of two electromagnetic steel plates. 2枚の電磁鋼板の間隙に、ヘマタイトの粒状微粒子の集まりが絶縁層を形成する状態を模式的に図示した図である。It is the figure which illustrated typically the state in which the gathering of the hematite granular fine particles forms an insulating layer in the gap | interval of two electromagnetic steel plates.

実施形態1Embodiment 1

本実施形態は、第一に、アルコールに溶解ないしは混和し、第二に、アルコールより粘度が高く、第三に、ナフテン酸鉄が熱分解する340℃より沸点が低いこれら3つの性質を兼備する有機化合物に関する実施形態である。これら3つの性質を兼備する有機化合物は、ナフテン酸鉄のアルコール分散液と任意の割合で混ざり合うため、電磁鋼板に形成する被膜の原料になる。これら3つの性質を兼備する有機化合物に、カルボン酸エステル類、グリコール類、ないしは、グリコールエーテル類に属する多くの有機化合物が存在する。  This embodiment has these three properties which are firstly dissolved or mixed in alcohol, secondly higher in viscosity than alcohol, and thirdly lower in boiling point than 340 ° C. where iron naphthenate is thermally decomposed. It is embodiment regarding an organic compound. Since the organic compound having these three properties is mixed with the alcohol dispersion of iron naphthenate at an arbitrary ratio, it becomes a raw material for the film formed on the magnetic steel sheet. Among organic compounds having these three properties, there are many organic compounds belonging to carboxylic acid esters, glycols, or glycol ethers.

最初に、カルボン酸エステル類について説明する。カルボン酸エステル類は、飽和カルボン酸からなる第一のエステル類と、不飽和カルボン酸からなる第二のエステル類と、芳香族カルボン酸からなる第三のエステル類とからなる、3種類のエステル類に分けられる。
第一のエステル類である飽和カルボン酸からなるエステル類は、酢酸エステル類、プロピオン酸エステル類、酪酸エステル類、ビバリン酸エステル類、カプロン酸エステル類、カプリル酸エステル類、カプリン酸エステル類、ラウリン酸エステル類、ミリスチン酸エステル類、パルミチン酸エステル類、ステアリン酸エステル類などからなる。
ここで、分子量が小さい酢酸エステル類について説明する。酢酸エステル類は、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸イソプロピル、酢酸オクチル、酢酸ヘプチル、酢酸ベンジル、酢酸フェニル、酢酸ビニルなどからなる。酢酸メチルを除く酢酸エステル類は、メタノールより沸点が高く、n−ブタノールより沸点が低い。また、メタノールに溶解し、メタノールより粘度が高い。このため、ナフテン酸鉄をメタノールに分散し、この分散液に酢酸メチルを除く酢酸エステル類のいずれかを混合すれば、電磁鋼板に形成する被膜の原料になる。例えば、酢酸ビニル(モノマー)はメタノールに溶解し、メタノールより高い粘性を持ち、沸点がメタノールの沸点より高い72.7℃である。従って、ナフテン酸鉄をメタノールに分散し、この分散液に酢酸ビニルを混合すると、混合した酢酸ビニルの量に応じて分散液の粘度が増大する。
また、分子量が大きいラウリン酸エステル類について説明する。ラウリン酸オクチルはn−ブタノールに溶解し、n−ブタノールより高い粘性を持ち、沸点はナフテン酸鉄の熱分解温度より高い355℃である。従って、ラウリン酸オクチルより分子量が小さいラウリン酸エステル類は、電磁鋼板に形成する被膜の原料になる。
以上に、飽和脂肪酸エステル類について、分子量が小さい酢酸エステル類と、分子量が大きいラウリン酸エステル類とを代表させて説明した。分子量が小さい飽和脂肪酸エステル類の多くは、メタノールに溶解し、メタノールより高い粘性を持ち、沸点がメタノールの沸点より高く、ナフテン酸鉄が熱分解する温度より低い性質を持つ。また、分子量が大きい飽和脂肪酸エステル類は、相対的に分子量が小さいエステル類であれば、沸点はナフテン酸鉄が熱分解する340℃より低い性質を持つ。
First, carboxylic acid esters will be described. Carboxylic acid esters include three types of esters consisting of a first ester composed of a saturated carboxylic acid, a second ester composed of an unsaturated carboxylic acid, and a third ester composed of an aromatic carboxylic acid. Divided into classes.
Esters consisting of saturated carboxylic acids as the first esters are acetic acid esters, propionic acid esters, butyric acid esters, bivalic acid esters, caproic acid esters, caprylic acid esters, capric acid esters, lauric acid. It consists of acid esters, myristic acid esters, palmitic acid esters, stearic acid esters and the like.
Here, acetates having a small molecular weight will be described. Acetic acid esters include methyl acetate, ethyl acetate, butyl acetate, propyl acetate, isopropyl acetate, octyl acetate, heptyl acetate, benzyl acetate, phenyl acetate, vinyl acetate, and the like. Acetic esters other than methyl acetate have a higher boiling point than methanol and a lower boiling point than n-butanol. It is also soluble in methanol and has a higher viscosity than methanol. For this reason, if iron naphthenate is dispersed in methanol and any one of acetates excluding methyl acetate is mixed in this dispersion, it becomes a raw material for a film to be formed on the magnetic steel sheet. For example, vinyl acetate (monomer) is dissolved in methanol, has a higher viscosity than methanol, and has a boiling point of 72.7 ° C. higher than that of methanol. Therefore, when iron naphthenate is dispersed in methanol and vinyl acetate is mixed with this dispersion, the viscosity of the dispersion increases according to the amount of the mixed vinyl acetate.
In addition, lauric acid esters having a large molecular weight will be described. Octyl laurate dissolves in n-butanol, has a higher viscosity than n-butanol, and has a boiling point of 355 ° C., which is higher than the thermal decomposition temperature of iron naphthenate. Therefore, lauric acid esters having a molecular weight smaller than that of octyl laurate are used as a raw material for the coating formed on the magnetic steel sheet.
As described above, saturated fatty acid esters have been described with representatives of low molecular weight acetic acid esters and high molecular weight lauric acid esters. Many of the saturated fatty acid esters having a small molecular weight are soluble in methanol, have a higher viscosity than methanol, have a boiling point higher than that of methanol, and lower than a temperature at which iron naphthenate is thermally decomposed. In addition, saturated fatty acid esters having a large molecular weight have a property that the boiling point is lower than 340 ° C. at which iron naphthenate is thermally decomposed if the esters have a relatively small molecular weight.

次に、不飽和カルボン酸からなるエステル類には、アクリル酸エステル類、クロトン酸エステル類、メタクリル酸エステル類、オレイン酸エステル類などがある。
分子量が小さいアクリル酸エステル類には、沸点が80℃のアクリル酸メチル、沸点が100℃のアクリル酸エチル、沸点が132℃のアクリル酸イソブチル、沸点が148℃のアクリル酸ブチル、沸点が214℃のアクリル酸2−エチルヘキシルなどがある。アクリル酸メチルとアクリル酸エチルとは、メタノールに溶解し、メタノールより高い粘性を持つため、ナフテン酸鉄をメタノールに分散し、この分散液にアクリル酸メチルないしはアクリル酸エチルを混合すれば、被膜を形成する混合液になる。また、アクリル酸ブチルとアクリル酸イソブチルの沸点は、n−ブタノールの沸点より高く、ナフテン酸鉄が熱分解される温度より低いため、ナフテン酸鉄をn−ブタノールに分散し、この分散液にアクリル酸ブチルないしはアクリル酸イソブチルを混合すると、被膜を形成する混合液になる。
Next, esters made of unsaturated carboxylic acid include acrylic acid esters, crotonic acid esters, methacrylic acid esters, oleic acid esters and the like.
Low molecular weight acrylic esters include methyl acrylate having a boiling point of 80 ° C., ethyl acrylate having a boiling point of 100 ° C., isobutyl acrylate having a boiling point of 132 ° C., butyl acrylate having a boiling point of 148 ° C., and a boiling point of 214 ° C. And 2-ethylhexyl acrylate. Since methyl acrylate and ethyl acrylate are dissolved in methanol and have a higher viscosity than methanol, iron naphthenate is dispersed in methanol, and this dispersion is mixed with methyl acrylate or ethyl acrylate to form a coating. It becomes a mixed liquid to be formed. Also, since the boiling point of butyl acrylate and isobutyl acrylate is higher than the boiling point of n-butanol and lower than the temperature at which iron naphthenate is thermally decomposed, iron naphthenate is dispersed in n-butanol, and acrylic acid is dispersed in this dispersion. When butyl acid or isobutyl acrylate is mixed, a mixed solution is formed to form a film.

さらに、芳香族カルボン酸からなるエステル類には、安息香酸エステル類とフタル酸エステル類がある。
安息香酸エステル類の中で、メタノールに溶解し、メタノールより粘度が高く、ナフテン酸の熱分解温度より沸点が低い安息香酸エステル類は、安息香酸ベンジル以下の分子量を持つエステル類である。ちなみに、安息香酸ベンジルの沸点は324℃である。従って、これらの安息香酸エステル類は、被膜を形成する原料になる
また、フタル酸エステル類の中で、メタノールに溶解ないしは混和し、メタノールより粘度が高く、沸点が340℃より低い性質を持つフタル酸エステル類は、フタル酸ジブチルより分子量が小さいエステル類である。ちなみに、フタル酸ジブチルの沸点は340℃である。従って、これらのフタル酸エステル類は、被膜を形成する原料になる
Furthermore, esters composed of aromatic carboxylic acids include benzoates and phthalates.
Among benzoic acid esters, benzoic acid esters that are dissolved in methanol, have a higher viscosity than methanol, and have a boiling point lower than the thermal decomposition temperature of naphthenic acid are esters having a molecular weight of benzyl benzoate or lower. By the way, the boiling point of benzyl benzoate is 324 ° C. Therefore, these benzoic acid esters become raw materials for forming a film. Among phthalic acid esters, phthalates having a property of being dissolved or mixed in methanol, having a higher viscosity than methanol and a boiling point lower than 340 ° C. Acid esters are esters having a lower molecular weight than dibutyl phthalate. By the way, the boiling point of dibutyl phthalate is 340 ° C. Therefore, these phthalates are the raw materials for forming the film.

次に、グリコール類について説明する。グリコール類には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールなどがある。
エチレングリコールは、メタノールおよびn−ブタノールに溶解し、沸点が197℃の液状モノマーである。さらに、ジエチレングリコールは、メタノールおよびn−ブタノールに溶解し、沸点が244℃の液状モノマーである。さらに、プロピレングリコールは、メタノールおよびn−ブタノールと混和し、沸点が188℃の液状モノマーである。さらに、ジプロピレングリコールは、メタノールおよびn−ブタノールと混和し、沸点が232℃の液状モノマーである。また、トリプロピレングリコールは、メタノールおよびn−ブタノールと混和し、沸点が265℃の液状モノマーである。このように、グリコール類の沸点は、ナフテン酸鉄の熱分解温度より低い。従って、電磁鋼板に形成する被膜の原料になる。
Next, glycols will be described. Examples of glycols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, and tripropylene glycol.
Ethylene glycol is a liquid monomer that dissolves in methanol and n-butanol and has a boiling point of 197 ° C. Further, diethylene glycol is a liquid monomer having a boiling point of 244 ° C. dissolved in methanol and n-butanol. Further, propylene glycol is a liquid monomer that is miscible with methanol and n-butanol and has a boiling point of 188 ° C. Further, dipropylene glycol is a liquid monomer that is miscible with methanol and n-butanol and has a boiling point of 232 ° C. Tripropylene glycol is a liquid monomer that is miscible with methanol and n-butanol and has a boiling point of 265 ° C. Thus, the boiling point of glycols is lower than the thermal decomposition temperature of iron naphthenate. Therefore, it becomes the raw material of the film formed on the electromagnetic steel sheet.

最後に、グリコールエーテル類について説明する。グリコールエーテル類は、エチレングリコール系エーテルと、プロピレングリコール系エーテルと、エチレングリコール、ジエチレングリコール、トリエチレングリコールの末端の水素をアルキル基で置換したジアルキルグリコールエーテルがある。
さらに、エチレングリコール系エーテルは、メチルグリコール、メチルジグリコール、メチルトリグリコール、メチルポリグリコール、イソプロピルグリコール、イソプロピルジグリコール、ブチルグリコール、ブチルジグリコール、ブチルトリグリコール、イソブチルグリコール、イソブチルジグリコール、ヘキシルグリコール、ヘキシルジグリコール、2−エチルヘキシルグリコール、2−エチルヘキシルジグリコール、アリルグリコール、フェニルグリコール、フェニルジグリコール、ベンジルグリコール、ベンジルジグリコールなどがある。
これらのエチレングリコール系エーテルは、いずれもn−ブタノールに溶解し、n−ブタノールより高い粘性を持ち、n−ブタノールの沸点より高く、ナフテン酸鉄が熱分解する温度より低い。このため、電磁鋼板に形成する被膜の原料になる。
Finally, glycol ethers will be described. Examples of glycol ethers include ethylene glycol ethers, propylene glycol ethers, and dialkyl glycol ethers in which hydrogen at the terminals of ethylene glycol, diethylene glycol, and triethylene glycol is substituted with an alkyl group.
Furthermore, ethylene glycol ethers are methyl glycol, methyl diglycol, methyl triglycol, methyl polyglycol, isopropyl glycol, isopropyl diglycol, butyl glycol, butyl diglycol, butyl triglycol, isobutyl glycol, isobutyl diglycol, hexyl glycol Hexyl diglycol, 2-ethylhexyl glycol, 2-ethylhexyl diglycol, allyl glycol, phenyl glycol, phenyl diglycol, benzyl glycol, benzyl diglycol and the like.
These ethylene glycol ethers are all dissolved in n-butanol, have a higher viscosity than n-butanol, are higher than the boiling point of n-butanol, and are lower than the temperature at which iron naphthenate is thermally decomposed. For this reason, it becomes the raw material of the film formed in an electromagnetic steel plate.

プロピレングリコール系エーテルには、メチルプロピレングリコール、メチルプロピレンジグリコール、メチルプロピレントリグリコール、プロピルプロピレングリコール、プロピルプロピレンジグリコール、ブチルプロピレングリコール、ブチルプロピレンジグリコール、ブチルプロピレントリグリコール、フェニルプロピレングリコール、メチルプロピレングリコールアセテートなどがある。
これらのプロピレングリコール系エーテルは、いずれもn−ブタノールに溶解し、n−ブタノールより高い粘性を持ち、n−ブタノールの沸点より高く、ナフテン酸鉄が熱分解する温度より低い。このため、電磁鋼板に形成する被膜の原料になる。
Propylene glycol ethers include methylpropylene glycol, methylpropylene diglycol, methylpropylene triglycol, propylpropylene glycol, propylpropylene diglycol, butylpropylene glycol, butylpropylene diglycol, butylpropylene triglycol, phenylpropylene glycol, methylpropylene For example, glycol acetate.
All of these propylene glycol ethers are soluble in n-butanol, have a higher viscosity than n-butanol, are higher than the boiling point of n-butanol, and lower than the temperature at which iron naphthenate is thermally decomposed. For this reason, it becomes the raw material of the film formed in an electromagnetic steel plate.

ジアルキルグリコールエーテルには、ジメチルグリコール、ジメチルジグリコール、ジメチルトリグリコール、メチルエチルジグリコール、ジエチルジグリコール、ジブチルジグリコール、ジメチルプロピレンジグリコールなどがある。
これらのジアルキルグリコールエーテルは、いずれもn−ブタノールに溶解し、n−ブタノールより高い粘性を持ち、n−ブタノールの沸点より高く、ナフテン酸鉄が熱分解する温度より低い。このため、電磁鋼板に形成する被膜の原料になる。
Dialkyl glycol ethers include dimethyl glycol, dimethyl diglycol, dimethyl triglycol, methyl ethyl diglycol, diethyl diglycol, dibutyl diglycol, dimethylpropylene diglycol and the like.
All of these dialkyl glycol ethers are soluble in n-butanol, have a higher viscosity than n-butanol, are higher than the boiling point of n-butanol, and lower than the temperature at which iron naphthenate is thermally decomposed. For this reason, it becomes the raw material of the film formed in an electromagnetic steel plate.

実施形態2Embodiment 2

本実施形態は、2枚の電磁鋼板の間に、マグヘマイトの粒状微粒子の集まりからなる絶縁層を形成し、絶縁層の密着強度、絶縁抵抗、塩水噴霧試験に依る耐食性、熱衝撃試験に依る耐熱衝撃性を調べる。電磁鋼板として無方向性電磁鋼板(例えば、JFEスチール株式会社の製品で、厚さが0.35mmからなる品番35JNE250)を用いた。無方向性電磁鋼板は、大型変圧器と配電用変圧器を除く変圧器の鉄心と各種回転機の鉄心として使用されている。なお、電磁鋼板の磁化の方向と鉄損の大きさとは電磁鋼板固有の性質であり、絶縁層の形成においては、どのような電磁鋼板でも使用できる。また、マグヘマイトの原料としてナフテン酸鉄(例えば、東栄化工株式会社の製品)を用いた。
最初に、ナフテン酸鉄をn−ブタノールに10重量%の割合で分散させた。この分散液に、エチレングリコールが20重量%の割合を占めるように混合した。なお、エチレングリコールは、n−ブタノールと任意の割合で混和し、n−ブタノールの沸点より沸点が80℃高く、n−ブタノールの粘度の5.4倍の粘度を持つ。次に、前記した電磁鋼板を50mm×30mmに切断した2枚の電磁鋼板を用意した。一枚の電磁鋼板の隅に、12.5mmの幅で30mmの長さで、前記の混合液を20μmの厚さで塗布した。この混合液が塗布された部分に、もう一枚の電磁鋼板の隅の12.5mmの幅が重なるように重ね、重ね合わせた部分に30kgの荷重を印加した(塗布面の加圧力は8kg/cmに相当)。この重ね合わされた2枚の電磁鋼板を、荷重を加えた状態で、大気中で熱処理した。最初に120℃まで昇温しn−ブタノールを気化させ、次に200℃まで昇温しエチレングリコールを気化させた。さらに、340℃まで昇温し、340℃に1分間放置してナフテン酸鉄を熱分解した。さらに、340℃から1℃/min.の昇温速度で390℃まで昇温し、390℃に30分間放置した。この後、印加した荷重を開放し室温まで徐冷した。こうして試料を22個作成した。
最初に、一つの試料について、2枚の電磁鋼板が重なる部分、つまり絶縁層が形成された部分を切断し、切断面の複数の部位を電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は100Vからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を有する。最初に、反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行い、断面の表面を観察した。どの部位も、40nm〜60nmの大きさの粒状微粒子同士が接合し、粒状微粒子の集まりが平均で約2μmの厚みを形成して間隙を埋め尽くしていた。次に、特性X線のエネルギーとその強度を画像処理し、断面を構成する元素の種類とその分布状態を分析した。鉄原子と酸素原子との双方が均一に存在し、偏在する箇所が見られなかったため、酸化鉄からなる粒状微粒子である。さらに、極低加速電圧SEMの機能にEBSP解析機能を付加し、微粒子の結晶構造の解析を行なった。この結果から、絶縁層を形成する粒状微粒子が酸化鉄(III)のγ相であるマグヘマイトγ−Feであることが確認できた。なお、EBSP解析機能とは、試料に電子線を照射したとき、反射電子が試料中の原子面によって回折されることによってバンド状のパターンを形成し、このバンドの対称性が結晶系に対応し、バンドの間隔が原子面間隔に対応するため、このパターンを解析して、結晶方位や結晶系を測定する機能をいう。この結果を図1に模式的に示す。1は電磁鋼板で、2はマグヘマイトの粒状微粒子である。2枚の電磁鋼板1の表面の凹凸に入り込んで、マグヘマイの粒状微粒子2の集まりが層間を埋め尽くしていた。
次に、5つの試料について絶縁層の密着強度を引張試験で評価した。試料を3mm/min.の速度で水平方向に引張り、絶縁層が破断する際の最大の引張応力を密着強度とした。密着強度は2.5MPa〜3.0MPaであり、加工済みの鉄心としては、十分な密着強度を持つ。
さらに、引張試験で破断した絶縁層の抵抗を、4端子法で測定した。5つの試料の比抵抗は55〜60μΩmであり、絶縁層は渦電流損失が十分に低減する高い絶縁性を持つ。
次に、引張試験で破断した試料を用いて、中性の5%塩水による塩水噴霧試験を行った。絶縁層の表面に変色が認められなかったので、絶縁層は優れた耐食性を持つ。
最後に、5つの試料を、−30℃〜120℃の温度変化を与える気槽熱衝撃試験を行い、この後、前記した引張試験で絶縁層の密着強度の変化を調べた。熱衝撃試験後の密着強度は、熱衝撃試験前の密着強度と変わらなかったため、絶縁層は優れた耐熱衝撃性を持つ。
In this embodiment, an insulating layer composed of a collection of maghemite granular fine particles is formed between two electromagnetic steel sheets, the adhesion strength of the insulating layer, the insulation resistance, the corrosion resistance based on the salt spray test, and the heat resistance based on the thermal shock test. Examine the impact. A non-oriented electrical steel sheet (for example, product number 35JNE250 having a thickness of 0.35 mm, which is a product of JFE Steel Corporation) was used as the electrical steel sheet. Non-oriented electrical steel sheets are used as cores for transformers other than large transformers and distribution transformers and as cores for various rotating machines. Note that the direction of magnetization of the magnetic steel sheet and the magnitude of the iron loss are properties inherent to the magnetic steel sheet, and any electromagnetic steel sheet can be used in forming the insulating layer. Further, iron naphthenate (for example, a product of Toei Chemical Co., Ltd.) was used as a raw material for maghemite.
First, iron naphthenate was dispersed in n-butanol at a rate of 10% by weight. The dispersion was mixed so that ethylene glycol accounted for 20% by weight. In addition, ethylene glycol is mixed with n-butanol at an arbitrary ratio, has a boiling point 80 ° C. higher than that of n-butanol, and has a viscosity 5.4 times that of n-butanol. Next, two electromagnetic steel sheets obtained by cutting the above-described electromagnetic steel sheets into 50 mm × 30 mm were prepared. The above mixed solution was applied to the corner of one electromagnetic steel sheet with a width of 12.5 mm and a length of 30 mm and a thickness of 20 μm. This mixed liquid was applied so that the width of 12.5 mm at the corner of another magnetic steel sheet overlapped with the applied portion of the mixed liquid, and a load of 30 kg was applied to the overlapped portion (the applied pressure on the applied surface was 8 kg / equivalent to cm 2 ). The two laminated electrical steel sheets were heat-treated in the atmosphere with a load applied. First, the temperature was raised to 120 ° C. to vaporize n-butanol, and then the temperature was raised to 200 ° C. to vaporize ethylene glycol. Further, the temperature was raised to 340 ° C. and left at 340 ° C. for 1 minute to thermally decompose iron naphthenate. Further, from 340 ° C. to 1 ° C./min. The temperature was raised to 390 ° C. at a rate of temperature rise of 390 ° C. and left at 390 ° C. for 30 minutes. Thereafter, the applied load was released and the mixture was gradually cooled to room temperature. In this way, 22 samples were prepared.
First, for one sample, a portion where two electromagnetic steel plates overlap, that is, a portion where an insulating layer was formed was cut, and a plurality of portions of the cut surface were observed with an electron microscope. The electron microscope used was an ultra-low acceleration voltage SEM from JFE Techno-Research Corporation. This apparatus is capable of observing the surface with an extremely low acceleration voltage from 100 V, and has a feature that the surface of the sample can be directly observed without forming a conductive film on the sample. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out, image processing was performed, and the surface of the cross section was observed. In any part, granular fine particles having a size of 40 nm to 60 nm were joined together, and the collection of granular fine particles formed an average thickness of about 2 μm to fill the gap. Next, the energy and intensity of characteristic X-rays were subjected to image processing, and the types of elements constituting the cross section and their distribution states were analyzed. Since both iron atoms and oxygen atoms are present uniformly and unevenly distributed portions are not observed, the particles are granular fine particles made of iron oxide. Furthermore, an EBSP analysis function was added to the function of the extremely low acceleration voltage SEM, and the crystal structure of the fine particles was analyzed. From this result, it was confirmed that the particulate fine particles forming the insulating layer were maghemite γ-Fe 2 O 3 which is a γ phase of iron oxide (III). The EBSP analysis function means that when a sample is irradiated with an electron beam, reflected electrons are diffracted by the atomic plane in the sample to form a band-like pattern, and the symmetry of this band corresponds to the crystal system. Since the band interval corresponds to the atomic plane interval, the pattern is analyzed to measure the crystal orientation and the crystal system. The result is schematically shown in FIG. 1 is a magnetic steel sheet, and 2 is granular fine particles of maghemite. Engaging in the irregularities on the surface of the two electromagnetic steel sheets 1, the collection of granular fine particles 2 of maghemy filled the layers.
Next, the adhesion strength of the insulating layer of the five samples was evaluated by a tensile test. The sample was 3 mm / min. The maximum tensile stress at the time when the insulating layer breaks was defined as the adhesion strength. The adhesion strength is 2.5 MPa to 3.0 MPa, and has sufficient adhesion strength as a processed iron core.
Furthermore, the resistance of the insulating layer broken in the tensile test was measured by the four-terminal method. The specific resistance of the five samples is 55 to 60 μΩm, and the insulating layer has high insulation properties that sufficiently reduce eddy current loss.
Next, a salt spray test using neutral 5% salt water was performed using the sample fractured in the tensile test. Since no discoloration was observed on the surface of the insulating layer, the insulating layer has excellent corrosion resistance.
Lastly, five samples were subjected to an air-bath thermal shock test that gave a temperature change of −30 ° C. to 120 ° C., and then the change in the adhesion strength of the insulating layer was examined by the tensile test described above. Since the adhesion strength after the thermal shock test was not different from the adhesion strength before the thermal shock test, the insulating layer has excellent thermal shock resistance.

実施形態3Embodiment 3

本実施形態は、実施形態2で製作した試料の11個を、歪取焼鈍を行うことを想定して、重ね合わせた部分に35kgの荷重を印加し、窒素雰囲気で800℃まで昇温し、2時間放置した後に室温まで徐冷した。この試料についても、実施形態2と同様に、絶縁層の密着強度と絶縁抵抗と耐食性と耐熱衝撃性とを調べた。
最初に、一つの試料について、実施形態2と同様に、2枚の電磁鋼板が重なる部分を切断し、切断面の複数の部位を電子顕微鏡で観察した。最初に反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行い、断面の表面を観察した。実施形態2と同様に、断面のどの部位も、40nm〜60nmの大きさの粒状微粒子同士が接合し、接合した粒状微粒子の集まりが平均で約2μmの厚みを形成して間隙を埋め尽くしていた。次に、特性X線のエネルギーとその強度を画像処理し、断面を構成する元素の種類とその分布状態を分析した。実施形態2と同様に、鉄原子と酸素原子との双方が均一に存在し、偏在する箇所が見られなかったため、微粒子は酸化鉄からなる粒状微粒子である。さらに、極低加速電圧SEMの機能にEBSP解析機能を付加し、微粒子の結晶構造の解析を行なった。この結果から、絶縁層を形成する粒状微粒子が酸化鉄(III)のα相であるヘマタイトα−Feであることが確認できた。この結果を図2に模式的に示す。2枚の電磁鋼板3の表面の凹凸に入り込んで、ヘマタイトの粒状微粒子4の集まりが層間を埋め尽くしていた。
次に、実施形態2と同様に、5つの試料について絶縁層の密着強度を引張試験で評価した。密着強度は1.5MPa〜2.0MPaであり、実施形態2より密着強度が若干低下した要因は、マグヘマイトがヘマタイトに相転移したため、ヘマタイトの微粒子と電磁鋼板との磁気吸着力と、ヘマタイトの微粒子同士の磁気吸着力とが低減したためと考える。しかし、絶縁層は依然として加工済みの鉄心としては、十分な密着強度を持つ。この理由は、マグヘマイト微粒子を析出させる際に、圧縮荷重を加えて熱処理したため、電磁鋼板同士がマグヘマイト微粒子を介してすでに圧着されていたためと考える。
さらに、実施形態2と同様に、引張試験で破断した絶縁層の抵抗を4端子法で測定した。5つの試料の比抵抗は500〜600μΩmであり、実施形態2より一桁絶縁抵抗が増大した。
次に、実施形態2と同様に、引張試験で破断した試料を用いて、塩水噴霧試験を行った。絶縁層の表面に変色が認められなかったので、絶縁層は優れた耐食性を持つ。
最後に、実施形態2と同様に、5つの試料を、−30℃〜120℃の温度変化を与える気槽熱衝撃試験を行い、この後、前記した引張試験で絶縁層の密着強度の変化を調べた。熱衝撃試験後の密着強度は、熱衝撃試験前と変わらず、絶縁層は優れた耐熱衝撃性を持つ。
In the present embodiment, assuming that 11 samples manufactured in Embodiment 2 are subjected to strain relief annealing, a 35 kg load is applied to the overlapped portion, and the temperature is raised to 800 ° C. in a nitrogen atmosphere. After standing for 2 hours, it was gradually cooled to room temperature. Also for this sample, the adhesion strength, insulation resistance, corrosion resistance, and thermal shock resistance of the insulating layer were examined as in the second embodiment.
First, as in Embodiment 2, for one sample, a portion where two electromagnetic steel plates overlap was cut, and a plurality of portions of the cut surface were observed with an electron microscope. First, a secondary electron beam between 900 V to 1 kV of the reflected electron beam was taken out, image processing was performed, and the surface of the cross section was observed. As in the second embodiment, the granular fine particles having a size of 40 nm to 60 nm are bonded to each other in the cross section, and the aggregate of the bonded granular fine particles forms an average thickness of about 2 μm to fill the gap. . Next, the energy and intensity of characteristic X-rays were subjected to image processing, and the types of elements constituting the cross section and their distribution states were analyzed. As in the second embodiment, since both iron atoms and oxygen atoms are present uniformly, and unevenly distributed portions are not seen, the fine particles are granular fine particles made of iron oxide. Furthermore, an EBSP analysis function was added to the function of the extremely low acceleration voltage SEM, and the crystal structure of the fine particles was analyzed. From this result, it was confirmed that the particulate fine particles forming the insulating layer were hematite α-Fe 2 O 3 which is an α phase of iron oxide (III). The result is schematically shown in FIG. The gathers of granular fine particles 4 of hematite filled the interlayers by entering the irregularities on the surfaces of the two electromagnetic steel sheets 3.
Next, as in Embodiment 2, the adhesion strength of the insulating layer was evaluated for the five samples by a tensile test. The adhesion strength is 1.5 MPa to 2.0 MPa, and the cause of the slight decrease in adhesion strength from the second embodiment is that maghemite has undergone phase transition to hematite, so that the magnetic adsorption force between the hematite fine particles and the magnetic steel sheet, and the hematite fine particles This is thought to be due to a reduction in the magnetic attractive force between each other. However, the insulating layer still has sufficient adhesion strength as a processed iron core. The reason for this is considered to be that when the maghemite fine particles were deposited, the heat treatment was performed by applying a compressive load, so that the magnetic steel sheets were already pressure-bonded via the maghemite fine particles.
Further, as in the second embodiment, the resistance of the insulating layer broken by the tensile test was measured by the four-terminal method. The specific resistance of the five samples was 500 to 600 μΩm, and the single-digit insulation resistance increased from that of the second embodiment.
Next, similarly to Embodiment 2, a salt spray test was performed using the sample fractured in the tensile test. Since no discoloration was observed on the surface of the insulating layer, the insulating layer has excellent corrosion resistance.
Finally, as in the second embodiment, the five samples were subjected to an air tank thermal shock test giving a temperature change of −30 ° C. to 120 ° C., and then the change in the adhesion strength of the insulating layer was determined by the tensile test described above. Examined. The adhesion strength after the thermal shock test is the same as before the thermal shock test, and the insulating layer has excellent thermal shock resistance.

本実施例は、実施形態2で製作した混合液を電磁鋼板に塗布し、この電磁鋼板の20枚を積層し、圧縮荷重を加えて鉄心の形状に加工し、さらに、圧縮荷重を加えて鉄心を熱処理し、マグヘマイトの粒状微粒子で絶縁層を形成させる鉄心を製作する実施例である。
実施形態2で用いた電磁鋼板に、実施形態2で製作した混合液を20μmの厚さで塗布し、この電磁鋼板を20枚重ね合わせ、280kgの荷重を印加した(加圧力は7.9kg/cmに相当)。この後、内径が3インチ(7.62cmに相当)で外径が4インチ(10.16cmに相当)のリング状に切断した。この積層した電磁鋼板を、荷重を加えた状態で、大気中で熱処理した。最初に120℃まで昇温しn−ブタノールを気化させ、次に200℃まで昇温しエチレングリコールを気化させた。さらに、340℃まで昇温し、340℃に1分間放置してナフテン酸鉄を熱分解した。さらに、340℃から1℃/min.の昇温速度で390℃まで昇温し、390℃に30分間放置した。この後、印加した荷重を開放し室温まで徐冷し、鉄心を製作した。
この鉄心の鉄損を住友金属テクノロジー株式会社の磁気特性測定装置を用いて測定した。鉄心の周波数が50Hzで、磁束密度が1.5テスラにおける鉄損は2.9W/kgであり、電磁鋼板のメーカのカタログ値の2.50W/kg以下に近い鉄損であり、マグヘマイトの微粒子の集まりで優れた絶縁層が、作成した鉄心に形成されたことが分かった。
In this example, the liquid mixture produced in the second embodiment is applied to an electrical steel sheet, 20 sheets of this electrical steel sheet are laminated, processed into a shape of an iron core by applying a compressive load, and further applied by applying a compressive load to the iron core. Is an example in which an iron core is formed by heat-treating and forming an insulating layer with maghemite granular fine particles.
The mixed liquid produced in the second embodiment was applied to the magnetic steel sheet used in the second embodiment in a thickness of 20 μm, and 20 sheets of this magnetic steel sheet were stacked and a load of 280 kg was applied (the applied pressure was 7.9 kg / equivalent to cm 2 ). Then, it was cut into a ring shape having an inner diameter of 3 inches (corresponding to 7.62 cm) and an outer diameter of 4 inches (corresponding to 10.16 cm). This laminated electrical steel sheet was heat-treated in air with a load applied. First, the temperature was raised to 120 ° C. to vaporize n-butanol, and then the temperature was raised to 200 ° C. to vaporize ethylene glycol. Further, the temperature was raised to 340 ° C. and left at 340 ° C. for 1 minute to thermally decompose iron naphthenate. Further, from 340 ° C. to 1 ° C./min. The temperature was raised to 390 ° C. at a temperature rising rate of 390 ° C. and left at 390 ° C. for 30 minutes. After that, the applied load was released and gradually cooled to room temperature to produce an iron core.
The iron loss of this iron core was measured using a magnetic property measuring device manufactured by Sumitomo Metal Technology Co., Ltd. When the frequency of the iron core is 50 Hz and the magnetic flux density is 1.5 Tesla, the iron loss is 2.9 W / kg, and the iron loss is close to 2.50 W / kg or less, which is the catalog value of the magnetic steel sheet manufacturer, and maghemite fine particles It was found that an excellent insulating layer was formed on the prepared iron core.

本実施例は、実施例1で製作した鉄心を、さらに、320kgの荷重を印加して窒素雰囲気で800℃まで昇温し、2時間放置した後に室温まで徐冷した。実施例1と同様に、この鉄心の鉄損を測定した。鉄損は2.7W/kgであり、ヘマタイトの微粒子の集まりによってさらに優れた絶縁層が形成されることが分かった。  In this example, the iron core manufactured in Example 1 was further heated to 800 ° C. in a nitrogen atmosphere by applying a load of 320 kg, allowed to stand for 2 hours, and then gradually cooled to room temperature. In the same manner as in Example 1, the iron loss of this iron core was measured. The iron loss was 2.7 W / kg, and it was found that a better insulating layer was formed by the collection of fine particles of hematite.

以上に説明したように、マグヘマイトとヘマタイトとの粒状微粒子の集まりの双方は、絶縁抵抗の値のみならず、4段落で説明した様々な性質を兼備する優れた絶縁層を形成する。また、こうした優れた絶縁層は、安価なナフテン酸鉄を熱分解するだけで形成できる。さらに、本発明では、電磁鋼板への被膜の形成から層間への絶縁層の形成に至るまで、連続した工程で多数個の鉄心が同時に連続して製造される。いっぽう、従来の鉄心の製造は、被膜が形成された電磁鋼板を、鉄心の形状に打ち抜くまたはせん断し、この後、加工した電磁鋼板を位置ずれがないように積層して鉄心を形成する分断された工程からなり、また、加工した電磁鋼板を積層する面倒な工程がある。このため、本発明に依れば、従来の鉄心より著しく安価に鉄心が製造できる。さらに、本発明に依れば、2段落で説明した従来の鉄心の加工方法に依る様々な問題を起こさない。また、従来の鉄心の製作方法では、電磁鋼板を加工する際と積層する際とに、被膜に損傷をもたらす恐れがあるが、本発明の鉄心の製造方法に依れば、被膜の損傷は起こらない。この結果、積層した電磁鋼板の層間に、マグヘマイトないしはヘマタイトからなる優れた性質を持つ欠陥のない絶縁層が、確実に全ての層間に形成できる。このように、本発明は従来では考えられない様々な優れた作用効果を持つ鉄心が、従来の製造方法に比べて著しく安価な費用で、多数個の鉄心を同時に連続して製造することができる画期的な鉄心の製造技術である。  As described above, both the aggregates of granular fine particles of maghemite and hematite form an excellent insulating layer having not only the value of insulation resistance but also various properties described in the fourth paragraph. Further, such an excellent insulating layer can be formed only by thermally decomposing inexpensive iron naphthenate. Furthermore, in the present invention, a large number of iron cores are manufactured simultaneously and continuously in a continuous process from the formation of a coating on an electromagnetic steel sheet to the formation of an insulating layer between layers. On the other hand, conventional iron core production is divided by punching or shearing a magnetic steel sheet with a coating formed into the shape of the iron core, and then laminating the processed magnetic steel sheets so that there is no misalignment to form the iron core. In addition, there is a troublesome process of laminating processed magnetic steel sheets. For this reason, according to the present invention, an iron core can be manufactured at a significantly lower cost than a conventional iron core. Furthermore, according to the present invention, various problems due to the conventional iron core processing method described in the second paragraph are not caused. Further, in the conventional iron core manufacturing method, there is a risk of damage to the coating film when processing and laminating the electromagnetic steel sheets. However, according to the iron core manufacturing method of the present invention, the coating film is not damaged. Absent. As a result, a defect-free insulating layer having excellent properties made of maghemite or hematite can be reliably formed between all the layers of the electromagnetic steel sheets. As described above, the present invention can produce a large number of iron cores at the same time at a significantly lower cost than the conventional manufacturing method, with the iron core having various excellent effects that cannot be considered in the past. This is a revolutionary iron core manufacturing technology.

1及び3 電磁鋼板 2 マグヘマイトの粒状微粒子 4 ヘマタイトの粒状微粒子  1 and 3 Electrical steel sheet 2 Granular fine particles of maghemite 4 Granular fine particles of hematite

Claims (10)

電磁鋼板への被膜の形成は、
熱分解で絶縁性の金属酸化物を析出する金属化合物をアルコールに分散してアルコール分散液を作成し、前記アルコールに溶解ないしは混和する第一の性質と、前記アルコールより粘度が高い第二の性質と、沸点が前記金属化合物の熱分解温度より低い第三の性質とからなる、これら3つの性質を兼備する有機化合物を、前記アルコール分散液に混合して混合液を作成し、該混合液を電磁鋼板に塗布する、これによって、前記電磁鋼板に前記混合液からなる被膜が形成されることを特徴とする、電磁鋼板への被膜の形成。
The formation of coatings on electrical steel sheets
A metal compound that precipitates an insulating metal oxide by thermal decomposition is dispersed in alcohol to create an alcohol dispersion, and the first property is dissolved or mixed in the alcohol, and the second property is higher in viscosity than the alcohol. An organic compound having these three properties, the boiling point of which is lower than the thermal decomposition temperature of the metal compound, is mixed with the alcohol dispersion to prepare a mixed solution. Coating on a magnetic steel sheet, whereby a film made of the mixed liquid is formed on the magnetic steel sheet.
請求項1における被膜が形成された電磁鋼板を積層し、該積層した電磁鋼板に圧縮荷重を加え、該積層した電磁鋼板を鉄心の形状に打ち抜くまたはせん断する、これによって、積層した電磁鋼板の層間に前記被膜が形成された鉄心が製作されることを特徴とする、積層した電磁鋼板の層間に被膜が形成された鉄心の製作。  The magnetic steel sheets on which the coating film is formed according to claim 1 are laminated, a compressive load is applied to the laminated electromagnetic steel sheets, and the laminated electromagnetic steel sheets are punched or sheared into the shape of an iron core, whereby the interlayer of the laminated electromagnetic steel sheets An iron core having a coating formed between layers of laminated electrical steel sheets, wherein the iron core having the coating formed thereon is manufactured. 請求項2における積層した電磁鋼板の層間に被膜が形成された鉄心を、圧縮荷重を加えて熱処理する、これによって、前記被膜を構成する金属化合物が熱分解して絶縁性の金属酸化物の微粒子が析出し、該金属酸化物の微粒子の集まりが、前記積層した電磁鋼板の層間に絶縁層を形成することを特徴とする、金属酸化物の微粒子の集まりからなる絶縁層の形成。  The iron core having a film formed between the layers of the laminated electrical steel sheets according to claim 2 is heat-treated by applying a compressive load, whereby the metal compound constituting the film is thermally decomposed to form insulating metal oxide fine particles. The insulating layer is formed of a collection of metal oxide fine particles, wherein the metal oxide fine particles are collected to form an insulating layer between the laminated electrical steel sheets. 請求項3における金属酸化物の微粒子の集まりからなる絶縁層が、酸化鉄(II)の粒状微粒子の集まりからなる絶縁層であって、該絶縁層の形成は、請求項3における積層した電磁鋼板の層間に被膜が形成された鉄心について、前記被膜を、熱分解で酸化鉄(II)を析出する有機鉄化合物をアルコールに分散したアルコール分散液と、前記アルコールに溶解ないしは混和する第一の性質と、前記アルコールより粘度が高い第二の性質と、沸点が前記有機鉄化合物の熱分解温度より低い第三の性質とからなる、これら3つの性質を兼備する有機化合物との混合液から構成し、該混合液からなる被膜が前記積層した電磁鋼板の層間に形成された鉄心を、請求項3に準じて圧縮荷重を加えて熱処理する、これによって、前記有機鉄化合物が熱分解して前記酸化鉄(II)の粒状微粒子が析出し、該酸化鉄(II)の粒状微粒子の集まりが、前記層間に絶縁層を形成することを特徴とする、酸化鉄(II)の粒状微粒子の集まりからなる絶縁層の形成。  The insulating layer made of a collection of metal oxide fine particles according to claim 3 is an insulating layer made of a collection of iron (II) particulate fine particles, and the insulating layer is formed by stacking the electromagnetic steel sheets according to claim 3. A first property of dissolving or mixing in an alcohol dispersion liquid in which an organic iron compound in which iron (II) oxide is deposited by thermal decomposition is dispersed in an alcohol, and an iron core in which a film is formed between the layers. And a second property having a viscosity higher than that of the alcohol and a third property having a boiling point lower than the thermal decomposition temperature of the organic iron compound, and a mixed solution of the organic compound having these three properties. The iron core in which the coating film made of the mixed solution is formed between the layers of the laminated electrical steel sheets is subjected to heat treatment by applying a compressive load according to claim 3, whereby the organic iron compound is heated. The granular particles of iron (II) oxide are precipitated, and the collection of granular particles of iron (II) forms an insulating layer between the layers. Formation of an insulating layer consisting of a collection of 請求項4における有機鉄化合物が、ナフテン酸鉄であることを特徴とする請求項4に記載した有機鉄化合物。  The organic iron compound according to claim 4, wherein the organic iron compound is iron naphthenate. 請求項4における有機化合物が、カルボン酸エステル類ないしはグリコール類ないしはグリコールエーテル類からなるいずれかの有機化合物であることを特徴とする請求項4に記載した有機化合物。  5. The organic compound according to claim 4, wherein the organic compound in claim 4 is any organic compound composed of carboxylic acid esters, glycols, or glycol ethers. 請求項4の絶縁層の形成に準じて、酸化鉄(II)の粒状微粒子の集まりで絶縁層を形成し、さらに、圧縮荷重を加えて鉄心を昇温する、これによって、前記酸化鉄(II)が酸化鉄(III)に酸化され、前記絶縁層がマグヘマイトの粒状微粒子の集まりで形成されることを特徴とする、マグヘマイトの粒状微粒子の集まりで形成された絶縁層の形成。  According to the formation of the insulating layer of claim 4, an insulating layer is formed by a collection of granular fine particles of iron (II) oxide, and the iron core is heated by applying a compressive load, whereby the iron oxide (II) ) Is oxidized to iron (III) oxide, and the insulating layer is formed of a collection of particulate maghemite particles. The formation of an insulating layer formed of a collection of particulate maghemite particles. 請求項7のマグヘマイトの粒状微粒子の集まりで絶縁層が形成された鉄心に、歪取焼鈍を実施する、これによって、前記マグヘマイトがヘマタイトに相転移し、該ヘマタイトの粒状微粒子の集まりが絶縁層を形成することを特徴とする、ヘマタイトの粒状微粒子の集まりで形成された絶縁層の形成。  The iron core on which an insulating layer is formed with a collection of maghemite particulates according to claim 7 is subjected to strain relief annealing, whereby the maghemite undergoes a phase transition to hematite, and the collection of particulate hematite particles forms an insulation layer. Formation of an insulating layer formed of a collection of granular fine particles of hematite, characterized in that it is formed. 積層した電磁鋼板の層間がマグヘマイトの粒状微粒子の集まりで絶縁された鉄心の製造方法は、ナフテン酸鉄をアルコールに分散して分散液を作成する第一の工程と、カルボン酸エステル類ないしはグリコール類ないしはグリコールエーテル類からなるいずれかの有機化合物を、前記第一の工程で作成したアルコール分散液に混合して混合液を作成する第二の工程と、該混合液を電磁鋼板に塗布する第三の工程と、該混合液が塗布された電磁鋼板を積層し、該積層した電磁鋼板を、圧縮荷重を加えて鉄心の形状に打ち抜くまたはせん断して鉄心を製作する第四の工程と、該鉄心に圧縮荷重を加えて熱処理する第五の工程とからなり、これら5つの工程を連続して実施する製造方法が、積層した電磁鋼板の層間がマグヘマイトの粒状微粒子の集まりで絶縁された鉄心を製造する製造方法であることを特徴とする、積層した電磁鋼板の層間がマグヘマイトの粒状微粒子の集まりで絶縁された鉄心の製造方法。  The manufacturing method of an iron core in which the layers of laminated electrical steel sheets are insulated by a collection of granular fine particles of maghemite includes a first step in which iron naphthenate is dispersed in alcohol to form a dispersion, and carboxylic acid esters or glycols. Or a second step of mixing any organic compound consisting of glycol ethers with the alcohol dispersion prepared in the first step to prepare a mixed solution, and a third step of applying the mixed solution to the electrical steel sheet. A fourth step of laminating the magnetic steel sheets coated with the mixed liquid, and punching or shearing the laminated magnetic steel sheets into a shape of an iron core by applying a compressive load, and the iron core; A manufacturing process in which these five processes are carried out continuously is a collection of granular fine particles of maghemite between the layers of the laminated electrical steel sheets. Production wherein the method is method of manufacturing a core of layers insulated with a collection of granular particles of maghemite laminated electromagnetic steel sheets to produce the insulated core with Ri. 積層した電磁鋼板の層間がヘマタイトの粒状微粒子の集まりで絶縁された鉄心の製造方法は、請求項9に準じて鉄心を製造し、さらに、前記鉄心に歪取焼鈍を実施する製造方法が、積層した電磁鋼板の層間がヘマタイトの粒状微粒子の集まりで絶縁された鉄心を製造する製造方法であることを特徴とする、積層した電磁鋼板の層間がヘマタイトの粒状微粒子の集まりで絶縁された鉄心の製造方法。  The manufacturing method of the iron core in which the layers of the laminated electrical steel sheets are insulated by the collection of granular fine particles of hematite is manufactured according to claim 9, and the manufacturing method for carrying out the stress relief annealing on the iron core is Manufacturing of an iron core in which the layers of laminated magnetic steel sheets are insulated with a collection of granular particles of hematite, characterized in that it is a manufacturing method for manufacturing an iron core in which the layers of magnetic steel sheets are insulated with a collection of granular particles of hematite Method.
JP2015087942A 2015-04-06 2015-04-06 A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3 Active JP6546438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087942A JP6546438B2 (en) 2015-04-06 2015-04-06 A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087942A JP6546438B2 (en) 2015-04-06 2015-04-06 A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3

Publications (3)

Publication Number Publication Date
JP2016196701A true JP2016196701A (en) 2016-11-24
JP2016196701A5 JP2016196701A5 (en) 2017-10-12
JP6546438B2 JP6546438B2 (en) 2019-07-17

Family

ID=57358107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087942A Active JP6546438B2 (en) 2015-04-06 2015-04-06 A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3

Country Status (1)

Country Link
JP (1) JP6546438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090836A (en) * 2016-11-30 2018-06-14 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
JP2021089965A (en) * 2019-12-04 2021-06-10 小林 博 Manufacturing method of manufacturing iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles made of magnesium oxide or aluminum oxide deposited in gap between laminated electromagnetic steel sheets

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197318A (en) * 1998-12-24 2000-07-14 Nippon Steel Corp Magnetic core and its manufacture
US20040046632A1 (en) * 2001-10-05 2004-03-11 Tomoji Kumano Iron core exhibiting excellent insulating property at end face, and method for coating end face of iron core
JP2005332976A (en) * 2004-05-20 2005-12-02 Matsushita Electric Ind Co Ltd Manufacturing method of laminated body
JP2007281314A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd Soft magnetic alloy ribbon laminate and its manufacturing method
JP2012046825A (en) * 2004-10-18 2012-03-08 Nippon Steel Corp Heat resistant adhesive insulating film
JP2014201831A (en) * 2013-04-08 2014-10-27 小林 博 Modification of property of part, substrate or material
JP2015056392A (en) * 2013-09-13 2015-03-23 小林 博 Production of electroconductive paste material and production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197318A (en) * 1998-12-24 2000-07-14 Nippon Steel Corp Magnetic core and its manufacture
US20040046632A1 (en) * 2001-10-05 2004-03-11 Tomoji Kumano Iron core exhibiting excellent insulating property at end face, and method for coating end face of iron core
JP2005332976A (en) * 2004-05-20 2005-12-02 Matsushita Electric Ind Co Ltd Manufacturing method of laminated body
JP2012046825A (en) * 2004-10-18 2012-03-08 Nippon Steel Corp Heat resistant adhesive insulating film
JP2007281314A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd Soft magnetic alloy ribbon laminate and its manufacturing method
JP2014201831A (en) * 2013-04-08 2014-10-27 小林 博 Modification of property of part, substrate or material
JP2015056392A (en) * 2013-09-13 2015-03-23 小林 博 Production of electroconductive paste material and production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090836A (en) * 2016-11-30 2018-06-14 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
JP2021089965A (en) * 2019-12-04 2021-06-10 小林 博 Manufacturing method of manufacturing iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles made of magnesium oxide or aluminum oxide deposited in gap between laminated electromagnetic steel sheets
JP7153413B2 (en) 2019-12-04 2022-10-14 博 小林 A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles composed of magnesium oxide or aluminum oxide deposited in the gaps of laminated electromagnetic steel sheets

Also Published As

Publication number Publication date
JP6546438B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
US7887647B2 (en) Soft magnetic material and dust core produced therefrom
US20120326830A1 (en) Reactor and method for manufacturing same
JPWO2014068928A1 (en) Composite magnetic body and method for producing the same
EP2978549B1 (en) Non-corrosive soft-magnetic powder
JP6546438B2 (en) A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3
US7029769B2 (en) Insulation film, powder for magnetic core and powder magnetic core and processes for producing the same
JP2016196701A5 (en)
EP1887585A1 (en) Low magnetostriction body and dust core using same
JP7332283B2 (en) dust core
JP7153413B2 (en) A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles composed of magnesium oxide or aluminum oxide deposited in the gaps of laminated electromagnetic steel sheets
JP2021089965A5 (en)
WO2021095467A1 (en) Dust core
JP2008143720A (en) Magnetite-iron composite powder, its manufacturing method and dust core
JP5091100B2 (en) Soft magnetic material and manufacturing method thereof
Oikonomou Surface characterization of soft magnetic composite powder and compacts
JP6195435B2 (en) Method for producing corrosion-resistant rare earth magnet
JP7377076B2 (en) Manufacturing method of powder magnetic core
JP6504704B2 (en) Method of covering a rare earth magnet with a protective film which combines insulation and gas impermeability
Chen et al. Fabrication and excellent performance of amorphous FeSiBCCr/organic-inorganic hybrid powder core
JP7348596B2 (en) powder magnetic core
JP2019067683A5 (en)
Zhang et al. Hydroxyethylidene-1, 1-diphosphonic acid surface treatment as insulation technology for iron based soft magnetic composites
JP2019067683A (en) Manufacturing method for continuously manufacturing insulation wire in which conductor is insulated by aggregate of maghemite fine particles
JP2023048943A (en) Method for insulating surface of conductor of electric wire with aggregate of fine particle of maghemite magnetically absorbed each other of magnetically saturated maghemite fine particle
JP6715489B2 (en) Method for forming paste that suppresses electromagnetic noise

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6546438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250