JP2021089965A5 - - Google Patents

Download PDF

Info

Publication number
JP2021089965A5
JP2021089965A5 JP2019219433A JP2019219433A JP2021089965A5 JP 2021089965 A5 JP2021089965 A5 JP 2021089965A5 JP 2019219433 A JP2019219433 A JP 2019219433A JP 2019219433 A JP2019219433 A JP 2019219433A JP 2021089965 A5 JP2021089965 A5 JP 2021089965A5
Authority
JP
Japan
Prior art keywords
electromagnetic steel
fine particles
iron core
laminated
steel sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019219433A
Other languages
Japanese (ja)
Other versions
JP7153413B2 (en
JP2021089965A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2019219433A priority Critical patent/JP7153413B2/en
Priority claimed from JP2019219433A external-priority patent/JP7153413B2/en
Publication of JP2021089965A publication Critical patent/JP2021089965A/en
Publication of JP2021089965A5 publication Critical patent/JP2021089965A5/ja
Application granted granted Critical
Publication of JP7153413B2 publication Critical patent/JP7153413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

積層した電磁鋼板の間隙に析出させた酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士の接合を介して電磁鋼板同士を結合させた鉄心を製造する製造方法A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles made of magnesium oxide or aluminum oxide deposited in the gaps between the laminated electromagnetic steel sheets.

本発明は、電動機、変圧器などの電気機器に使用される鉄心の製造方法に関わり、積層した電磁鋼板の間隙に析出させた酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士の接合を介して電磁鋼板同士を結合させた鉄心を製造する製造方法である。なお、酸化マグネシウムないしは酸化アルミニウムは、耐熱性と硬度と圧縮強度とのいずれもが、電磁鋼板より高いため、酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士の接合を介して電磁鋼板同士を結合させたることができる。なお、電磁鋼板は、結晶方位の揃い方や磁区の幅をコントロールするために、鉄にケイ素を加え、磁気的な性質を改良した鉄板であり、ケイ素を含むことから珪素鋼板と呼ばれたが、ケイ素を含まない電磁鋼板が存在するため、現在では電磁鋼板と呼ぶ。 The present invention relates to a method for manufacturing an iron core used in an electric device such as an electric motor or a transformer, and the electromagnetic steel sheets are joined together with fine particles made of magnesium oxide or aluminum oxide deposited in the gaps between the laminated electromagnetic steel sheets. It is a manufacturing method for manufacturing an iron core in which the steel cores are bonded. Since magnesium oxide or aluminum oxide has higher heat resistance, hardness, and compression strength than electromagnetic steel plates, the electromagnetic steel plates are bonded to each other through the bonding of fine particles made of magnesium oxide or aluminum oxide. Can be done. In addition, the electromagnetic steel sheet is an iron plate with improved magnetic properties by adding silicon to iron in order to control the alignment of crystal orientation and the width of the magnetic zone, and it was called a silicon steel sheet because it contains silicon. Since there are electromagnetic steel sheets that do not contain silicon, they are now called electromagnetic steel sheets.

電動機や変圧器などの電気機器に使用する鉄心は、絶縁被膜を形成した電磁鋼板を積層し、溶接またはカシメによって電磁鋼板同士を固着し、または、絶縁被膜を形成した電磁鋼板に接着剤を塗布して電磁鋼板同士を接着し、最後に、積層した電磁鋼板を鉄心の形状に切断し、積層した電磁鋼板から多数個の鉄心を製造する。積層した電磁鋼板から多数個の鉄心を連続して製造するため、製造された鉄心は安価である。
つまり、電磁鋼板は圧延工程で製造されるため、表面の平坦度は、アトマイズ製法で製造される鉄粉によって代表される軟磁性粉の表面の平坦度に比べると著しく優れる。このため、電磁鋼板に形成した絶縁被膜と電磁鋼板とのアンカー効果に基づく結合力が著しく小さい。従って、積層した電磁鋼板を打ち抜く際の衝撃によって、絶縁被膜が電磁鋼板の表面から容易に剥離する。このため、積層した電磁鋼板を固着させる処理が必要になる。従って、絶縁化させた軟磁性粉の集まりを金型内に充填し、さらに、圧縮し、金型内に圧粉磁心を製造する製造方法と異なる。
いっぽう、製造した鉄心の鉄損が許容できる範囲であれば、鉄心を電気機器に組み込んで使用する。鉄損の大きさが許容できない場合は、鉄心を磁気焼鈍し、鉄心のヒステリシス損失を低減させる。なお、鉄心を電磁変換する際に発生するエネルギー損失は、渦電流損失とヒステリシス損失とからなり、両者を合わせて鉄損という。この鉄損によって鉄心が発熱する。鉄損を低減させるには、電磁鋼板の絶縁性を高め、電磁鋼板同士の間隙を流れる渦電流を減少させる。ないしは、鉄心を磁気焼鈍して電磁鋼板の加工歪を解消させ、電磁鋼板の保持力を元に戻し、ヒステリシス損失を低減させる。なお、焼鈍の処理を、電磁鋼板の加工歪を取りさせる歪取り焼鈍と表現する場合があるが、本発明では電磁鋼板の保持力を元に戻す磁気焼鈍と表現する。
For iron cores used in electrical equipment such as motors and transformers, electromagnetic steel sheets with an insulating coating are laminated, and the electrical steel sheets are fixed to each other by welding or caulking, or adhesive is applied to the electrical steel sheets with an insulating coating. Then, the electromagnetic steel sheets are bonded to each other, and finally, the laminated electromagnetic steel sheets are cut into the shape of an iron core, and a large number of iron cores are manufactured from the laminated electromagnetic steel sheets. Since a large number of cores are continuously manufactured from laminated electromagnetic steel sheets, the manufactured cores are inexpensive.
That is, since the electromagnetic steel sheet is manufactured in the rolling process, the flatness of the surface is remarkably superior to the flatness of the surface of the soft magnetic powder represented by the iron powder manufactured by the atomizing method. Therefore, the bonding force based on the anchor effect between the insulating film formed on the electrical steel sheet and the electrical steel sheet is extremely small. Therefore, the insulating film is easily peeled off from the surface of the electrical steel sheet due to the impact when punching the laminated electrical steel sheet. Therefore, a process for fixing the laminated electromagnetic steel sheets is required. Therefore, it is different from the manufacturing method in which a collection of insulated soft magnetic powder is filled in a mold and further compressed to produce a dust core in the mold.
On the other hand, if the iron loss of the manufactured iron core is within the allowable range, the iron core is incorporated into the electric equipment and used. If the magnitude of the iron loss is unacceptable, the core is magnetically annealed to reduce the hysteresis loss of the core. The energy loss generated when the iron core is electromagnetically converted consists of an eddy current loss and a hysteresis loss, and both are collectively referred to as an iron loss. This iron loss causes the iron core to generate heat. In order to reduce the iron loss, the insulating property of the electromagnetic steel sheets is improved, and the eddy current flowing through the gaps between the electromagnetic steel sheets is reduced. Alternatively, the iron core is magnetically annealed to eliminate the machining strain of the electrical steel sheet, restore the holding force of the electrical steel sheet, and reduce the hysteresis loss. The annealing process may be referred to as strain-removing annealing that removes the machining strain of the electrical steel sheet, but in the present invention, it is expressed as magnetic annealing that restores the holding force of the electrical steel sheet.

いっぽう、従来の鉄心の製造方法は、積層した電磁鋼板を固着する際に、様々な問題が発生する。例えば、積層した電磁鋼板の端部を溶接で固着する場合は、溶接時に電磁鋼板に熱歪みが発生し、電磁鋼板のヒステリシス損失が増える。また、溶接の際に絶縁層から気化した物質が、あるいは、飛散した物質が、絶縁層を攻撃し、ピンホールを絶縁層に形成する。さらに、カシメによって積層した電磁鋼板を固着する場合は、かしめる際に加える荷重で歪みが発生し、電磁鋼板のヒステリシス損失が増える。また、積層した電磁鋼板の面積が大きい場合は、カシメ強度がばらつき、固着強度が足らない部分が発生する。あるいは、電磁鋼板の厚みが薄い場合は、十分なカシメ強度が得られない。さらに、接着剤により電磁鋼板同士を接着する場合は、絶縁被膜を形成した電磁鋼板に接着剤を塗布し、この電磁鋼板を一枚一枚積層する作業性が悪い。また、電磁鋼板の面積が大きい場合は、接着剤の厚みがばらつき、接着強度が足らない部分が発生する。さらに、接着剤の耐熱性が低く、鉄心の磁気焼鈍によって接着剤が熱分解し、電磁鋼板同士の間隙の絶縁性が低下する。このように、積層した電磁鋼板を固着する際に、様々な問題が発生する。
つまり、電磁鋼板の表面が平坦であるため、電磁鋼板に形成した絶縁被膜と電磁鋼板とのアンカー効果に基づく結合力が著しく小さい。このため、積層した電磁鋼板を打ち抜く際に、絶縁被膜に衝撃が加わり、絶縁被膜が電磁鋼板の間隙から容易に剥離ないしは脱落し、電磁鋼板同士の間隙の絶縁性がなくなる。従って、従来の鉄心の製造方法では、積層した電磁鋼板を固着させる処理が必須になる。このため、積層した電磁鋼板を固着させる際に発生する問題は、固着方法を変えない限り、問題を解決することはできない。しかし、金属からなる電磁鋼板同士を容易に固着させる手段は、前記した3つの手段に限られる。従って、積層した電磁鋼板を固着させる処理が不要になる、新たな鉄心の製造方法を見出せれば、この問題が根本的に解決される。
On the other hand, the conventional method for manufacturing an iron core causes various problems when fixing the laminated electromagnetic steel sheets. For example, when the end portions of the laminated electromagnetic steel sheets are fixed by welding, thermal strain occurs in the electromagnetic steel sheets during welding, and the hysteresis loss of the electromagnetic steel sheets increases. In addition, substances vaporized from the insulating layer during welding or scattered substances attack the insulating layer and form pinholes in the insulating layer. Further, when the magnetic steel sheets laminated by caulking are fixed, distortion occurs due to the load applied at the time of caulking, and the hysteresis loss of the electrical steel sheets increases. Further, when the area of the laminated electromagnetic steel sheets is large, the caulking strength varies, and a portion where the fixing strength is insufficient is generated. Alternatively, if the thickness of the electrical steel sheet is thin, sufficient caulking strength cannot be obtained. Further, when the electromagnetic steel sheets are bonded to each other by an adhesive, the workability of applying the adhesive to the electromagnetic steel sheets having an insulating film and laminating the electromagnetic steel sheets one by one is poor. Further, when the area of the magnetic steel sheet is large, the thickness of the adhesive varies, and a portion where the adhesive strength is insufficient is generated. Further, the heat resistance of the adhesive is low, and the adhesive is thermally decomposed by magnetic annealing of the iron core, and the insulating property of the gap between the electromagnetic steel sheets is lowered. As described above, various problems occur when the laminated electromagnetic steel sheets are fixed.
That is, since the surface of the electrical steel sheet is flat, the bonding force based on the anchor effect between the insulating film formed on the electrical steel sheet and the electrical steel sheet is extremely small. Therefore, when the laminated electromagnetic steel sheets are punched out, an impact is applied to the insulating coating, and the insulating coating is easily peeled off or dropped from the gaps between the electromagnetic steel sheets, and the insulation between the gaps between the electromagnetic steel sheets is lost. Therefore, in the conventional method for manufacturing an iron core, a process of fixing the laminated electromagnetic steel sheets is indispensable. Therefore, the problem that occurs when the laminated electromagnetic steel sheets are fixed cannot be solved unless the fixing method is changed. However, the means for easily fixing the electromagnetic steel sheets made of metal to each other are limited to the above-mentioned three means. Therefore, if a new method for manufacturing an iron core, which eliminates the need for the process of fixing the laminated electromagnetic steel sheets, can be found, this problem can be fundamentally solved.

さらに、従来の鉄心の製造方法は、溶接する際に熱歪が発生し、かしめる際にカシメ部に加工歪が発生し、さらに、電磁鋼板を打ち抜く際に加工歪が発生する。このような様々な歪によって、電磁鋼板の保持力が増大し、鉄心のヒステリシス損失が増える。このため、ヒステリシス損を減らす磁気焼鈍を行なってから鉄心を電気機器に組み込む。いっぽう磁気焼鈍は、750−820℃の温度で、電磁鋼板が酸化されない還元雰囲気で行うため、従来は、電磁鋼板の絶縁被膜は耐熱性が高いクロム化合物が用いられてきた。しかし、欧州向けの電気製品のRoHs指令(有害物質制限指令)や、国内のグリーン購入法(国による環境物品等の調達の推進に関する法律)により、環境負荷物質である重金属の使用が制限され、クロム化合物を含まない絶縁被膜が必要とされている。 Further, in the conventional method for manufacturing an iron core, thermal strain is generated at the time of welding, machining strain is generated at the caulked portion at the time of caulking, and further, machining strain is generated at the time of punching the electromagnetic steel sheet. Due to such various strains, the holding force of the electrical steel sheet is increased, and the hysteresis loss of the iron core is increased. Therefore, the iron core is incorporated into the electrical equipment after magnetic annealing to reduce hysteresis loss. On the other hand, magnetic annealing is performed at a temperature of 750-820 ° C. in a reducing atmosphere in which the electrical steel sheet is not oxidized. Therefore, conventionally, a chromium compound having high heat resistance has been used for the insulating film of the electrical steel sheet. However, the RoHS Directive (Hazardous Substance Restriction Directive) for electrical products for Europe and the Domestic Green Purchasing Law (Act on Promotion of Procurement of Environmental Goods by the Government) restrict the use of heavy metals, which are environmentally hazardous substances. There is a need for an insulating coating that does not contain chromium compounds.

こうした絶縁層に関わる様々な問題や課題を解決する様々な提案がなされている。
例えば、特許文献1には、シラン化合物とシランカップリング剤とシリカ粒子とを含む表面処理剤を用い、表面粗さ曲線のスキューネスRskを1以下にした表面に、前記表面処理剤で絶縁被膜を形成することで、絶縁性と耐テンションパッド性と打ち抜き性とに優れたクロムフリーの絶縁膜が形成される技術が提案されている。ここで、スキューネスRskとは、表面粗さの山部と谷部との平均線を中心にしたときの山部と谷部との対称性を表し、Rskが正であれば、平均線の下側に表面粗さ曲線が偏っていることを意味するので、表面粗さにおける山部より谷部の体積のほうが大きい。また、耐テンションパッド性とは、フェルト状のテンションパッドで、絶縁被膜付き電磁鋼板表面をこする際の絶縁被膜の剥がれにくさを表す。
しかし、本絶縁被膜の熱膨張率は、電磁鋼板の熱膨張率より1桁近く小さい。従って、磁気焼鈍のような急激な温度変化で、絶被膜が電磁鋼板から剥離し、剥離した絶縁被膜は耐食性と耐油性を持たない。いっぽう、鉄心を製造する際は、本絶縁被膜を形成した電磁鋼板を積層し、積層した電磁鋼板を固着させ、この後、積層した電磁鋼板を打ち抜く。電磁鋼板に加工歪が発生するため、磁気焼鈍が必要になり、磁気焼鈍の際に、前記した問題が発生する。
Various proposals have been made to solve various problems and problems related to such an insulating layer.
For example, in Patent Document 1, a surface treatment agent containing a silane compound, a silane coupling agent, and silica particles is used, and an insulating film is formed on a surface having a surface roughness curve with a skewness Rsk of 1 or less. A technique has been proposed in which a chrome-free insulating film having excellent insulation, tension pad resistance, and punching property is formed by forming the insulating film. Here, the skewness Rsk represents the symmetry between the peaks and valleys when the average line between the peaks and valleys of the surface roughness is centered, and if Rsk is positive, it is below the average line. Since it means that the surface roughness curve is biased to the side, the volume of the valley part is larger than that of the mountain part in the surface roughness. Further, the tension pad resistance is a felt-shaped tension pad, and represents the difficulty of peeling of the insulating film when rubbing the surface of the electromagnetic steel sheet with an insulating film.
However, the coefficient of thermal expansion of this insulating coating is nearly an order of magnitude smaller than the coefficient of thermal expansion of the magnetic steel sheet. Therefore, due to a sudden temperature change such as magnetic annealing, the stripped film is peeled from the electromagnetic steel sheet, and the peeled insulating film does not have corrosion resistance and oil resistance. On the other hand, when manufacturing an iron core, the electromagnetic steel sheets having the main insulating film formed are laminated, the laminated electromagnetic steel sheets are fixed, and then the laminated electromagnetic steel sheets are punched out. Since the electrical steel sheet is subjected to machining strain, magnetic annealing is required, and the above-mentioned problems occur during magnetic annealing.

また、特許文献2には、強酸性でエッチング性の強い硝酸と金属硝酸塩と、金属リン酸塩とキレート剤とを用いて、リン酸化合物からなる絶縁層を形成し、製造直後の白化、保管時の白化、およびブルーイング処理後の密着性劣化が抑制されたクロムフリーの絶縁被膜が形成される技術が提案されている。ここで、白化とは、電磁鋼板を酸性のエッチング液でエッチングする際に、電磁鋼板の鉄が溶出し、絶縁被膜を形成する処理液中のリン酸塩と反応してリン酸鉄を形成する、あるいは、電磁鋼板を高温多湿の環境に長期間保管する際に、結露によって電磁鋼板の表面に水酸化物が形成され、これらによって電磁鋼板が変色することを意味する。また、切断又は打ち抜きされた電磁鋼板からモータやトランスに加工する際、端面短絡の抑制ならびに切断や打抜き端面の防錆性向上のため、表面が干渉色を呈する程度にまで鋼板を酸化処理(これをブルーイング処理ともいう)させる。このようなブルーイング処理を行うと、絶縁被膜の密着性が劣化する。
しかし、絶縁被膜が形成される電磁鋼板に要求される性質は、白化防止と絶縁膜の密着性に限らない。例えば、打ち抜き性がある。本技術だけでは十分な打ち抜き性が得られないため、水性の合成樹脂を添加する記載がある。しかし、水性の合成樹脂は磁気焼鈍における耐熱性を持たない。このため、打ち抜き性と磁気焼鈍の実施が両立しない。また、絶縁被膜の絶縁性がある。本技術だけでは十分な絶縁抵抗が得られないため、コロイダルシリカを添加する記載がある。しかし、コロイダルシリカの熱膨張率は電磁鋼板の熱膨張率より1桁近く小さいため、磁気焼鈍のような急激な温度変化で、絶縁被膜が剥離する。さらに、強酸性のエッチング液を用いるため、絶縁被膜の形成後に十分な洗浄が必要になり、また、環境面から廃液処理に多くの費用が掛かる。このために製作費用が増大する。
Further, in Patent Document 2, an insulating layer made of a phosphoric acid compound is formed by using nitric acid and metal nitrate, which are strongly acidic and have strong etching properties, and a metal phosphate and a chelating agent, and whitening and storage immediately after production. A technique for forming a chrome-free insulating film in which whitening during time and deterioration of adhesion after brewing treatment are suppressed has been proposed. Here, whitening means that when an electromagnetic steel sheet is etched with an acidic etching solution, iron in the electromagnetic steel sheet elutes and reacts with a phosphate in a treatment liquid that forms an insulating film to form iron phosphate. Alternatively, it means that when the electrical steel sheet is stored in a hot and humid environment for a long period of time, hydroxide is formed on the surface of the electrical steel sheet due to dew condensation, which discolors the electrical steel sheet. In addition, when processing a cut or punched electrical steel sheet into a motor or transformer, the steel sheet is oxidized to the extent that the surface exhibits an interference color in order to suppress short-circuiting of the end face and improve the rust prevention of the cut or punched end face. Is also called brewing process). When such a bluing treatment is performed, the adhesion of the insulating film deteriorates.
However, the properties required for the electrical steel sheet on which the insulating film is formed are not limited to whitening prevention and adhesion of the insulating film. For example, it has punching property. Since sufficient punching property cannot be obtained by this technology alone, there is a description that an aqueous synthetic resin is added. However, the water-based synthetic resin does not have heat resistance in magnetic annealing. Therefore, punching property and magnetic annealing are not compatible with each other. In addition, there is an insulating property of the insulating film. Since sufficient insulation resistance cannot be obtained by this technology alone, there is a description that colloidal silica is added. However, since the coefficient of thermal expansion of colloidal silica is nearly an order of magnitude smaller than the coefficient of thermal expansion of electrical steel sheets, the insulating film is peeled off by a sudden temperature change such as magnetic annealing. Further, since a strongly acidic etching solution is used, sufficient cleaning is required after the formation of the insulating film, and the waste liquid treatment is costly due to the environmental aspect. This increases the production cost.

いっぽう、絶縁層は、絶縁抵抗のみならず、鉄心を製造する上で、また、鉄心を組み込んだ電気機器を長期に使用する上で、以下に説明する様々な性質が要求される。
第一の性質は、積層した電磁鋼板の連続打ち抜き性に関わる。つまり、絶縁物の耐熱性を高めるため、無機材料からなる絶縁材料を用いると、絶縁膜が形成された積層した電磁鋼板を、プレス機で連続して打ち抜く際に、無機材料の硬度が高いため、カッターの刃の摩耗が進む。このため、カッターの刃を攻撃せず、耐熱性が高く、絶縁性が高い性質が望ましい。第二の性質は、積層した電磁鋼板の溶接性に関わる。つまり、積層した電磁鋼板の端面を溶接する際に、溶接がしやすく、また、溶接の際に絶縁層から気化した物質が、あるいは、飛散した物質が、絶縁層を攻撃し、ピンホールを絶縁層に形成しないことが必要になる。第三の性質は、電磁鋼板を積層する際や打ち抜く際に、絶縁層が電磁鋼板の平面から脱落ないしは剥離しない密着強度が必要になる。第四の性質は、磁気焼鈍に耐える耐熱性が必要になる。第五の性質は、磁気焼鈍の際にスティッキングと呼ばれる電磁鋼板同士の焼き付きを起こさせないことが必要になる。第六の性質は、磁気焼鈍のような急激な温度変化でも、絶縁層にクラックが入らない、また、絶縁層が剥離しない耐熱衝撃性が必要になる。第七の性質は、鉄心が熱水や塩水に浸漬される場合は、熱水や塩水に耐える耐食性が必要になる。第八の性質は、高温の絶縁油に長時間鉄心が浸漬される場合は、高温の絶縁油に長時間浸漬されても、絶縁抵抗と電磁鋼板同士の密着強度とが変わらないことが必要になる。
しかしながら、上記の8つの性質に、従来の絶縁材料では両立できない性質がある。例えば、無機材料からなる絶縁物の多くが、耐熱性が高く、硬度も高いため、第四と第六の性質を満たすが、第一の性質は満たさない。また、絶縁層と電磁鋼板との密着強度が高いと、第三の性質を満たすが、第四から第八の性質は密着強度とは異なるため、第四から第八の性質を満たすとは限らない。従って、8つの全ての性質を満たす絶縁層を実現することは困難である。
ところで、上記の8つの性質の全てが、絶縁層の材質に起因しない。すなわち、第一の性質は、積層した電磁鋼板を打ち抜く際に発生する課題であるため、積層した電磁鋼板を打ち抜かなければ、第一の性質は不要になる。また、第二の性質は、積層した電磁鋼板を溶接で固着する際に発生する課題であるため、積層した電磁鋼板を溶接しなければ、第二の性質は不要になる。さらに、第三の性質は、電磁鋼板を積層する際や打ち抜く際に発生する課題であるため、積層した電磁鋼板を打ち抜かなければ、第三の性質は不要になる。
従って、絶縁層に要求される8つの全ての性質を実現するには、第一から第三までの性質を不要とする、新たな製造方法で鉄心を製造し、さらに、新たな材質と新たな材料構造とによって、第四から第八までの性質を満たす絶縁層を形成する方法を見出すしかない。また、3段落に記載した積層した電磁鋼板を固着する際に発生する問題は、積層した電磁鋼板を固着させる処理が不要になる、新たな鉄心の製造方法を見出させれば、問題が解決できる。このように新たな製造方法で鉄心を製造する製造方法が求められている。
On the other hand, the insulating layer is required to have various properties described below not only for insulating resistance but also for manufacturing an iron core and for long-term use of an electric device incorporating an iron core.
The first property is related to the continuous punching property of the laminated magnetic steel sheets. In other words, if an insulating material made of an inorganic material is used to improve the heat resistance of the insulating material, the hardness of the inorganic material is high when the laminated electromagnetic steel sheet on which the insulating film is formed is continuously punched by a press machine. , The wear of the cutter blade progresses. Therefore, it is desirable that the cutter blade is not attacked, the heat resistance is high, and the insulating property is high. The second property is related to the weldability of the laminated electrical steel sheets. That is, when welding the end faces of the laminated electrical steel sheets, it is easy to weld, and the substance vaporized from the insulating layer or the scattered substance attacks the insulating layer and insulates the pinhole. It is necessary not to form a layer. The third property is that when the electrical steel sheets are laminated or punched, the insulating layer needs to have an adhesion strength that does not fall off or peel off from the flat surface of the electrical steel sheets. The fourth property requires heat resistance to withstand magnetic annealing. The fifth property is that it is necessary to prevent seizure between electrical steel sheets called sticking during magnetic annealing. The sixth property is that heat resistance is required so that the insulating layer does not crack and the insulating layer does not peel off even with a sudden temperature change such as magnetic annealing. The seventh property is that when the iron core is immersed in hot water or salt water, it needs to have corrosion resistance to withstand hot water or salt water. The eighth property is that when the iron core is immersed in high-temperature insulating oil for a long time, it is necessary that the insulation resistance and the adhesion strength between the electromagnetic steel sheets do not change even if they are immersed in high-temperature insulating oil for a long time. Become.
However, the above eight properties are incompatible with conventional insulating materials. For example, many of the insulators made of inorganic materials have high heat resistance and high hardness, so that they satisfy the fourth and sixth properties, but not the first property. Further, if the adhesion strength between the insulating layer and the electrical steel sheet is high, the third property is satisfied, but since the fourth to eighth properties are different from the adhesion strength, the fourth to eighth properties are not always satisfied. No. Therefore, it is difficult to realize an insulating layer satisfying all eight properties.
By the way, all of the above eight properties are not caused by the material of the insulating layer. That is, since the first property is a problem that occurs when the laminated electromagnetic steel sheets are punched out, the first property becomes unnecessary unless the laminated electromagnetic steel sheets are punched out. Further, since the second property is a problem that occurs when the laminated electromagnetic steel sheets are fixed by welding, the second property becomes unnecessary unless the laminated electromagnetic steel sheets are welded. Further, since the third property is a problem that occurs when the laminated electromagnetic steel sheets are laminated or punched out, the third property becomes unnecessary unless the laminated electromagnetic steel sheets are punched out.
Therefore, in order to realize all eight properties required for the insulating layer, the iron core is manufactured by a new manufacturing method that does not require the first to third properties, and new materials and new materials are used. There is no choice but to find a way to form an insulating layer that satisfies the fourth to eighth properties depending on the material structure. Further, the problem that occurs when the laminated electromagnetic steel sheets are fixed as described in paragraph 3 can be solved by finding a new method for manufacturing an iron core that does not require the process of fixing the laminated electromagnetic steel sheets. As described above, there is a demand for a manufacturing method for manufacturing an iron core by a new manufacturing method.

特開2015−10242号公報Japanese Unexamined Patent Publication No. 2015-10242 特開2013−249486号公報Japanese Unexamined Patent Publication No. 2013-249486

3段落で説明したように、積層した電磁鋼板を固着する際に様々な問題が起こり、積層した電磁鋼板を固着させる処理が不要になる、新たな鉄心の製造方法を見出さなければ問題は解決しない。また、7段落で説明した絶縁層に要求される8つの性質は、第一から第三までの性質を不要とする、つまり、積層した電磁鋼板を固着させる処理が不要になる、新たな製造方法を見出すことで解決できる。また、第四から第八までの性質は、新たな材質と新たな材料構造とからなる絶縁層を形成する方法を見出すことで実現できる。
従って、本発明が解決しようとする課題は、第一に、積層した電磁鋼板を固着する処理が不要になる新たな鉄心の製造方法を見出し、第二に、新たな材質と新たな材料構造によって、第四から第八までの性質を満たす絶縁層を形成する方法を見出し、第三に、前記2つの方法が、安価な原料を用い、極めて簡単な処理からなり、従来の製造方法に依る鉄心と同様に、安価な鉄心が製造される製造方法である鉄心の製造方法を見出すことにある。
As explained in paragraph 3, various problems occur when fixing laminated electromagnetic steel sheets, and the problem cannot be solved unless a new method for manufacturing an iron core is found, which eliminates the need for the process of fixing the laminated electromagnetic steel sheets. .. Further, the eight properties required for the insulating layer described in paragraph 7 eliminate the need for the first to third properties, that is, the process of fixing the laminated electromagnetic steel sheets, which is a new manufacturing method. It can be solved by finding out. Further, the fourth to eighth properties can be realized by finding a method for forming an insulating layer composed of a new material and a new material structure.
Therefore, the problems to be solved by the present invention are, firstly, to find a new method for manufacturing an iron core that eliminates the need for a process of fixing laminated electromagnetic steel plates, and secondly, to use a new material and a new material structure. , Found a method for forming an insulating layer satisfying the properties of the fourth to eighth, and thirdly, the above two methods use an inexpensive raw material and consist of an extremely simple treatment, and an iron core based on a conventional manufacturing method. Similarly, it is to find a manufacturing method of an iron core, which is a manufacturing method for manufacturing an inexpensive iron core.

鉄心の形状に切断した複数枚の電磁鋼板を、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりを介して積層させ、該積層した電磁鋼板を圧縮し、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子を前記電磁鋼板の表面に接合し、また、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子同士を接合し、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子の集まりを介して前記電磁鋼板同士が結合した構成からなる鉄心を製造する該鉄心の製造方法は、
熱分解で酸化マグネシウムないしは酸化アルミニウムを析出する金属化合物をメタノールに分散し、該金属化合物のメタノール分散液を容器に充填し、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点がメタノールの沸点より高く、かつ、前記金属化合物の熱分解温度より低い第三の性質を兼備する有機化合物を、前記金属化合物のメタノール分散液に混合し、該有機化合物と前記金属化合物のメタノール分散液との混合液を作成する、この後、鉄心の形状に切断した複数枚の電磁鋼板を前記混合液に浸漬し、さらに、該混合液から前記複数枚の電磁鋼板を取り出し、該複数枚の電磁鋼板をメタノールの沸点に昇温し、前記金属化合物の微細結晶の集まりが前記有機化合物中に析出した懸濁体からなる被膜を、前記複数枚の電磁鋼板の各々の電磁鋼板に吸着させる処理からなる第一の工程と、
前記懸濁体の被膜が吸着した複数枚の電磁鋼板のうち、鉄心を構成する前記電磁鋼板の複数枚を、前記鉄心の形状を有する金型内に重ね合わせて積層し、この後、該金型を前記金属化合物の熱分解温度に昇温し、前記積層した電磁鋼板の各々に、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりを析出させ、さらに、プレス機によって徐々に増大する加圧圧力を前記積層した電磁鋼板に加える、これによって、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子が前記電磁鋼板の表面に接合し、また、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子同士が接合し、該微粒子同士の接合を介して前記積層した電磁鋼板同士が結合され、該積層した電磁鋼板同士が結合した構成からなる鉄心が前記金型内に製造される第二の工程と、
前記鉄心を金型から取り出し、該鉄心を750−820℃の温度の還元雰囲気で磁気焼鈍する第三の工程とからなり、
これら3つの工程を連続して実施することにより、酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士の接合を介して積層した電磁鋼板同士が結合した構成からなる鉄心が製造される、鉄心の製造方法である。
A plurality of electromagnetic steel plates cut in the shape of the core, are laminated through the collection of fine particles of magnesium oxide or aluminum oxide, compressing the electromagnetic steel sheets the stacking, said fine particles of said magnesium oxide or the aluminum oxide It is composed of bonding to the surface of an electromagnetic steel plate, bonding fine particles made of magnesium oxide or aluminum oxide to each other, and bonding the electromagnetic steel plates to each other through a collection of fine particles made of magnesium oxide or aluminum oxide. manufacturing method of the core to produce the iron core,
The first property of dispersing a metal compound that precipitates magnesium oxide or aluminum oxide by thermal decomposition in methanol, filling a container with a methanol dispersion of the metal compound, and dissolving or mixing in methanol, and the viscosity are higher than the viscosity of methanol. An organic compound having both a high second property and a third property having a boiling point higher than that of methanol and lower than the thermal decomposition temperature of the metal compound is mixed with the methanol dispersion of the metal compound, and the organic compound is mixed. A mixed solution of the compound and the methanol dispersion of the metal compound is prepared, and then a plurality of electromagnetic steel plates cut into the shape of an iron core are immersed in the mixed solution, and further, the plurality of electromagnetic waves are obtained from the mixed solution. The steel sheets are taken out, the temperature of the plurality of electromagnetic steel sheets is raised to the boiling point of methanol, and a film composed of a suspension in which a collection of fine crystals of the metal compound is deposited in the organic compound is formed on the plurality of electromagnetic steel sheets. The first step, which consists of the process of adsorbing to each electromagnetic steel plate,
Of the plurality of electromagnetic steel plates to which the film of the suspended material is adsorbed, a plurality of the electromagnetic steel plates constituting the iron core are laminated in a mold having the shape of the iron core, and then the metal is laminated. The mold is raised to the thermal decomposition temperature of the metal compound, a collection of fine particles made of magnesium oxide or aluminum oxide is deposited on each of the laminated electromagnetic steel sheets, and a pressurizing pressure gradually increased by a press machine is applied. The fine particles made of magnesium oxide or aluminum oxide are bonded to the surface of the electromagnetic steel plate, and the fine particles made of magnesium oxide or aluminum oxide are bonded to each other by adding the fine particles to the laminated electromagnetic steel plate. A second step in which the laminated electromagnetic steel plates are bonded to each other through joining to each other, and an iron core having a structure in which the laminated electromagnetic steel plates are bonded to each other is manufactured in the mold.
It consists of a third step of removing the iron core from the mold and magnetically annealing the iron core in a reducing atmosphere at a temperature of 750-820 ° C.
By continuously carrying out these three steps, an iron core having a structure in which laminated electromagnetic steel sheets are bonded to each other through bonding of fine particles made of magnesium oxide or aluminum oxide is produced, which is a method for manufacturing an iron core. ..

本発明における鉄心を製造する方法は以下の5つの特徴を持つ。
第一の特徴は、鉄心の形状に切断した電磁鋼板を金型内に積層し、さらに、積層した電磁鋼板を圧縮させ、金型内に鉄心を製造することにある。これによって、積層した電磁鋼板を固着させる処理が不要になり、8段落に記載した本発明の第一の課題が解決される。
第二の特徴は、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりで、絶縁層を形成することにある。この絶縁層は、7段落に記載した絶縁層に要求される第四から第八までの性質を兼備し、8段落に記載した本発明の第二の課題が解決される。また、絶縁層の絶縁抵抗が従来の絶縁層より2桁以上高いため、電磁鋼板同士の間隙を流れる渦電流は極めて少ない。なお、絶縁層の作用効果は、後に説明する。
第三の特徴は、絶縁層を電磁鋼板に強固に接合させるとともに、積層した電磁鋼板同士を強固に結合させたことにある。つまり、電磁鋼板が圧延工程で製造されるため、表面の平坦度が優れる。このため、電磁鋼板に形成した従来の絶縁層と電磁鋼板とのアンカー効果に基づく結合力が著しく小さい。しかしながら、酸化マグネシウムないしは酸化アルミニウムからなる微粒子を、直接電磁鋼板に摩擦熱で強固に接合させ、また、微粒子同士が摩擦熱で強固に接合するため、絶縁層が電磁鋼板に強固に接合されるとともに、電磁鋼板同士も強固に結合される。
第四の特徴は、一度の磁気焼鈍で、電磁鋼板の全ての歪を解消させることにある。すなわち、複数枚の電磁鋼板を重ね合わせ、鉄心の形状に切断する際に発生する電磁鋼板の加工歪と、酸化マグネシウムないしは酸化アルミニウムからなる微粒子を、電磁鋼板に摩擦熱で接合させる際に発生する電磁鋼板の応力歪などからなる様々な歪を、一度の磁気焼鈍で全て解消させ、電磁鋼板の保持力を元に戻す。これによって、鉄心のヒステリシス損失が低下する。なお、酸化マグネシウムないしは酸化アルミニウムの耐熱性が、電磁鋼板の耐熱性より高いため、磁気焼鈍の温度の制約がないため、一度の磁気焼鈍で電磁鋼板の全ての歪が解消できる。
つまり、本発明の鉄心を製造する方法は、鉄心の形状に切断した電磁鋼板の平面同士を金型内に積層し、該電磁鋼板の表面全体に、積み重なった酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりを析出させ、該積層した電磁鋼板を圧縮し、鉄心を金型内に製造する製造方法である。すなわち、積層した電磁鋼板を加圧する圧力が増えるに応じて、次の現象が起こり、金型内に鉄心が製造される。金属化合物の微細結晶の熱分解で一斉に析出した酸化マグネシウムないしは酸化アルミニウムの微粒子同士は互いに接するが、接触部は、分子間力に基づく弱い結合である。このため、積層した電磁鋼板に加圧圧力を加えると、最初に、積み重なった微粒子の集まりの積層構造が容易に崩れる。さらに加圧圧力が増えると、微粒子が40−60nmの大きさであるため、微粒子は、電磁鋼板同士の間隙に存在する空隙と、積層した電磁鋼板と金型との間隙に存在する空隙とを埋めるように移動する。さらに加圧圧力が増えると、空隙がなくなり、微粒子同士が接触する。さらに加圧圧力が増えると、微粒子の硬度が高く、耐熱性が高く、圧縮強度が高いため、微粒子は破壊されず、微粒子同士が接触し、接触部に摩擦熱が発生する。これによって、微粒子同士の接触部と、微粒子と電磁鋼板との接触部の不純物が気化し、清浄化された接触部が摩擦熱で強固に接合する。さらに、加圧圧力を増やすと、酸化マグネシウムの圧縮強度と、酸化アルミニウムの圧縮強度との双方が、電磁鋼板の圧縮強度より大きいため、摩擦接合した酸化マグネシウムないしは酸化アルミニウムの微粒子の集まりによって、プレス機に対する反発力が増大し、プレス機に依る加圧が進まなくなる。この時点でプレス機に依る加圧を停止する。なお、プレス機に対する反発力を無視して、加圧力をさらに増やし続けると、いずれ電磁鋼板の破断に至る。従って、電磁鋼板同士を結合するに当たって、積層した電磁鋼板に加える加圧力の大きさに実質的な制約がなく、必要となる鉄心の強度に合わせて、積層した電磁鋼板に加圧力を加えることができる。この結果、微粒子同士の結合によって、電磁鋼板の平面同士が強固に結合される。いっぽう、積層した電磁鋼板の側面と金型の壁面との空隙にも微粒子が移動し、空隙が微粒子の集まりで充填され、微粒子同士が摩擦接合する。この結果、積層した電磁鋼板の表面全体、つまり、鉄心の表面全体が、摩擦接合した微粒子の集まりで覆われる。
第五の特徴は、使用する材料は全て安価な材料であり、3つの工程はいずれも極めて簡単な処理からなるため、安価な費用で鉄心が製造できる。また、第一の工程によって、多数の電磁鋼板に対し、懸濁体からなる被膜を同時に形成することができる。第三の工程によって、多数の鉄心を同時に磁気焼鈍できる。第二の工程は3つの処理からなり、3つの処理を連続して実施し、鉄心を金型内に製造する工程である。従って、鋼からなるベルト上に一定の間隔で金型を配置させ、各々の金型に対して3つの処理を実施し、かつ、各々の処理が終えた金型を順次移動すれば、連続して鉄心が製造される。このため、本製造方法で製造した鉄心は安価である。これによって、8段落に記載した本発明の第三の課題が解決される。なお、本鉄心の製造方法では、第三の工程で磁気焼鈍を行うため、電磁鋼板に加えられた様々な加工歪を、一度の磁気焼鈍で全て解消する。
ここで、絶縁層を形成する酸化マグネシウムと酸化アルミニウムとの微粒子の作用効果を説明する。なお、酸化マグネシウムより硬度が高い絶縁性の金属酸化物として酸化スズSnOがある。しかし、金属化合物の熱分解で析出する酸化スズは、SnOの組成からずれたSnOが同時に析出し、SnOの絶縁性がSnOより著しく劣る。このため、金属化合物の熱分解で析出する酸化スズは、絶縁層を形成する微粒子として用いることができない。
酸化マグネシウムの体積抵抗率は1017Ω・cmで、金属酸化物の中で最も絶縁性に優れ、合成樹脂より2桁体積抵抗率が大きい。いっぽう、マグネシウム化合物の熱分解で析出した酸化マグネシウムは、40−60nmの大きさからなる粒状の微粒子で、この粒状微粒子の集まりが積み重なって電磁鋼板を絶縁化する。微粒子が粒状であるため、微粒子より体積が小さいが、微粒子の数に近い空孔が、微粒子に隣接して多数存在する。この空孔は、酸化マグネシウムの体積抵抗率を超える体積抵抗率を持つ空気が占める。従って、積み重なった酸化マグネシウム微粒子の集まりが形成する絶縁抵抗は、酸化マグネシウム微粒子からなる抵抗体と、空気からなる空孔の抵抗体とが直列接続して絶縁抵抗を形成する。さらに、酸化マグネシウム微粒子と空孔との数が極めて多い。従って、電磁鋼板を絶縁化する絶縁抵抗は、バルクからなる酸化マグネシウムが、体積抵抗率が1017Ω・cmに基づいて形成する絶縁抵抗より1桁増大する。このため、積層した電磁鋼板同士の間隙を流れる渦電流は極めて小さい。
また、融点が2852℃で、電磁鋼板より耐熱性に優れる。また、モース硬度が5.5と高く、電磁鋼板より硬い。さらに、圧縮強度が1372MPaと高く、電磁鋼板の圧縮強度より高い。従って、酸化マグネシウムの微粒子で覆われた電磁鋼板を積層し、積層した電磁鋼板を圧縮すると、電磁鋼板同士の間隙に空隙があると、また、積層した電磁鋼板と金型との間に空隙があると、酸化マグネシウム微粒子が移動して空隙を埋める。空隙がなくなると、酸化マグネシウム微粒子同士が接触する。さらに加圧すると、接触部に過大な摩擦熱が発生する。酸化マグネシウムの耐熱性が高く、硬度が高く、圧縮強度が高いため、酸化マグネシウム微粒子は破壊せずに、摩擦熱で酸化マグネシウムの微粒子同士が接合する。同様に、空隙がなくなると、酸化マグネシウム微粒子が電磁鋼板の表面に接触し、接触部に過大な摩擦熱が発生する。酸化マグネシウムの耐熱性が高く、硬度が高いため、酸化マグネシウム微粒子は破壊せずに、摩擦熱で電磁鋼板に接合する。さらに加圧すると、酸化マグネシウムの圧縮強度が、電磁鋼板の圧縮強度より高いため、プレス機に依る加圧に対する反発力が増大し、プレス機に依る加圧が進まなくなる。この時点で加圧を停止する。この結果、金型内に、互いに接合した酸化マグネシウム微粒子の集まりからなる絶縁層が、電磁鋼板に結合するとともに、絶縁層を介して電磁鋼板同士が結合する。また、最も上に積層された電磁鋼板の表面と、最も下に積層された電磁鋼板の表面も、酸化マグネシウム微粒子が双方の電磁鋼板の表面に摩擦熱で接合するとともに、酸化マグネシウム微粒子同士が摩擦熱で接合する。さらに、酸化マグネシウム微粒子が40−60nmの大きさからなる微粒子であるため、電磁鋼板の側面にも移動し、側面に移動した酸化マグネシウム微粒子の集まりが、金型内で互いに接触して圧縮され、鉄心の側面の電磁鋼板に、酸化マグネシウム微粒子が摩擦熱で接合し、また、酸化マグネシウム微粒子同士が摩擦熱で接合する。このため、鉄心の表面全体に、酸化マグネシウム微粒子の集まりが積層して接合するため、熱水や塩水や高温の絶縁油などの一切の液体は、酸化マグネシウム微粒子の集まりで遮断され、積層した電磁鋼板が液体に触れることはない。この結果、鉄心に耐食性と耐薬品性とがもたらされる。
また、熱膨張率は13.5×10−6/℃で、電磁鋼板の熱膨張率の11.2×10−6/℃に近い。いっぽう、酸化マグネシウムの微粒子が、40−60nmの大きさからなるため、酸化マグネシウム微粒子の熱膨張と熱収縮とは極めて微小である。また、電磁鋼板の表面に、極めて多数の酸化マグネシウムの粒状の微粒子が満遍なく接合し、電磁鋼板の熱膨張と熱収縮は、接合した酸化マグネシウムの微粒子によって拘束され、接合した酸化マグネシウム微粒子の隣同士の間隔、つまり、40−60nmの幅で、電磁鋼板が熱膨張ないしは熱収縮する。このため、電磁鋼板の熱膨張と熱収縮とは極めて微小である。従って、磁気焼鈍のような急激な温度変化が生じても、摩擦接合した酸化マグネシウムの微粒子は、損傷を受けない。また、希塩酸を除く液体に対して不溶性であり、希塩酸を除く耐食性を持ち、熱水や塩水や高温の絶縁油と反応しない。さらに、耐熱性が極めて高いため、磁気焼鈍の際に化学変化せず、電磁鋼板同士の焼き付きを起こさない。
従って、酸化マグネシウム微粒子は、7段落に記載した第四から第八の性質を兼備する。
次に、酸化アルミニウムの体積抵抗率は1015Ω・cmで、合成樹脂と同等の絶縁性を持つ。いっぽう、アルミニウム化合物の熱分解で析出した酸化アルミニウムは、40−60nmの大きさからなる粒状の微粒子で、この粒状微粒子の集まりが積み重なって電磁鋼板を絶縁化する。微粒子が粒状であるため、微粒子より体積が小さいが、微粒子の数に近い空孔が、微粒子に隣接して多数存在する。この空孔は、酸化アルミニウムの体積抵抗率より体積抵抗率が2桁大きい、1017Ω・cmを超える空気が占める。従って、積み重なった酸化アルミニウム微粒子の集まりが形成する絶縁抵抗は、酸化アルミニウム微粒子からなる抵抗体と、空気からなる空孔の抵抗体とが直列接続して絶縁抵抗を形成する。さらに、酸化アルミニウム微粒子と空孔との数が極めて多い。従って、電磁鋼板を絶縁化する絶縁抵抗は、バルクからなる酸化アルミニウムが、体積抵抗率が1015Ω・cmに基づいて形成する絶縁抵抗より3桁増大する。このため、電磁鋼板同士の間隙を流れる渦電流は極めて小さい。
また、融点が2072℃で、電磁鋼板より耐熱性に優れる。また、モース硬度が9と金属酸化物の中で最も高く、電磁鋼板より硬い。さらに、圧縮強度が2910MPaと高く、電磁鋼板の圧縮強度より高い。従って、酸化アルミニウム微粒子で覆われた電磁鋼板を積層し、積層した電磁鋼板を圧縮すると、電磁鋼板同士の間隙に空隙があると、酸化アルミニウム微粒子が移動して空隙を埋める。空隙がなくなると、酸化アルミニウム微粒子同士が接触し、接触部に過大な摩擦熱が発生する。酸化アルミニウムの耐熱性が高く、硬度が高いため、酸化アルミニウム微粒子は破壊せずに、摩擦熱で酸化アルミニウムの微粒子同士が接合する。また、空隙がなくなると、酸化アルミニウム微粒子が電磁鋼板の表面に接触し、接触部に過大な摩擦熱が発生する。酸化アルミニウムの耐熱性が高く、硬度が高いため、酸化アルミニウム微粒子は破壊せずに、摩擦熱で電磁鋼板に接合する。さらに圧縮すると、酸化アルミニウムの圧縮強度が、電磁鋼板の圧縮強度より高いため、プレス機に依る加圧に対する反発力が増大し、プレス機に依る加圧が進まなくなる。この時点で加圧を停止する。この結果、金型内に、接合した酸化アルミニウム微粒子の集まりからなる絶縁層が、電磁鋼板に結合するとともに、絶縁層を介して電磁鋼板同士が結合する。また、最も上に積層された電磁鋼板の表面と、最も下に積層された電磁鋼板の表面も、酸化アルミニウム微粒子が双方の電磁鋼板の表面に摩擦熱で接合するとともに、酸化アルミニウム微粒子同士が摩擦熱で接合する。さらに、酸化アルミニウム微粒子が40−60nmの大きさからなる微粒子であるため、電磁鋼板の側面にも移動し、側面に移動した酸化アルミニウム微粒子の集まりが、金型内で互いに接触して圧縮され、鉄心の側面の電磁鋼板に、酸化アルミニウム微粒子が摩擦熱で接合し、また、酸化アルミニウム微粒子同士が摩擦熱で接合する。このため、鉄心の表面全体に、酸化アルミニウム微粒子の集まりが積層して接合するため、熱水や塩水や高温の絶縁油などの一切の液体は、酸化アルミニウム微粒子の集まりで遮断され、積層した電磁鋼板が液体に触れることはない。この結果、鉄心に耐食性と耐薬品性とがもたらされる。
また、熱膨張率は7.2×10−6/℃で、電磁鋼板の熱膨張率の11.2×10−6/℃に近い。いっぽう、酸化アルミニウムの微粒子が、40−60nmの大きさからなるため、酸化アルミニウム微粒子の熱膨張と熱収縮とは極めて微小である。また、電磁鋼板の表面に、極めて多数の酸化アルミニウムの粒状の微粒子が満遍なく接合し、電磁鋼板の熱膨張と熱収縮は、接合した酸化アルミニウムの微粒子によって拘束され、接合した酸化アルミニウム微粒子の隣同士の間隔、つまり、40−60nmの幅で、電磁鋼板が熱膨張ないしは熱収縮する。このため、電磁鋼板の熱膨張と熱収縮とは極めて微小である。従って、磁気焼鈍のような急激な温度変化が生じても、摩擦接合した酸化マグネシウムの微粒子は、損傷を受けない。また、極めて安定した金属酸化物で、全ての酸やアルカリに侵されず、熱水や塩水や高温の絶縁油と反応しない耐食性を持つ。さらに、耐熱性が極めて高いため、磁気焼鈍の際に化学変化せず、電磁鋼板同士の焼き付きを起こさない。
従って、酸化アルミニウム微粒子は、7段落に記載した第四から第八の性質を兼備する。
ここで、本発明の鉄心を製造する方法を詳しく説明する。圧粉磁心を製造する製造方法は、以下の8つの処理からなる。
原料が安価で、熱分解という簡単な処理で、酸化マグネシウムないしは酸化アルミニウムが析出し、熱分解温度が300℃程度と低い、これら3つの性質を兼備する金属化合物を、酸化マグネシウムないしは酸化アルミニウムの原料として用いた。いっぽう、酸化マグネシウム微粒子ないしは酸化アルミニウム微粒子の集まりで電磁鋼板を覆うため、第一の処理は、金属化合物をメタノールに分散し、金属化合物を分子状態として液相化する。
次に、酸化マグネシウム微粒子ないしは酸化アルミニウム微粒子の集まりで電磁鋼板を覆うには、金属化合物のメタノール分散液を電磁鋼板の表面に付着させる必要がある。従って、第二の処理は、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点がメタノールの沸点より高く、金属化合物の熱分解温度より低い第三の性質を兼備する有機化合物を、メタノール分散液に混合し混合液を作成する。なお、有機化合物は、極稀な有機化合物を除き、殆どの有機化合物は絶縁性の液体である。さらに、第三の処理は、複数枚の鉄心の形状に切断した電磁鋼板を混合液に浸漬し、さらに、混合液から複数枚の電磁鋼板を取り出す。第四の処理は、複数枚の電磁鋼板をメタノールの沸点に昇温し、金属化合物の微細結晶の集まりが有機化合物中に析出した懸濁体からなる被膜を、複数枚の電磁鋼板の各々の電磁鋼板簿表面に吸着させる。なお、気化したメタノールは回収して再利用する。
次に、積層した電磁鋼板からなる鉄心を金型内に製造する。このため、第五の処理は、前記懸濁体が被膜として吸着した複数枚の電磁鋼板の各々を、鉄心の形状を有する金型内に重ね合わせて積層する。第六の処理は、金型を金属化合物の熱分解温度に昇温し、積層した電磁鋼板同士の間隙に、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりを析出させる。なお、気化した有機化合物は回収して再利用する。第七の処理は、積層した電磁鋼板に圧縮荷重を加え、酸化マグネシウムないしは酸化アルミニウムからなる微粒子を電磁鋼板の表面に接合させ、また、酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士を接合させ、該微粒子同士の接合を介して積層した電磁鋼板同士が結合され、金型内に鉄心を製造する。
最後に、鉄心を構成する電磁鋼板の加工歪を取り除く。第八の処理は、鉄心を金型から取り出し、鉄心を750−820℃の温度の還元雰囲気で磁気焼鈍する。なお、鉄心を構成する電磁鋼板の枚数が多いほど、電磁鋼板に加える圧縮荷重が大きくなり、圧縮歪が増大するため、積層した電磁鋼板の枚数に応じて磁気焼鈍の温度を上げる。
上記した製造方法で製造した鉄心は、次の作用効果をもたらす。
第一に、酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士の接合を介して、積層した電磁鋼板同士を結合させるため、従来の積層した電磁鋼板を固着させる処理が不要になる。このため、積層した電磁鋼板を固着させる際に発生する従来の問題は一切発生しない。つまり、電磁鋼板が圧延工程によって製造されるため、表面の平坦度が優れる。このため、電磁鋼板に形成した従来の絶縁被膜と電磁鋼板とのアンカー効果に基づく結合力が著しく小さい。従って、従来の鉄心を製造する方法においては、積層した電磁鋼板を打ち抜く際の衝撃によって、従来の絶縁被膜が電磁鋼板の表面から容易に剥離するため、積層した電磁鋼板を固着させる処理が必要になった。これに対し、本発明における酸化マグネシウムないしは酸化アルミニウムは、耐熱性が高く、硬度が高く、圧縮強度が高い3つの性質を兼備するため、酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士の摩擦接合を介して電磁鋼板同士を結合させたることができる。
第二に、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりからなる絶縁層は、絶縁性が高い微粒子の集まりと絶縁性が高い空孔の集まりとによって形成されるため、酸化マグネシウムないしは酸化アルミニウムのバルクからなる絶縁抵抗より絶縁抵抗が1桁以上高いため、電磁鋼板同士の間隙を流れる渦電流は極めて少ない。
第三に、酸化マグネシウムないしは酸化アルミニウムは、絶縁抵抗のみならず、鉄心の絶縁層に要求される全ての性質を兼備する。
第四に、安価な材料を用い、8つの処理の全てが簡単な処理であるため、安価な鉄心が製造できる。すなわち、金属化合物と有機化合物とは、汎用的な工業用の薬品である。また、金属化合物を熱分解する温度は、300℃前後と低く、熱処理費用も安価で済む。さらに、連続して鉄心を製造することができる。このため、従来の製造方法で製造した鉄心の加工費用に近い加工費用で鉄心が製造できる。
第五に、鉄心の形状に切断した電磁鋼板を、金型内に重ね合わせて積層して鉄心を製造するため、電磁鋼板の形状と面積と積層枚数とに制約がない。また、微粒子の圧縮強度が電磁鋼板の圧縮強度より高いため、積層した電磁鋼板に加える加圧力の大きさに制約がなく、必要となる鉄心の強度に合わせて、積層した電磁鋼板に加圧力を加える。従って、本製造方法は汎用的な鉄心の製造方法である。
第六に、金型内に鉄心を製造した後に、鉄心を磁気焼鈍するため、一回の磁気焼鈍で、電磁鋼板の全ての加工歪を効率よく取り除くことができる。また、微粒子の耐熱性が電磁鋼板の耐熱性より優れているため、磁気焼鈍の温度の制約がなく、電磁鋼板の保持力を加工前の電磁鋼板の保持力に戻すことができる。
以上に説明したように、本鉄心の製造方法は、従来の鉄心の製造方法にはない上記6つの作用効果をもたらす。
The method for manufacturing an iron core in the present invention has the following five features.
The first feature is that an electromagnetic steel sheet cut into the shape of an iron core is laminated in a mold, and the laminated electromagnetic steel sheet is further compressed to manufacture an iron core in the mold. This eliminates the need for the process of fixing the laminated electromagnetic steel sheets, and solves the first problem of the present invention described in paragraph 8.
The second feature is that an insulating layer is formed by a collection of fine particles made of magnesium oxide or aluminum oxide. This insulating layer has the properties of the fourth to eighth required for the insulating layer described in paragraph 7, and the second problem of the present invention described in paragraph 8 is solved. Further, since the insulation resistance of the insulating layer is two orders of magnitude higher than that of the conventional insulating layer, the eddy current flowing through the gap between the electromagnetic steel sheets is extremely small. The action and effect of the insulating layer will be described later.
The third feature is that the insulating layer is firmly bonded to the electromagnetic steel sheet and the laminated electromagnetic steel sheets are firmly bonded to each other. That is, since the electromagnetic steel sheet is manufactured in the rolling process, the flatness of the surface is excellent. Therefore, the bonding force based on the anchor effect between the conventional insulating layer formed on the electrical steel sheet and the electrical steel sheet is extremely small. However, fine particles made of magnesium oxide or aluminum oxide are directly bonded to the electrical steel sheet by frictional heat, and the fine particles are firmly bonded to each other by frictional heat, so that the insulating layer is firmly bonded to the electrical steel sheet. , Electromagnetic steel sheets are also firmly bonded to each other.
The fourth feature is that all the distortion of the electrical steel sheet is eliminated by one magnetic annealing. That is, the processing strain of the electrical steel sheet generated when a plurality of electrical steel sheets are stacked and cut into the shape of an iron core, and the fine particles made of magnesium oxide or aluminum oxide are bonded to the electrical steel sheet by frictional heat. Various strains such as stress strains of electrical steel sheets are eliminated by one magnetic annealing, and the holding power of electrical steel sheets is restored. This reduces the hysteresis loss of the iron core. Since the heat resistance of magnesium oxide or aluminum oxide is higher than that of the electrical steel sheet, there is no restriction on the temperature of magnetic annealing, so that all the strains of the electrical steel sheet can be eliminated by one magnetic annealing.
That is, in the method of manufacturing the iron core of the present invention, the planes of the electromagnetic steel sheets cut into the shape of the iron core are laminated in a mold, and fine particles made of magnesium oxide or aluminum oxide stacked on the entire surface of the electromagnetic steel sheet are formed. This is a manufacturing method in which an aggregate is deposited, the laminated electromagnetic steel sheet is compressed, and an iron core is manufactured in a mold. That is, as the pressure for pressurizing the laminated electromagnetic steel sheets increases, the following phenomenon occurs, and an iron core is manufactured in the mold. The fine particles of magnesium oxide or aluminum oxide that are deposited all at once by the thermal decomposition of the fine crystals of the metal compound are in contact with each other, but the contact portion is a weak bond based on the intramolecular force. Therefore, when a pressurized pressure is applied to the laminated electromagnetic steel sheets, the laminated structure of the accumulated fine particles is easily broken first. When the pressurizing pressure is further increased, the fine particles have a size of 40-60 nm, so that the fine particles have voids existing in the gaps between the electromagnetic steel sheets and voids existing in the gaps between the laminated electromagnetic steel sheets and the mold. Move to fill. When the pressurizing pressure is further increased, the voids disappear and the fine particles come into contact with each other. When the pressurizing pressure is further increased, the hardness of the fine particles is high, the heat resistance is high, and the compressive strength is high, so that the fine particles are not destroyed, the fine particles come into contact with each other, and frictional heat is generated at the contact portion. As a result, impurities in the contact portion between the fine particles and the contact portion between the fine particles and the electromagnetic steel sheet are vaporized, and the cleaned contact portion is firmly bonded by frictional heat. Further, when the pressurizing pressure is increased, both the compressive strength of magnesium oxide and the compressive strength of aluminum oxide are larger than the compressive strength of the electromagnetic steel plate. The repulsive force against the machine increases, and the pressurization by the press machine does not proceed. At this point, the pressurization by the press machine is stopped. If the repulsive force against the press is ignored and the pressing force is continuously increased, the magnetic steel sheet will eventually break. Therefore, there is no substantial restriction on the magnitude of the pressing force applied to the laminated electromagnetic steel sheets when the electromagnetic steel sheets are bonded to each other, and the pressing force can be applied to the laminated electromagnetic steel sheets according to the required strength of the iron core. can. As a result, the planes of the electrical steel sheets are firmly bonded to each other by the bonding between the fine particles. On the other hand, the fine particles also move to the voids between the side surface of the laminated magnetic steel sheet and the wall surface of the mold, the voids are filled with a collection of fine particles, and the fine particles are frictionally bonded to each other. As a result, the entire surface of the laminated electrical steel sheets, that is, the entire surface of the iron core is covered with a collection of friction-bonded fine particles.
The fifth feature is that all the materials used are inexpensive materials, and all three steps consist of extremely simple processing, so that the iron core can be manufactured at low cost. Further, by the first step, a coating film made of a suspended material can be simultaneously formed on a large number of electrical steel sheets. By the third step, a large number of iron cores can be magnetically annealed at the same time. The second step consists of three treatments, in which the three treatments are continuously carried out to manufacture the iron core in the mold. Therefore, if the dies are arranged on a belt made of steel at regular intervals, three processes are performed on each die, and the dies after each process are sequentially moved, the dies are continuous. The iron core is manufactured. Therefore, the iron core manufactured by this manufacturing method is inexpensive. This solves the third problem of the present invention described in paragraph 8. In the method for manufacturing the main iron core, magnetic annealing is performed in the third step, so that various processing strains applied to the electrical steel sheet are completely eliminated by one magnetic annealing.
Here, the action and effect of the fine particles of magnesium oxide and aluminum oxide forming the insulating layer will be described. Tin oxide SnO 2 is an insulating metal oxide having a hardness higher than that of magnesium oxide. However, in the tin oxide precipitated by the thermal decomposition of the metal compound, SnO X deviating from the composition of SnO 2 is deposited at the same time, and the insulating property of SnO X is significantly inferior to that of SnO 2. Therefore, tin oxide precipitated by thermal decomposition of the metal compound cannot be used as fine particles forming an insulating layer.
The volume resistivity of magnesium oxide is 10 17 Ω · cm, which is the most excellent insulating property among metal oxides and has a double-digit volume resistivity higher than that of synthetic resin. On the other hand, the magnesium oxide precipitated by the thermal decomposition of the magnesium compound is granular fine particles having a size of 40-60 nm, and the aggregates of the granular fine particles are piled up to insulate the magnetic steel sheet. Since the fine particles are granular, the volume is smaller than that of the fine particles, but there are many pores adjacent to the fine particles, which are close to the number of fine particles. These pores are occupied by air having a volume resistivity exceeding the volume resistivity of magnesium oxide. Therefore, the insulation resistance formed by the accumulated collection of magnesium oxide fine particles is such that the resistor made of magnesium oxide fine particles and the resistor made of air are connected in series to form an insulating resistance. Furthermore, the number of magnesium oxide fine particles and pores is extremely large. Therefore, the insulation resistance that insulates the electrical steel sheet is an order of magnitude higher than the insulation resistance formed by the bulk magnesium oxide based on the volume resistivity of 10 17 Ω · cm. Therefore, the eddy current flowing through the gap between the laminated electromagnetic steel sheets is extremely small.
In addition, it has a melting point of 2852 ° C. and is superior in heat resistance to electrical steel sheets. In addition, the Mohs hardness is as high as 5.5, which is harder than that of electrical steel sheets. Further, the compressive strength is as high as 1372 MPa, which is higher than the compressive strength of the magnetic steel sheet. Therefore, when the electromagnetic steel sheets covered with fine particles of magnesium oxide are laminated and the laminated electromagnetic steel sheets are compressed, there are gaps in the gaps between the magnetic steel sheets, and there are gaps between the laminated electromagnetic steel sheets and the mold. If there is, magnesium oxide fine particles move to fill the voids. When the voids disappear, the magnesium oxide fine particles come into contact with each other. Further pressurization generates excessive frictional heat in the contact portion. Since magnesium oxide has high heat resistance, high hardness, and high compressive strength, the magnesium oxide fine particles are bonded to each other by frictional heat without destroying the magnesium oxide fine particles. Similarly, when the voids disappear, the magnesium oxide fine particles come into contact with the surface of the magnetic steel sheet, and excessive frictional heat is generated at the contact portion. Since magnesium oxide has high heat resistance and high hardness, magnesium oxide fine particles are not destroyed and are bonded to electrical steel sheets by frictional heat. When further pressurized, the compressive strength of magnesium oxide is higher than the compressive strength of the electromagnetic steel plate, so that the repulsive force against the pressurization by the press increases and the pressurization by the press does not proceed. At this point, pressurization is stopped. As a result, in the mold, the insulating layer made of a collection of magnesium oxide fine particles bonded to each other is bonded to the electromagnetic steel sheet, and the electromagnetic steel sheets are bonded to each other via the insulating layer. Further, on the surface of the electromagnetic steel sheet laminated on the top and the surface of the electromagnetic steel sheet laminated on the bottom, magnesium oxide fine particles are bonded to the surfaces of both electromagnetic steel sheets by frictional heat, and the magnesium oxide fine particles rub against each other. Join with heat. Further, since the magnesium oxide fine particles are fine particles having a size of 40-60 nm, they also move to the side surface of the electromagnetic steel plate, and the collection of magnesium oxide fine particles moved to the side surface is compressed by contacting each other in the mold. Magnesium oxide fine particles are bonded to the electromagnetic steel plate on the side surface of the iron core by frictional heat, and magnesium oxide fine particles are bonded to each other by frictional heat. For this reason, a collection of magnesium oxide fine particles is laminated and bonded to the entire surface of the iron core, so that all liquids such as hot water, salt water, and high-temperature insulating oil are blocked by the collection of magnesium oxide fine particles, and the laminated electromagnetic waves are formed. The steel plate does not come into contact with the liquid. As a result, the iron core is provided with corrosion resistance and chemical resistance.
The coefficient of thermal expansion is 13.5 × 10 -6 / ° C, which is close to the coefficient of thermal expansion of electrical steel sheets of 11.2 × 10 -6 / ° C. On the other hand, since the magnesium oxide fine particles have a size of 40-60 nm, the thermal expansion and contraction of the magnesium oxide fine particles are extremely small. In addition, an extremely large number of granular magnesium oxide fine particles are evenly bonded to the surface of the electromagnetic steel plate, and the thermal expansion and contraction of the electromagnetic steel plate are constrained by the bonded magnesium oxide fine particles, and the bonded magnesium oxide fine particles are next to each other. The electromagnetic steel plate thermally expands or contracts at intervals of 40-60 nm. Therefore, the thermal expansion and contraction of the electrical steel sheet are extremely small. Therefore, even if a sudden temperature change such as magnetic annealing occurs, the fine particles of magnesium oxide that have been friction-bonded are not damaged. In addition, it is insoluble in liquids other than dilute hydrochloric acid, has corrosion resistance excluding dilute hydrochloric acid, and does not react with hot water, salt water, or high-temperature insulating oil. Furthermore, since it has extremely high heat resistance, it does not chemically change during magnetic annealing and does not cause seizure between electrical steel sheets.
Therefore, the magnesium oxide fine particles have the fourth to eighth properties described in paragraph 7.
Next, the volume resistivity of aluminum oxide is 10 15 Ω · cm, which has the same insulating property as synthetic resin. On the other hand, the aluminum oxide precipitated by the thermal decomposition of the aluminum compound is granular fine particles having a size of 40-60 nm, and the aggregates of the granular fine particles are piled up to insulate the electrical steel sheet. Since the fine particles are granular, the volume is smaller than that of the fine particles, but there are many pores adjacent to the fine particles, which are close to the number of fine particles. These pores are occupied by air exceeding 10 17 Ω · cm, which has a volume resistivity that is two orders of magnitude larger than the volume resistivity of aluminum oxide. Therefore, the insulation resistance formed by the accumulated collection of aluminum oxide fine particles is such that the resistor made of aluminum oxide fine particles and the resistor made of air are connected in series to form an insulating resistance. Furthermore, the number of aluminum oxide fine particles and pores is extremely large. Therefore, the insulation resistance of the insulation of the electrical steel sheet, aluminum oxide consisting of the bulk volume resistivity of 3 orders of magnitude increases from insulation resistance to form on the basis of 10 15 Ω · cm. Therefore, the eddy current flowing through the gap between the magnetic steel sheets is extremely small.
Further, it has a melting point of 2072 ° C. and is superior in heat resistance to an electromagnetic steel sheet. In addition, it has a Mohs hardness of 9, which is the highest among metal oxides, and is harder than electrical steel sheets. Further, the compressive strength is as high as 2910 MPa, which is higher than the compressive strength of the magnetic steel sheet. Therefore, when the electromagnetic steel sheets covered with the aluminum oxide fine particles are laminated and the laminated electromagnetic steel sheets are compressed, if there are voids in the gaps between the electromagnetic steel sheets, the aluminum oxide fine particles move to fill the voids. When the voids disappear, the aluminum oxide fine particles come into contact with each other, and excessive frictional heat is generated at the contact portion. Since aluminum oxide has high heat resistance and high hardness, the aluminum oxide fine particles are bonded to each other by frictional heat without destroying the aluminum oxide fine particles. Further, when the voids disappear, the aluminum oxide fine particles come into contact with the surface of the electromagnetic steel sheet, and excessive frictional heat is generated at the contact portion. Since aluminum oxide has high heat resistance and high hardness, aluminum oxide fine particles are not destroyed but are bonded to electrical steel sheets by frictional heat. When further compressed, the compressive strength of aluminum oxide is higher than the compressive strength of the electromagnetic steel plate, so that the repulsive force against the pressurization by the press increases and the pressurization by the press does not proceed. At this point, pressurization is stopped. As a result, in the mold, the insulating layer made of a collection of bonded aluminum oxide fine particles is bonded to the electromagnetic steel sheet, and the electromagnetic steel sheets are bonded to each other via the insulating layer. Further, on the surface of the electromagnetic steel sheet laminated on the top and the surface of the electromagnetic steel sheet laminated on the bottom, the aluminum oxide fine particles are bonded to the surfaces of both electromagnetic steel sheets by frictional heat, and the aluminum oxide fine particles rub against each other. Join with heat. Further, since the aluminum oxide fine particles are fine particles having a size of 40-60 nm, they also move to the side surface of the electromagnetic steel plate, and the collection of the aluminum oxide fine particles moved to the side surface is compressed by contacting each other in the mold. Aluminum oxide fine particles are bonded to the electromagnetic steel plate on the side surface of the iron core by frictional heat, and aluminum oxide fine particles are bonded to each other by frictional heat. For this reason, a collection of aluminum oxide fine particles is laminated and bonded to the entire surface of the iron core, so that all liquids such as hot water, salt water, and high-temperature insulating oil are blocked by the collection of aluminum oxide fine particles, and the laminated electromagnetic waves are formed. The steel plate does not come into contact with the liquid. As a result, the iron core is provided with corrosion resistance and chemical resistance.
The coefficient of thermal expansion is 7.2 × 10 -6 / ° C, which is close to the coefficient of thermal expansion of electrical steel sheets of 11.2 × 10 -6 / ° C. On the other hand, since the aluminum oxide fine particles have a size of 40-60 nm, the thermal expansion and contraction of the aluminum oxide fine particles are extremely small. In addition, an extremely large number of granular aluminum oxide fine particles are evenly bonded to the surface of the electromagnetic steel plate, and the thermal expansion and contraction of the electromagnetic steel plate are constrained by the bonded aluminum oxide fine particles, and the bonded aluminum oxide fine particles are next to each other. The electromagnetic steel plate thermally expands or contracts at intervals of 40-60 nm. Therefore, the thermal expansion and contraction of the electrical steel sheet are extremely small. Therefore, even if a sudden temperature change such as magnetic annealing occurs, the fine particles of magnesium oxide that have been friction-bonded are not damaged. In addition, it is an extremely stable metal oxide that is not affected by all acids and alkalis and has corrosion resistance that does not react with hot water, salt water, or high-temperature insulating oil. Furthermore, since it has extremely high heat resistance, it does not chemically change during magnetic annealing and does not cause seizure between electrical steel sheets.
Therefore, the aluminum oxide fine particles have the fourth to eighth properties described in paragraph 7.
Here, the method for manufacturing the iron core of the present invention will be described in detail. The manufacturing method for manufacturing the dust core comprises the following eight processes.
The raw material is inexpensive, and magnesium oxide or aluminum oxide is precipitated by a simple process of thermal decomposition, and the thermal decomposition temperature is as low as about 300 ° C. A metal compound having these three properties can be used as a raw material for magnesium oxide or aluminum oxide. Used as. On the other hand, in order to cover the electromagnetic steel plate with a collection of magnesium oxide fine particles or aluminum oxide fine particles, the first treatment disperses the metal compound in methanol and makes the metal compound into a liquid phase as a molecular state.
Next, in order to cover the electrical steel sheet with a collection of magnesium oxide fine particles or aluminum oxide fine particles, it is necessary to attach a methanol dispersion of a metal compound to the surface of the electrical steel sheet. Therefore, in the second treatment, the first property of dissolving or mixing in methanol, the second property of having a viscosity higher than that of methanol, and the boiling point of which is higher than the boiling point of methanol and lower than the thermal decomposition temperature of the metal compound. An organic compound having the three properties is mixed with a methanol dispersion to prepare a mixed solution. Most organic compounds are insulating liquids, except for extremely rare organic compounds. Further, in the third treatment, the electromagnetic steel sheets cut into the shape of a plurality of iron cores are immersed in the mixed liquid, and further, the plurality of electromagnetic steel sheets are taken out from the mixed liquid. In the fourth treatment, the temperature of a plurality of electrical steel sheets is raised to the boiling point of methanol, and a film composed of a suspension in which a collection of fine crystals of a metal compound is deposited in an organic compound is formed on each of the plurality of electrical steel sheets. It is attracted to the surface of the electrical steel sheet book. The vaporized methanol is recovered and reused.
Next, an iron core made of laminated magnetic steel sheets is manufactured in a mold. Therefore, in the fifth treatment, each of the plurality of electrical steel sheets adsorbed by the suspension as a film is laminated in a mold having the shape of an iron core. In the sixth treatment, the mold is heated to the thermal decomposition temperature of the metal compound, and a collection of fine particles made of magnesium oxide or aluminum oxide is deposited in the gaps between the laminated electromagnetic steel plates. The vaporized organic compound is recovered and reused. In the seventh treatment, a compressive load is applied to the laminated electromagnetic steel sheets, fine particles made of magnesium oxide or aluminum oxide are bonded to the surface of the electromagnetic steel sheets, and fine particles made of magnesium oxide or aluminum oxide are bonded to each other, and the fine particles are bonded to each other. The laminated electromagnetic steel sheets are bonded to each other through joining to each other, and an iron core is manufactured in a mold.
Finally, the processing strain of the electromagnetic steel sheet constituting the iron core is removed. In the eighth treatment, the iron core is removed from the mold, and the iron core is magnetically annealed in a reducing atmosphere at a temperature of 750-820 ° C. As the number of electrical steel sheets constituting the iron core increases, the compressive load applied to the electrical steel sheets increases and the compressive strain increases. Therefore, the temperature of magnetic annealing is increased according to the number of laminated electrical steel sheets.
The iron core manufactured by the above-mentioned manufacturing method has the following effects.
First, since the laminated electromagnetic steel sheets are bonded to each other through the bonding of fine particles made of magnesium oxide or aluminum oxide, the conventional process of fixing the laminated electromagnetic steel sheets becomes unnecessary. Therefore, the conventional problem that occurs when the laminated electromagnetic steel sheets are fixed does not occur at all. That is, since the electromagnetic steel sheet is manufactured by the rolling process, the flatness of the surface is excellent. Therefore, the bonding force based on the anchor effect between the conventional insulating film formed on the electrical steel sheet and the electrical steel sheet is extremely small. Therefore, in the method of manufacturing a conventional iron core, the conventional insulating film is easily peeled off from the surface of the electromagnetic steel sheet due to the impact when punching the laminated electromagnetic steel sheet, so that a process of fixing the laminated electromagnetic steel sheet is required. became. On the other hand, magnesium oxide or aluminum oxide in the present invention has three properties of high heat resistance, high hardness, and high compressive strength, and therefore, through frictional bonding between fine particles made of magnesium oxide or aluminum oxide. Electromagnetic steel plates can be bonded to each other.
Secondly, since the insulating layer made of a collection of fine particles made of magnesium oxide or aluminum oxide is formed by a collection of fine particles having high insulating properties and a collection of pores having high insulating properties, a bulk of magnesium oxide or aluminum oxide is formed. Since the insulation resistance is one digit or more higher than the insulation resistance made of aluminum, the eddy current flowing through the gaps between the electromagnetic steel plates is extremely small.
Thirdly, magnesium oxide or aluminum oxide has all the properties required for the insulating layer of the iron core as well as the insulating resistance.
Fourth, since all eight processes are simple processes using inexpensive materials, an inexpensive iron core can be manufactured. That is, the metal compound and the organic compound are general-purpose industrial chemicals. Further, the temperature at which the metal compound is thermally decomposed is as low as about 300 ° C., and the heat treatment cost is low. Furthermore, the iron core can be continuously manufactured. Therefore, the iron core can be manufactured at a processing cost close to the processing cost of the iron core manufactured by the conventional manufacturing method.
Fifth, since the electrical steel sheet cut into the shape of the iron core is laminated in the mold to manufacture the iron core, there are no restrictions on the shape and area of the electrical steel sheet and the number of laminated sheets. Further, since the compressive strength of the fine particles is higher than the compressive strength of the magnetic steel sheet, there is no restriction on the magnitude of the pressing force applied to the laminated electromagnetic steel sheet, and the pressing force is applied to the laminated electromagnetic steel sheet according to the required strength of the iron core. Add. Therefore, this manufacturing method is a general-purpose iron core manufacturing method.
Sixth, since the iron core is magnetically annealed after it is manufactured in the mold, all the processing strains of the electrical steel sheet can be efficiently removed by one magnetic annealing. Further, since the heat resistance of the fine particles is superior to that of the electrical steel sheet, there is no restriction on the temperature of magnetic annealing, and the holding force of the electrical steel sheet can be returned to the holding force of the electrical steel sheet before processing.
As described above, the method for producing the main iron core brings about the above-mentioned six functions and effects that are not found in the conventional method for producing the iron core.

9段落に記載した鉄心の製造方法において、前記金属化合物が、オクタン酸マグネシウムないしはナフテン酸マグネシウムからなるいずれかのマグネシウム化合物であり、ないしは、安息香酸アルミニウムないしはナフテン酸アルミニウムからなるいずれかのアルミニウム化合物であり、前記有機化合物が、カルボン酸エステル類ないしはグリコール類ないしはグリコールエーテル類のいずれかに属する1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーであり、これら3種類の物質を用い、9段落に記載した鉄心の製造方法に従って鉄心を製造する、9段落に記載した鉄心の製造方法である。 In the method for producing an iron core described in paragraph 9, the metal compound is any magnesium compound made of magnesium octanate or magnesium naphthenate, or any aluminum compound made of aluminum benzoate or aluminum naphthenate. Yes, the organic compound is one kind of organic compound belonging to any one of carboxylic acid esters, glycols or glycol ethers, or a liquid monomer composed of a styrene monomer, and these three kinds of substances are used in paragraph 9. It is the method of manufacturing the iron core described in paragraph 9, wherein the iron core is manufactured according to the method of manufacturing the iron core described in 1.

熱分解で金属酸化物を析出する金属化合物として、カルボン酸金属化合物がある。カルボン酸金属化合物の中に、カルボキシル基を構成する酸素イオンが配位子になって、金属イオンに近づいて配位結合するカルボン酸金属化合物がある。このカルボン酸金属化合物は、最も大きいイオンである金属イオンが酸素イオン近づいて配位結合するため、両者の距離は短くなる。これによって、金属イオンに配位結合する酸素イオンが、金属イオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つカルボン酸金属化合物は、カルボン酸金属化合物を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンが、金属イオンの反対側で共有結合するイオンとの結合部が最初に分断され、金属酸化物とカルボン酸に分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した後に、金属酸化物が析出する。こうしたカルボン酸金属化合物の中で、300℃程度の比較的低い温度で熱分解が完了するカルボン酸金属化合物として、カルボン酸の沸点が低い順に、酢酸金属化合物、オクタン酸金属化合物、安息香酸金属化合物、ナフテン酸金属化合物がある。従って、酢酸金属化合物、オクタン酸金属化合物、安息香酸金属化合物及びナフテン酸金属化合物は、比較的低い温度の熱分解で金属酸化物を析出する金属化合物である。
いっぽう、カルボキシラートアニオンが金属イオンに共有結合するカルボン酸金属化合物は、イオン同士の結合の中で、酸素イオンと金属イオンとの結合部が最も長いため、熱分解で金属を析出する。
カルボン酸マグネシウム化合物の中で、酢酸マグネシウムは、酢酸マグネシウム4水和物Mg(CHCOOH)・4HOとして市販されている。酢酸マグネシウム4水和物の熱分解は、結晶水の離脱が150℃付近で終了し、300℃付近から無水物が熱分解し、450℃で熱分解が終了し、酸化マグネシウムMgOが析出する。また、安息香酸マグネシウムは、安息香酸マグネシウム4水和物Mg(CCOOH)・4HOとして市販されている。上記の酢酸マグネシウム4水和物と同様に、結晶水の離脱した後に、無水物が熱分解し、無水物の熱分解の熱分解が終了し、酸化マグネシウムが析出する。こうしたカルボン酸マグネシウム化合物の熱分解によって酸化マグネシウムが析出する温度は、カルボン酸の沸点でカルボン酸マグネシウム化合物がカルボン酸と酸化マグネシウムとに分解し、カルボン酸が気化した後に酸化マグネシウムが析出する温度より高い。従って、カルボン酸マグネシウム化合物として、オクタン酸マグネシウムMg(C15COOH)とナフテン酸マグネシウムMg(C2n−1COOH)が好ましい。なお、オクタン酸の沸点は240℃で、オクタン酸マグネシウムは、大気雰囲気の300℃で熱分解が完了し、酸化マグネシウムを析出する。また、カルボン酸マグネシウム化合物の熱分解は、大気雰囲気のほうが窒素雰囲気より、熱分解が完了する温度が50−60℃低く、大気雰囲気での熱処理は、熱処理費用が安価で済む。
カルボン酸アルミニウム化合物の中で、酢酸アルミニウムは、熱分解で無定形アルミナを析出する。また、オクタン酸アルミニウムは、水酸化オクタン酸アルミニウムAl(C15COOH)(OH)として市販されている。従って、カルボン酸アルミニウム化合物がカルボン酸の沸点でカルボン酸と酸化アルミニウムとに分解し、カルボン酸が気化した後に酸化アルミニウムが析出するカルボン酸アルミニウム化合物として、安息香酸アルミニウムAl(CCOOH)とナフテン酸アルミニウムAl(C2n−1COOH)が好ましい。なお、安息香酸の沸点は249℃で、安息香酸アルミニウムは、大気雰囲気の310℃で熱分解が完了し、酸化アルミニウムを析出する。また、カルボン酸アルミニウム化合物の熱分解は、大気雰囲気のほうが窒素雰囲気より、熱分解が完了する温度が50−60℃低く、大気雰囲気での熱処理は、熱処理費用が安価で済む。
なお、ナフテン酸は、主成分が飽和の炭素五員環を持つカルボン酸C2n−1COOHであり、分子量が180−350に及び、沸点が140−370℃に及ぶ飽和脂肪酸の混合物である。ナフテン酸マグネシウムMg(C2n−1COOH)ないしはナフテン酸アルミニウムAl(C2n−1COOH)を、ナフテン酸の高沸点成分の沸点である370℃まで昇温し、さらに、430℃まで昇温してナフテン酸の気化を完了させ、酸化マグネシウムないしは酸化アルミニウムを析出させる。
次に、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点が65℃より高く、300℃より低い第三の性質を兼備する有機化合物を、9段落に記載した有機化合物として用いる。
このような有機化合物として、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれかのエステル類、グリコール類、グリコールエーテル類のいずれかに属する1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーが存在する。従って、9段落に記載した鉄心の製造方法において、有機化合物としてこれらの有機化合物のいずれかを用いる。なお、有機化合物は、極稀な有機化合物を除き、殆どが絶縁性である。
従って、9段落に記載した金属化合物として、オクタン酸マグネシウムないしはナフテン酸マグネシウムからなるいずれかのマグネシウム化合物を、ないしは、安息香酸アルミニウムないしはナフテン酸アルミニウムからなるいずれかのアルミニウム化合物を用い、9段落に記載した有機化合物として、カルボン酸エステル類ないしはグリコール類ないしはグリコールエーテル類のいずれかに属する1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーを用い、9段落に記載した製造方法に従って鉄心を製造すると、金型内に鉄心が製造される。
As a metal compound that precipitates a metal oxide by thermal decomposition, there is a carboxylic acid metal compound. Among the carboxylic acid metal compounds, there is a carboxylic acid metal compound in which an oxygen ion constituting a carboxyl group serves as a ligand and approaches a metal ion to coordinate bond. In this carboxylic acid metal compound, the metal ion, which is the largest ion, approaches the oxygen ion and is coordinated, so that the distance between the two is shortened. As a result, the oxygen ion coordinate-bonded to the metal ion has the longest distance from the ion covalently bonded on the opposite side of the metal ion. When the carboxylic acid metal compound having such molecular structural characteristics exceeds the boiling point of the carboxylic acid constituting the carboxylic acid metal compound, the oxygen ion constituting the carboxyl group is covalently bonded to the ion on the opposite side of the metal ion. The bond is first split and decomposed into metal oxides and carboxylic acids. When the temperature is further raised, the carboxylic acid takes away the heat of vaporization and vaporizes, and after the vaporization of the carboxylic acid is completed, the metal oxide precipitates. Among these carboxylic acid metal compounds, as the carboxylic acid metal compound whose thermal decomposition is completed at a relatively low temperature of about 300 ° C., the metal acetate compound, the octanate metal compound, and the benzoate metal compound are in ascending order of the boiling point of the carboxylic acid. , There are metal naphthenate compounds. Therefore, the metal acetate compound, the metal octanoate compound, the metal benzoate compound and the metal naphthenate compound are metal compounds that precipitate metal oxides by thermal decomposition at a relatively low temperature.
On the other hand, the carboxylic acid metal compound in which the carboxylate anion is covalently bonded to the metal ion has the longest bond between the oxygen ion and the metal ion among the bonds between the ions, so that the metal is precipitated by thermal decomposition.
Among the carboxylic acid the magnesium compound, magnesium acetate, magnesium acetate tetrahydrate Mg (CH 3 COOH) is commercially available as 2 · 4H 2 O. In the thermal decomposition of magnesium acetate tetrahydrate, the separation of crystalline water is completed at around 150 ° C., the anhydride is thermally decomposed at around 300 ° C., the thermal decomposition is completed at 450 ° C., and magnesium oxide MgO is precipitated. Further, magnesium benzoate, magnesium benzoate tetrahydrate Mg (C 6 H 5 COOH) commercially available as 2 · 4H 2 O. Similar to the above magnesium acetate tetrahydrate, after the water of crystallization is separated, the anhydride is thermally decomposed, the thermal decomposition of the anhydrous is completed, and magnesium oxide is precipitated. The temperature at which magnesium oxide precipitates due to the thermal decomposition of the magnesium carboxylate compound is higher than the temperature at which the magnesium carboxylate compound decomposes into carboxylic acid and magnesium oxide at the boiling point of the carboxylic acid, and magnesium oxide precipitates after the carboxylic acid is vaporized. expensive. Therefore, as the magnesium carboxylate compound, magnesium octanoate Mg (C 7 H 15 COOH) 2 and magnesium naphthenate Mg (C n H 2n-1 COOH) 2 are preferable. The boiling point of octanoic acid is 240 ° C., and magnesium octanoate is thermally decomposed at 300 ° C. in the atmospheric atmosphere to precipitate magnesium oxide. Further, in the thermal decomposition of the magnesium carboxylate compound, the temperature at which the thermal decomposition is completed is 50-60 ° C. lower in the atmospheric atmosphere than in the nitrogen atmosphere, and the heat treatment in the atmospheric atmosphere requires less heat treatment cost.
Among the aluminum carboxylate compounds, aluminum acetate precipitates atypical alumina by thermal decomposition. Further, aluminum octanate is commercially available as aluminum hydroxide octanate Al (C 7 H 15 COOH) 2 (OH). Therefore, the carboxylic acid aluminum compound is decomposed into the carboxylic acid and aluminum oxide at the boiling point of the carboxylic acid, as the carboxylic acid aluminum compound aluminum oxide after the carboxylic acid vaporized is precipitated, aluminum benzoate Al (C 6 H 5 COOH) 3 and naphthenate of aluminum Al (C n H 2n-1 COOH) 3 is preferred. The boiling point of benzoic acid is 249 ° C, and aluminum benzoate is thermally decomposed at 310 ° C in the air atmosphere to precipitate aluminum oxide. Further, in the thermal decomposition of the aluminum carboxylate compound, the temperature at which the thermal decomposition is completed is 50-60 ° C. lower in the atmospheric atmosphere than in the nitrogen atmosphere, and the heat treatment in the atmospheric atmosphere requires less heat treatment cost.
Incidentally, naphthenic acid, the main component is a carboxylic acid C n H 2n-1 COOH with carbon five-membered saturated ring, molecular weight Oyobi to 180-350, with a mixture of saturated fatty acids having a boiling point up to 140-370 ° C. be. Magnesium naphthenate Mg (C n H 2n-1 COOH) 2 or naphthenate of aluminum Al a (C n H 2n-1 COOH ) 3, the temperature was raised to 370 ° C., the boiling point of the high boiling component of naphthenic acid, furthermore, The temperature is raised to 430 ° C. to complete the vaporization of naphthenic acid, and magnesium oxide or aluminum oxide is precipitated.
Next, an organic compound having a first property of being soluble or miscible in methanol, a second property having a viscosity higher than that of methanol, and a third property having a boiling point higher than 65 ° C. and lower than 300 ° C. Used as the organic compound described in paragraph 9.
As such an organic compound, one kind of organic compound belonging to any one of carboxylic acid vinyl esters, acrylic acid esters, any ester consisting of methacrylic acid esters, glycols, glycol ethers, or styrene. There is a liquid monomer consisting of a monomer. Therefore, in the method for producing an iron core described in paragraph 9, any of these organic compounds is used as the organic compound. Most of the organic compounds are insulating except for extremely rare organic compounds.
Therefore, as the metal compound described in paragraph 9, any magnesium compound composed of magnesium octanate or magnesium naphthenate, or any aluminum compound composed of aluminum benzoate or aluminum naphthenate is used and described in paragraph 9. As the organic compound, one kind of organic compound belonging to any one of carboxylic acid esters, glycols or glycol ethers, or a liquid monomer composed of a styrene monomer is used to produce an iron core according to the production method described in paragraph 9. , The iron core is manufactured in the mold.

電磁鋼板同士が、摩擦接合した酸化マグネシウムの粒状微粒子の集まりで結合された状態を模式的に図示した図である。It is a figure which schematically illustrated the state which the electromagnetic steel sheets were bonded by the collection of the granular fine particles of magnesium oxide which were friction-bonded.

実施形態1
本実施形態は、10段落に記載した鉄心の製造方法における有機化合物に関わり、該有機化合物はメタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点が65℃より高く300℃より低い第三の性質を兼備する。
このような有機化合物として、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれかのエステル類、グリコール類、グリコールエーテル類のいずれかに属する1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーがある。
カルボン酸ビニルエステル類は、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピパリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、クロトン酸ビニル、安息香酸ビニルなどからなるカルボン酸ビニル類である。
例えば、沸点が低いカルボン酸ビニルエステル類に酢酸ビニルCHCOO−CH=CHがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が72.7℃である。酢酸ビニルは、酢酸とビニルアルコールとを反応させたエステルで、ポリ酢酸ビニルの合成に用いる原料で、安価な有機化合物である。なお、酢酸ビニルは光や熱で容易に重合するため、微量の重合禁止剤(重合防止剤ともいう)が添加されている。
さらに、モノクロロ酢酸ビニルCl−CHCOO−CH=CHは、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が136℃である。モノクロロ酢酸ビニルは、アクリルゴムの架橋サイトとして用いられている安価な有機化合物である。
また、アクリル酸エステル類は、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2エチルヘキシルなどからなるアクリル酸エステル類である。
例えば、沸点が低いアクリル酸エステル類にアクリル酸メチルCH=CH−COOCHがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が80℃である。アクリル酸メチルは、アクリル樹脂の原料として用いられる安価な有機化合物である。なお、アクリル酸メチルは重合しやすい物質であるため、微量の安定剤が添加されている。
さらに、アクリル酸ブチルCH=CH−COOCは、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が148℃である。アクリル酸ブチルは、アクリル酸とn−ブタノールを反応させたエステルで、繊維処理剤、粘接着剤、塗料、合成樹脂、アクリルゴム、エマルションの原料として使用される安価な有機化合物である。なお、アクリル酸メチルは重合しやすい物質であり、微量の安定剤が添加されている。
また、メタクリル酸エステル類は、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸アルキル、メタクリル酸トリデシル、メタクリル酸ステアリルなどからなるメタクリル酸エステル類である。
例えば、沸点が低いメタクリル酸エステル類にメタクリル酸エチルHC=C(CH)COOCがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が117℃である。メタクリル酸エチルは、顔料、塗料、接着剤、繊維処理剤、成形材料、歯科用材料の原料として用いられている安価な有機化合物である。なお、メタクリル酸エチルは、重合しやすい物質であり、微量の安定剤が添加されている。
さらに、メタクリル酸nブチルCHC(CH)COO(CHCHは、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が163.5℃である。メタクリル酸nブチルは、塗料、分散剤、繊維処理剤の原料として用いられる安価な有機化合物である。なお、メタクリル酸nブチルは、光や熱で容易に重合するため、微量の重合防止剤が添加されている。
また、グリコール類はアルコールの一種で、鎖式脂肪族炭化水素の2つの炭素原子に1つずつヒドロキシ基が置換している構造を持つ化合物である。沸点が低いグリコール類にエチレングリコールC(OH)があり、メタノールと混和し、メタノールより高い粘度を持ち、沸点が197.3℃である。エチレングリコールは、溶媒、不凍液、合成原料などとして広く用いられている安価な有機化合物である。
さらに、ジエチレングリコールO(CHCHOH)は、メタノールと混和し、メタノールより高い粘度を持ち、沸点が244.3℃である。ジエチレングリコールは不凍液の他に、ブレーキ液、潤滑剤、インキ、たばこの保湿剤、織物の柔軟剤、コルクの可塑剤、接着剤、紙、包装材料、塗料などに使われている安価な有機化合物である。
また、プロピレングリコールCHCHOHCHOHは、メタノールと混和し、メタノールより高い粘度を持ち、沸点が188.2℃である。プロピレングリコールは、保湿剤、潤滑剤、乳化剤、不凍液、プラスチックの中間原料、溶媒などとして用いられている他に、保湿性や防カビ性に富むことから医薬品や化粧品、麺やおにぎりなどの品質改善剤等、広範囲で用いられている安価な有機化合物である。
さらに、ジプロピレングリコール[CHCH(OH)CHOは、メタノールと混和し、メタノールより高い粘度を持ち、沸点が232.2℃である。ジプロピレングリコールは、ポリエステル樹脂の中間原料や水圧機器の作動油、不凍液、印刷インキ原料などに用いられている安価な有機化合物である。
また、トリプロピレングリコール[CHCH(OH)CHOは、メタノールと混和し、メタノールより高い粘度を持ち、沸点が265℃である。トリプロピレングリコールは、潤滑油・カッティングオイルの原料、ポリウレタン・アクリル酸エステル中間体の原料、塗料・インキ溶剤、不凍液、飼料添加剤、ポリエステル樹脂の中間原料、水溶性油剤の溶剤などに用いられている安価な有機化合物である。
さらに、グリコールエーテル類は、一分子内にエーテル基と水酸基の両方を有し、水や多くの有機溶剤、さらに、樹脂の溶解性も高い溶剤で、殆どのグリコールエーテル類がメタノールに溶解する。次の3種類のグリコールエーテル類がある。エチレングリコール系エーテルと、プロピレングリコール系エーテルとは、塗料、インキ、染料、写真複写液、洗浄剤、電解液、ソリュブルオイル、作動油、ブレーキ液、冷媒、凍結防止剤等に使用されている安価な有機化合物である。また、ジアルキルグリコールは、さらに、反応溶剤、分離抽出剤、重合溶剤、分解防止及び安定剤、電池やコンデンサーの電解液等に使用されている安価な有機化合物である。
例えば、沸点が低いエチレングリコール系エーテルに、エチレングリコールモノメチルエーテルCHO−(CHCHO)−Hがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が124.5℃である。また、エチレングリコールモノイソプロピルエーテル(CHCHO−(CHCHO)−Hは、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が141.8℃である。
また、沸点が高いエチレングリコール系エーテルに、トリエチレングリコールモノブチルエーテルCO−(CHCHO)−Hがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が271.2℃である。また、ジエチレングリコールモノ2−エチルヘキシルエーテルC−CCHCHO−(CHCHO)−Hは、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が272℃である。
さらに、沸点が低いプロピレングリコール系エーテルに、プロピレングリコールモノメチルエーテルCH−CHO−(CHCHO)−Hがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が121℃である。
また、沸点が高いプロピレングリコール系エーテルに、トリプロピレングリコールモノブチルエーテルCH−C−(CHCHO)−Hがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が274℃である。
さらに、沸点が低いジアルキルグリコールに、エチレングリコールジメチルエーテルCHO−(CHCHO)−CHがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が85.2℃である。
また、沸点が高いジアルキルグリコールに、ジエチレングリコールジブチルエーテルCO−(CHCHO)−Cがあり、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が274℃である。
さらに、スチレンモノマーCCH=CHは、メタノールと混和し、メタノールより高い粘度を持ち、沸点が145℃の液状モノマーである。スチレンモノマーは、ポリスチレンを始めとして、発泡ポリスチレン、アクリロニトリル・スチレン、アクリロニトリル・ブタジエン・スチレン、不飽和ポリエステルなどの合成樹脂材料の原料となる安価な有機化合物である。スチレンモノマーは容易に重合するため、微量の重合禁止剤が添加されている。
以上に説明したように、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれかのエステル類、グリコール類、グリコールエーテル類のいずれかに属する有機化合物に、前記した3つの性質を兼備する有機化合物が存在する。また、スチレンモノマーは、前記した3つの性質を兼備する。従って、これらの有機化合物は、9段落に記載した鉄心の製造方法における有機化合物として用いられる。
Embodiment 1
This embodiment relates to an organic compound in the method for producing an iron core described in paragraph 10 , and the organic compound has a first property of being soluble or miscible in methanol, a second property of having a viscosity higher than that of methanol, and a boiling point. Combines the third property of being higher than 65 ° C and lower than 300 ° C.
As such an organic compound, one kind of organic compound belonging to any one of carboxylic acid vinyl esters, acrylic acid esters, any ester consisting of methacrylic acid esters, glycols, glycol ethers, or styrene. There is a liquid monomer consisting of a monomer.
Carboxylic acid vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl pipariate, and octyl. It is a vinyl carboxylate composed of vinyl acid acid, vinyl monochloroacetate, vinyl adipate, vinyl crotonate, vinyl benzoate and the like.
For example, vinyl acetate CH 3 COO-CH = CH 2 is a carboxylic acid vinyl ester having a low boiling point, is soluble in methanol, has a higher viscosity than methanol, and has a boiling point of 72.7 ° C. Vinyl acetate is an ester obtained by reacting acetic acid with vinyl alcohol, is a raw material used for the synthesis of polyvinyl acetate, and is an inexpensive organic compound. Since vinyl acetate is easily polymerized by light or heat, a trace amount of a polymerization inhibitor (also referred to as a polymerization inhibitor) is added.
Further, monochloroacetic acid vinyl acetate Cl-CH 2 COO-CH = CH 2 is dissolved in methanol, has a higher viscosity than methanol, and has a boiling point of 136 ° C. Monomonochlorovinyl acetate is an inexpensive organic compound used as a cross-linking site for acrylic rubber.
Further, the acrylate esters are acrylate esters composed of methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and the like.
For example, acrylates having a low boiling point include methyl acrylate CH 2 = CH-COOCH 3, which is soluble in methanol, has a higher viscosity than methanol, and has a boiling point of 80 ° C. Methyl acrylate is an inexpensive organic compound used as a raw material for acrylic resins. Since methyl acrylate is a substance that easily polymerizes, a small amount of stabilizer is added.
Further, butyl acrylate CH 2 = CH-COOC 4 H 9 is soluble in methanol, has a higher viscosity than methanol, and has a boiling point of 148 ° C. Butyl acrylate is an ester obtained by reacting acrylic acid with n-butanol, and is an inexpensive organic compound used as a raw material for fiber treatment agents, adhesives, paints, synthetic resins, acrylic rubbers, and emulsions. Methyl acrylate is a substance that easily polymerizes, and a trace amount of stabilizer is added.
The methacrylic acid esters are methacrylic acid esters composed of ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, alkyl methacrylate, tridecyl methacrylate, stearyl methacrylate and the like. ..
For example, methacrylic acid esters having a low boiling point include ethyl methacrylate H 2 C = C (CH 3 ) COOC 2 H 5, which is soluble in methanol, has a higher viscosity than methanol, and has a boiling point of 117 ° C. Ethyl methacrylate is an inexpensive organic compound used as a raw material for pigments, paints, adhesives, fiber treatment agents, molding materials, and dental materials. Ethyl methacrylate is a substance that easily polymerizes, and a trace amount of stabilizer is added.
Further, nbutyl methacrylate CH 2 C (CH 3 ) COO (CH 2 ) 3 CH 3 is dissolved in methanol, has a higher viscosity than methanol, and has a boiling point of 163.5 ° C. Butyl methacrylate is an inexpensive organic compound used as a raw material for paints, dispersants, and fiber treatment agents. Since n-butyl methacrylate is easily polymerized by light or heat, a small amount of a polymerization inhibitor is added.
Glycols are a kind of alcohol, and are compounds having a structure in which a hydroxy group is substituted for each of two carbon atoms of a chain aliphatic hydrocarbon. Ethylene glycol C 2 H 4 (OH) 2 is one of the glycols having a low boiling point, which is miscible with methanol, has a higher viscosity than methanol, and has a boiling point of 197.3 ° C. Ethylene glycol is an inexpensive organic compound widely used as a solvent, antifreeze solution, synthetic raw material and the like.
Further, diethylene glycol O (CH 2 CH 2 OH) 2 is miscible with methanol, has a higher viscosity than methanol, and has a boiling point of 244.3 ° C. In addition to antifreeze, diethylene glycol is an inexpensive organic compound used in brake fluids, lubricants, inks, fabric softeners, fabric softeners, cork plasticizers, adhesives, paper, packaging materials, paints, etc. be.
Propylene glycol CH 3 CHOHCH 2 OH is miscible with methanol, has a higher viscosity than methanol, and has a boiling point of 188.2 ° C. Propylene glycol is used as a moisturizer, lubricant, emulsifier, antifreeze, intermediate material for plastics, solvent, etc., and also has excellent moisturizing and antifungal properties, so it improves the quality of pharmaceuticals, cosmetics, noodles, rice balls, etc. It is an inexpensive organic compound used in a wide range such as agents.
Further, dipropylene glycol [CH 3 CH (OH) CH 2 ] 2 O is miscible with methanol, has a higher viscosity than methanol, and has a boiling point of 232.2 ° C. Dipropylene glycol is an inexpensive organic compound used as an intermediate raw material for polyester resins, hydraulic oils for hydraulic equipment, antifreeze, raw materials for printing inks, and the like.
Further, tripropylene glycol [CH 3 CH (OH) CH 2 ] 2 O is miscible with methanol, has a higher viscosity than methanol, and has a boiling point of 265 ° C. Tripropylene glycol is used as a raw material for lubricating oils and cutting oils, raw materials for polyurethane / acrylic acid ester intermediates, paint / ink solvents, antifreezes, feed additives, intermediate raw materials for polyester resins, solvents for water-soluble oils, etc. It is an inexpensive organic compound.
Furthermore, glycol ethers have both an ether group and a hydroxyl group in one molecule, and are water, many organic solvents, and a solvent having high solubility of the resin, and most of the glycol ethers are dissolved in methanol. There are the following three types of glycol ethers. Ethylene glycol-based ethers and propylene glycol-based ethers are inexpensive materials used in paints, inks, dyes, photocopying liquids, cleaning agents, electrolytic solutions, soluble oils, hydraulic fluids, brake fluids, refrigerants, antifreeze agents, etc. Organic compound. Further, the dialkyl glycol is an inexpensive organic compound used in a reaction solvent, a separation extractant, a polymerization solvent, a decomposition prevention and stabilizer, an electrolytic solution of a battery or a capacitor, and the like.
For example, ethylene glycol-based ether having a low boiling point includes ethylene glycol monomethyl ether CH 3 O- (CH 2 CH 2 O) -H, which is soluble in methanol, has a higher viscosity than methanol, and has a boiling point of 124.5 ° C. be. Further, ethylene glycol monoisopropyl ether (CH 3 ) 2 CHO- (CH 2 CH 2 O) -H is dissolved in methanol, has a higher viscosity than methanol, and has a boiling point of 141.8 ° C.
Ethylene glycol-based ethers with a high boiling point include triethylene glycol monobutyl ether C 4 H 9 O- (CH 2 CH 2 O) 3- H, which dissolves in methanol, has a higher viscosity than methanol, and has a boiling point of 271. .2 ° C. Diethylene glycol mono 2-ethylhexyl ether C 2 H 5- C 4 H 9 CHCH 2 O- (CH 2 CH 2 O) 2- H is dissolved in methanol, has a higher viscosity than methanol, and has a boiling point of 272 ° C. be.
Furthermore, propylene glycol-based ethers with a low boiling point include propylene glycol monomethyl ether CH 3- CH 3 O- (CH 2 CHO) 2- H, which dissolves in methanol, has a higher viscosity than methanol, and has a boiling point of 121 ° C. be.
Moreover, the high boiling point of propylene glycol ether, tripropylene glycol monobutyl ether CH 3 -C 4 H 9 - There are (CH 2 CHO) 3 -H, dissolved in methanol, having a higher methanol viscosity, boiling point 274 ℃.
Further, the low boiling point dialkyl glycol, there are ethylene glycol dimethyl ether CH 3 O- (CH 2 CHO) -CH 3, was dissolved in methanol, having a higher methanol viscosity, boiling point of 85.2 ° C..
In addition, diethylene glycol dibutyl ether C 4 H 9 O- (CH 2 CH 2 O) 2- C 4 H 9 has a high boiling point, is dissolved in methanol, has a higher viscosity than methanol, and has a boiling point of 274 ° C. Is.
Further, the styrene monomer C 6 H 5 CH = CH 2 is a liquid monomer miscible with methanol, having a viscosity higher than that of methanol, and having a boiling point of 145 ° C. Styrene monomer is an inexpensive organic compound that can be used as a raw material for synthetic resin materials such as expanded polystyrene, acrylonitrile / styrene, acrylonitrile / butadiene / styrene, and unsaturated polyester, including polystyrene. Since the styrene monomer is easily polymerized, a small amount of a polymerization inhibitor is added.
As described above, the above-mentioned three properties of an organic compound belonging to any of carboxylic acid vinyl esters, acrylic acid esters, and any ester consisting of methacrylic acid esters, glycols, and glycol ethers have the above-mentioned three properties. There is an organic compound that also has. Further, the styrene monomer has the above-mentioned three properties. Therefore, these organic compounds are used as organic compounds in the method for producing an iron core described in paragraph 9.

実施例1
本実施例は、酸化マグネシウムの微粒子同士の接合で、電磁鋼板同士を結合させた鉄心を製造する実施例である。電磁鋼板は、無方向性電磁鋼板(例えば、日本製鉄株式会社の製品で、厚さが0.35mmからなる35H210)を用いた。無方向性電磁鋼板は、大型変圧器と配電用変圧器を除く変圧器の鉄心と各種回転機の鉄心として幅広く使用されている。なお、電磁鋼板の磁化の方向と鉄損の大きさとは電磁鋼板固有の性質であり、どのような電磁鋼板でも使用できる。マグネシウム化合物として、オクタン酸マグネシウム(例えば、富士フィルム和光純薬株式会社の製品)を用いた。また、有機化合物として、沸点が197℃で、20℃の粘度がメタノールの粘度の34倍に相当する20mPasであるエチレングリコール(例えば、株式会社日本触媒の製品)を用いた。
無方向性電磁鋼板を、直径が4.9cmの円板に切断し、40枚の円板を作成した。次に、オクタン酸マグネシウムの14g(0.1モルに相当する)を、1リットルのメタノールに分散し、この分散液を容器に充填した。さらに、容器に300ccのエチレングリコールを混合し、メタノールの粘度の19倍の粘度を持つ混合液を作成した。この混合液に、40枚の円板を浸漬し、この後、40枚の円板を取り上げ、65℃に昇温して、メタノールを気化させた。次に、内径が5cmで肉厚が2cmの円筒形状からなり、4分割できるアルミナからなる型に、前記メタノールを気化させた20枚の円板を重ね合わせて積層した。さらに、金型を20℃/分の昇温速度で240℃まで昇温し、さらに、40℃/分の昇温速度で300℃まで昇温し、300℃に1分間放置し、その後、室温まで冷却した。この後、積層した円板にアルミナの円板を載せ、さらに、100kgの重りを載せ(加圧圧力は5kg/mmに相当する)、1分間放置した。この後、型を分割し、さらに、アルミナの円板を取り除き、試料を取り出した。最後に、試料を750℃の窒素雰囲気の熱処理装置に1時間放置し、この後、徐冷した。こうした試料を2個作成した。
最初に、表面の絶縁抵抗を絶縁抵抗計で測定した。20MΩを超えていたため、表面の絶縁抵抗が高いことが分かった。
次に、東英工業株式会社の簡易鉄損測定器で鉄損を測定した。磁束密度が1.6Tにおける試料の鉄損は、僅かに2.3W/kgであった。電磁鋼板の鉄損は、メーカのカタログに依れば2.10W/kg以下であるため、電磁鋼板に近い鉄損であった。従って、酸化マグネシウムの微粒子の集まりの絶縁性が極めて高く、電磁鋼板の間隙を流れる渦電流が小さい。また、磁気焼鈍によって、電磁鋼板の保持力がもとに戻ったことが分かる。
さらに、−30℃から120℃の温度変化を与える気槽熱衝撃試験装置によって、試料に熱衝撃を与えたが、試料の外観は変わらなかった。
次に、5%の塩水に1時間浸漬させたが、試料の外観は変わらなかった。
さらに、熱衝撃試験と塩水の浸漬試験とを連続して実施した試料を、2mの高さから床に落下させたが、試料は破損しなかった。
さらに、試料を厚み方向に切断し、表面と切断面との双方の複数の部位を、電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は100Vからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を有する。
最初に、反射電子線の900−1000Vの間にある2次電子線を取り出して画像処理を行い、表面と断面とを観察した。表面には、40−60nmの大きさの粒状の微粒子が満遍なく析出し、微粒子同士が接合していた。断面においては、15−20個の微粒子が重なり合って接合し、電磁鋼板同士の間隙を埋め尽くしていた。次に、特性エックス線のエネルギーとその強度を画像処理し、粒状微粒子を構成する元素の種類とその分布状態を分析した。マグネシウム原子と酸素原子との双方が均一に存在し、偏在する箇所が見られなかったため、酸化マグネシウムからなる粒状微粒子である。結果を図1に模式的に示す。1は電磁鋼板で、2は酸化マグネシウムの粒状微粒子である。
Example 1
This embodiment is an example of manufacturing an iron core in which electromagnetic steel sheets are bonded to each other by joining fine particles of magnesium oxide to each other. As the electrical steel sheet, a non-oriented electrical steel sheet (for example, 35H210, which is a product of Nippon Steel Corporation and has a thickness of 0.35 mm) was used. Non-oriented electrical steel sheets are widely used as iron cores of transformers except large transformers and distribution transformers and iron cores of various rotating machines. The direction of magnetization of the electrical steel sheet and the magnitude of iron loss are properties peculiar to the electrical steel sheet, and any electrical steel sheet can be used. Magnesium octanate (for example, a product of Fuji Film Wako Pure Chemical Industries, Ltd.) was used as the magnesium compound. Further, as the organic compound, ethylene glycol having a boiling point of 197 ° C. and a viscosity of 20 ° C. of 20 mPas corresponding to 34 times the viscosity of methanol (for example, a product of Nippon Shokubai Co., Ltd.) was used.
The non-oriented electrical steel sheet was cut into a disk having a diameter of 4.9 cm to prepare 40 disks. Next, 14 g (corresponding to 0.1 mol) of magnesium octanate was dispersed in 1 liter of methanol, and the dispersion was filled in a container. Further, 300 cc of ethylene glycol was mixed in the container to prepare a mixed solution having a viscosity 19 times the viscosity of methanol. Forty discs were immersed in this mixed solution, and then the 40 discs were picked up and heated to 65 ° C. to vaporize methanol. Next, 20 discs vaporized with methanol were laminated on a cylinder having an inner diameter of 5 cm and a wall thickness of 2 cm and made of alumina that could be divided into four parts. Further, the mold is heated to 240 ° C. at a heating rate of 20 ° C./min, further heated to 300 ° C. at a heating rate of 40 ° C./min, left at 300 ° C. for 1 minute, and then at room temperature. Cooled down to. After that, an alumina disk was placed on the laminated disk, and a weight of 100 kg was further placed (pressurization pressure corresponds to 5 kg / mm 2 ), and the mixture was left for 1 minute. After this, the mold was divided, the alumina disk was removed, and the sample was taken out. Finally, the sample was left in a heat treatment apparatus having a nitrogen atmosphere at 750 ° C. for 1 hour, and then slowly cooled. Two such samples were prepared.
First, the surface insulation resistance was measured with an insulation resistance tester. Since it exceeded 20 MΩ, it was found that the insulation resistance of the surface was high.
Next, the iron loss was measured with a simple iron loss measuring instrument manufactured by Toei Kogyo Co., Ltd. The iron loss of the sample at a magnetic flux density of 1.6 T was only 2.3 W / kg. According to the manufacturer's catalog, the iron loss of the electromagnetic steel sheet was 2.10 W / kg or less, so that the iron loss was close to that of the electromagnetic steel sheet. Therefore, the insulating property of the collection of fine particles of magnesium oxide is extremely high, and the eddy current flowing through the gap between the magnetic steel sheets is small. It can also be seen that the holding force of the electrical steel sheet was restored by magnetic annealing.
Further, the sample was subjected to thermal shock by the air tank thermal shock tester which gives a temperature change from -30 ° C to 120 ° C, but the appearance of the sample did not change.
Next, the sample was immersed in 5% salt water for 1 hour, but the appearance of the sample did not change.
Further, a sample obtained by continuously performing a thermal shock test and a salt water immersion test was dropped from a height of 2 m onto the floor, but the sample was not damaged.
Furthermore, the sample was cut in the thickness direction, and a plurality of parts on both the surface and the cut surface were observed with an electron microscope. As the electron microscope, an extremely low acceleration voltage SEM manufactured by JFE Techno Research Co., Ltd. was used. This device can observe the surface with an extremely low acceleration voltage from 100 V, and has the feature that the surface of the sample can be directly observed without forming a conductive film on the sample.
First, the secondary electron beam between 900 and 1000 V of the backscattered electron beam was taken out and image-processed, and the surface and the cross section were observed. Granular fine particles having a size of 40-60 nm were evenly deposited on the surface, and the fine particles were bonded to each other. In the cross section, 15 to 20 fine particles overlapped and joined to fill the gap between the electrical steel sheets. Next, the energy and its intensity of the characteristic X-rays were image-processed, and the types of elements constituting the granular fine particles and their distribution states were analyzed. Since both magnesium atoms and oxygen atoms were uniformly present and no uneven distribution was observed, the particles were granular particles made of magnesium oxide. The results are schematically shown in FIG. 1 is an electromagnetic steel sheet, and 2 is granular fine particles of magnesium oxide.

実施例2
本実施例は、酸化アルミニウムの微粒子同士の接合で、電磁鋼板同士を結合させた鉄心を製造する実施例である。電磁鋼板は、実施例1と同じ無方向性電磁鋼板を用いた。アルミニウム化合物として、安息香酸アルミニウム(例えば、三津和化学薬品株式会社の製品)を用いた。また、有機化合物として、実施例1と同じエチレングリコールを用いた。
無方向性電磁鋼板を、実施例1と同様に、直径が4.9cmの円板に切断し、40枚の円板を作成した。次に、安息香酸アルミニウムの39g(0.1モルに相当する)を、1リットルのメタノールに分散し、この分散液を容器に充填した。さらに、容器に300ccのエチレングリコールを混合し、混合液を作成した。この混合液に、40枚の円板を浸漬し、この後、40枚の円板を取り上げ、65℃に昇温して、メタノールを気化させた。次に、実施例1と同じアルミナからなる型に、前記メタノールを気化させた20枚の円板を重ね合わせて積層した。さらに、金型を20℃/分の昇温速度で250℃まで昇温し、さらに、40℃/分の昇温速度で310℃まで昇温し、310℃に1分間放置し、その後、室温まで冷却した。この後、積層した円板にアルミナの円板を載せ、さらに、100kgの重りを載せ、1分間放置した。この後、型を分割し、アルミナの円板を取り除き、試料を取り出した。最後に、試料を750℃の窒素雰囲気の熱処理装置に1時間放置し、この後、試料を徐冷した。こうした試料を2個作成した。
最初に、表面の絶縁抵抗を絶縁抵抗計で測定した。実施例1と同様に、20MΩを超えていたため、表面の絶縁抵抗が高いことが分かった。
次に、実施例1と同様に鉄損を測定した。磁束密度が1.6Tにおける試料の鉄損は僅かに2.3W/kgであった。この結果から、酸化アルミニウムの微粒子の集まりの絶縁性が極めて高く、電磁鋼板の間隙を流れる渦電流が小さい。また、磁気焼鈍によって、電磁鋼板の保持力がもとに戻ったことが分かる。
さらに、−30℃から120℃の温度変化を与える気槽熱衝撃試験装置によって、試料に熱衝撃を与えたが、試料の外観は変わらなかった。
次に、5%の塩水に1時間浸漬させたが、試料の外観は変わらなかった。
さらに、熱衝撃試験と塩水の浸漬試験とを連続して実施した試料を、2mの高さから床に落下させたが、試料は破損しなかった。
最後に、実施例1と同様に、試料の表面と切断面との双方を電子顕微鏡で観察した。表面に、40−60nmの大きさの粒状の微粒子が満遍なく析出し、微粒子同士が接合していた。断面においては、15−20個の微粒子が重なり合って接合し、電磁鋼板同士の間隙を埋め尽くしていた。次に、粒状微粒子を構成する元素の種類とその分布状態を分析した。アルミニウム原子と酸素原子との双方が均一に存在し、偏在する箇所が見られなかったため、酸化アルミニウムからなる粒状微粒子である。
Example 2
This embodiment is an example of manufacturing an iron core in which electromagnetic steel sheets are bonded to each other by joining fine particles of aluminum oxide to each other. As the electrical steel sheet, the same non-oriented electrical steel sheet as in Example 1 was used. Aluminum benzoate (for example, a product of Mitsuwa Chemical Co., Ltd.) was used as the aluminum compound. Further, as the organic compound, the same ethylene glycol as in Example 1 was used.
The non-oriented electrical steel sheet was cut into discs having a diameter of 4.9 cm in the same manner as in Example 1, and 40 discs were prepared. Next, 39 g (corresponding to 0.1 mol) of aluminum benzoate was dispersed in 1 liter of methanol, and the dispersion was filled in a container. Further, 300 cc of ethylene glycol was mixed in the container to prepare a mixed solution. Forty discs were immersed in this mixed solution, and then the 40 discs were picked up and heated to 65 ° C. to vaporize methanol. Next, 20 discs vaporized with methanol were laminated on the same mold made of alumina as in Example 1. Further, the mold is heated to 250 ° C. at a heating rate of 20 ° C./min, further heated to 310 ° C. at a heating rate of 40 ° C./min, left at 310 ° C. for 1 minute, and then at room temperature. Cooled down to. After that, an alumina disk was placed on the laminated disk, a weight of 100 kg was further placed, and the mixture was left for 1 minute. After this, the mold was divided, the alumina disk was removed, and the sample was taken out. Finally, the sample was left in a heat treatment apparatus at 750 ° C. in a nitrogen atmosphere for 1 hour, after which the sample was slowly cooled. Two such samples were prepared.
First, the surface insulation resistance was measured with an insulation resistance tester. As in Example 1, since it exceeded 20 MΩ, it was found that the insulation resistance on the surface was high.
Next, the iron loss was measured in the same manner as in Example 1. The iron loss of the sample at a magnetic flux density of 1.6 T was only 2.3 W / kg. From this result, the insulating property of the collection of fine particles of aluminum oxide is extremely high, and the eddy current flowing through the gap of the electromagnetic steel sheet is small. It can also be seen that the holding force of the electrical steel sheet was restored by magnetic annealing.
Further, the sample was subjected to thermal shock by the air tank thermal shock tester which gives a temperature change from -30 ° C to 120 ° C, but the appearance of the sample did not change.
Next, the sample was immersed in 5% salt water for 1 hour, but the appearance of the sample did not change.
Further, a sample obtained by continuously performing a thermal shock test and a salt water immersion test was dropped from a height of 2 m onto the floor, but the sample was not damaged.
Finally, as in Example 1, both the surface and the cut surface of the sample were observed with an electron microscope. Granular fine particles having a size of 40-60 nm were evenly deposited on the surface, and the fine particles were bonded to each other. In the cross section, 15 to 20 fine particles overlapped and joined to fill the gap between the electrical steel sheets. Next, the types of elements constituting the granular fine particles and their distribution states were analyzed. Since both aluminum atoms and oxygen atoms were uniformly present and no uneven distribution was observed, the particles were granular fine particles made of aluminum oxide.

以上に説明したように、鉄心の鉄損は電磁鋼板に近い鉄損になった。この結果から、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりは、極めて高い絶縁抵抗を、電磁鋼板同士の間隙に形成した。また、磁気焼鈍することで、電磁鋼板における全ての加工歪が解消され、電磁鋼板の保持力が元に戻った。電磁鋼板が微粒子同士の接合で強固に結合されたため、耐熱衝撃性を持った。また、鉄心が、微粒子同士が接合した微粒子の集まりで覆われているため、塩水に対する耐食性を持った。こうした優れた性能を持つ鉄心は、安価な原料を用い、連続した処理で鉄心が連続して製造される。このため、本発明の鉄心の製造方法に依れば、従来の鉄心より優れた性能を持つ鉄心が、従来の鉄心と同様に安価に製造できる。 As explained above, the iron loss of the iron core is close to that of the electrical steel sheet. From this result, a collection of fine particles made of magnesium oxide or aluminum oxide formed extremely high insulation resistance in the gaps between the electrical steel sheets. Further, by magnetic annealing, all the processing strains in the electrical steel sheet were eliminated, and the holding force of the electrical steel sheet was restored. Since the electromagnetic steel sheets were firmly bonded by joining the fine particles to each other, they had thermal impact resistance. Further, since the iron core is covered with a collection of fine particles in which fine particles are bonded to each other, it has corrosion resistance to salt water. Iron cores with such excellent performance are manufactured continuously by continuous processing using inexpensive raw materials. Therefore, according to the method for manufacturing an iron core of the present invention, an iron core having superior performance to that of a conventional iron core can be manufactured at a low cost as in the conventional iron core.

1 電磁鋼板 2 酸化マグネシウムの粒状微粒子
1 Electrical steel sheet 2 Granular fine particles of magnesium oxide

Claims (2)

鉄心の形状に切断した複数枚の電磁鋼板を、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりを介して積層させ、該積層した電磁鋼板を圧縮し、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子を前記電磁鋼板の表面に接合し、また、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子同士を接合し、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子の集まりを介して前記電磁鋼板同士が結合した構成からなる鉄心を製造する該鉄心の製造方法は、
熱分解で酸化マグネシウムないしは酸化アルミニウムを析出する金属化合物をメタノールに分散し、該金属化合物のメタノール分散液を容器に充填し、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点がメタノールの沸点より高く、かつ、前記金属化合物の熱分解温度より低い第三の性質を兼備する有機化合物を、前記金属化合物のメタノール分散液に混合し、該有機化合物と前記金属化合物のメタノール分散液との混合液を作成する、この後、鉄心の形状に切断した複数枚の電磁鋼板を前記混合液に浸漬し、さらに、該混合液から前記複数枚の電磁鋼板を取り出し、該複数枚の電磁鋼板をメタノールの沸点に昇温し、前記金属化合物の微細結晶の集まりが前記有機化合物中に析出した懸濁体からなる被膜を、前記複数枚の電磁鋼板の各々の電磁鋼板に吸着させる処理からなる第一の工程と、
前記懸濁体の被膜が吸着した複数枚の電磁鋼板のうち、鉄心を構成する前記電磁鋼板の複数枚を、前記鉄心の形状を有する金型内に重ね合わせて積層し、この後、該金型を前記金属化合物の熱分解温度に昇温し、前記積層した電磁鋼板の各々に、酸化マグネシウムないしは酸化アルミニウムからなる微粒子の集まりを析出させ、さらに、プレス機によって徐々に増大する加圧圧力を前記積層した電磁鋼板に加える、これによって、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子が前記電磁鋼板の表面に接合し、また、前記酸化マグネシウムないしは前記酸化アルミニウムからなる微粒子同士が接合し、該微粒子同士の接合を介して前記積層した電磁鋼板同士が結合され、該積層した電磁鋼板同士が結合した構成からなる鉄心が前記金型内に製造される第二の工程と、
前記鉄心を金型から取り出し、該鉄心を750−820℃の温度の還元雰囲気で磁気焼鈍する第三の工程とからなり、
これら3つの工程を連続して実施することにより、酸化マグネシウムないしは酸化アルミニウムからなる微粒子同士の接合を介して積層した電磁鋼板同士が結合した構成からなる鉄心が製造される、鉄心の製造方法。
A plurality of electromagnetic steel plates cut in the shape of the core, are laminated through a collection of particles comprising a magnesium oxide or aluminum oxide, compresses magnetic steel sheets and the stacking, said fine particles of said magnesium oxide or the aluminum oxide It is composed of bonding to the surface of an electromagnetic steel plate, bonding fine particles made of magnesium oxide or aluminum oxide to each other, and bonding the electromagnetic steel plates to each other through a collection of fine particles made of magnesium oxide or aluminum oxide. manufacturing method of the core to produce the iron core,
The first property of dispersing a metal compound that precipitates magnesium oxide or aluminum oxide by thermal decomposition in methanol, filling a container with a methanol dispersion of the metal compound, and dissolving or mixing in methanol, and the viscosity are higher than the viscosity of methanol. An organic compound having both a high second property and a third property having a boiling point higher than that of methanol and lower than the thermal decomposition temperature of the metal compound is mixed with the methanol dispersion of the metal compound, and the organic compound is mixed. A mixed solution of the compound and the methanol dispersion of the metal compound is prepared, and then a plurality of electromagnetic steel plates cut into the shape of an iron core are immersed in the mixed solution, and further, the plurality of electromagnetic waves are obtained from the mixed solution. The steel sheets are taken out, the temperature of the plurality of electromagnetic steel sheets is raised to the boiling point of methanol, and a film composed of a suspension in which a collection of fine crystals of the metal compound is deposited in the organic compound is formed on the plurality of electromagnetic steel sheets. The first step, which consists of the process of adsorbing to each electromagnetic steel plate,
Of the plurality of electromagnetic steel plates to which the film of the suspended material is adsorbed, a plurality of the electromagnetic steel plates constituting the iron core are laminated in a mold having the shape of the iron core, and then the metal is laminated. The mold is raised to the thermal decomposition temperature of the metal compound, a collection of fine particles made of magnesium oxide or aluminum oxide is deposited on each of the laminated electromagnetic steel sheets, and a pressurizing pressure gradually increased by a press machine is applied. The fine particles made of magnesium oxide or aluminum oxide are bonded to the surface of the electromagnetic steel plate, and the fine particles made of magnesium oxide or aluminum oxide are bonded to each other by adding the fine particles to the laminated electromagnetic steel plate. A second step in which the laminated electromagnetic steel plates are bonded to each other through joining to each other, and an iron core having a structure in which the laminated electromagnetic steel plates are bonded to each other is manufactured in the mold.
It consists of a third step of removing the iron core from the mold and magnetically annealing the iron core in a reducing atmosphere at a temperature of 750-820 ° C.
A method for manufacturing an iron core, which comprises a structure in which electromagnetic steel sheets laminated through bonding of fine particles made of magnesium oxide or aluminum oxide are bonded to each other by continuously carrying out these three steps.
請求項1に記載した鉄心の製造方法において、前記金属化合物が、オクタン酸マグネシウムないしはナフテン酸マグネシウムからなるいずれかのマグネシウム化合物であり、ないしは、安息香酸アルミニウムないしはナフテン酸アルミニウムからなるいずれかのアルミニウム化合物であり、前記有機化合物が、カルボン酸エステル類ないしはグリコール類ないしはグリコールエーテル類のいずれかに属する1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーであり、これら3種類の物質を用い、請求項1に記載した鉄心の製造方法に従って鉄心を製造する、請求項1に記載した鉄心の製造方法。
In the method for producing an iron core according to claim 1, the metal compound is any magnesium compound made of magnesium octanate or magnesium naphthenate, or any aluminum compound made of aluminum benzoate or aluminum naphthenate. The organic compound is a liquid monomer composed of one kind of organic compound belonging to any one of carboxylic acid esters, glycols or glycol ethers, or a styrene monomer, and these three kinds of substances are used for claiming. The method for manufacturing an iron core according to claim 1, wherein the iron core is manufactured according to the method for manufacturing an iron core according to item 1.
JP2019219433A 2019-12-04 2019-12-04 A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles composed of magnesium oxide or aluminum oxide deposited in the gaps of laminated electromagnetic steel sheets Active JP7153413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019219433A JP7153413B2 (en) 2019-12-04 2019-12-04 A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles composed of magnesium oxide or aluminum oxide deposited in the gaps of laminated electromagnetic steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219433A JP7153413B2 (en) 2019-12-04 2019-12-04 A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles composed of magnesium oxide or aluminum oxide deposited in the gaps of laminated electromagnetic steel sheets

Publications (3)

Publication Number Publication Date
JP2021089965A JP2021089965A (en) 2021-06-10
JP2021089965A5 true JP2021089965A5 (en) 2022-01-11
JP7153413B2 JP7153413B2 (en) 2022-10-14

Family

ID=76220483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219433A Active JP7153413B2 (en) 2019-12-04 2019-12-04 A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles composed of magnesium oxide or aluminum oxide deposited in the gaps of laminated electromagnetic steel sheets

Country Status (1)

Country Link
JP (1) JP7153413B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117397021A (en) 2021-05-28 2024-01-12 住友电木株式会社 Sealing resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147119A (en) * 1981-03-06 1982-09-10 Canon Inc Manufacture for magnetic core
JPH0781191B2 (en) * 1989-03-23 1995-08-30 インダストリアル・テクノロジー・リサーチ・インステイテユート Attaching the electrical insulation layer
JP6546438B2 (en) 2015-04-06 2019-07-17 小林 博 A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3

Similar Documents

Publication Publication Date Title
KR101728027B1 (en) Adhesive coating composition for electrical steel, electrical steel with adhesive coating layer, electrical steel product, and method for manufacturing the product
Tang et al. Phytic acid doped nanoparticles for green anticorrosion coatings
US20160281186A1 (en) Grain Oriented Electrical Steel Flat Product Comprising an Insulation Coating
KR101247481B1 (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
CN103597556A (en) New composite iron- based powder mix, powder component and method
EP2978549B1 (en) Non-corrosive soft-magnetic powder
JP6896944B2 (en) Manufacturing method of electrical steel sheet adhesive coating composition, electrical steel sheet laminate and electrical steel sheet product
CN102822912A (en) Rare earth sintered magnet, method for producing same, motor and automobile
JP2021089965A5 (en)
KR20130094827A (en) Electromagnetic steel sheet and process for production thereof
KR20130140170A (en) Electromagnetic steel sheet having insulating coating
US20140368304A1 (en) Powder for magnetic core and powder magnetic core
WO2011033943A1 (en) Electromagnetic steel sheet and method for producing same
JP7153413B2 (en) A manufacturing method for manufacturing an iron core in which electromagnetic steel sheets are bonded to each other through bonding of fine particles composed of magnesium oxide or aluminum oxide deposited in the gaps of laminated electromagnetic steel sheets
JP2017508873A (en) Soft magnetic composite powder and soft magnetic member
CN109054560A (en) A kind of electrical sheet coatings
JP2008236844A (en) Rotary electric machine and its manufacturing method and automobile equipped with rotary electric machine
JP3435080B2 (en) Non-oriented electrical steel sheet with excellent coating properties
JP6546438B2 (en) A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3
JP4909312B2 (en) Soft magnetic material for dust core and dust core
WO2006126553A1 (en) Low magnetostriction body and dust core using same
JP2016196701A5 (en)
CN111560203B (en) Aluminum foil treatment fluid and application thereof
JP6222206B2 (en) Electrical steel sheet with insulating coating, laminated electrical steel sheet, and manufacturing method thereof
CN104098983A (en) Priming paint for shot blasting free container