JP2020153002A - Soft magnetic powder, powder magnetic core constructed with the soft magnetic powder, manufacturing method of soft magnetic powder and manufacturing method of powder magnetic core - Google Patents

Soft magnetic powder, powder magnetic core constructed with the soft magnetic powder, manufacturing method of soft magnetic powder and manufacturing method of powder magnetic core Download PDF

Info

Publication number
JP2020153002A
JP2020153002A JP2019055703A JP2019055703A JP2020153002A JP 2020153002 A JP2020153002 A JP 2020153002A JP 2019055703 A JP2019055703 A JP 2019055703A JP 2019055703 A JP2019055703 A JP 2019055703A JP 2020153002 A JP2020153002 A JP 2020153002A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic powder
heat treatment
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019055703A
Other languages
Japanese (ja)
Other versions
JP7079749B2 (en
Inventor
山本 豊
Yutaka Yamamoto
豊 山本
泰雄 大島
Yasuo Oshima
泰雄 大島
洋 有間
Hiroshi Arima
洋 有間
功太 赤岩
Kota Akaiwa
功太 赤岩
佑太 江袋
Yuta Etai
佑太 江袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2019055703A priority Critical patent/JP7079749B2/en
Priority to CN202010146741.6A priority patent/CN111724965A/en
Publication of JP2020153002A publication Critical patent/JP2020153002A/en
Application granted granted Critical
Publication of JP7079749B2 publication Critical patent/JP7079749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide soft magnetic powder capable of realizing low iron loss, a powder magnetic core constructed with the soft magnetic powder, a manufacturing method of the soft magnetic powder and a manufacturing method of the powder magnetic core.SOLUTION: Soft magnetic powder having heterogeneous strain η in a crystal structure, the soft magnetic powder is characterized in that a value of the heterogeneous strain η obtained by the following mathematical formula (1) based on X-ray analysis is 0.140% or larger and 0.182% or smaller. In the mathematical formula (1), β is an integral width, D is a magnitude of a crystallite, θ is an analysis angle, λ is a wavelength of the X-ray, and η represents the heterogeneous strain.SELECTED DRAWING: Figure 1

Description

本発明は、軟磁性粉末、この軟磁性粉末によって構成された圧粉磁心、軟磁性粉末の製造方法及び圧粉磁心の製造方法に関する。 The present invention relates to a soft magnetic powder, a powder magnetic core composed of the soft magnetic powder, a method for producing a soft magnetic powder, and a method for producing a powder magnetic core.

リアクトルは、ハイブリッド自動車、電気自動車や燃料電池車の駆動システム等をはじめ、種々の用途で使用されている。このリアクトルのコアとして、例えば、圧粉磁心が使用される。圧粉磁心は、軟磁性粉末とこの軟磁性粉末を覆う絶縁被膜とを加圧成形することにより形成される。 Reactors are used in various applications such as drive systems for hybrid vehicles, electric vehicles and fuel cell vehicles. As the core of this reactor, for example, a dust core is used. The dust core is formed by pressure molding the soft magnetic powder and the insulating coating covering the soft magnetic powder.

圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、エネルギー損失が小さいという磁気特性が求められる。エネルギー損失に関する磁気特性とは、具体的には鉄損(Pcv)である。鉄損(Pcv)は、ヒステリシス損失(Phv)と、渦電流損失(Pev)の和で表される。 The dust core is required to have a magnetic characteristic of low energy loss in order to improve energy exchange efficiency and generate low heat. Specifically, the magnetic property related to energy loss is iron loss (Pcv). The iron loss (Pcv) is represented by the sum of the hysteresis loss (Phv) and the eddy current loss (Pev).

特開2018−133461号公報Japanese Unexamined Patent Publication No. 2018-133461

従来から、軟磁性粉末の粒子内に歪が発生すると、軟磁性粉末の保磁力が高まり、ヒステリシス損失が増加してしまうといわれている。そのため、軟磁性粉末の熱処理は、軟磁性粉末の粒子内の歪みを除去し、保磁力を低下させるため、例えば900℃といった高温で熱処理を行い、ヒステリシス損失の低減を図っていた。しかし、近年は、リアクトルの用途の多様化により、更なるヒステリシス損失の低減が要求されている。 Conventionally, it has been said that when strain occurs in the particles of the soft magnetic powder, the coercive force of the soft magnetic powder increases and the hysteresis loss increases. Therefore, in the heat treatment of the soft magnetic powder, in order to remove the strain in the particles of the soft magnetic powder and reduce the coercive force, the heat treatment is performed at a high temperature of, for example, 900 ° C. to reduce the hysteresis loss. However, in recent years, due to the diversification of reactor applications, further reduction of hysteresis loss is required.

本発明の目的は、ヒステリシス損失の低減を図ることができる軟磁性粉末、この軟磁性粉末によって構成された圧粉磁心、軟磁性粉末の製造方法及び圧粉磁心の製造方法を提供することにある。 An object of the present invention is to provide a soft magnetic powder capable of reducing hysteresis loss, a powder magnetic core composed of the soft magnetic powder, a method for producing the soft magnetic powder, and a method for producing the powder magnetic core. ..

本発明者らは、鋭意研究の結果、一定の不均一歪を軟磁性粉末の粒子内に残すことで、軟磁性粉末の粒子内の歪を除去する手法よりもヒステリシス損失の低減、ひいては鉄損の低減を図ることができるという知見を得た。 As a result of diligent research, the present inventors reduced the hysteresis loss by leaving a certain non-uniform strain in the particles of the soft magnetic powder as compared with the method of removing the strain in the particles of the soft magnetic powder, and eventually iron loss. We obtained the knowledge that it is possible to reduce the amount of particles.

本発明の軟磁性粉末は、結晶構造に不均一歪ηを有する軟磁性粉末であって、下記数式(1)に基づく前記不均一歪ηの値は、0.140%以上0.182%以下であること、を特徴とする。

Figure 2020153002
数式(1)のうち、βは積分幅、Dは結晶子の大きさ、θは回析角、λはX線の波長、ηは不均一歪、を表す。 The soft magnetic powder of the present invention is a soft magnetic powder having a non-uniform strain η in the crystal structure, and the value of the non-uniform strain η based on the following mathematical formula (1) is 0.140% or more and 0.182% or less. It is characterized by being.
Figure 2020153002
In the formula (1), β is the integration width, D is the crystallite size, θ is the diffraction angle, λ is the wavelength of the X-ray, and η is the non-uniform distortion.

また、本発明の軟磁性粉末の製造方法は、軟磁性粉末を500℃以上650℃以下で熱処理をする熱処理工程を有し、下記数式(2)に基づく不均一歪ηの値は、0.140%以上0.182%以下であること、を特徴とする。

Figure 2020153002
数式(2)のうち、βは積分幅、Dは結晶子の大きさ、θは回析角、λはX線の波長、ηは不均一歪、を表す。 Further, the method for producing a soft magnetic powder of the present invention includes a heat treatment step of heat-treating the soft magnetic powder at 500 ° C. or higher and 650 ° C. or lower, and the value of the non-uniform strain η based on the following mathematical formula (2) is 0. It is characterized by being 140% or more and 0.182% or less.
Figure 2020153002
In the formula (2), β is the integration width, D is the crystallite size, θ is the diffraction angle, λ is the wavelength of the X-ray, and η is the non-uniform distortion.

本発明によれば、ヒステリシス損失の低減を図ることができる軟磁性粉末、この軟磁性粉末によって構成された圧粉磁心、軟磁性粉末及び圧粉磁心の製造方法を提供することができる。 According to the present invention, it is possible to provide a soft magnetic powder capable of reducing hysteresis loss, a powder magnetic core composed of the soft magnetic powder, a soft magnetic powder, and a method for producing a powder magnetic core.

本実施形態の圧粉磁心の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the dust core of this embodiment. 実施例における粉末の熱処理温度と不均一歪の関係を示すグラフである。It is a graph which shows the relationship between the heat treatment temperature of a powder and a non-uniform strain in an Example. 実施例における粉末の熱処理温度と鉄損の関係を示すグラフである。It is a graph which shows the relationship between the heat treatment temperature of a powder and iron loss in an Example. 実施例における粉末の熱処理温度とヒステリシス損失の関係を示すグラフである。It is a graph which shows the relationship between the heat treatment temperature of the powder and the hysteresis loss in an Example. 実施例における粉末の熱処理温度と渦電流損失の関係を示すグラフである。It is a graph which shows the relationship between the heat treatment temperature of a powder and an eddy current loss in an Example. 実施例における粉末の熱処理温度と保磁力の関係を示すグラフである。It is a graph which shows the relationship between the heat treatment temperature of a powder and a coercive force in an Example.

(実施形態)
本実施形態の圧粉磁心は、所定の温度で熱処理をした軟磁性粉末を加圧成形することで所定の形状のコアとして形成される。圧粉磁心は、リアクトルの磁性体として使用される。この圧粉磁心の製造方法について説明する。図1は、本実施形態の圧粉磁心の製造工程を示すフローチャートである。図1に示すように、本実施形態の圧粉磁心の製造方法は、(1)粉末熱処理工程、(2)シリコーンオリゴマー層形成工程、(3)シリコーンレジン層形成工程、(4)成形工程、(5)焼鈍工程を有する。
(Embodiment)
The dust core of the present embodiment is formed as a core having a predetermined shape by pressure molding a soft magnetic powder heat-treated at a predetermined temperature. The dust core is used as the magnetic material of the reactor. A method for manufacturing this dust core will be described. FIG. 1 is a flowchart showing a manufacturing process of the dust core of the present embodiment. As shown in FIG. 1, the method for producing a dust core of the present embodiment includes (1) powder heat treatment step, (2) silicone oligomer layer forming step, (3) silicone resin layer forming step, and (4) molding step. (5) It has an annealing process.

(1)粉末熱処理工程
粉末熱処理工程は、軟磁性粉末を熱処理することで、熱処理前の軟磁性粉末の結晶構造が有していた不均一歪を増加させる工程である。不均一歪とは、数万粒の粉末の集合体を観察し、各結晶格子面から見たときの歪のばらつきのことである。不均一歪が多いとは、軟磁性粉末の結晶構造が歪を有し、形状が異なる歪が多い状態である。不均一歪は、軟磁性粉末の結晶構造をX線回析して、下記数式(1)から算出する。

Figure 2020153002
数式(1)のうち、βは積分幅、Dは結晶子の大きさ(nm)、θは回析角(rad)、λはX線の波長(nm)、ηは不均一歪(%)、を表す。なお、積分幅とは、X線回析で得られたピーク波形の面積をピーク高さで割った比である。 (1) Powder Heat Treatment Step The powder heat treatment step is a step of heat-treating a soft magnetic powder to increase the non-uniform strain of the crystal structure of the soft magnetic powder before the heat treatment. Non-uniform strain is the variation in strain when observing an aggregate of tens of thousands of powders and looking from each crystal lattice plane. A large amount of non-uniform strain is a state in which the crystal structure of the soft magnetic powder has strain and there are many strains having different shapes. The non-uniform strain is calculated from the following mathematical formula (1) by X-ray diffraction of the crystal structure of the soft magnetic powder.
Figure 2020153002
In formula (1), β is the integration width, D is the crystallite size (nm), θ is the diffraction angle (rad), λ is the X-ray wavelength (nm), and η is the non-uniform distortion (%). Represents. The integrated width is a ratio obtained by dividing the area of the peak waveform obtained by X-ray diffraction by the peak height.

粉末熱処理工程では、例えば真空雰囲気や不活性ガス雰囲気である非酸化雰囲気又は大気中で1〜6時間加熱する。不活性ガスとしては、HやNが挙げられる。熱処理温度しては、500℃以上650℃以下が好ましい。熱処理温度をこの範囲にすることで、上記数式(1)から算出する不均一歪ηの値(%)を0.140以上0.182以下にすることができ、後述するように、ヒステリシス損失の低減、ひいては鉄損の低減を図ることができる。 In the powder heat treatment step, heating is performed for 1 to 6 hours in a non-oxidizing atmosphere or an atmosphere such as a vacuum atmosphere or an inert gas atmosphere. Examples of the inert gas include H 2 and N 2 . The heat treatment temperature is preferably 500 ° C. or higher and 650 ° C. or lower. By setting the heat treatment temperature within this range, the value (%) of the non-uniform strain η calculated from the above equation (1) can be set to 0.140 or more and 0.182 or less, and as will be described later, the hysteresis loss It is possible to reduce the iron loss and thus the iron loss.

本実施形態で使用する軟磁性粉末は、鉄を主成分とする軟磁性粉末であって、パーマロイ(Fe−Ni合金)、Si含有鉄合金(Fe−Si合金)、センダスト合金(Fe−Si−Al合金)、純鉄粉、などを用いる。鉄合金は、その他にCoやAl、Cr、Mnを含んでもよい。パーマロイ(Fe−Ni合金)を用いる場合、Feに対するNiの比率は50:50や25:75が好ましいが、他の比率であってもよい。例えば、Fe−80Ni、Fe−36Niでもよい。FeとNiの他にSi、Cr、Mo、Cu、Nb、Ta等を含んでいても良い。Fe−Si合金粉末は、例えば、Fe−3.5%Si合金粉末、Fe−6.5%Si合金粉末が挙げられるが、Feに対するSiの比率は、3.5%や6.5%以外であっても良い。純鉄粉は、Feを99%以上含むものである。軟磁性粉末は1種類に限らず、2種類以上の混合粉でも良い。 The soft magnetic powder used in the present embodiment is a soft magnetic powder containing iron as a main component, and is permalloy (Fe-Ni alloy), Si-containing iron alloy (Fe-Si alloy), and sendust alloy (Fe-Si-). Al alloy), pure iron powder, etc. are used. The iron alloy may also contain Co, Al, Cr and Mn. When permalloy (Fe—Ni alloy) is used, the ratio of Ni to Fe is preferably 50:50 or 25:75, but other ratios may be used. For example, Fe-80Ni or Fe-36Ni may be used. In addition to Fe and Ni, Si, Cr, Mo, Cu, Nb, Ta and the like may be contained. Examples of the Fe-Si alloy powder include Fe-3.5% Si alloy powder and Fe-6.5% Si alloy powder, but the ratio of Si to Fe is other than 3.5% and 6.5%. It may be. Pure iron powder contains 99% or more of Fe. The soft magnetic powder is not limited to one type, and may be a mixed powder of two or more types.

(2)シリコーンオリゴマー層形成工程
シリコーンオリゴマー層形成工程では、軟磁性粉末に対して、シリコーンオリゴマーを所定量添加して、大気雰囲気中、所定の温度で乾燥を行う。シリコーンオリゴマー層形成工程により、軟磁性粉末の外側にシリコーンオリゴマー層が形成される。
(2) Silicone oligomer layer forming step In the silicone oligomer layer forming step, a predetermined amount of silicone oligomer is added to the soft magnetic powder, and the mixture is dried in an air atmosphere at a predetermined temperature. By the silicone oligomer layer forming step, the silicone oligomer layer is formed on the outside of the soft magnetic powder.

シリコーンオリゴマーは、アルコキシシリル基を有し、反応性官能基を有さないメチル系、メチルフェニル系のものや、アルコキシシリル基及び反応性官能基を有するエポキシ系、エポキシメチル系、メルカプト系、メルカプトメチル系、アクリルメチル系、メタクリルメチル系、ビニルフェニル系のもの、アルコキシシリル基を有さずに、反応性官能基を有する脂環式エポキシ系のもの等を用いることができる。特に、メチル系またはメチルフェニル系のシリコーンオリゴマーを用いることで厚く硬い絶縁層を形成することができる。また、シリコーンオリゴマー層の形成のしやすさを考慮して、粘度の比較的低いメチル系、メチルフェニル系を用いても良い。 The silicone oligomer has an alkoxysilyl group and does not have a reactive functional group, such as a methyl type or a methylphenyl type, or an epoxy type, an epoxymethyl type, a mercapto type or a mercapto having an alkoxysilyl group and a reactive functional group. Methyl-based, acrylic-methyl-based, methacryl-methyl-based, vinylphenyl-based, and alicyclic epoxy-based ones having a reactive functional group without having an alkoxysilyl group can be used. In particular, a thick and hard insulating layer can be formed by using a methyl-based or methylphenyl-based silicone oligomer. Further, in consideration of the ease of forming the silicone oligomer layer, a methyl type or a methylphenyl type having a relatively low viscosity may be used.

シリコーンオリゴマーの分子量は、100〜4000であることが好ましい。分子量が100より小さい場合、焼鈍工程において熱分解により破壊または消失されやすく、軟磁性粉末間が絶縁破壊されやすい。一方、分子量が4000より大きい場合、膜厚が厚くなりすぎて、磁気特性が低下してしまう。 The molecular weight of the silicone oligomer is preferably 100 to 4000. When the molecular weight is less than 100, it is easily broken or eliminated by thermal decomposition in the annealing step, and the soft magnetic powders are easily dielectrically broken down. On the other hand, when the molecular weight is larger than 4000, the film thickness becomes too thick and the magnetic characteristics deteriorate.

シリコーンオリゴマーの添加量は、軟磁性粉末に対して、0.15〜3.5wt%であることが好ましく、軟磁性粉末がFe−Ni合金粉末である場合には0.5〜1.25wt%であることがより好ましい。軟磁性粉末がFe−Si合金粉末又は純鉄粉である場合には、0.15〜3.5wt%であることがより好ましい。添加量が0.15wt%より少ないと絶縁被膜として機能せず、渦電流損失が増加することにより磁気特性が低下する。添加量が3.5wt%より多いとコアが膨張することにより成形体の密度が低下し、透磁率が低下する。 The amount of the silicone oligomer added is preferably 0.15 to 3.5 wt% with respect to the soft magnetic powder, and 0.5 to 1.25 wt% when the soft magnetic powder is an Fe—Ni alloy powder. Is more preferable. When the soft magnetic powder is Fe—Si alloy powder or pure iron powder, it is more preferably 0.15 to 3.5 wt%. If the amount added is less than 0.15 wt%, it does not function as an insulating film, and the eddy current loss increases and the magnetic characteristics deteriorate. If the amount added is more than 3.5 wt%, the core expands, so that the density of the molded product decreases and the magnetic permeability decreases.

シリコーンオリゴマー層の乾燥温度は、25℃〜350℃が好ましく、軟磁性粉末がFe−Ni合金粉末である場合には200℃〜350℃がより好ましい。軟磁性粉末がFe−Si合金粉末又は純鉄粉である場合には、25℃〜350℃がより好ましい。乾燥温度が25℃未満であると膜の形成が不完全となり、渦電流損失が高くなる。一方、乾燥温度が350℃より大きいと粉末が酸化することによりヒステリシス損失が高くなり、成形体の密度及び透磁率が低下する。乾燥時間は、2時間程度である。 The drying temperature of the silicone oligomer layer is preferably 25 ° C. to 350 ° C., and more preferably 200 ° C. to 350 ° C. when the soft magnetic powder is an Fe—Ni alloy powder. When the soft magnetic powder is Fe—Si alloy powder or pure iron powder, 25 ° C to 350 ° C is more preferable. If the drying temperature is less than 25 ° C., the film formation is incomplete and the eddy current loss becomes high. On the other hand, if the drying temperature is higher than 350 ° C., the powder is oxidized and the hysteresis loss becomes high, and the density and magnetic permeability of the molded product decrease. The drying time is about 2 hours.

(3)シリコーンレジン層形成工程
シリコーンレジン層形成工程では、シリコーンオリゴマー層が形成された軟磁性粉末に対して、シリコーンレジンを所定量添加し、大気雰囲気中、所定の温度で乾燥させる。シリコーンレジン層形成工程により、シリコーンオリゴマー層の外側にシリコーンレジン層が形成される。
(3) Silicone Resin Layer Forming Step In the silicone resin layer forming step, a predetermined amount of silicone resin is added to the soft magnetic powder on which the silicone oligomer layer is formed, and the mixture is dried in an air atmosphere at a predetermined temperature. The silicone resin layer forming step forms a silicone resin layer on the outside of the silicone oligomer layer.

シリコーンレジンはシロキサン結合(Si−O―Si)を主骨格に持つ樹脂である。シリコーンレジンを用いることで可撓性に優れた被膜を形成することができる。シリコーンレジンは、メチル系、メチルフェニル系、プロピルフェニル系、エポキシ樹脂変性系、アルキッド樹脂変性系、ポリエステル樹脂変性系、ゴム系等を用いることができる。この中でも特に、メチルフェニル系のシリコーンレジンを用いた場合、加熱減量が少なく、耐熱性に優れたシリコーンレジン層を形成することができる。 Silicone resin is a resin having a siloxane bond (Si—O—Si) in its main skeleton. By using a silicone resin, a film having excellent flexibility can be formed. As the silicone resin, methyl type, methylphenyl type, propylphenyl type, epoxy resin modified type, alkyd resin modified type, polyester resin modified type, rubber type and the like can be used. Among these, particularly when a methylphenyl-based silicone resin is used, it is possible to form a silicone resin layer having less heat loss and excellent heat resistance.

シリコーンレジンの添加量は、軟磁性粉末に対して、1.0〜1.5wt%であることが好ましい。添加量が1.0wt%より少ないと絶縁被膜として機能せず、渦電流損失が増加することにより磁気特性が低下する。添加量が1.5wt%より多いとコアが膨張することにより成形体の密度が低下し、透磁率が低下する。シリコーンオリゴマーに対するシリコーンレジンの添加量を適宜調整することで、強固で絶縁性能の高い絶縁被膜を形成することができ、特にシリコーンオリゴマーに対するシリコーンレジンの重量比が1:0.8〜1:3の場合に、強度と絶縁性能が優れている。 The amount of the silicone resin added is preferably 1.0 to 1.5 wt% with respect to the soft magnetic powder. If the amount added is less than 1.0 wt%, it does not function as an insulating film, and the eddy current loss increases and the magnetic characteristics deteriorate. If the amount added is more than 1.5 wt%, the core expands, so that the density of the molded product decreases and the magnetic permeability decreases. By appropriately adjusting the amount of silicone resin added to the silicone oligomer, a strong and highly insulating coating can be formed, and in particular, the weight ratio of the silicone resin to the silicone oligomer is 1: 0.8 to 1: 3. In some cases, it has excellent strength and insulation performance.

シリコーンレジン層の乾燥温度は、100℃〜400℃が好ましく、軟磁性粉末がFe−Ni合金粉末である場合には200℃〜300℃がより好ましい。軟磁性粉末がFe−Si合金粉末である場合は100℃〜400℃がより好ましい。軟磁性粉末が純鉄粉である場合には100℃〜300℃がより好ましい。乾燥温度が100℃より小さいと膜の形成が不完全となり、渦電流損失が高くなる。一方、乾燥温度400℃より大きいと粉末が酸化することによりヒステリシス損失が高くなり、成形体の密度及び透磁率が低下する。乾燥時間は、2時間程度である。 The drying temperature of the silicone resin layer is preferably 100 ° C. to 400 ° C., and more preferably 200 ° C. to 300 ° C. when the soft magnetic powder is an Fe—Ni alloy powder. When the soft magnetic powder is an Fe—Si alloy powder, 100 ° C. to 400 ° C. is more preferable. When the soft magnetic powder is pure iron powder, 100 ° C. to 300 ° C. is more preferable. If the drying temperature is less than 100 ° C., the film formation is incomplete and the eddy current loss becomes high. On the other hand, if the drying temperature is higher than 400 ° C., the powder is oxidized and the hysteresis loss becomes high, and the density and magnetic permeability of the molded product decrease. The drying time is about 2 hours.

(4)成形工程
成形工程では、表面に絶縁被膜が形成された軟磁性粉末を加圧成形することにより、成形体を形成する。成形時の圧力は10〜20ton/cmであり、平均で15ton/cm程度が好ましい。
(4) Molding Step In the molding step, a molded product is formed by pressure molding a soft magnetic powder having an insulating film formed on its surface. The pressure at the time of molding is 10 to 20 ton / cm 2 , and an average of about 15 ton / cm 2 is preferable.

(5)焼鈍工程
焼鈍工程では、成形工程を経た成形体に対して、Nガス中又はN+Hガス非酸化性雰囲気中、大気中にて、600℃以上且つ軟磁性粉末に被覆した絶縁被膜が破壊される温度(例えば、800℃とする)以下で、熱処理を行う。この焼鈍工程を経ることで圧粉磁心が作製される。
(5) Annealing step In the annealing step, the molded product that has undergone the molding step is coated with a soft magnetic powder at 600 ° C. or higher in N 2 gas or in an N 2 + H 2 gas non-oxidizing atmosphere or in the air. The heat treatment is performed at a temperature below which the insulating film is destroyed (for example, 800 ° C.). A dust core is produced by undergoing this annealing step.

(実施例)
本発明の実施例を表1及び図2−図6を参照しつつ説明する。実施例1−4及び比較例1―3は、下記のように作製した。具体的には、実施例1−4及び比較例1−3は、下記(2)〜(5)は共通で、下記(1)の粉末熱処理温度だけ変えて作製した。
(1)軟磁性粉末としては、平均粒子径19.8μmのFeSiAl合金粉末を用いた。この軟磁性粉末を熱処理なし及び500〜750℃の異なる熱処理温度で窒素雰囲気中で2時間熱処理を行った。具体的には、実施例1−4は、500℃〜650℃の範囲を50℃間隔にして熱処理を行った。一方、比較例1は熱処理なし、即ち、(1)の工程を経なかった。比較例2及び3は、700、750℃でそれぞれ熱処理を行った。
(2)熱処理した軟磁性粉末に対して、シリコーンオリゴマーを0.5wt%添加し、200℃で2時間乾燥した。その後、塊を解砕するため目開き250μmで篩通しを行った。
(3)シリコーンオリゴマーを添加した軟磁性粉末に対して、シリコーンレジンを1.5wt%添加し、150℃で2時間乾燥した。その後、塊を解砕するため目開き250μmで篩通しを行った。
(4)上記のように作製された軟磁性粉末に潤滑剤として使用したエチレンビスステアルアミドを添加した。そして、これらを外径16.5mm、内径11.0mm、高さ5.0mmのトロイダル形状の容器に充填し、成形圧力15ton/cmで成形体を作製した。このような工程を経た成形体を実施例1−4及び比較例1−3それぞれ2つずつ作製した。
(5)最後に、それぞれ2つずつ作製した成形体を700℃の温度で焼鈍処理を行い、圧粉磁心を作製した。この時、2つずつ作製した実施例1−4及び比較例1−3の成形体のうち、一方は窒素雰囲気中、他方は大気中、という2つの条件下において焼鈍処理を行った。
(Example)
Examples of the present invention will be described with reference to Table 1 and FIGS. 2 to 6. Examples 1-4 and Comparative Examples 1-3 were prepared as follows. Specifically, Examples 1-4 and Comparative Example 1-3 were produced in common with the following (2) to (5), with only the powder heat treatment temperature of the following (1) changed.
(1) As the soft magnetic powder, FeSiAl alloy powder having an average particle diameter of 19.8 μm was used. The soft magnetic powder was heat treated for 2 hours in a nitrogen atmosphere without heat treatment and at different heat treatment temperatures of 500 to 750 ° C. Specifically, in Examples 1-4, the heat treatment was performed in the range of 500 ° C. to 650 ° C. at intervals of 50 ° C. On the other hand, Comparative Example 1 did not undergo heat treatment, that is, did not go through the step (1). Comparative Examples 2 and 3 were heat-treated at 700 and 750 ° C., respectively.
(2) 0.5 wt% of silicone oligomer was added to the heat-treated soft magnetic powder, and the powder was dried at 200 ° C. for 2 hours. Then, in order to crush the mass, sieving was performed with an opening of 250 μm.
(3) To the soft magnetic powder to which the silicone oligomer was added, 1.5 wt% of silicone resin was added, and the mixture was dried at 150 ° C. for 2 hours. Then, in order to crush the mass, sieving was performed with an opening of 250 μm.
(4) Ethylene bisstealamide used as a lubricant was added to the soft magnetic powder prepared as described above. Then, these were filled in a toroidal-shaped container having an outer diameter of 16.5 mm, an inner diameter of 11.0 mm, and a height of 5.0 mm to prepare a molded product at a molding pressure of 15 ton / cm 2 . Two molded products that had undergone such a process were produced in Examples 1-4 and Comparative Examples 1-3.
(5) Finally, two molded bodies prepared for each were annealed at a temperature of 700 ° C. to prepare a dust core. At this time, of the two molded products of Example 1-4 and Comparative Example 1-3, one was annealed in a nitrogen atmosphere and the other was in the air.

(測定項目)
以上のように作製した実施例1−4及び比較例1−3について、不均一歪、保磁力及び鉄損を測定した。不均一歪は、X線回析を用いて上記数式(1)から算出した。X線回析装置は、全自動X線回析装置(株式会社リガク製:Cu管球、X線の波長λ=0.154nm)を使用した。
(Measurement item)
Non-uniform strain, coercive force and iron loss were measured for Examples 1-4 and Comparative Examples 1-3 prepared as described above. The non-uniform strain was calculated from the above equation (1) using X-ray diffraction. As the X-ray diffractometer, a fully automatic X-ray diffractometer (manufactured by Rigaku Co., Ltd .: Cu tube, X-ray wavelength λ = 0.154 nm) was used.

保磁力は、HCメーター(東北特殊鋼株式会社製、K−HC1000)により測定した。鉄損は、圧粉磁心にφ0.5mmの銅線で1次巻線20ターン、2次巻線20ターンの巻線を巻回し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8219)を用いて測定した。測定条件は、周波数100kHz、最大磁束密度Bm=100Tの条件下で行い、ヒステリシス損失(Ph)と渦電流損失(Pe)を算出した。この算出は、損失の周波数曲線を次の(1)〜(3)式で最小2乗法により、ヒステリシス損係数(Kh)、渦電流損係数(Ke)を算出することで行った。 The coercive force was measured with an HC meter (K-HC1000 manufactured by Tohoku Steel Co., Ltd.). For iron loss, a copper wire of φ0.5 mm is wound around a dust core with 20 turns of primary winding and 20 turns of secondary winding, and a BH analyzer (Iwadori Measurement Co., Ltd .: SY) is a magnetic measuring device. -8219) was used for measurement. The measurement conditions were a frequency of 100 kHz and a maximum magnetic flux density of Bm = 100 T, and the hysteresis loss (Ph) and the eddy current loss (Pe) were calculated. This calculation was performed by calculating the hysteresis loss coefficient (Kh) and the eddy current loss coefficient (Ke) by the least squares method using the following equations (1) to (3) for the frequency curve of the loss.

Pcv =Kh×f+Ke×f・・(1)
Ph =Kh×f・・(2)
Pe =Ke×f・・(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f :周波数
Ph :ヒステリシス損失
Pe :渦電流損失
Pcv = Kh x f + Ke x f 2 ... (1)
Ph = Kh x f ... (2)
Pe = Ke × f 2 ... (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss

以上の測定結果を表1及び図2−5に示す。図2は、粉末の熱処理温度と不均一歪の関係を示すグラフである。図3は、粉末の熱処理温度と鉄損Pcvの関係を示すグラフである。図4は、粉末の熱処理温度とヒステリシス損失Phの関係を示すグラフである。図5は、粉末の熱処理温度と渦電流損失Peの関係を示すグラフである。図6は、粉末の熱処理温度と保磁力Hcの関係を示すグラフである。 The above measurement results are shown in Table 1 and FIG. 2-5. FIG. 2 is a graph showing the relationship between the heat treatment temperature of the powder and the non-uniform strain. FIG. 3 is a graph showing the relationship between the heat treatment temperature of the powder and the iron loss Pcv. FIG. 4 is a graph showing the relationship between the heat treatment temperature of the powder and the hysteresis loss Ph. FIG. 5 is a graph showing the relationship between the heat treatment temperature of the powder and the eddy current loss Pe. FIG. 6 is a graph showing the relationship between the heat treatment temperature of the powder and the coercive force Hc.

Figure 2020153002
Figure 2020153002

(不均一歪と鉄損の関係)
表1及び図2に示すように、熱処理をしていない比較例1から不均一歪ηが0.182と最大となる実施例2まで、不均一歪ηは上昇傾向となっている。そして、実施例2の熱処理温度550℃を超えると、不均一歪ηは徐々に減少していき、熱処理温度650℃である実施例4の不均一歪ηは0.140となる。更に、熱処理温度を上げると、700℃である比較例2の不均一歪ηは、熱処理温度650℃の実施例4の半分以下の0.060に急激に減っている。
(Relationship between non-uniform strain and iron loss)
As shown in Table 1 and FIG. 2, the non-uniform strain η tends to increase from Comparative Example 1 which has not been heat-treated to Example 2 where the non-uniform strain η has a maximum of 0.182. When the heat treatment temperature of Example 2 exceeds 550 ° C., the non-uniform strain η gradually decreases, and the non-uniform strain η of Example 4 having a heat treatment temperature of 650 ° C. becomes 0.140. Further, when the heat treatment temperature is raised, the non-uniform strain η of Comparative Example 2 at 700 ° C. is sharply reduced to 0.060, which is less than half that of Example 4 at the heat treatment temperature of 650 ° C.

従来は、熱処理前に有していた粉末の歪が、粉末の熱処理を行うことで、加熱後から徐々に減少すると考えられていた。しかし、本発明者らは、鋭意研究の結果、熱処理前から粉末内に生じていた不均一歪ηが、熱を加えたことにより歪の不均一な状態が更に増加し、熱処理温度が550℃(実施例2)になると歪の不均一な状態の増加が落ち着き、その後は、減少傾向となり、650℃を超えると、不均一歪ηが極端に減少するという知見を得た。 Conventionally, it has been considered that the strain of the powder held before the heat treatment is gradually reduced after the heating by performing the heat treatment of the powder. However, as a result of diligent research, the present inventors have found that the non-uniform strain η generated in the powder before the heat treatment is further increased in the non-uniform state of the strain by applying heat, and the heat treatment temperature is 550 ° C. It was found that in (Example 2), the increase in the non-uniform strain state settled down, and then the increase tended to decrease, and when the temperature exceeded 650 ° C., the non-uniform strain η decreased extremely.

そして、大気中で焼鈍処理した実施例1−4の鉄損Pcvは、比較例1−3の鉄損Pcvよりも低減している。つまり、図3〜図5に示すように、実施例1−4は、渦電流損失Peは良好な値であるとともに、比較例1−3と比較してヒステリシス損失が低減する傾向となった結果、鉄損Pcvが低減している。 The iron loss Pcv of Example 1-4 that was annealed in the atmosphere is smaller than that of Comparative Example 1-3. That is, as shown in FIGS. 3 to 5, in Examples 1-4, the eddy current loss Pe was a good value, and the hysteresis loss tended to be reduced as compared with Comparative Example 1-3. , Iron loss Pcv is reduced.

特に、鉄損Pcvの低減は、窒素雰囲気で焼鈍処理を行った場合に顕著に現れる。実施例1−4の鉄損Pcvは、300(kW/m)以下であるのに対し、比較例1−3は、最も数値の良い比較例2でも350(kW/m)を超えており、比較例1及び3は、400(kW/m)を超えている。これは、実施例1−4のヒステリシス損失Phを比較例1−3のヒステリシス損失Phよりも大幅に低減できたことに起因する。具体的には、実施例1−4のヒステリシス損失Phは、比較例1−3の中で最もヒステリシス損失Phが低い比較例2の80%以下に低減できたことに起因する。 In particular, the reduction of iron loss Pcv is remarkable when the annealing treatment is performed in a nitrogen atmosphere. The iron loss Pcv of Example 1-4 is 300 (kW / m 3 ) or less, whereas that of Comparative Example 1-3 exceeds 350 (kW / m 3 ) even in Comparative Example 2 having the best numerical value. In Comparative Examples 1 and 3, the value exceeds 400 (kW / m 3 ). This is because the hysteresis loss Ph of Example 1-4 could be significantly reduced as compared with the hysteresis loss Ph of Comparative Example 1-3. Specifically, the hysteresis loss Ph of Example 1-4 can be reduced to 80% or less of Comparative Example 2, which has the lowest hysteresis loss Ph of Comparative Examples 1-3.

従来は、軟磁性粉末内の歪をなくすことで鉄損を低減できると考えられてきた。そのため、粉末の熱処理温度は、粉末内の歪をなくすことができる温度、例えば、900℃前後といった高温で行われていた。 Conventionally, it has been considered that iron loss can be reduced by eliminating the strain in the soft magnetic powder. Therefore, the heat treatment temperature of the powder is a temperature at which distortion in the powder can be eliminated, for example, a high temperature of about 900 ° C.

しかし、以上に示したように、実施例1−4の鉄損Pcvは、比較例2及び3よりも低減する。即ち、比較例2及び3より粉末の熱処理温度が低い実施例1−4の方が、鉄損Pcvが低減している。つまり、本発明は、従来の考えとは逆行し、敢えて不均一歪を残すことで、鉄損Pcvの低減を図っている。そして、不均一歪ηが0.140以上0.182以下の範囲の場合に、鉄損Pcvが低減する。換言すれば、粉末の熱処理温度を500℃以上650以下の範囲にすると、鉄損Pcvが低減する。 However, as shown above, the iron loss Pcv of Examples 1-4 is lower than that of Comparative Examples 2 and 3. That is, the iron loss Pcv is reduced in Examples 1-4 in which the heat treatment temperature of the powder is lower than in Comparative Examples 2 and 3. That is, the present invention is contrary to the conventional idea and aims to reduce the iron loss Pcv by intentionally leaving non-uniform strain. Then, when the non-uniform strain η is in the range of 0.140 or more and 0.182 or less, the iron loss Pcv is reduced. In other words, when the heat treatment temperature of the powder is in the range of 500 ° C. or higher and 650 or lower, the iron loss Pcv is reduced.

(不均一歪と保磁力の関係)
表1及び図6に示すように、粉末の熱処理温度を上げれば保磁力Hcは減少する。従来から粉末内の歪みを除去し、保磁力Hcを低減させることで、ヒステリシス損失が低減すると考えられてきた。たしかに、熱処理をしていない比較例1よりは、比較例2及び3の方が鉄損Pcv及びヒステリシス損失Phが低減している。
(Relationship between non-uniform strain and coercive force)
As shown in Table 1 and FIG. 6, the coercive force Hc decreases as the heat treatment temperature of the powder is raised. Conventionally, it has been considered that the hysteresis loss is reduced by removing the strain in the powder and reducing the coercive force Hc. It is true that the iron loss Pcv and the hysteresis loss Ph are reduced in Comparative Examples 2 and 3 as compared with Comparative Example 1 in which the heat treatment is not performed.

しかし、上記に示したように、保磁力Hcが大きい実施例1−4の方が、比較例2及び3よりもヒステリシス損失、鉄損Pcvが低減している。このことから、単に保磁力Hcを低減させるだけでは、鉄損Pcv、ヒステリシス損失Phの低減を図ることには限界があることがわかる。そして、本実施例において、保磁力Hcを一定程度低減させつつ、不均一歪ηの値を0.140以上0.182以下とすることで、単に保磁力Hcを低減させるよりも低鉄損化を図ることできることが示された。これは、軟磁性粉末内に歪を残しておくと、粉末の結晶内の磁区の幅が狭まるため、ヒステリシス損失の低減につながったものと推察する。 However, as shown above, in Examples 1-4 having a large coercive force Hc, the hysteresis loss and the iron loss Pcv are reduced as compared with Comparative Examples 2 and 3. From this, it can be seen that there is a limit to reducing the iron loss Pcv and the hysteresis loss Ph simply by reducing the coercive force Hc. Then, in this embodiment, by reducing the coercive force Hc to a certain extent and setting the value of the non-uniform strain η to 0.140 or more and 0.182 or less, the iron loss is lower than simply reducing the coercive force Hc. It was shown that It is presumed that if the strain is left in the soft magnetic powder, the width of the magnetic domain in the crystal of the powder is narrowed, which leads to the reduction of the hysteresis loss.

(他の実施形態)
本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。上記のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
Although the embodiment according to the present invention has been described in the present specification, this embodiment is presented as an example and is not intended to limit the scope of the invention. The above-described embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The embodiments and modifications thereof are included in the scope and the gist of the invention as well as the invention described in the claims and the equivalent scope thereof.

本実施形態では、粉末熱処理工程の後、シリコーンオリゴマー層形成工程を経たが、粉末熱処理工程後シリコーンオリゴマー層形成工程前に、無機絶縁粉末付着工程を有していてもよい。無機絶縁粉末付着工程は、軟磁性粉末と、無機絶縁粉末とを混合する工程である。混合は、混合機(W型、V型)、ポットミル等を使用して行い、この時、粉末に内部歪が入らないように混合する。以上により、軟磁性粉末の表面に無機絶縁粉末層を付着することができる。軟磁性粉末の表面に無機絶縁粉末を付着することにより、軟磁性粉末の間を絶縁することができ、熱処理温度を上げることが可能になる。無機絶縁粉末としては、アルミナ粉末、マグネシア粉末、シリカ粉末、チタニア粉末、ジルコニア粉末の少なくとも1種類以上であることが好ましい。
In the present embodiment, the silicone oligomer layer forming step is performed after the powder heat treatment step, but the inorganic insulating powder adhesion step may be provided after the powder heat treatment step and before the silicone oligomer layer forming step. The step of adhering the inorganic insulating powder is a step of mixing the soft magnetic powder and the inorganic insulating powder. Mixing is performed using a mixer (W type, V type), a pot mill or the like, and at this time, the powder is mixed so as not to contain internal strain. As described above, the inorganic insulating powder layer can be attached to the surface of the soft magnetic powder. By adhering the inorganic insulating powder to the surface of the soft magnetic powder, it is possible to insulate between the soft magnetic powders and raise the heat treatment temperature. The inorganic insulating powder is preferably at least one kind of alumina powder, magnesia powder, silica powder, titania powder, and zirconia powder.

Claims (5)

結晶構造に不均一歪ηを有する軟磁性粉末であって、
下記数式(1)に基づく前記不均一歪ηの値は、
0.140%以上0.182%以下であること、
を特徴とする軟磁性粉末。
Figure 2020153002
数式(1)のうち、βは積分幅、Dは結晶子の大きさ、θは回析角、λはX線の波長、ηは不均一歪、を表す。
A soft magnetic powder having a non-uniform strain η in the crystal structure.
The value of the non-uniform strain η based on the following mathematical formula (1) is
Must be 0.140% or more and 0.182% or less
A soft magnetic powder characterized by.
Figure 2020153002
In the formula (1), β is the integration width, D is the crystallite size, θ is the diffraction angle, λ is the wavelength of the X-ray, and η is the non-uniform distortion.
前記軟磁性粉末は、FeSiAl合金であること、
を特徴とする請求項1に記載の軟磁性粉末。
The soft magnetic powder is a FeSiAl alloy.
The soft magnetic powder according to claim 1.
前記請求項1又は2に記載の軟磁性粉末によって構成された圧粉磁心。 A powder magnetic core composed of the soft magnetic powder according to claim 1 or 2. 軟磁性粉末を500℃以上650℃以下で熱処理をする熱処理工程を有し、
下記数式(2)に基づく不均一歪ηの値は、
0.140%以上0.182%以下であること、
を特徴とする軟磁性粉末の製造方法。
Figure 2020153002
数式(2)のうち、βは積分幅、Dは結晶子の大きさ、θは回析角、λはX線の波長、ηは不均一歪、を表す。
It has a heat treatment step of heat-treating the soft magnetic powder at 500 ° C. or higher and 650 ° C. or lower.
The value of non-uniform strain η based on the following formula (2) is
Must be 0.140% or more and 0.182% or less
A method for producing a soft magnetic powder.
Figure 2020153002
In the formula (2), β is the integration width, D is the crystallite size, θ is the diffraction angle, λ is the wavelength of the X-ray, and η is the non-uniform distortion.
前記請求項4に記載の前記軟磁性粉末によって構成された圧粉磁心の製造方法であって、
前記熱処理工程を経た前記軟磁性粉末を加圧成形して成形体を作製する成形工程と、
前記成形体を600℃以上800℃以下で焼鈍する焼鈍工程と、
を有すること、
を特徴とする圧粉磁心の製造方法。
The method for producing a dust core composed of the soft magnetic powder according to claim 4.
A molding step of forming a molded product by pressure molding the soft magnetic powder that has undergone the heat treatment step,
An annealing step of annealing the molded product at 600 ° C. or higher and 800 ° C. or lower,
To have
A method for producing a powder magnetic core.
JP2019055703A 2019-03-22 2019-03-22 Manufacturing method of dust core Active JP7079749B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019055703A JP7079749B2 (en) 2019-03-22 2019-03-22 Manufacturing method of dust core
CN202010146741.6A CN111724965A (en) 2019-03-22 2020-03-05 Soft magnetic powder and method for producing same, and dust core and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055703A JP7079749B2 (en) 2019-03-22 2019-03-22 Manufacturing method of dust core

Publications (2)

Publication Number Publication Date
JP2020153002A true JP2020153002A (en) 2020-09-24
JP7079749B2 JP7079749B2 (en) 2022-06-02

Family

ID=72558049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055703A Active JP7079749B2 (en) 2019-03-22 2019-03-22 Manufacturing method of dust core

Country Status (1)

Country Link
JP (1) JP7079749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086990A (en) * 2019-11-29 2021-06-03 株式会社タムラ製作所 Reactor
JP2023037762A (en) * 2021-09-06 2023-03-16 株式会社タムラ製作所 Manufacturing method of powder magnetic core

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208820A (en) * 1991-09-26 1993-08-20 Tosoh Corp Magnesia-containing zirconia powder and its production
JP2002353015A (en) * 2001-05-22 2002-12-06 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic recording medium containing the ferromagnetic metal powder
JP2003068513A (en) * 2001-08-30 2003-03-07 Sanyo Special Steel Co Ltd Soft magnetic powder for metal composite core
JP2003109810A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Dust core and its manufacturing method
JP2008124270A (en) * 2006-11-13 2008-05-29 Daido Steel Co Ltd METHOD OF REDUCING CORE LOSS OF Fe-Si-BASED DUST CORE
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
JP2016076517A (en) * 2014-10-02 2016-05-12 Ntn株式会社 Powder for magnetic core and dust core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208820A (en) * 1991-09-26 1993-08-20 Tosoh Corp Magnesia-containing zirconia powder and its production
JP2002353015A (en) * 2001-05-22 2002-12-06 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic recording medium containing the ferromagnetic metal powder
JP2003068513A (en) * 2001-08-30 2003-03-07 Sanyo Special Steel Co Ltd Soft magnetic powder for metal composite core
JP2003109810A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Dust core and its manufacturing method
JP2008124270A (en) * 2006-11-13 2008-05-29 Daido Steel Co Ltd METHOD OF REDUCING CORE LOSS OF Fe-Si-BASED DUST CORE
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
JP2016076517A (en) * 2014-10-02 2016-05-12 Ntn株式会社 Powder for magnetic core and dust core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086990A (en) * 2019-11-29 2021-06-03 株式会社タムラ製作所 Reactor
JP2023037762A (en) * 2021-09-06 2023-03-16 株式会社タムラ製作所 Manufacturing method of powder magnetic core
JP7337127B2 (en) 2021-09-06 2023-09-01 株式会社タムラ製作所 Method for manufacturing dust core

Also Published As

Publication number Publication date
JP7079749B2 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP4274896B2 (en) Method for producing nanocrystalline metal powder having excellent high-frequency characteristics and method for producing high-frequency soft magnetic core using the same
JP4613622B2 (en) Soft magnetic material and dust core
JP6471260B2 (en) Soft magnetic materials, dust cores using soft magnetic materials, reactors using dust cores
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP4336810B2 (en) Dust core
JP7079749B2 (en) Manufacturing method of dust core
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP7009425B2 (en) Manufacturing method of dust core
JP6578266B2 (en) Soft magnetic material, dust core using soft magnetic material, and method for manufacturing dust core
JP6467376B2 (en) Manufacturing method of dust core
JP7229825B2 (en) dust core
JP2019153614A (en) Powder magnetic core and manufacturing method thereof and powder for magnetic core
JP7307603B2 (en) Powder magnetic core and method for manufacturing powder magnetic core
JP7418194B2 (en) Manufacturing method of powder magnetic core
JP2019057654A (en) Soft magnetic material, compacted powder magnetic core using soft magnetic material, reactor using compacted powder magnetic core, and manufacturing method for compacted powder magnetic core
JP7377076B2 (en) Manufacturing method of powder magnetic core
CN111724965A (en) Soft magnetic powder and method for producing same, and dust core and method for producing same
JP7194098B2 (en) Method for manufacturing dust core
JP7337127B2 (en) Method for manufacturing dust core
JP7202333B2 (en) Powder magnetic core and its manufacturing method
WO2024048226A1 (en) Dust core, alloy particle, electronic element, electronic device, electric motor, and dynamo
JP7222771B2 (en) dust core
JP6713018B2 (en) Soft magnetic material, dust core, and method for manufacturing dust core
WO2022070786A1 (en) Dust core
JP7300288B2 (en) dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210729

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210805

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210810

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210827

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210831

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211221

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220405

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220412

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220517

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7079749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150