JP2021082692A - Manufacturing method of dust core - Google Patents

Manufacturing method of dust core Download PDF

Info

Publication number
JP2021082692A
JP2021082692A JP2019208410A JP2019208410A JP2021082692A JP 2021082692 A JP2021082692 A JP 2021082692A JP 2019208410 A JP2019208410 A JP 2019208410A JP 2019208410 A JP2019208410 A JP 2019208410A JP 2021082692 A JP2021082692 A JP 2021082692A
Authority
JP
Japan
Prior art keywords
powder
heat treatment
soft magnetic
molded body
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019208410A
Other languages
Japanese (ja)
Other versions
JP7377076B2 (en
Inventor
泰雄 大島
Yasuo Oshima
泰雄 大島
功太 赤岩
Kota Akaiwa
功太 赤岩
山本 豊
Yutaka Yamamoto
豊 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2019208410A priority Critical patent/JP7377076B2/en
Priority to CN202011221588.5A priority patent/CN112908668A/en
Publication of JP2021082692A publication Critical patent/JP2021082692A/en
Application granted granted Critical
Publication of JP7377076B2 publication Critical patent/JP7377076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Abstract

To provide a manufacturing method of a dust core which can obtain eddy current loss lowering effect larger than the influence on the hysteresis loss and has low iron loss.SOLUTION: A dust core is manufactured at least through a pressure molding step of molding soft magnetic powder into a molded body of a predetermined shape, and a molded body heat treatment step of heat-treating the molded body that has undergone the pressure molding step. In the molded body heat treatment step, the molded body is heat-treated in an atmosphere having oxygen concentration of 0.1% or more.SELECTED DRAWING: Figure 2

Description

本発明は、圧粉磁心の製造方法に関する。 The present invention relates to a method for producing a dust core.

コイルは、電気エネルギーを磁気エネルギーに変換して蓄積及び放出する電磁気部品である。コイルは、ハイブリッド自動車や電気自動車、燃料電池車の駆動システム等をはじめとする電力用途ではリアクトルとも呼ばれ、車載用の昇圧回路等の種々の用途で使用されている。コイルのコアとしては、例えば圧粉磁心が使用される。圧粉磁心は、軟磁性粉末を加圧成形することにより形成される。 A coil is an electromagnetic component that converts electrical energy into magnetic energy and stores and emits it. Coil is also called a reactor in electric power applications such as drive systems for hybrid vehicles, electric vehicles, and fuel cell vehicles, and is used in various applications such as booster circuits for vehicles. As the core of the coil, for example, a dust core is used. The dust core is formed by pressure molding soft magnetic powder.

圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、小さな印加磁界で大きな磁束密度を得ることが出来る磁気特性と、磁束密度変化におけるエネルギー損失が小さいという磁気特性が求められる。磁束密度に関する磁気特性としては例えば透磁率(μ)が挙げられる。エネルギー損失に関する磁気特性としてはコアロスとも呼ばれる鉄損(Pcv)が挙げられる。鉄損(Pcv)は、ヒステリシス損失(Ph)と、渦電流損失(Pe)の和で表される。 The dust core is required to have a magnetic characteristic that a large magnetic flux density can be obtained with a small applied magnetic field and a magnetic characteristic that the energy loss due to a change in the magnetic flux density is small in order to improve the energy exchange efficiency and generate low heat. Examples of the magnetic characteristics related to the magnetic flux density include magnetic permeability (μ). As a magnetic property related to energy loss, iron loss (Pcv), which is also called core loss, can be mentioned. The iron loss (Pcv) is represented by the sum of the hysteresis loss (Ph) and the eddy current loss (Pe).

特許第5435398号公報Japanese Patent No. 5435398

渦電流損失を小さくするために、軟磁性粉末の周囲を絶縁材料でコーティングする技術が知られている。しかしながら、渦電流損失を減少させるために絶縁材料が過剰になると、ヒステリシス損失が増加する虞があり、絶縁材料の増加に比して効果的な鉄損低下作用が得られない虞がある。従って、ヒステリシス損失に対する影響よりも大きな渦電流損失低下効果が得られ、総じて鉄損を低下させることができる製造方法が望まれる。 In order to reduce the eddy current loss, a technique of coating the periphery of the soft magnetic powder with an insulating material is known. However, if the insulating material is excessive in order to reduce the eddy current loss, the hysteresis loss may increase, and an effective iron loss lowering effect may not be obtained as compared with the increase in the insulating material. Therefore, a manufacturing method is desired in which the effect of reducing the eddy current loss is larger than the effect on the hysteresis loss and the iron loss can be reduced as a whole.

本発明は、上記のような課題を解決するために提案されたものであり、本発明の目的は、ヒステリシス損失に対する影響よりも大きな渦電流損失低下効果が得られる圧粉磁心の製造方法を提供することにある。 The present invention has been proposed to solve the above problems, and an object of the present invention is to provide a method for producing a dust core capable of obtaining an eddy current loss lowering effect larger than the influence on the hysteresis loss. To do.

上記の目的を達成するため、本発明の実施形態に係る圧粉磁心の製造方法は、軟磁性粉末を所定形状の成形体に成形する加圧成形工程と、前記加圧成形工程を経た前記成形体を、酸素濃度が0.1%以上の雰囲気下で熱処理する成形体熱処理工程と、を含むこと、を特徴とする。 In order to achieve the above object, the method for producing a dust core according to an embodiment of the present invention includes a pressure molding step of molding a soft magnetic powder into a molded product having a predetermined shape, and the molding through the pressure molding step. It is characterized by including a molded article heat treatment step of heat-treating the body in an atmosphere having an oxygen concentration of 0.1% or more.

この圧粉磁心の製造方法により、絶縁材料を増やさなくとも渦電流損失を小さくできる。そのため、ヒステリシス損失を維持しつつ渦電流損失を小さくでき、又はヒステリシス損失の増加を上回るように渦電流損失を小さくでき、総じて、圧粉磁心の鉄損が小さくなる。推測であり、これに限られないが、酸素濃度が0.1%以上の雰囲気下で熱処理することで、軟磁性粉末の表面に酸化被膜が形成され、この酸化被膜によって絶縁層の比抵抗が高くなるとともに、この酸化被膜によって磁区が細分化し、渦電流損失が低減すると考えられる。 By this method of manufacturing the dust core, the eddy current loss can be reduced without increasing the insulating material. Therefore, the eddy current loss can be reduced while maintaining the hysteresis loss, or the eddy current loss can be reduced so as to exceed the increase in the hysteresis loss, and the iron loss of the dust core is generally reduced. It is speculation, but not limited to this, by heat treatment in an atmosphere with an oxygen concentration of 0.1% or more, an oxide film is formed on the surface of the soft magnetic powder, and the specific resistance of the insulating layer is increased by this oxide film. It is considered that the magnetic domain is subdivided by this oxide film as the height increases, and the eddy current loss is reduced.

前記成形体熱処理工程では、酸素濃度が0.1%以上5%以下の雰囲気下で熱処理するようにしてもよい。酸素濃度が5%以下であると渦電流損失の低下効果を最大限に受けつつ、透磁率の減少に歯止めをかけることができ、圧粉磁心は低損失及び高透磁率を両立する。前記成形体熱処理工程では、酸素濃度が0.1%以上1%以下の雰囲気下で熱処理するようにしてもよい。酸素濃度が1%以下であると渦電流損失の低下効果を最大限に受けつつ、透磁率の減少を更に抑制でき、圧粉磁心は低損失及び高透磁率を高度に両立する。 In the molded body heat treatment step, the heat treatment may be performed in an atmosphere having an oxygen concentration of 0.1% or more and 5% or less. When the oxygen concentration is 5% or less, the decrease in magnetic permeability can be stopped while receiving the maximum effect of reducing the eddy current loss, and the dust core achieves both low loss and high magnetic permeability. In the molded body heat treatment step, the heat treatment may be performed in an atmosphere having an oxygen concentration of 0.1% or more and 1% or less. When the oxygen concentration is 1% or less, the decrease in magnetic permeability can be further suppressed while receiving the effect of reducing the eddy current loss to the maximum, and the dust core has both low loss and high magnetic permeability.

前記加圧成形工程前に、前記軟磁性粉末を500℃以上で熱処理する粉末熱処理工程を含むようにしてもよい。この粉末熱処理を併用することにより渦電流損失を更に低下させることができ、より低鉄損の圧粉磁心を実現することができる。 Prior to the pressure molding step, a powder heat treatment step of heat-treating the soft magnetic powder at 500 ° C. or higher may be included. By using this powder heat treatment in combination, the eddy current loss can be further reduced, and a powder magnetic core with a lower iron loss can be realized.

前記軟磁性粉末は、FeSiAl合金粉末であるようにしてもよい。また、前記軟磁性粉末を絶縁材料で被覆する絶縁処理工程と、前記絶縁処理工程を経た前記軟磁性粉末に潤滑剤を添加する潤滑剤添加工程と、を前記加圧成形工程前に含むようにしてもよい。 The soft magnetic powder may be a FeSiAl alloy powder. Further, even if an insulation treatment step of coating the soft magnetic powder with an insulating material and a lubricant addition step of adding a lubricant to the soft magnetic powder that has undergone the insulation treatment step are included before the pressure molding step. Good.

本発明によれば、ヒステリシス損失に対する影響よりも大きな渦電流損失低下効果を得ることができ、低鉄損の圧粉磁心を得ることができる。 According to the present invention, it is possible to obtain an eddy current loss lowering effect larger than the effect on the hysteresis loss, and it is possible to obtain a dust core having a low iron loss.

成形体熱処理工程の酸素濃度とヒステリシス損失Phとの関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration of the molded body heat treatment process, and the hysteresis loss Ph. 成形体熱処理工程の酸素濃度と渦電流損失Peとの関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration of the molded body heat treatment process, and the eddy current loss Pe. 成形体熱処理工程の酸素濃度と鉄損Pcvとの関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration of a molded body heat treatment process, and iron loss Pcv. 成形体熱処理工程の酸素濃度と透磁率μとの関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration of the molded body heat treatment process, and the magnetic permeability μ.

以下、本実施形態に係る圧粉磁心の製造方法について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。 Hereinafter, the method for producing the dust core according to the present embodiment will be described in detail. The present invention is not limited to the embodiments described below.

(圧粉磁心)
圧粉磁心は、インダクタ及びリアクトルとも呼ばれるコイルのコアに用いられる磁性体である。この圧粉磁心は、軟磁性粉末を加圧成形及び焼鈍して成る。軟磁性粉末としては、低酸化雰囲気下での焼鈍によって酸化され得る元素が含有していればよい。典型的には、この軟磁性粉末としては、鉄を主成分とするパーマロイ(Fe−Ni合金)、Si含有鉄合金(Fe−Si合金)、センダスト合金(Fe−Si−Al合金)、アモルファス合金、純鉄粉等が挙げられる。
(Powder magnetic core)
The dust core is a magnetic material used in the core of a coil, which is also called an inductor and a reactor. This dust core is formed by pressure molding and annealing soft magnetic powder. The soft magnetic powder may contain an element that can be oxidized by annealing in a low-oxidizing atmosphere. Typically, the soft magnetic powder includes permalloy (Fe-Ni alloy) containing iron as a main component, a Si-containing iron alloy (Fe-Si alloy), a sendust alloy (Fe-Si-Al alloy), and an amorphous alloy. , Pure iron powder and the like.

Si含有鉄合金には、Co、Al、Cr又はMnが含まれていてもよい。パーマロイ(Fe−Ni合金)を用いる場合、Feに対するNiの比率は50:50や25:75が好ましいが、他の比率であってもよい。例えば、Fe−80Ni、Fe−36Niでもよい。FeとNiの他にSi、Cr、Mo、Cu、Nb、Ta等を含んでいても良い。Fe−Si合金粉末は、例えば、Fe−3.5%Si合金粉末、Fe−6.5%Si合金粉末が挙げられるが、Feに対するSiの比率は、3.5%や6.5%以外であっても良い。純鉄粉は、Feを99%以上含むものである。軟磁性粉末は1種類でなく、2種類以上の混合粉でも良い。 The Si-containing iron alloy may contain Co, Al, Cr or Mn. When permalloy (Fe—Ni alloy) is used, the ratio of Ni to Fe is preferably 50:50 or 25:75, but other ratios may be used. For example, Fe-80Ni and Fe-36Ni may be used. In addition to Fe and Ni, Si, Cr, Mo, Cu, Nb, Ta and the like may be contained. Examples of the Fe-Si alloy powder include Fe-3.5% Si alloy powder and Fe-6.5% Si alloy powder, but the ratio of Si to Fe is other than 3.5% and 6.5%. It may be. Pure iron powder contains 99% or more of Fe. The soft magnetic powder is not limited to one type, but may be a mixed powder of two or more types.

この軟磁性粉末は、粉砕法により作製されたものでも、アトマイズ法により作製されたものでも良い。アトマイズ法は、水アトマイズ法、ガスアトマイズ法、水ガスアトマイズ法のいずれでも良い。水アトマイズ法は、現状、もっとも入手性が良く低コストである。水アトマイズ法を使用した場合は、その粒子形状がいびつであるので、それを加圧成形した粉末成形体の機械的強度を向上させやすいため、好ましい。ガスアトマイズ法は、ヒステリシス損失を効果的に低減でき、好ましい。 This soft magnetic powder may be produced by a pulverization method or an atomization method. The atomizing method may be any of a water atomizing method, a gas atomizing method, and a water gas atomizing method. The water atomization method is currently the most available and low cost. When the water atomization method is used, it is preferable because the particle shape is distorted and it is easy to improve the mechanical strength of the powder molded product obtained by pressure-molding the particle shape. The gas atomizing method is preferable because it can effectively reduce the hysteresis loss.

また、軟磁性粉末は、外側に絶縁材料が付着することによって、絶縁層によってコーティングされていてもよい。即ち、軟磁性粉末とは、絶縁層が形成されていない軟磁性粉末又は絶縁層が形成された軟磁性粉末の何れをも含む意味である。絶縁材料は、軟磁性粉末の外側を全て覆うように付着していてもよく、一部を覆うように付着していてもよい。即ち、絶縁材料は、軟磁性粉末の各粒子表面への付着、軟磁性粉末の凝集体の表面への付着、又はこれらの両方の態様が混在するように、軟磁性粉末に付着する。また絶縁材料は、粒子表面又は凝集体表面の全周囲に付着していてもよいし、点状に分散して付着していてもよいし、更には塊状に分散して付着していてもよい。 Further, the soft magnetic powder may be coated with an insulating layer by adhering an insulating material to the outside. That is, the soft magnetic powder means to include either a soft magnetic powder on which an insulating layer is not formed or a soft magnetic powder on which an insulating layer is formed. The insulating material may be attached so as to cover the entire outside of the soft magnetic powder, or may be attached so as to cover a part of the soft magnetic powder. That is, the insulating material adheres to the soft magnetic powder so that the soft magnetic powder adheres to the surface of each particle, the soft magnetic powder adheres to the surface of the agglomerates, or both of these aspects are mixed. Further, the insulating material may be adhered to the entire circumference of the particle surface or the aggregate surface, may be dispersed and adhered in a dot shape, or may be dispersed and adhered in a lump shape. ..

絶縁材料としては、シランカップリング剤、シリコーンオリゴマー、シリコーンレジン、又はこれらの混合が挙げられる。例えば、絶縁材料として、シランカップリング剤とシリコーンレジンが軟磁性粉末の外側に付着していてもよいし、シリコーンオリゴマーとシリコーンレジンが軟磁性粉末の外側に付着していてもよい。また、複数種の絶縁材料が軟磁性粉末の外側に付着する場合、その複数種の絶縁材料により成る絶縁層は、種類ごとに各層に分かれていてもよいし、各種類が混合された単層であってもよい。 Examples of the insulating material include a silane coupling agent, a silicone oligomer, a silicone resin, or a mixture thereof. For example, as the insulating material, the silane coupling agent and the silicone resin may be attached to the outside of the soft magnetic powder, or the silicone oligomer and the silicone resin may be attached to the outside of the soft magnetic powder. When a plurality of types of insulating materials adhere to the outside of the soft magnetic powder, the insulating layer made of the plurality of types of insulating materials may be divided into individual layers for each type, or a single layer in which each type is mixed. It may be.

シランカップリング剤としては、アミノシラン系、エポキシシラン系、イソシアヌレート系のシランカップリング剤を使用することができ、特に、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、トリス−(3−トリメトキシシリルプロピル)イソシアヌレートが好ましい。 As the silane coupling agent, aminosilane-based, epoxysilane-based, and isocyanurate-based silane coupling agents can be used, and in particular, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and tris. -(3-Trimethoxysilylpropyl) isocyanurate is preferred.

シリコーンオリゴマーとしては、アルコキシシリル基を有し、反応性官能基を有さないメチル系、メチルフェニル系のものや、アルコキシシリル基及び反応性官能基を有するエポキシ系、エポキシメチル系、メルカプト系、メルカプトメチル系、アクリルメチル系、メタクリルメチル系、ビニルフェニル系、又はアルコキシシリル基ではなく、反応性官能基を有する脂環式エポキシ系等を用いることができる。特に、メチル系またはメチルフェニル系のシリコーンオリゴマーを用いることで厚く硬い絶縁層を形成することができる。また、シリコーンオリゴマー層の形成のしやすさを考慮して、粘度の比較的低いメチル系、メチルフェニル系を用いてもよい。 Examples of the silicone oligomer include methyl-based and methylphenyl-based silicone oligomers having an alkoxysilyl group and no reactive functional group, and epoxy-based, epoxymethyl-based and mercapto-based silicone oligomers having an alkoxysilyl group and a reactive functional group. Instead of mercaptomethyl-based, acrylic-methyl-based, methacryl-methyl-based, vinylphenyl-based, or alkoxysilyl group, an alicyclic epoxy-based having a reactive functional group or the like can be used. In particular, a thick and hard insulating layer can be formed by using a methyl-based or methylphenyl-based silicone oligomer. Further, in consideration of the ease of forming the silicone oligomer layer, a methyl type or a methylphenyl type having a relatively low viscosity may be used.

シリコーンレジンは、シロキサン結合(Si−O―Si)を主骨格に持つ樹脂であり、可撓性に優れた絶縁層を形成することができる。シリコーンレジンとしては、典型的には、メチル系、メチルフェニル系、プロピルフェニル系、エポキシ樹脂変性系、アルキッド樹脂変性系、ポリエステル樹脂変性系、ゴム系等を用いることができる。この中でも特に、メチルフェニル系のシリコーンレジンを用いた場合、加熱減量が少なく、耐熱性に優れた絶縁層を形成することができる。 The silicone resin is a resin having a siloxane bond (Si—O—Si) as a main skeleton, and can form an insulating layer having excellent flexibility. As the silicone resin, a methyl-based, methylphenyl-based, propylphenyl-based, epoxy resin-modified system, alkyd resin-modified system, polyester resin-modified system, rubber-based, or the like can be typically used. Among these, in particular, when a methylphenyl-based silicone resin is used, an insulating layer having little heat loss and excellent heat resistance can be formed.

その他、軟磁性粉末には各種の添加物を付加するようにしてもよい。例えば、アルミナ粉末、マグネシア粉末、シリカ粉末、チタニア粉末及びジルコニア粉末等の無機絶縁粉末、縮合リン酸アルミニウム、縮合リン酸カルシウム及び縮合リン酸マグネシウム等の縮合リン酸金属塩を添加するようにしてもよい。 In addition, various additives may be added to the soft magnetic powder. For example, inorganic insulating powders such as alumina powder, magnesia powder, silica powder, titania powder and zirconia powder, and condensed metal phosphates such as condensed aluminum phosphate, condensed calcium phosphate and condensed magnesium phosphate may be added.

(圧粉磁心の製造方法)
この圧粉磁心は、少なくとも軟磁性粉末の加圧成形工程と焼鈍とも呼ばれる成形体熱処理工程を経て製造される。加圧成形工程の前に、軟磁性粉末を熱処理する粉末熱処理工程、絶縁材料で軟磁性粉末を被覆する絶縁処理工程、潤滑剤を添加する潤滑剤添加工程の少なくとも一つを実行してもよい。粉末熱処理工程と絶縁処理工程とを含む場合、粉末熱処理工程が先の工程である。潤滑剤添加工程を含む場合、潤滑剤添加工程は加圧成形工程の直前工程である。即ち、全ての工程を実行する場合、軟磁性粉末に対して粉末熱処理工程、絶縁処理工程、潤滑剤添加工程、加圧成形工程及び成形体熱処理工程が、この順番で実行される。
(Manufacturing method of dust core)
This dust core is manufactured through at least a pressure molding step of soft magnetic powder and a molded body heat treatment step also called annealing. Prior to the pressure molding step, at least one of a powder heat treatment step of heat-treating the soft magnetic powder, an insulation treatment step of coating the soft magnetic powder with an insulating material, and a lubricant addition step of adding a lubricant may be performed. .. When the powder heat treatment step and the insulation treatment step are included, the powder heat treatment step is the first step. When the lubricant addition step is included, the lubricant addition step is a step immediately before the pressure molding step. That is, when all the steps are executed, the powder heat treatment step, the insulation treatment step, the lubricant addition step, the pressure molding step and the molded body heat treatment step are executed in this order on the soft magnetic powder.

(粉末熱処理工程)
粉末熱処理工程では、非酸化雰囲気又は大気雰囲気下で軟磁性粉末を加熱する。非酸化雰囲気は、真空雰囲気又は不活性ガス雰囲気が好ましい。不活性ガスとしては、HやNが挙げられる。加熱時間は、例えば1〜6時間程度である。この粉末熱処理工程では、500℃以上700℃以下の温度環境下で軟磁性粉末を加熱することが好ましい。この粉末熱処理工程において、500℃以上700℃以下の温度環境下で軟磁性粉末を加熱すると、ヒステリシス損失の低減効果を得ることができる。推測であり、このメカニズムに限定されないが、ヒステリシス損失が低減するのは次の理由の通りと考えられる。
(Powder heat treatment process)
In the powder heat treatment step, the soft magnetic powder is heated in a non-oxidizing atmosphere or an atmospheric atmosphere. The non-oxidizing atmosphere is preferably a vacuum atmosphere or an inert gas atmosphere. Examples of the inert gas include H 2 and N 2 . The heating time is, for example, about 1 to 6 hours. In this powder heat treatment step, it is preferable to heat the soft magnetic powder in a temperature environment of 500 ° C. or higher and 700 ° C. or lower. In this powder heat treatment step, when the soft magnetic powder is heated in a temperature environment of 500 ° C. or higher and 700 ° C. or lower, the effect of reducing the hysteresis loss can be obtained. It is speculation, and the reason for reducing the hysteresis loss is considered to be as follows, although it is not limited to this mechanism.

即ち、500℃以上700℃以下の温度環境下で軟磁性粉末を加熱すると、軟磁性粉末の結晶構造に占める不規則構造が5.70wt%以上31.74wt%以下の割合で残る。そうすると、加圧成形工程によって生じる歪が多方向に生じ易くなり、また成形体熱処理工程で原子が結晶内を多方向に動き易くなる。そのため、成形体熱処理工程では、軟磁性粉末の結晶構造が規則的な構造に戻り易くなり、ヒステリシス損失が低減すると考えられる。 That is, when the soft magnetic powder is heated in a temperature environment of 500 ° C. or higher and 700 ° C. or lower, an irregular structure occupying the crystal structure of the soft magnetic powder remains at a ratio of 5.70 wt% or more and 31.74 wt% or less. Then, the strain generated by the pressure molding step is likely to occur in multiple directions, and the atoms are likely to move in the crystal in multiple directions in the molded body heat treatment step. Therefore, in the heat treatment step of the molded product, it is considered that the crystal structure of the soft magnetic powder tends to return to a regular structure and the hysteresis loss is reduced.

一方、500℃未満の温度環境下で軟磁性粉末を加熱すると、不規則構造の割合が大きくなり過ぎ、700℃超の温度環境下で軟磁性粉末を加熱すると、不規則構造の割合が小さくなり過ぎる。不規則構造の割合が大きくなり過ぎると、規則的な構造に戻り切れず、また不規則構造の割合が小さくなり過ぎると、歪が加圧方向に沿って一方向に生じやすく、また原子は一方向にしか移動できず、多方向に移動できず、規則的な構造に配列しづらくなると考えられる。尚、規則的な構造は、例えばDO構造及びB構造である。 On the other hand, when the soft magnetic powder is heated in a temperature environment of less than 500 ° C., the proportion of irregular structures becomes too large, and when the soft magnetic powder is heated in a temperature environment of more than 700 ° C., the proportion of irregular structures becomes small. Pass. If the proportion of irregular structures becomes too large, it cannot return to the regular structure, and if the proportion of irregular structures becomes too small, strain tends to occur in one direction along the pressurizing direction, and one atom is present. It can move only in one direction, it cannot move in multiple directions, and it is considered difficult to arrange it in a regular structure. The regular structures are, for example, a DO 3 structure and a B 2 structure.

(絶縁処理工程)
絶縁処理工程では、軟磁性粉末の外側に絶縁材料による絶縁層を形成する。単層の絶縁層を軟磁性粉末の外側に形成する絶縁処理工程では、絶縁層に含める全絶縁材料を軟磁性粉末と混合し、加熱乾燥させる。絶縁材料の種類ごとに層を分けた絶縁層を軟磁性粉末の外側に形成する絶縁処理工程では、軟磁性粉末と絶縁材料との混合と加熱乾燥を下層から最外表層へ順番に繰り返す。尚、軟磁性粉末と他の材料とを混合する際は、混合機(W型、V型)、ポットミル等を使用して行い、この時、軟磁性粉末に内部歪が入らないように混合することが好ましい。
(Insulation process)
In the insulation treatment step, an insulating layer made of an insulating material is formed on the outside of the soft magnetic powder. In the insulation treatment step of forming the single-layer insulating layer on the outside of the soft magnetic powder, all the insulating materials included in the insulating layer are mixed with the soft magnetic powder and dried by heating. In the insulation treatment step of forming an insulating layer divided into layers for each type of insulating material on the outside of the soft magnetic powder, mixing of the soft magnetic powder and the insulating material and heat drying are repeated in order from the lower layer to the outermost surface layer. When mixing the soft magnetic powder with other materials, use a mixer (W type, V type), a pot mill, etc., and at this time, mix the soft magnetic powder so that internal strain does not enter. Is preferable.

シランカップリング剤は、軟磁性粉末に対して、0.25wt%〜1.0wt%が好ましい。シランカップリング剤の添加量をこの範囲にすることで、成形された圧粉磁心の密度の標準偏差、磁気特性、強度特性を向上させることができる。シランカップリング剤の乾燥温度は、25℃〜200℃である。乾燥温度が25℃より低いと、溶剤が残留し被膜が不完全となる場合があるためである。一方、乾燥温度が200℃より高いと、分解が進み被膜として形成されなくなる場合があるためである。乾燥時間は、2時間程度である。 The silane coupling agent is preferably 0.25 wt% to 1.0 wt% with respect to the soft magnetic powder. By setting the addition amount of the silane coupling agent within this range, the standard deviation, magnetic characteristics, and strength characteristics of the density of the molded dust core can be improved. The drying temperature of the silane coupling agent is 25 ° C to 200 ° C. This is because if the drying temperature is lower than 25 ° C., the solvent may remain and the film may be incomplete. On the other hand, if the drying temperature is higher than 200 ° C., decomposition may proceed and the film may not be formed. The drying time is about 2 hours.

シリコーンオリゴマーは、軟磁性粉末に対して、0.25wt%〜2.0wt%であることが好ましい。添加量が0.25wt%より少ないと、絶縁被膜として機能せず、渦電流損失が増加することにより損失が増大する。添加量が2.0wt%より多いと、圧粉磁心が膨張し、強度低下を招く。シリコーンオリゴマーの乾燥温度は、25℃〜350℃が好ましい。乾燥温度が25℃未満であると膜の形成が不完全となり、渦電流損失が高くなり、損失が増大する。一方、乾燥温度350℃より大きいと粉末が酸化することによりヒステリシス損失が高くなり、損失が増大する。乾燥時間は、2時間程度である。 The silicone oligomer is preferably 0.25 wt% to 2.0 wt% with respect to the soft magnetic powder. If the amount added is less than 0.25 wt%, it does not function as an insulating film, and the eddy current loss increases, resulting in an increase in loss. If the amount added is more than 2.0 wt%, the dust core expands, resulting in a decrease in strength. The drying temperature of the silicone oligomer is preferably 25 ° C to 350 ° C. If the drying temperature is less than 25 ° C., the formation of the film is incomplete, the eddy current loss becomes high, and the loss increases. On the other hand, if the drying temperature is higher than 350 ° C., the hysteresis loss increases due to the oxidation of the powder, and the loss increases. The drying time is about 2 hours.

シリコーンレジンは、軟磁性粉末に対して、1.0〜3.0wt%であることが好ましい。添加量が1.0wt%より少ないと絶縁被膜として機能せず、渦電流損失が増加することにより磁気特性が低下する場合があるためである。添加量が3.0wt%より多いとコアが膨張することにより成形体の密度が低下し、透磁率が低下する場合があるためである。シリコーンレジンの乾燥温度は、100℃〜200℃が好ましい。乾燥温度が100℃より小さいと膜の形成が不完全となり、渦電流損失が高くなる場合があるためである。一方、乾燥温度200℃より大きいと粉末が無機物となりバインダとしての役割を果たさず、保形成が悪くなり、成形体の密度及び透磁率が低下する場合があるためである。乾燥時間は、2時間程度である。 The silicone resin is preferably 1.0 to 3.0 wt% with respect to the soft magnetic powder. This is because if the amount added is less than 1.0 wt%, it does not function as an insulating film, and the magnetic characteristics may deteriorate due to an increase in eddy current loss. This is because if the amount added is more than 3.0 wt%, the core expands and the density of the molded product decreases, which may reduce the magnetic permeability. The drying temperature of the silicone resin is preferably 100 ° C to 200 ° C. This is because if the drying temperature is less than 100 ° C., the film formation may be incomplete and the eddy current loss may increase. On the other hand, if the drying temperature is higher than 200 ° C., the powder becomes an inorganic substance and does not play a role as a binder, the retention of the powder becomes poor, and the density and magnetic permeability of the molded product may decrease. The drying time is about 2 hours.

(潤滑剤添加工程)
潤滑剤混合工程では、得られた軟磁性粉末に対し、潤滑剤を添加し、混合する工程である。この混合工程により、絶縁層の表面に潤滑剤が被覆される。潤滑剤として、ステアリン酸及びその金属塩ならびにエチレンビスステアラマイド、エチレンビスステアレートアミドなどのワックスが使用できる。潤滑剤を混合することにより、軟磁性粉末同士の滑りが良くなり、混合時の密度を向上させ成形密度が高くなる。また、潤滑剤を混合することにより、成形時の上パンチの抜き圧低減、金型と粉末の接触によるコア壁面の縦筋の発生が抑制される。
(Lubricant addition process)
The lubricant mixing step is a step of adding a lubricant to the obtained soft magnetic powder and mixing the mixture. By this mixing step, the surface of the insulating layer is coated with a lubricant. As the lubricant, stearic acid and a metal salt thereof, and waxes such as ethylene bisstealamide and ethylene bisstearateamide can be used. By mixing the lubricant, the sliding between the soft magnetic powders is improved, the density at the time of mixing is improved, and the molding density is increased. Further, by mixing the lubricant, the withdrawal pressure of the upper punch during molding is reduced, and the generation of vertical streaks on the core wall surface due to the contact between the mold and the powder is suppressed.

(加圧成形工程)
成形工程では、軟磁性粉末を加圧成形することにより、成形体を形成する。成形時の圧力は10〜20ton/cmであり、平均で12〜15ton/cm程度が好ましい。
(Pressure molding process)
In the molding step, a molded product is formed by pressure molding the soft magnetic powder. The pressure at the time of molding is 10 to 20 ton / cm 2 , and the average pressure is preferably about 12 to 15 ton / cm 2.

(成形体熱処理行程)
成形体熱処理工程では、加圧成形工程を経た成形体を加熱して歪を除去する。加熱環境の温度帯としては、650℃以上850℃以下が好ましい。650℃未満であると、歪除去の効果が限定的となる。850℃超であると、絶縁材料により成る絶縁層が破壊され、絶縁材料により成る絶縁層に起因する渦電流損失の低減効果が減殺される。
(Mold body heat treatment process)
In the molded body heat treatment step, the molded body that has undergone the pressure molding step is heated to remove strain. The temperature range of the heating environment is preferably 650 ° C. or higher and 850 ° C. or lower. If it is less than 650 ° C., the effect of strain removal becomes limited. If the temperature exceeds 850 ° C., the insulating layer made of the insulating material is destroyed, and the effect of reducing the eddy current loss caused by the insulating layer made of the insulating material is diminished.

また、この成形体熱処理工程では、酸素濃度が体積濃度で0.1%以上の酸化雰囲気中で成形体を加熱する。雰囲気中の酸素以外のガス組成は特に限定はなく、例えば窒素であってもよい。加熱環境の酸素濃度が0.1%以上であると、圧粉磁心のヒステリシス損失に比べて、圧粉磁心の渦電流損失が急減する。そのため、この成形体熱処理工程によってヒステリシス損失が増加した場合であっても、ヒステリシス損失の増加を上回って渦電流損失が低下し、総じて鉄損が低くなる。推測であり、これに限られないが、成形体熱処理工程で加熱環境の酸素濃度が0.1%以上であると、軟磁性粉末の表面に酸化被膜が形成され、この酸化被膜により絶縁層の比抵抗が高くなるとともに、この酸化被膜によって磁区が細分化し、渦電流損失が低減すると考えられる。 Further, in this heat treatment step of the molded product, the molded product is heated in an oxidizing atmosphere having an oxygen concentration of 0.1% or more in volume concentration. The gas composition other than oxygen in the atmosphere is not particularly limited, and may be nitrogen, for example. When the oxygen concentration in the heating environment is 0.1% or more, the eddy current loss of the dust core is sharply reduced as compared with the hysteresis loss of the dust core. Therefore, even if the hysteresis loss is increased by the heat treatment step of the molded product, the eddy current loss is reduced more than the increase in the hysteresis loss, and the iron loss is generally lowered. It is speculation, but not limited to this, when the oxygen concentration in the heating environment is 0.1% or more in the heat treatment process of the molded body, an oxide film is formed on the surface of the soft magnetic powder, and this oxide film forms an oxide film on the insulating layer. It is considered that the specific resistance increases and the magnetic domain is subdivided by this oxide film to reduce the eddy current loss.

ここで、酸素濃度が0.1%以上の酸化雰囲気中での成形体熱処理と、500℃以上の温度環境下での粉末熱処理工程とは併用されることが更に好ましい。この成形体熱処理工程と粉末熱処理工程とを併用して作製された圧粉磁心は、粉末熱処理工程が省かれた圧粉磁心と比べて渦電流損失が低くなる傾向がある。 Here, it is more preferable that the heat treatment of the molded product in an oxidizing atmosphere having an oxygen concentration of 0.1% or more and the powder heat treatment step in a temperature environment of 500 ° C. or more are used in combination. The powder magnetic core produced by combining the molded body heat treatment step and the powder heat treatment step tends to have a lower eddy current loss than the powder magnetic core without the powder heat treatment step.

この酸素濃度は、体積濃度で1%以下の範囲で決定することが好ましい。酸素濃度が1%以上になると、酸素濃度を高めても渦電流損失は横ばいになる傾向がある。一方、酸素濃度を高めると、酸素濃度に応じて軟磁性粉末の表面の酸化被膜の厚みが変わるため、酸素濃度の上昇に応じた透磁率の低下は継続してしまう。酸素濃度が1%以下であれば、渦電流損失の低減効果を最大限に獲得しつつ、透磁率の低下を抑制できるため、圧粉磁心の高い透磁率と低い鉄損とを両立する。但し、粉末熱処理の有無及び温度によっては酸素濃度が5%までは、渦電流損失が低下し、酸素濃度が5%以上になる酸素濃度を高めても渦電流損失は横ばいになる場合がある。そのため、酸素濃度の上限は、体積濃度で少なくとも5%以下の範囲であれば許容できる。 This oxygen concentration is preferably determined in the range of 1% or less in terms of volume concentration. When the oxygen concentration is 1% or more, the eddy current loss tends to level off even if the oxygen concentration is increased. On the other hand, when the oxygen concentration is increased, the thickness of the oxide film on the surface of the soft magnetic powder changes according to the oxygen concentration, so that the magnetic permeability continues to decrease as the oxygen concentration increases. When the oxygen concentration is 1% or less, the effect of reducing the eddy current loss can be maximized and the decrease in magnetic permeability can be suppressed. Therefore, both high magnetic permeability of the dust core and low iron loss can be achieved. However, depending on the presence or absence of powder heat treatment and the temperature, the eddy current loss decreases up to an oxygen concentration of 5%, and the eddy current loss may level off even if the oxygen concentration at which the oxygen concentration becomes 5% or more is increased. Therefore, the upper limit of the oxygen concentration is acceptable as long as the volume concentration is at least 5% or less.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples. The present invention is not limited to the following examples.

軟磁性粉末として、ガスアトマイズ法により得られた平均粒子経(D50)が19μmのFeSiAl合金粉末を用いた。平均粒子径は、特に断りがない限り、D50、すなわちメジアン径を指すものとする。このFeSiAl合金粉末を粉末熱処理した。粉末熱処理では、FeSiAl合金粉末を窒素雰囲気中で、500℃の温度で2時間加熱した。 As the soft magnetic powder, a FeSiAl alloy powder having an average particle diameter (D50) of 19 μm obtained by the gas atomization method was used. Unless otherwise specified, the average particle size shall refer to D50, that is, the median diameter. This FeSiAl alloy powder was powder heat treated. In the powder heat treatment, the FeSiAl alloy powder was heated at a temperature of 500 ° C. for 2 hours in a nitrogen atmosphere.

粉末熱処理後のFeSiAl合金粉末を絶縁処理した。絶縁処理工程では、まずFeSiAl合金粉末に対してシランカップリング剤とシリコーンレジンを混合した。シランカップリング剤は、FeSiAl合金粉末全量に対して1.0wt%の割合で混合された。シリコーンレジンは、FeSiAl合金粉末全量に対して1.6wt%の割合で混合された。混合後、FeSiAl合金粉末とシランカップリング剤とシリコーンレジンの混合物を150℃の温度環境下で2時間加熱し、この加熱により混合物を乾燥させた。乾燥後の混合物を目開き250μmの篩に通した。 The FeSiAl alloy powder after the powder heat treatment was insulated. In the insulation treatment step, a silane coupling agent and a silicone resin were first mixed with the FeSiAl alloy powder. The silane coupling agent was mixed at a ratio of 1.0 wt% with respect to the total amount of the FeSiAl alloy powder. The silicone resin was mixed at a ratio of 1.6 wt% with respect to the total amount of the FeSiAl alloy powder. After mixing, the mixture of FeSiAl alloy powder, silane coupling agent and silicone resin was heated in a temperature environment of 150 ° C. for 2 hours, and the mixture was dried by this heating. The dried mixture was passed through a 250 μm sieve.

絶縁処理を経たFeSiAl合金粉末を潤滑剤添加処理した。この潤滑剤添加工程では、潤滑剤としてエチレンビスステアラマイド(Acrawax(登録商標))を混合した。エチレンビスステアラマイドは、絶縁処理工程前のFeSiAl合金粉末全量に対して0.5wt%の割合で混合された。混合後、絶縁処理を経たFeSiAl合金粉末とエチレンビスステアラマイドの混合物を150℃の温度環境下で2時間加熱し、この加熱により混合物を乾燥させた。乾燥後の混合物を目開き250μmの篩に通した。 The FeSiAl alloy powder that had undergone the insulation treatment was subjected to a lubricant addition treatment. In this lubricant addition step, ethylene bisstealamide (Acrawax (registered trademark)) was mixed as a lubricant. Ethylene bisstealamide was mixed at a ratio of 0.5 wt% with respect to the total amount of FeSiAl alloy powder before the insulation treatment step. After mixing, the mixture of FeSiAl alloy powder and ethylene bisstealamide that had undergone insulation treatment was heated in a temperature environment of 150 ° C. for 2 hours, and the mixture was dried by this heating. The dried mixture was passed through a 250 μm sieve.

粉末熱処理工程、絶縁処理工程及び潤滑剤添加工程を経た後、FeSiAl合金粉末に加圧成形処理を行った。加圧成形処理工程では、金型を用いて、室温状況下において15ton/cmで加圧成形した。その結果、外径16.5mm、内径11.0mm及び高さ5mmの圧粉磁心の成形体が得られた。 After undergoing a powder heat treatment step, an insulation treatment step, and a lubricant addition step, the FeSiAl alloy powder was subjected to a pressure molding treatment. In the pressure molding process, pressure molding was performed at 15 ton / cm 2 at room temperature using a mold. As a result, a compact magnetic core molded body having an outer diameter of 16.5 mm, an inner diameter of 11.0 mm and a height of 5 mm was obtained.

加圧成形工程を経た成形体は、酸素濃度を異ならせて成形体熱処理を行うために複数用意された。成形体熱処理工程では、各成形体は、酸素濃度が体積濃度で0.001%、0.01%、0.1%、1%、5%及び21%の酸化雰囲気下で加熱された。この成形体熱処理工程では、これら酸化雰囲気下において700℃で2時間、成形体を加熱した。 A plurality of molded bodies that have undergone the pressure molding step were prepared in order to perform heat treatment of the molded body at different oxygen concentrations. In the molded body heat treatment step, each molded body was heated in an oxidizing atmosphere having an oxygen concentration of 0.001%, 0.01%, 0.1%, 1%, 5% and 21% by volume. In this molded body heat treatment step, the molded body was heated at 700 ° C. for 2 hours in these oxidizing atmospheres.

また、粉末熱処理を省いた圧粉磁心、600℃で粉末熱処理した圧粉磁心、680℃で粉末熱処理した圧粉磁心を別途作製し、透磁率μ、鉄損Pcv、ヒステリシス損失Ph及び渦電流損失Peを測定した。これら圧粉磁心は、粉末熱処理の有無及び温度以外は、酸素濃度が0.001%、0.01%、0.1%、1%、5%及び21%の酸化雰囲気下で成形体熱処理工程を経た点を含め、500℃の加熱環境下で粉末熱処理した圧粉磁心と同一製法及び同一条件で作製された。 Further, a powder magnetic core without powder heat treatment, a powder magnetic core powder heat-treated at 600 ° C., and a powder magnetic core powder heat-treated at 680 ° C. were separately produced to obtain magnetic permeability μ, iron loss Pcv, hysteresis loss Ph, and eddy current loss. Pe was measured. These powder magnetic cores are subjected to a compact heat treatment step under an oxidizing atmosphere having oxygen concentrations of 0.001%, 0.01%, 0.1%, 1%, 5% and 21%, except for the presence or absence of powder heat treatment and the temperature. It was produced by the same manufacturing method and under the same conditions as the powder magnetic core that had been powder-heat-treated in a heating environment of 500 ° C.

これら圧粉磁心の透磁率μ、鉄損Pcv、ヒステリシス損失Ph及び渦電流損失Peを測定した。測定に際し、圧粉磁心をコアとするリアクトルを作製した。透磁率μの測定に際しては、圧粉磁心にφ0.5mmの銅線を30ターン巻回した。損失の測定に際しては、圧粉磁心にφ0.5mmの銅線を1次巻線として30ターン巻回し、また2次巻線として3ターン巻回した。 The magnetic permeability μ, iron loss Pcv, hysteresis loss Ph, and eddy current loss Pe of these dust cores were measured. At the time of measurement, a reactor having a dust core as a core was prepared. When measuring the magnetic permeability μ, a copper wire having a diameter of 0.5 mm was wound around the dust core for 30 turns. In measuring the loss, a copper wire having a diameter of 0.5 mm was wound around the dust core for 30 turns as the primary winding and 3 turns as the secondary winding.

そして、LCRメータ(アジレントテクノロジー:4284A)を使用することで、10kHz、1.0Vにおけるインダクタンスから透磁率μを算出した。また、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8219)を用いて、周波数が100kHz及び最大磁束密度Bmが100mTの測定条件にて鉄損Pcv(kw/m)の測定を行った。 Then, by using an LCR meter (Agilent Technology: 4284A), the magnetic permeability μ was calculated from the inductance at 10 kHz and 1.0 V. In addition, the iron loss Pcv (kw / m 3 ) is measured under the measurement conditions of a frequency of 100 kHz and a maximum magnetic flux density Bm of 100 mT using a BH analyzer (Iwadori Measurement Co., Ltd .: SY-8219), which is a magnetic measuring device. Was done.

更に、鉄損Pcvの測定結果からヒステリシス損失Ph(kw/m)と渦電流損失Pe(kw/m)とを算出した。ヒステリシス損失Ph(kw/m)と渦電流損失Pe(kw/m)は、鉄損Pcvの周波数曲線を次の(1)〜(3)式で最小2乗法により、ヒステリシス損失係数(Kh)、渦電流損失係数(Ke)を算出することで行った。
Pcv =Kh×f+Ke×f・・(1)
Ph =Kh×f・・(2)
Pe =Ke×f・・(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f :周波数
Ph :ヒステリシス損失
Pe :渦電流損失
Further, the hysteresis loss Ph (kw / m 3 ) and the eddy current loss Pe (kw / m 3 ) were calculated from the measurement result of the iron loss Pcv. Hysteresis loss Ph (kw / m 3 ) and eddy current loss Pe (kw / m 3 ) are obtained by using the following equations (1) to (3) as the minimum square method for the hysteresis loss coefficient (Kh) of the iron loss Pcv frequency curve. ), The eddy current loss coefficient (Ke) was calculated.
Pcv = Kh x f + Ke x f 2 ... (1)
Ph = Kh x f ... (2)
Pe = Ke × f 2 ... (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss

作製された各圧粉磁心の透磁率μ、鉄損Pcv、ヒステリシス損失Ph及び渦電流損失Peを下表1に示す。
(表1)

Figure 2021082692
Table 1 below shows the magnetic permeability μ, iron loss Pcv, hysteresis loss Ph, and eddy current loss Pe of each of the produced dust cores.
(Table 1)
Figure 2021082692

また、上表1に従って、図1乃至4のグラフを作成した。図1は、成形体熱処理工程の酸素濃度とヒステリシス損失Phとの関係を示すグラフであり、図2は、成形体熱処理工程の酸素濃度と渦電流損失Peとの関係を示すグラフであり、図3は、成形体熱処理工程の酸素濃度と鉄損Pcvとの関係を示すグラフであり、図4は、成形体熱処理工程の酸素濃度と透磁率μとの関係を示すグラフである。 In addition, the graphs of FIGS. 1 to 4 were created according to Table 1 above. FIG. 1 is a graph showing the relationship between the oxygen concentration in the molded body heat treatment step and the hysteresis loss Ph, and FIG. 2 is a graph showing the relationship between the oxygen concentration in the molded body heat treatment step and the eddy current loss Pe. FIG. 3 is a graph showing the relationship between the oxygen concentration in the molded body heat treatment step and the iron loss Pcv, and FIG. 4 is a graph showing the relationship between the oxygen concentration in the molded body heat treatment step and the magnetic permeability μ.

また、図1乃至図4において、丸印でプロットされた系列は、粉末熱処理を省いた圧粉磁心であり、三角印でプロットされた系列は、500℃の加熱環境下で粉末熱処理された圧粉磁心である。菱形印でプロットされた系列は、600℃の加熱環境下で粉末熱処理された圧粉磁心であり、四角印でプロットされた系列は、680℃の加熱環境下で粉末熱処理された圧粉磁心である。 Further, in FIGS. 1 to 4, the series plotted with circles are the powder magnetic cores without powder heat treatment, and the series plotted with triangles are the pressures subjected to powder heat treatment in a heating environment of 500 ° C. It is a powder core. The series plotted with diamonds are the dust cores that have been powder heat treated in a heating environment of 600 ° C, and the series plotted by the squares are the powder cores that have been powder heat treated in a heating environment of 680 ° C. is there.

表1、図1に示すように、酸素濃度の増減とヒステリシス損失Phとの増減との間の相関性は低い。換言すれば、酸素濃度に依らず、ヒステリシス損失Phは所定範囲内を維持している。一方、表1及び図2に示すように、酸素濃度が0.01%と0.1%とを比べると、酸素濃度が0.1%の場合の渦電流損失Peが急減している。そして、この渦電流損失Peの低下効果は、酸素濃度が0.1%以上で継続している。即ち、酸素濃度が0.1%以上になると、渦電流損失Peが急減することが確認された。これらより、表1及び図3に示すように、酸素濃度が0.1%以上になると、鉄損Pcvが低下し、低損失の圧粉磁心が得られることが確認された。 As shown in Table 1 and FIG. 1, the correlation between the increase / decrease in oxygen concentration and the increase / decrease in hysteresis loss Ph is low. In other words, the hysteresis loss Ph is maintained within a predetermined range regardless of the oxygen concentration. On the other hand, as shown in Table 1 and FIG. 2, when the oxygen concentration is 0.01% and 0.1%, the eddy current loss Pe when the oxygen concentration is 0.1% is sharply reduced. The effect of lowering the eddy current loss Pe continues at an oxygen concentration of 0.1% or more. That is, it was confirmed that the eddy current loss Pe sharply decreased when the oxygen concentration became 0.1% or more. From these, as shown in Table 1 and FIG. 3, it was confirmed that when the oxygen concentration was 0.1% or more, the iron loss Pcv decreased and a low-loss dust core was obtained.

更に、表1及び図2に示すように、粉末熱処理を省いた場合、酸素濃度が0.1%以上のときの渦電流損失Peは、平均して142.5kw/mであった。一方、500℃以上の粉末熱処理を併用した場合、酸素濃度が0.1%以上のときの渦電流損失Peは、平均して80.5kw/m、95kw/m及び73.25kw/mであった。これらより、500℃以上の温度環境下での粉末熱処理工程と酸素濃度が0.1%以上の成形体熱処理とを併用することにより、渦電流損失Peが更に下がることが確認された。 Further, as shown in Table 1 and FIG. 2, when the powder heat treatment was omitted, the eddy current loss Pe when the oxygen concentration was 0.1% or more was 142.5 kW / m 3 on average. On the other hand, when powder heat treatment at 500 ° C. or higher is used in combination, the eddy current loss Pe when the oxygen concentration is 0.1% or higher is 80.5 kW / m 3 , 95 kW / m 3 and 73.25 kW / m on average. It was 3. From these, it was confirmed that the eddy current loss Pe was further reduced by using the powder heat treatment step in a temperature environment of 500 ° C. or higher and the molded product heat treatment having an oxygen concentration of 0.1% or more in combination.

また、表1及び図2に示すように、粉末熱処理の温度が600℃であった圧粉磁心を除き、酸素濃度が1%になると渦電流損失Peが最小になり、酸素濃度が1%以上ではほとんど横ばいになることが確認された。また、表1及び図2に示すように、粉末熱処理の温度が600℃であった圧粉磁心では、酸素濃度が5%までは渦電流損失Peが低下し、酸素濃度が5%以上ではほとんど横ばいになることが確認された。 Further, as shown in Table 1 and FIG. 2, the eddy current loss Pe is minimized when the oxygen concentration is 1%, and the oxygen concentration is 1% or more, except for the dust core whose powder heat treatment temperature is 600 ° C. It was confirmed that it was almost flat. Further, as shown in Table 1 and FIG. 2, in the powder magnetic core in which the temperature of the powder heat treatment was 600 ° C., the eddy current loss Pe decreased up to the oxygen concentration of 5%, and most of the powder heat treatment had an oxygen concentration of 5% or more. It was confirmed that it would level off.

一方、表1及び図4に示すように、渦電流損失Peが横ばいになる範囲が存在するのに対し、透磁率μは、酸素濃度に応じて一貫して低下していく。従って、少なくとも酸素濃度が5%以下であると、低渦電流損失Peと高透磁率μとを両立できることが確認された。また、酸素濃度が1%以下であれば、低渦電流損失Peと高透磁率μとをより確実に両立できることが確認された。 On the other hand, as shown in Table 1 and FIG. 4, there is a range in which the eddy current loss Pe is flat, whereas the magnetic permeability μ is consistently decreased according to the oxygen concentration. Therefore, it was confirmed that when the oxygen concentration is at least 5% or less, both low eddy current loss Pe and high magnetic permeability μ can be achieved. Further, it was confirmed that when the oxygen concentration is 1% or less, the low eddy current loss Pe and the high magnetic permeability μ can be more reliably achieved at the same time.

Claims (6)

軟磁性粉末を所定形状の成形体に成形する加圧成形工程と、
前記加圧成形工程を経た前記成形体を、酸素濃度が0.1%以上の雰囲気下で熱処理する成形体熱処理工程と、
を含むこと、
を特徴とする圧粉磁心の製造方法。
A pressure molding process that molds soft magnetic powder into a molded body of a predetermined shape,
A molded body heat treatment step of heat-treating the molded body that has undergone the pressure molding step in an atmosphere having an oxygen concentration of 0.1% or more.
Including,
A method for producing a dust core.
前記成形体熱処理工程では、酸素濃度が0.1%以上5%以下の雰囲気下で熱処理すること、
を特徴とする請求項1記載の圧粉磁心の製造方法。
In the molded body heat treatment step, heat treatment is performed in an atmosphere having an oxygen concentration of 0.1% or more and 5% or less.
The method for producing a dust core according to claim 1.
前記成形体熱処理工程では、酸素濃度が0.1%以上1%以下の雰囲気下で熱処理すること、
を特徴とする請求項1記載の圧粉磁心の製造方法。
In the molded body heat treatment step, heat treatment is performed in an atmosphere having an oxygen concentration of 0.1% or more and 1% or less.
The method for producing a dust core according to claim 1.
前記加圧成形工程前に、前記軟磁性粉末を500℃以上で熱処理する粉末熱処理工程を含むこと、
を特徴とする請求項1乃至3の何れかに記載の圧粉磁心の製造方法。
A powder heat treatment step of heat-treating the soft magnetic powder at 500 ° C. or higher is included before the pressure molding step.
The method for producing a dust core according to any one of claims 1 to 3.
前記軟磁性粉末は、FeSiAl合金粉末であること、
を特徴とする請求項1乃至4の何れかに記載の圧粉磁心の製造方法。
The soft magnetic powder is a FeSiAl alloy powder.
The method for producing a dust core according to any one of claims 1 to 4.
前記軟磁性粉末を絶縁材料で被覆する絶縁処理工程と、
前記絶縁処理工程を経た前記軟磁性粉末に潤滑剤を添加する潤滑剤添加工程と、
を前記加圧成形工程前に含むこと、
を特徴とする請求項1乃至5の何れかに記載の圧粉磁心の製造方法。
Insulation treatment step of coating the soft magnetic powder with an insulating material and
A lubricant addition step of adding a lubricant to the soft magnetic powder that has undergone the insulation treatment step,
Before the pressure molding step,
The method for producing a dust core according to any one of claims 1 to 5.
JP2019208410A 2019-11-19 2019-11-19 Manufacturing method of powder magnetic core Active JP7377076B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019208410A JP7377076B2 (en) 2019-11-19 2019-11-19 Manufacturing method of powder magnetic core
CN202011221588.5A CN112908668A (en) 2019-11-19 2020-11-05 Method for manufacturing powder magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208410A JP7377076B2 (en) 2019-11-19 2019-11-19 Manufacturing method of powder magnetic core

Publications (2)

Publication Number Publication Date
JP2021082692A true JP2021082692A (en) 2021-05-27
JP7377076B2 JP7377076B2 (en) 2023-11-09

Family

ID=75966041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208410A Active JP7377076B2 (en) 2019-11-19 2019-11-19 Manufacturing method of powder magnetic core

Country Status (2)

Country Link
JP (1) JP7377076B2 (en)
CN (1) CN112908668A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299871A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP2009158802A (en) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
JP5435398B2 (en) * 2009-08-27 2014-03-05 Tdk株式会社 Soft magnetic dust core and manufacturing method thereof
JP2017092225A (en) * 2015-11-10 2017-05-25 住友電気工業株式会社 Powder compact, electromagnetic part, and method for manufacturing powder compact

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232014A (en) 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd Manufacture of composite magnetic material
JP4278147B2 (en) * 2003-11-12 2009-06-10 株式会社豊田中央研究所 Powder for magnetic core, dust core and method for producing the same
JP4305222B2 (en) 2004-03-05 2009-07-29 住友電気工業株式会社 Method for producing a green compact
JP2008016670A (en) * 2006-07-06 2008-01-24 Hitachi Ltd Magnetic powder, dust core, and manufacturing method thereof
US9396873B2 (en) * 2009-12-25 2016-07-19 Tamura Corporation Dust core and method for manufacturing the same
DE112015004097T5 (en) * 2014-09-08 2017-05-24 Toyota Jidosha Kabushiki Kaisha MAGNETIC POWDER CORE, MAGNETIC POWDER POWDER, AND METHOD FOR THE PRODUCTION THEREOF
JP6748647B2 (en) * 2015-07-27 2020-09-02 住友電気工業株式会社 Dust core, electromagnetic component, and method for manufacturing dust core
JP6757548B2 (en) * 2019-05-31 2020-09-23 株式会社タムラ製作所 Low noise reactor, dust core and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299871A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP2009158802A (en) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
JP5435398B2 (en) * 2009-08-27 2014-03-05 Tdk株式会社 Soft magnetic dust core and manufacturing method thereof
JP2017092225A (en) * 2015-11-10 2017-05-25 住友電気工業株式会社 Powder compact, electromagnetic part, and method for manufacturing powder compact
US20180294085A1 (en) * 2015-11-10 2018-10-11 Sumitomo Electric Industries, Ltd. Compact, electromagnetic component, and method for producing compact

Also Published As

Publication number Publication date
JP7377076B2 (en) 2023-11-09
CN112908668A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
US7682695B2 (en) Dust core with specific relationship between particle diameter and coating thickness, and method for producing same
US8323725B2 (en) Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
US9269481B2 (en) Iron powder coated with Mg-containing oxide film
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP2006128663A (en) Soft magnetic material, dust core and method of producing soft magnetic material
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
KR20120098921A (en) Reactor and method for producing same
JP2019151909A (en) Soft magnetic material, powder magnetic core, and manufacturing method of powder magnetic core
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
KR101639960B1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP2021025083A (en) Soft magnetic powder, dust core constituted thereof, method for manufacturing soft magnetic powder and method for manufacturing dust core
JP6571146B2 (en) Soft magnetic material, dust core using soft magnetic material, reactor using dust core, and method for manufacturing dust core
JP2020153002A (en) Soft magnetic powder, powder magnetic core constructed with the soft magnetic powder, manufacturing method of soft magnetic powder and manufacturing method of powder magnetic core
JP2021082692A (en) Manufacturing method of dust core
JP7307603B2 (en) Powder magnetic core and method for manufacturing powder magnetic core
JP2009235517A (en) Metal powder for dust core and method for producing dust core
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2021093405A (en) Method of manufacturing dust core
JP7418483B2 (en) Manufacturing method of powder magnetic core
JP7202333B2 (en) Powder magnetic core and its manufacturing method
JP7405659B2 (en) A powder compact, a method for producing a powder compact, and a method for producing a powder magnetic core;
JP2011208184A (en) Magnetic composite powder, and method for producing the same
WO2024048226A1 (en) Dust core, alloy particle, electronic element, electronic device, electric motor, and dynamo
JP2023137624A (en) Dust core powder, method for manufacturing dust core powder, dust core, and method for manufacturing dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220708

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220719

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220726

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220909

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231027

R150 Certificate of patent or registration of utility model

Ref document number: 7377076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150