JP2007123703A - SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM - Google Patents

SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM Download PDF

Info

Publication number
JP2007123703A
JP2007123703A JP2005316431A JP2005316431A JP2007123703A JP 2007123703 A JP2007123703 A JP 2007123703A JP 2005316431 A JP2005316431 A JP 2005316431A JP 2005316431 A JP2005316431 A JP 2005316431A JP 2007123703 A JP2007123703 A JP 2007123703A
Authority
JP
Japan
Prior art keywords
soft magnetic
oxide film
concentration
iron
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005316431A
Other languages
Japanese (ja)
Inventor
Satoshi Uozumi
学司 魚住
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2005316431A priority Critical patent/JP2007123703A/en
Publication of JP2007123703A publication Critical patent/JP2007123703A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide soft magnetic powder coated with an Si oxide film wherein an Si oxide film, especially an SiOx (x=1-2) oxide film. <P>SOLUTION: In this Si oxide film coated soft magnetic powder, an SiOx-deposited oxide film (x=1-2) is formed on the surface of an iron powder via a diffusion layer of an Si-Fe-O ternary oxide consisting of Si, Fe and O. The diffusion layer of the Si-Fe-O ternary oxide has such a concentration gradient that it has a higher concentration of Fe and a lower concentration of Si at the interface with the iron powder, and it has a lower concentration of Fe and a higher concentration of Si at the interface with the SiOx (x=1-2) deposited oxide film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、軟磁性粉末の表面にSi酸化膜、特にSiOx(x=1〜2)酸化膜を被覆したSi酸化膜被覆軟磁性粉末に関するものであり、このSi酸化膜被覆軟磁性粉末で作製した複合軟磁性材は低鉄損を必要とする各種電磁気回路部品、例えば、モータ、アクチュエータ、ヨーク、コア、リアクトルなどの各種電磁気部品の素材として使用される。   The present invention relates to a soft magnetic powder coated with a Si oxide film, particularly a SiOx (x = 1 to 2) oxide film on the surface of the soft magnetic powder. The composite soft magnetic material is used as a material for various electromagnetic circuit components that require low iron loss, for example, various electromagnetic components such as motors, actuators, yokes, cores, and reactors.

一般に、軟磁性材料は軟磁性粉末を圧粉成形し、焼成して作られることは知られており、前記軟磁性粉末として、
鉄粉末、
Al:0.1〜20を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末(例えば、Fe−15%Alからなる組成を有するアルパーム粉末)、
Ni:35〜85%を含有し、必要に応じてMo:5%以下、Cu:5%以下、Cr:2%以下、Mn:0.5%以下の内の1種または2種以上を含有し、残部がFeおよび不可避不純物からなるFe−Ni系鉄基軟磁性合金粉末(例えば、Fe−49%Ni粉末)、
Cr:1〜20%を含有し、必要に応じてAl:5%以下、Ni:5%以下の内の1種または2種を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末、
Si:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末であり、
Si:0.1〜10%、Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末、
Co:0.1〜52%、V:0.1〜3%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末、
Co:0.1〜52%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末、
P:0.5〜1%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末(以上、%は質量%を示す)などが一般に知られている。
In general, it is known that soft magnetic materials are made by compacting and firing a soft magnetic powder. As the soft magnetic powder,
Iron powder,
Al: Fe—Al-based iron-based soft magnetic alloy powder containing 0.1 to 20 and the balance consisting of Fe and inevitable impurities (for example, alpalm powder having a composition of Fe-15% Al),
Contains Ni: 35-85%, optionally contains Mo: 5% or less, Cu: 5% or less, Cr: 2% or less, Mn: 0.5% or less Fe—Ni-based iron-based soft magnetic alloy powder (for example, Fe-49% Ni powder), the balance being Fe and inevitable impurities,
Fe: Cr-based iron containing Cr: 1 to 20%, optionally containing one or two of Al: 5% or less, Ni: 5% or less, the balance being Fe and inevitable impurities Base soft magnetic alloy powder,
Si: Fe-Si based iron-based soft magnetic alloy powder containing 0.1 to 10%, the balance consisting of Fe and inevitable impurities,
Fe: Si—Al-based iron-based soft magnetic alloy powder containing Si: 0.1 to 10%, Al: 0.1 to 20%, the balance being Fe and inevitable impurities,
Fe: Co-V-based iron-based soft magnetic alloy powder containing Co: 0.1 to 52%, V: 0.1 to 3%, the balance being Fe and inevitable impurities,
Co: Fe-Co based iron-based soft magnetic alloy powder containing 0.1 to 52%, the balance being Fe and inevitable impurities,
P: Fe—P-based iron-based soft magnetic alloy powder containing 0.5 to 1% and the balance of Fe and inevitable impurities (where% indicates mass%) is generally known.

これら軟磁性粉末を圧粉成形し、焼成して作製した各種軟磁性材料からなる電磁気回路部品は、鉄損が小さいことが要求されるため、電気抵抗を高くして渦電流損を低減させ、保磁力を小さくしてヒステリシス損を低減させること、さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されていることが知られている。
かかる要求を満たすために前記軟磁性粉末の表面にシリケート膜を被覆したSi酸化膜被覆軟磁性粉末が知られている(特許文献1参照)。
特開2003−282317号公報
Electromagnetic circuit components made of various soft magnetic materials produced by compacting and firing these soft magnetic powders are required to have low iron loss, so the electrical resistance is increased to reduce eddy current loss, It is known that increasing the magnetic flux density is also regarded as important because the coercive force is reduced to reduce hysteresis loss and, in addition, in recent years, there has been a demand for miniaturization and high response of electromagnetic circuits. ing.
In order to satisfy such requirements, a Si oxide film-coated soft magnetic powder in which the surface of the soft magnetic powder is coated with a silicate film is known (see Patent Document 1).
JP 2003-282317 A

しかし、従来のシリケート膜を被覆した軟磁性粉末は、軟磁性粉末の表面にシリケート膜を化学的方法により被覆するために、軟磁性粉末の表面に対する膜の密着性が十分でなく、従来のシリケート膜を被覆した軟磁性粉末をプレス成形し焼成することにより作製した複合軟磁性材はプレス成形中にシリケート膜が剥離したり破れるなどして十分な絶縁効果が発揮できず、したがって、十分な高比抵抗が得られないという欠点があった。   However, the conventional soft magnetic powder coated with a silicate film has a poor adhesion to the surface of the soft magnetic powder because the surface of the soft magnetic powder is coated by a chemical method. The composite soft magnetic material produced by press-molding and firing the soft magnetic powder coated with the film cannot exhibit a sufficient insulation effect because the silicate film is peeled off or torn during press molding, and therefore a sufficiently high There was a drawback that specific resistance could not be obtained.

そこで、本発明者らは、プレス成形しても、プレス成形時に軟磁性粉末表面の高抵抗酸化膜が破れることが無く表面に酸化膜が強固に密着した軟磁性粉末であり、プレス成形後に高温歪取り焼成を行っても表面の絶縁性が低下することなく高抵抗で渦電流損失が低くなり、また歪取り焼鈍の焼成を行った場合により保磁力が低減できてヒステリシス損失が低くなる酸化膜被覆軟磁性粉末を作製すべく研究を行った。その結果、
(イ)表面が自然酸化膜で覆われている鉄粉末あるいは表面に酸化膜を形成した酸化膜被覆鉄粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、鉄粉末の表面にSi、FeおよびOからなるSi−Fe−O三元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆鉄粉末が得られ、このSi−Fe−O三元系酸化物の拡散層は、鉄粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(ロ)Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−Al系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−Al系鉄基軟磁性合金粉末の表面にSi、Fe、AlおよびOからなるSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−Al系鉄基軟磁性合金粉末が得られ、このSi−Fe−Al−O四元系酸化物の拡散層は、Fe−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(ハ)Ni:35〜85%を含有し、残部がFeおよび不可避不純物からなるFe−Ni系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−Ni系鉄基軟磁性合金粉末の表面にSi、Fe、NiおよびOからなるSi−Fe−Ni−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末が得られ、このSi−Fe−Ni−O四元系酸化物の拡散層は、Fe−Ni系鉄基軟磁性合金粉末との界面ではFeおよびNiの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびNiの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(ニ)Cr:1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−Cr系鉄基軟磁性合金粉末の表面にSi、Fe、CrおよびOからなるSi−Fe−Cr−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末が得られ、このSi−Fe−Cr−O四元系酸化物の拡散層は、Fe−Cr系鉄基軟磁性合金粉末との界面ではFeおよびCrの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびCrの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(ホ)Si:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−Si系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−Si系鉄基軟磁性合金粉末の表面にSi、FeおよびOからなるSi−Fe−O三元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−Si系鉄基軟磁性合金粉末が得られ、このSi−Fe−O三元系酸化物の拡散層は、Fe−Si系鉄基軟磁性合金粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(ヘ)Si:0.1〜10%、Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−Si−Al系鉄基軟磁性合金粉末の表面にSi、Fe、AlおよびOからなるSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末が得られ、このSi−Fe−Al−O四元系酸化物の拡散層は、Fe−Si−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(ト)Co:0.1〜52%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−Co系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−Co系鉄基軟磁性合金粉末の表面にSi、Fe、CoおよびOからなるSi−Fe−Co−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−Co系鉄基軟磁性合金粉末が得られ、このSi−Fe−Co−O四元系酸化物の拡散層は、Fe−Co系鉄基軟磁性合金粉末との界面ではFeおよびCoの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびCoの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(チ)Co:0.1〜52%、V:0.1〜3%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−Co系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−Co−V系鉄基軟磁性合金粉末の表面にSi、Fe、Co、VおよびOからなるSi−Fe−Co−V−O五元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末が得られ、このSi−Fe−Co−V−O五元系酸化物の拡散層は、Fe−Co−V系鉄基軟磁性合金粉末との界面ではFe、CoおよびVの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFe、CoおよびVの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、
(リ)P:0.5〜1%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末の表面に酸化膜を形成した酸化膜被覆Fe−P系鉄基軟磁性合金粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、Fe−P系鉄基軟磁性合金粉末の表面にSi、Fe、PおよびOからなるSi−Fe−P−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆Fe−P系鉄基軟磁性合金粉末が得られ、このSi−Fe−P−O四元系酸化物の拡散層は、Fe−P系鉄基軟磁性合金粉末との界面ではFeおよびPの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびPの濃度が低くかつSiの濃度が高くなっている濃度勾配を有すること、などの知見が得られたのである。
Therefore, the present inventors are soft magnetic powders in which the high resistance oxide film on the surface of the soft magnetic powder is not broken during press molding, and the oxide film is firmly adhered to the surface at the time of press molding. Oxide film with low resistance and low eddy current loss without lowering surface insulation even when strain relief firing is performed, and when coercive annealing is performed, coercive force can be reduced and hysteresis loss is reduced Research was carried out to produce coated soft magnetic powders. as a result,
(A) After adding or mixing silicon monoxide powder to iron powder whose surface is covered with a natural oxide film or oxide film-coated iron powder having an oxide film formed on the surface, or in a vacuum atmosphere while mixing, temperature: 600 When heated under the condition of ˜1200 ° C., a SiOx (x = 1 to 2) deposited oxide film is formed on the surface of the iron powder through a diffusion layer of Si—Fe—O ternary oxide composed of Si, Fe and O. The formed Si oxide film-coated iron powder is obtained, and the diffusion layer of this Si—Fe—O ternary oxide has a high Fe concentration and a low Si concentration at the interface with the iron powder. x = 1 to 2) having a concentration gradient in which the Fe concentration is low and the Si concentration is high at the interface with the deposited oxide film;
(B) An oxide film-covered Fe—Al-based iron group in which an oxide film is formed on the surface of Fe—Al-based iron-based soft magnetic alloy powder containing Al: 0.1 to 20%, the balance being Fe and inevitable impurities After the silicon monoxide powder is added to the soft magnetic alloy powder and mixed, or when mixed and heated in a vacuum atmosphere at a temperature of 600 to 1200 ° C., the surface of the Fe—Al-based iron-based soft magnetic alloy powder becomes Si. Si oxide film-covered Fe-Al system in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-Al-O quaternary oxide composed of Fe, Al and O An iron-based soft magnetic alloy powder is obtained, and the diffusion layer of this Si-Fe-Al-O quaternary oxide has a high Fe and Al concentration at the interface with the Fe-Al iron-based soft magnetic alloy powder. Si concentration is low and SiOx (x = 1 to 2) is deposited To have a concentration gradient in which the concentration of Fe and Al has a high concentration of low and Si at the interface with the monolayer,
(C) An oxide film-covered Fe-Ni-based iron-based soft magnetism in which an oxide film is formed on the surface of a Fe-Ni-based iron-based soft magnetic alloy powder containing Ni: 35 to 85%, the balance being Fe and inevitable impurities After the silicon monoxide powder is added to the alloy powder and mixed, or when mixed and heated in a vacuum atmosphere at a temperature of 600 to 1200 ° C., the surface of the Fe—Ni-based iron-based soft magnetic alloy powder becomes Si, Fe Si-oxide film-covered Fe-Ni-based iron base in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-Ni-O quaternary oxide composed of Ni and O A soft magnetic alloy powder was obtained, and this Si—Fe—Ni—O quaternary oxide diffusion layer had a high Fe and Ni concentration at the interface with the Fe—Ni iron-based soft magnetic alloy powder and Si. Low concentration, SiOx (x = 1-2) deposited acid At the interface between the film having a concentration gradient in which the concentration of Fe and Ni has a high concentration of low and Si,
(D) Fe: Cr-based iron-based soft magnetism in which an oxide film is formed on the surface of Fe-Cr-based iron-based soft magnetic alloy powder containing Cr: 1 to 20%, the balance being Fe and inevitable impurities After the silicon monoxide powder is added to the alloy powder and mixed or when mixed and heated in a vacuum atmosphere at a temperature of 600 to 1200 ° C., the surface of the Fe—Cr-based iron-based soft magnetic alloy powder becomes Si, Fe Si-film-coated Fe-Cr-based iron base in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-Cr-O quaternary oxide composed of Cr, O A soft magnetic alloy powder is obtained, and the diffusion layer of this Si-Fe-Cr-O quaternary oxide has a high Fe and Cr concentration at the interface with the Fe-Cr iron-based soft magnetic alloy powder and Si. Low concentration, SiOx (x = 1-2) deposition oxidation The interface between having a concentration gradient in which the concentration of Fe and Cr are high concentrations of low and Si,
(E) Si: Oxide film-coated Fe-Si iron group in which an oxide film is formed on the surface of Fe-Si iron-based soft magnetic alloy powder containing 0.1 to 10% and the balance being Fe and inevitable impurities After the silicon monoxide powder is added to the soft magnetic alloy powder and mixed or when mixed and heated in a vacuum atmosphere at a temperature of 600 to 1200 ° C., the surface of the Fe—Si-based iron-based soft magnetic alloy powder becomes Si. Fe-Si-based iron-based soft magnetism in which a SiOx (x = 1-2) deposited oxide film is formed through a diffusion layer of Si-Fe-O ternary oxide composed of Fe, O and Fe An alloy powder is obtained, and this Si—Fe—O ternary oxide diffusion layer has a high Fe concentration and a low Si concentration at the interface with the Fe—Si iron-based soft magnetic alloy powder. x = 1 to 2) Fe concentration at the interface with the deposited oxide film Low and have a concentration gradient in which the concentration of Si is high,
(F) An oxide film is formed on the surface of the Fe-Si-Al-based iron-based soft magnetic alloy powder containing Si: 0.1 to 10% and Al: 0.1 to 20%, the balance being Fe and inevitable impurities. After the silicon oxide powder is added to the formed oxide film-coated Fe-Si-Al-based iron-based soft magnetic alloy powder and mixed or heated in a vacuum atmosphere with mixing, the temperature is maintained at 600 to 1200 ° C. -SiOx (x = 1-2) deposited on the surface of a Si-Al-based iron-based soft magnetic alloy powder through a diffusion layer of Si-Fe-Al-O quaternary oxide composed of Si, Fe, Al, and O An Si oxide film-coated Fe—Si—Al-based iron-based soft magnetic alloy powder on which an oxide film is formed is obtained, and the diffusion layer of this Si—Fe—Al—O quaternary oxide is Fe—Si—Al Fe and Al concentrations at the interface with the iron-based soft magnetic alloy powder Low concentration of KuKatsu Si, SiOx (x = 1~2) at the interface between the deposited oxide film to have a concentration gradient in which the concentration of Fe and Al has a high concentration of low and Si,
(G) Co: Fe-Co based iron group in which an oxide film is formed on the surface of an Fe—Co based iron-based soft magnetic alloy powder containing 0.1 to 52% of Co, the balance being Fe and inevitable impurities After the silicon monoxide powder is added to the soft magnetic alloy powder and mixed, or when mixed and heated in a vacuum atmosphere at a temperature of 600 to 1200 ° C., the surface of the Fe—Co based iron-based soft magnetic alloy powder becomes Si. Si oxide film-covered Fe-Co system in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-Co-O quaternary oxide composed of Fe, Co and O An iron-based soft magnetic alloy powder is obtained, and this Si—Fe—Co—O quaternary oxide diffusion layer has a high Fe and Co concentration at the interface with the Fe—Co iron-based soft magnetic alloy powder. Si concentration is low and SiOx (x = 1 to 2) is deposited To have a concentration gradient in which the concentration of Fe and Co are high concentrations of low and Si at the interface with the monolayer,
(H) An oxide film is formed on the surface of the Fe—Co—V iron-based soft magnetic alloy powder containing Co: 0.1 to 52%, V: 0.1 to 3%, and the balance being Fe and inevitable impurities. When silicon monoxide powder is added to the formed oxide film-coated Fe—Co-based iron-based soft magnetic alloy powder and mixed or heated in a vacuum atmosphere with mixing at a temperature of 600 to 1200 ° C., Fe—Co SiOx (x = 1-2) through a Si-Fe-Co-V-O ternary oxide diffusion layer composed of Si, Fe, Co, V, and O on the surface of the -V based iron-based soft magnetic alloy powder ) A Si oxide film-coated Fe—Co—V-based iron-based soft magnetic alloy powder on which a deposited oxide film is formed is obtained, and the diffusion layer of this Si—Fe—Co—V—O ternary oxide is Fe -Fe-Co and V concentrations are high at the interface with the Co-V iron-based soft magnetic alloy powder. And low concentrations of Si, at the interface between the SiOx (x = 1~2) deposited oxide film having a concentration gradient Fe, the concentration of Co and V concentration of the low and Si is higher,
(L) P: oxide-coated Fe-P-based iron group in which an oxide film is formed on the surface of Fe-P-based iron-based soft magnetic alloy powder containing 0.5 to 1%, the balance being Fe and inevitable impurities After the silicon monoxide powder is added to the soft magnetic alloy powder and mixed, or when mixed and heated in a vacuum atmosphere at a temperature of 600 to 1200 ° C., the surface of the Fe—P-based iron-based soft magnetic alloy powder becomes Si. Si oxide film-covered Fe-P system in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-P-O quaternary oxide composed of Fe, P, and O An iron-based soft magnetic alloy powder was obtained, and this Si—Fe—P—O quaternary oxide diffusion layer had a high Fe and P concentration at the interface with the Fe—P iron-based soft magnetic alloy powder. The Si concentration is low, and at the interface with the SiOx (x = 1 to 2) deposited oxide film, Fe And have a concentration gradient in which the concentration of P is higher concentration of low and Si, it is the findings, such as was obtained.

この発明は、かかる知見に基づいて成されたものであって、
(1)鉄粉末の表面にSi、FeおよびOからなるSi−Fe−O三元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(2)前記Si−Fe−O三元系酸化物の拡散層は、鉄粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(1)記載のSi酸化膜被覆軟磁性粉末、
(3)Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末の表面にSi、Fe、AlおよびOからなるSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(4)前記Si−Fe−Al−O四元系酸化物の拡散層は、Fe−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(3)記載のSi酸化膜被覆軟磁性粉末、
(5)Ni:35〜85%を含有し、残部がFeおよび不可避不純物からなるFe−Ni系鉄基軟磁性合金粉末の表面にSi、Fe、NiおよびOからなるSi−Fe−Ni−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(6)前記Si−Fe−Ni−O四元系酸化物の拡散層は、Fe−Ni系鉄基軟磁性合金粉末との界面ではFeおよびNiの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびNiの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(5)記載のSi酸化膜被覆軟磁性粉末、
(7)Cr:1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末の表面にSi、Fe、CrおよびOからなるSi−Fe−Cr−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(8)前記Si−Fe−Cr−O四元系酸化物の拡散層は、Fe−Cr系鉄基軟磁性合金粉末との界面ではFeおよびCrの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびCrの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(7)記載のSi酸化膜被覆軟磁性粉末、
(9)Si:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末の表面にSi、FeおよびOからなるSi−Fe−O三元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(10)前記Si−Fe−O三元系酸化物の拡散層は、Fe−Si系鉄基軟磁性合金粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(9)記載のSi酸化膜被覆軟磁性粉末、
(11)Si:0.1〜10%、Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末の表面にSi、Fe、AlおよびOからなるSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(12)前記Si−Fe−Al−O四元系酸化物の拡散層は、Fe−Si−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(11)記載のSi酸化膜被覆軟磁性粉末、
(13)Co:0.1〜52%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末の表面にSi、Fe、CoおよびOからなるSi−Fe−Co−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(14)前記Si−Fe−Co−O四元系酸化物の拡散層は、Fe−Co系鉄基軟磁性合金粉末との界面ではFeおよびCoの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびCoの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(13)記載のSi酸化膜被覆軟磁性粉末、
(15)Co:0.1〜52%、V:0.1〜3%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末の表面にSi、Fe、Co、VおよびOからなるSi−Fe−Co−V−O五元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(16)前記Si−Fe−Co−V−O五元系酸化物の拡散層は、Fe−Co−V系鉄基軟磁性合金粉末との界面ではFe、CoおよびVの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFe、CoおよびVの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(15)記載のSi酸化膜被覆軟磁性粉末、
(17)P:0.5〜1%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末の表面にSi、Fe、PおよびOからなるSi−Fe−P−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されているSi酸化膜被覆軟磁性粉末、
(18)前記Si−Fe−P−O四元系酸化物の拡散層は、Fe−P系鉄基軟磁性合金粉末との界面ではFeおよびPの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびPの濃度が低くかつSiの濃度が高くなっている濃度勾配を有する前記(17)記載のSi酸化膜被覆軟磁性粉末、に特徴を有するものである。
This invention is made based on such knowledge,
(1) Si oxide film in which a SiOx (x = 1 to 2) deposited oxide film is formed on the surface of iron powder through a diffusion layer of Si—Fe—O ternary oxide composed of Si, Fe and O Coated soft magnetic powder,
(2) The Si—Fe—O ternary oxide diffusion layer has a high Fe concentration and a low Si concentration at the interface with the iron powder, and the SiOx (x = 1 to 2) deposited oxide film. The Si oxide film-coated soft magnetic powder according to the above (1) having a concentration gradient in which the Fe concentration is low and the Si concentration is high at the interface;
(3) Si: Fe—Al—Si—Fe—Al containing Si, Fe, Al, and O on the surface of Fe—Al-based iron-based soft magnetic alloy powder containing 0.1 to 20% Al and the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of -O quaternary oxide;
(4) The Si—Fe—Al—O quaternary oxide diffusion layer has a high Fe and Al concentration and a low Si concentration at the interface with the Fe—Al iron-based soft magnetic alloy powder. (X = 1 to 2) The Si oxide film-coated soft magnetic powder according to (3) having a concentration gradient in which the concentration of Fe and Al is low and the concentration of Si is high at the interface with the deposited oxide film,
(5) Ni: Si—Fe—Ni—O made of Si, Fe, Ni and O on the surface of Fe—Ni-based iron-based soft magnetic alloy powder containing 35 to 85%, the balance being Fe and inevitable impurities Si oxide film-coated soft magnetic powder in which a SiOx (x = 1 to 2) deposited oxide film is formed through a quaternary oxide diffusion layer,
(6) The Si—Fe—Ni—O quaternary oxide diffusion layer has a high Fe and Ni concentration and a low Si concentration at the interface with the Fe—Ni iron-based soft magnetic alloy powder. (X = 1 to 2) The Si oxide film-coated soft magnetic powder according to (5), which has a concentration gradient in which the concentration of Fe and Ni is low and the concentration of Si is high at the interface with the deposited oxide film,
(7) Si: Fe—Cr—O composed of Si, Fe, Cr and O on the surface of Fe—Cr-based iron-based soft magnetic alloy powder containing 1% to 20% of Cr and the balance composed of Fe and inevitable impurities Si oxide film-coated soft magnetic powder in which a SiOx (x = 1 to 2) deposited oxide film is formed through a quaternary oxide diffusion layer,
(8) The Si—Fe—Cr—O quaternary oxide diffusion layer has a high Fe and Cr concentration and a low Si concentration at the interface with the Fe—Cr iron-based soft magnetic alloy powder. (X = 1 to 2) The Si oxide film-coated soft magnetic powder according to (7), having a concentration gradient in which the concentration of Fe and Cr is low and the concentration of Si is high at the interface with the deposited oxide film,
(9) Si: Fe—O ternary consisting of Si, Fe and O on the surface of Fe—Si-based iron-based soft magnetic alloy powder containing 0.1% to 10% and the balance being Fe and inevitable impurities Si oxide film-coated soft magnetic powder in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of a system oxide,
(10) The Si—Fe—O ternary oxide diffusion layer has a high Fe concentration and a low Si concentration at the interface with the Fe—Si based iron-based soft magnetic alloy powder, and SiOx (x = 1) (2) The Si oxide film-coated soft magnetic powder according to (9), which has a concentration gradient in which the Fe concentration is low and the Si concentration is high at the interface with the deposited oxide film,
(11) Si, Fe on the surface of the Fe-Si-Al-based iron-based soft magnetic alloy powder containing Si: 0.1 to 10% and Al: 0.1 to 20%, the balance being Fe and inevitable impurities Si oxide film-coated soft magnetic powder in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-Al-O quaternary oxide composed of Al and O,
(12) The Si—Fe—Al—O quaternary oxide diffusion layer has a high Fe and Al concentration and a low Si concentration at the interface with the Fe—Si—Al iron-based soft magnetic alloy powder. The Si oxide film-coated soft magnetic powder according to (11), having a concentration gradient in which the concentration of Fe and Al is low and the concentration of Si is high at the interface with the SiOx (x = 1 to 2) deposited oxide film,
(13) Co: Si-Fe-Co containing Si, Fe, Co and O on the surface of Fe-Co based iron-based soft magnetic alloy powder containing 0.1 to 52% Co, the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of -O quaternary oxide;
(14) The Si—Fe—Co—O quaternary oxide diffusion layer has a high Fe and Co concentration and a low Si concentration at the interface with the Fe—Co iron-based soft magnetic alloy powder. (X = 1 to 2) The Si oxide film-coated soft magnetic powder according to (13) having a concentration gradient in which the concentration of Fe and Co is low and the concentration of Si is high at the interface with the deposited oxide film,
(15) Co: 0.1 to 52%, V: 0.1 to 3%, the balance being Fe, Co-V iron-based soft magnetic alloy powder composed of Fe and inevitable impurities, Si, Fe Si oxide film-covered soft magnetism in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si—Fe—Co—V—O ternary oxide composed of Co, V, and O Powder,
(16) The Si—Fe—Co—V—O ternary oxide diffusion layer has a high concentration of Fe, Co, and V at the interface with the Fe—Co—V iron-based soft magnetic alloy powder, and Si The Si oxidation according to the above (15), which has a concentration gradient in which the concentration of Fe is low, the concentration of Fe, Co and V is low and the concentration of Si is high at the interface with the SiOx (x = 1 to 2) deposited oxide film Film-coated soft magnetic powder,
(17) P: Si—Fe—P made of Si, Fe, P and O on the surface of Fe—P-based iron-based soft magnetic alloy powder containing 0.5 to 1% and the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder in which a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of -O quaternary oxide;
(18) The Si—Fe—P—O quaternary oxide diffusion layer has a high Fe and P concentration and a low Si concentration at the interface with the Fe—P iron-based soft magnetic alloy powder. (X = 1 to 2) The Si oxide film-coated soft magnetic powder according to (17), which has a concentration gradient in which the Fe and P concentrations are low and the Si concentration is high at the interface with the deposited oxide film. It is what has.

この発明の前記(1)〜(18)記載のSi酸化膜被覆軟磁性粉末は、先ず、背景技術で述べた一般に知られている組成を有する鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−P系鉄基軟磁性合金粉末などの軟磁性粉末を大気中に放置したり酸化雰囲気中で加熱するなどして軟磁性粉末の表面に酸化鉄膜を形成した酸化処理軟磁性粉末を作製し、この酸化処理軟磁性粉末に一酸化ケイ素粉末(SiO粉末)を添加し混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中で加熱することにより作製することができる。
前記表面に酸化鉄膜を形成した酸化処理軟磁性粉末にSiO粉末を添加し混合して得られた混合粉末は、具体的には、温度:600〜1100℃、圧力:1×10−12〜1×10−2MPaの不活性ガス雰囲気または真空雰囲気中で加熱する。前記混合粉末の加熱雰囲気が高真空であるほどSiOx堆積酸化膜におけるxが1に近くなり、低真空であるほどxが2に近くなり、圧力:10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱すると、大部分のSi酸化膜被覆軟磁性粉末におけるSiOx堆積酸化膜におけるxが2になる。そして、前記SiOx(x=1〜2)堆積酸化膜は、非晶質となる。
The Si oxide film-coated soft magnetic powders according to the above (1) to (18) of the present invention are firstly iron powder having a generally known composition described in the background art, Fe-Al based iron-based soft magnetic alloy powder. Fe-Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co -V-type iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-P-based iron-based soft magnetic alloy powder, etc. are left in the atmosphere or heated in an oxidizing atmosphere, etc. Then, an oxidized soft magnetic powder having an iron oxide film formed on the surface of the soft magnetic powder was prepared, and a silicon monoxide powder (SiO powder) was added to the oxidized soft magnetic powder and mixed to obtain a mixed powder. Prepared by heating in inert gas atmosphere or vacuum atmosphere Door can be.
Specifically, the mixed powder obtained by adding and mixing the SiO powder to the oxidized soft magnetic powder having an iron oxide film formed on the surface thereof is specifically temperature: 600-1100 ° C., pressure: 1 × 10 −12 to Heat in an inert gas atmosphere or vacuum atmosphere of 1 × 10 −2 MPa. As the heating atmosphere of the mixed powder is higher, x in the SiOx deposited oxide film is closer to 1, and as the vacuum is lower, x is closer to 2, and an inert gas atmosphere or vacuum atmosphere at a pressure of 10 −1 MPa. When heated in the middle, x in the SiOx deposited oxide film in most of the Si oxide film-coated soft magnetic powder becomes 2. The SiOx (x = 1 to 2) deposited oxide film becomes amorphous.

したがって、この発明は、
(19)前記(1)〜(18)の内のいずれかに記載のSiOx(x=1〜2)堆積酸化膜は非晶質であるSi酸化膜被覆軟磁性粉末、に特徴を有するものである。
Therefore, the present invention
(19) The SiOx (x = 1 to 2) deposited oxide film according to any one of the above (1) to (18) is characterized by an amorphous Si oxide film-coated soft magnetic powder. is there.

この発明のSi酸化膜被覆軟磁性粉末を通常の方法で圧粉成形し焼成することで簡単に高比抵抗を有する複合軟磁性材を作製することができる。この発明のSi酸化膜被覆軟磁性粉末を用いて作製した高比抵抗を有する複合軟磁性材は、軟磁性粒子相とこの軟磁性粒子相を包囲する粒界相からなり、前記粒界相にはSiOx(x=1〜2)を含有する。   A composite soft magnetic material having a high specific resistance can be easily produced by compacting and baking the Si oxide film-coated soft magnetic powder of the present invention by an ordinary method. A composite soft magnetic material having a high specific resistance manufactured using the Si oxide film-coated soft magnetic powder of the present invention comprises a soft magnetic particle phase and a grain boundary phase surrounding the soft magnetic particle phase. Contains SiOx (x = 1 to 2).

この他に、平均粒径:0.5μm以下の酸化ケイ素,酸化アルミニウムのうち1種または2種を0.05〜1質量%含有し、残部をこの発明のSi酸化膜被覆軟磁性粉末からなるように配合し混合して混合粉末を作製し、この混合粉末を通常の方法で圧粉成形し、焼成することにより作製することができる。この製造方法によると、この発明のSi酸化膜被覆軟磁性粉末を構成するSiOx(x=1〜2)堆積酸化膜は酸化ケイ素や酸化アルミニウムと反応して複合酸化物が形成され、軟磁性粉末の粒界に高抵抗を有する複合酸化物が介在した高比抵抗を有する複合軟磁性材が得られるとともに酸化ケイ素や酸化アルミニウムを介して焼成されるために機械的強度の優れた複合軟磁性材を製造することができる。この場合、酸化ケイ素や酸化アルミニウムが主体となって焼成されるところから保磁力を小さく保つことができ、したがって、ヒステリシス損の少ない複合軟磁性材を製造することができる。前記焼成は、不活性ガス雰囲気または酸化性ガス雰囲気中、温度:800〜1300℃で行われることが好ましい。   In addition, 0.05 to 1% by mass of one or two of silicon oxide and aluminum oxide having an average particle diameter of 0.5 μm or less is contained, and the balance is made of the Si oxide film-coated soft magnetic powder of the present invention. The mixed powder can be prepared by mixing and mixing as described above, and the mixed powder can be compacted and fired by a conventional method. According to this manufacturing method, the SiOx (x = 1 to 2) deposited oxide film constituting the Si oxide film-coated soft magnetic powder of the present invention reacts with silicon oxide or aluminum oxide to form a composite oxide, and the soft magnetic powder A composite soft magnetic material having a high specific resistance in which a composite oxide having a high resistance is interposed at the grain boundary and being fired through silicon oxide or aluminum oxide and having excellent mechanical strength Can be manufactured. In this case, the coercive force can be kept small from being fired mainly with silicon oxide or aluminum oxide, and therefore a composite soft magnetic material with little hysteresis loss can be produced. The firing is preferably performed at a temperature of 800 to 1300 ° C. in an inert gas atmosphere or an oxidizing gas atmosphere.

また、この発明のSi酸化膜被覆軟磁性粉末にシリカのゾルゲル(シリケート)溶液やアルミナのゾルゲル溶液などの湿式溶液を添加し混合したのち乾燥し、この乾燥した混合物を圧縮成形後、不活性ガス雰囲気または酸化性ガス雰囲気中、温度:400〜1300℃で焼成することにより高比抵抗を有する複合軟磁性材を製造することができる。この発明のSi酸化膜被覆軟磁性粉末を用いて作製した高比抵抗を有する複合軟磁性材は、軟磁性粒子相とこの軟磁性粒子相を包囲する粒界相からなり、前記粒界相にはSiOx(x=1〜2)を含有する。 In addition, a wet solution such as a silica sol-gel (silicate) solution or an alumina sol-gel solution is added to the Si oxide film-coated soft magnetic powder of the present invention, followed by drying. After the dried mixture is compression-molded, an inert gas is added. A composite soft magnetic material having a high specific resistance can be produced by firing at 400 to 1300 ° C. in an atmosphere or an oxidizing gas atmosphere. A composite soft magnetic material having a high specific resistance manufactured using the Si oxide film-coated soft magnetic powder of the present invention comprises a soft magnetic particle phase and a grain boundary phase surrounding the soft magnetic particle phase. Contains SiOx (x = 1 to 2).

さらに、この発明のSi酸化膜被覆軟磁性粉末に有機絶縁材料や無機絶縁材料、あるいは有機絶縁材料と無機絶縁材料との混合材料を混合して成形、焼成すると比抵抗および強度のさらに向上した複合軟磁性材を作製することができる。この場合、有機絶縁材料では、エポキシ樹脂やフッ素樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノキシ樹脂、ユリア樹脂、イソシアネート樹脂、アクリル樹脂、ポリイミド樹脂,等を用いることができる。また無機絶縁材料では、リン酸鉄などのリン酸塩、各種ガラス状絶縁物、珪酸ソーダを主成分とする水ガラス、絶縁性酸化物、等を用いることができる。   Furthermore, when the Si oxide film-coated soft magnetic powder of the present invention is mixed with an organic insulating material, an inorganic insulating material, or a mixed material of an organic insulating material and an inorganic insulating material, and molded and fired, a composite with further improved specific resistance and strength A soft magnetic material can be produced. In this case, as the organic insulating material, epoxy resin, fluorine resin, phenol resin, urethane resin, silicone resin, polyester resin, phenoxy resin, urea resin, isocyanate resin, acrylic resin, polyimide resin, or the like can be used. As the inorganic insulating material, phosphates such as iron phosphate, various glassy insulators, water glass mainly composed of sodium silicate, insulating oxides, and the like can be used.

また、この発明のSi酸化膜被覆軟磁性粉末に、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%を配合し混合したのち圧粉成形し、得られた圧粉成形体を温度:500〜1000℃で焼成することにより複合軟磁性材を作製することができる。このようにして作製した複合軟磁性材は、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%を含有し、残部がこの発明のSi酸化膜被覆軟磁性粉末からなる組成を有し、SiOx(x=1〜2)からなる堆積酸化膜と、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上とが反応した皮膜が形成される。 In addition, one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide are added to the Si oxide film-coated soft magnetic powder of the present invention at B 2 O 3 , V 2 O 5 , Bi 2. O 3, Sb 2 O 3, MoO 3 powder was molded were mixed by blending 0.05 mass% in terms of the resulting powder compact temperature composite by calcining at 500 to 1000 ° C. A soft magnetic material can be produced. The composite soft magnetic material produced in this way is composed of one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide, B 2 O 3 , V 2 O 5 , Bi 2 O 3. , Sb 2 O 3 , MoO 3 in terms of 0.05 to 1% by mass, with the balance being composed of the Si oxide film-coated soft magnetic powder of the present invention, consisting of SiOx (x = 1 to 2) A film is formed in which the deposited oxide film reacts with one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide.

また、この複合軟磁性材は、酸化硼素のゾル溶液または粉末、酸化バナジウムのゾル溶液または粉末、酸化ビスマスのゾル溶液または粉末、酸化アンチモンのゾル溶液または粉末および酸化モリブデンのゾル溶液または粉末の内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%、残部が前記この発明のSi酸化膜被覆軟磁性粉末からなる組成となるように配合し、混合し、乾燥して前記この発明のSi酸化膜被覆軟磁性粉末を酸化物乾燥ゲルまたは粉末からなる混合酸化物で被覆してなる混合酸化物被覆鉄粉末を作製し、この混合酸化物被覆鉄粉末を圧粉し、成形したのち、温度:500〜1000℃で焼成することにより得ることができる。これらの発明のSi酸化膜被覆軟磁性粉末を用いて作製した高比抵抗を有する複合軟磁性材は、軟磁性粒子相とこの軟磁性粒子相を包囲する粒界相からなり、前記粒界相にはSiOx(x=1〜2)を含有する。 Further, this composite soft magnetic material is composed of boron oxide sol solution or powder, vanadium oxide sol solution or powder, bismuth oxide sol solution or powder, antimony oxide sol solution or powder, and molybdenum oxide sol solution or powder. one or more of B 2 O 3 of, V 2 O 5, Bi 2 O 3, Sb 2 O 3, MoO 3 translated at 0.05 wt%, the balance being the Si oxide film coating of the present invention A mixed oxide formed by blending, mixing and drying so as to have a composition composed of soft magnetic powder and coating the Si oxide film-coated soft magnetic powder of the present invention with a mixed oxide composed of oxide dry gel or powder It can be obtained by preparing a coated iron powder, compacting and molding the mixed oxide-coated iron powder, followed by firing at a temperature of 500 to 1000 ° C. A composite soft magnetic material having a high specific resistance produced using the Si oxide film-coated soft magnetic powder of these inventions comprises a soft magnetic particle phase and a grain boundary phase surrounding the soft magnetic particle phase, and the grain boundary phase Contains SiOx (x = 1 to 2).

この発明のSi酸化膜被覆軟磁性粉末を用いて作製した複合軟磁性材は高密度、高強度、高比抵抗および高磁束密度を有し、この複合軟磁性材は,高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。前記電磁気回路部品は、磁心、電動機コア,発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどがある。そして、この発明のSi酸化膜被覆軟磁性粉末を用いた高抵抗を有する複合軟磁性材からなる電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、電気機器の高効率高性能化や小型軽量化を行うことができる。 The composite soft magnetic material produced using the Si oxide film-coated soft magnetic powder of the present invention has high density, high strength, high specific resistance and high magnetic flux density. This composite soft magnetic material has high magnetic flux density and low frequency. Since it has the feature of iron loss, it can be used as a material for various electromagnetic circuit components that take advantage of this feature. Examples of the electromagnetic circuit component include a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, and a magnetic sensor core. In addition, an electric device incorporating an electromagnetic circuit component made of a composite soft magnetic material having a high resistance using the Si oxide film-coated soft magnetic powder of the present invention includes an electric motor, a generator, a solenoid, an injector, an electromagnetically driven valve, an inverter There are converters, transformers, relays, magnetic sensor systems, etc., which can improve the efficiency, performance, size and weight of electrical equipment.

この発明のSi酸化膜被覆軟磁性粉末を使用して複合軟磁性材を製造すると、高比抵抗を有することから低渦電流損失を有し、さらに保磁力が低いことから低ヒステリシス損失を有する複合軟磁性材を低コストで安定して作製することができ、電気・電子産業上優れた効果をもたらすものである。   When a composite soft magnetic material is manufactured using the Si oxide film-coated soft magnetic powder of the present invention, it has a low specific eddy current loss due to its high specific resistance, and further has a low hysteresis loss due to its low coercive force. A soft magnetic material can be stably produced at low cost, and brings about excellent effects in the electric and electronic industries.

いずれも水アトマイズして得られた平均粒径:70μmを有する、
アトマイズ純鉄粉末、
Al:10質量%、残部:FeからなるアトマイズFe−Al系鉄基軟磁性合金粉末、
Ni:49質量%、残部:FeからなるアトマイズFe−Ni系鉄基軟磁性合金粉末、
Cr:10質量%、残部:FeからなるアトマイズFe−Cr系鉄基軟磁性合金粉末、
Si:3質量%、残部:FeからなるアトマイズFe−Si系鉄基軟磁性合金粉末、
Si:3質量%、Al:3質量を含有し、残部:FeからなるアトマイズFe−Si−Al系鉄基軟磁性合金粉末、
Co:30%、V:2%を含有し、残部がFeからなるアトマイズFe−Co−V系鉄基軟磁性合金粉末、
Co:30%を含有し、残部がFeからなるアトマイズFe−Co系鉄基軟磁性合金粉末、
P:0.6%を含有し、残部がFeからなるアトマイズFe−P系鉄基軟磁性合金粉末をそれぞれ用意した。
これら軟磁性粉末を大気中、温度:220℃、1時間保持することにより表面にそれぞれ酸化膜を有する酸化膜被覆鉄粉末、酸化膜被覆Fe−Al系鉄基軟磁性合金粉末、酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末、酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末、酸化膜被覆Fe−Si系鉄基軟磁性合金粉末、酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末、酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末、酸化膜被覆Fe−Co系鉄基軟磁性合金粉末および酸化膜被覆Fe−P系鉄基軟磁性合金粉末を作製し、これら酸化膜被覆軟磁性粉末を原料粉末として用意した。さらに平均粒径:0.6μmを有するSiO粉末を用意した。
Both have an average particle size obtained by water atomization: 70 μm,
Atomized pure iron powder,
Al: 10 mass%, balance: atomized Fe-Al-based iron-based soft magnetic alloy powder composed of Fe,
Ni: 49% by mass, balance: atomized Fe—Ni-based iron-based soft magnetic alloy powder made of Fe,
Cr: 10% by mass, balance: atomized Fe—Cr-based iron-based soft magnetic alloy powder composed of Fe,
Si: 3 mass%, balance: atomized Fe-Si based iron-based soft magnetic alloy powder composed of Fe,
Atomized Fe—Si—Al-based iron-based soft magnetic alloy powder containing Si: 3 mass%, Al: 3 mass, and the balance: Fe,
Atomized Fe—Co—V iron-based soft magnetic alloy powder containing Co: 30%, V: 2%, the balance being Fe
Co: Atomized Fe—Co-based iron-based soft magnetic alloy powder containing 30% and the balance being Fe,
Atomized Fe-P iron-based soft magnetic alloy powders containing P: 0.6% and the balance being Fe were prepared.
By holding these soft magnetic powders in the atmosphere at a temperature of 220 ° C. for 1 hour, oxide film-coated iron powders having oxide films on their surfaces, oxide film-coated Fe—Al-based iron-based soft magnetic alloy powders, oxide film-coated Fe -Ni-based iron-based soft magnetic alloy powder, oxide-coated Fe-Cr-based iron-based soft magnetic alloy powder, oxide-coated Fe-Si-based iron-based soft magnetic alloy powder, oxide-coated Fe-Si-Al-based iron-based soft Magnetic alloy powder, oxide-coated Fe-Co-V iron-based soft magnetic alloy powder, oxide-coated Fe-Co iron-based soft magnetic alloy powder and oxide-coated Fe-P iron-based soft magnetic alloy powder were prepared. These oxide film-coated soft magnetic powders were prepared as raw material powders. Furthermore, SiO powder having an average particle size: 0.6 μm was prepared.

実施例1
先に用意した原料粉末である酸化膜被覆鉄粉末にSiO粉末を、酸化膜被覆鉄粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:1.7×10−6MPa、3時間保持することにより鉄粉末の表面にSi−Fe−O三元系酸化物の拡散層を介してSiOx(x=1.9)堆積酸化膜が形成されている本発明Si酸化膜被覆鉄粉末を作製した。
この本発明Si酸化膜被覆鉄粉末における鉄粉末の表面に形成されている前記Si−Fe−O三元系酸化物の拡散層は、鉄粉末との界面ではFeの濃度が高くかつSiの濃度が低く、前記SiOx(x=1.9)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。図1はオージェ電子分光法の深さ方向分析の結果を示すグラフである。図1において、横軸はエッチングするためのスパッタ時間、縦軸はピーク強度を示す。図1において、横軸のスパッタ時間:45〜55分の間が拡散層を示す。図1から拡散層は鉄粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1.9)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することが分かる。
この本発明Si含有酸化物被覆鉄粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Example 1
SiO powder is added to the oxide film-coated iron powder, which is the raw material powder prepared earlier, and the oxide film-coated iron powder: SiO powder = 99.9% by mass: 0.1% by mass and mixed to obtain the mixed powder. The mixed powder thus prepared was held at a temperature of 850 ° C. and a pressure of 1.7 × 10 −6 MPa for 3 hours to form a Si—Fe—O ternary oxide diffusion layer on the surface of the iron powder. A Si oxide film-coated iron powder of the present invention in which a SiOx (x = 1.9) deposited oxide film was formed was produced.
The Si-Fe-O ternary oxide diffusion layer formed on the surface of the iron powder in the Si oxide film-coated iron powder of the present invention has a high Fe concentration and a Si concentration at the interface with the iron powder. It is confirmed by the depth direction analysis of Auger electron spectroscopy that there is a concentration gradient in which the Fe concentration is low and the Si concentration is high at the interface with the SiOx (x = 1.9) deposited oxide film. did. FIG. 1 is a graph showing the results of depth direction analysis of Auger electron spectroscopy. In FIG. 1, the horizontal axis represents the sputtering time for etching, and the vertical axis represents the peak intensity. In FIG. 1, the diffusion time is shown between the sputtering time on the horizontal axis: 45 to 55 minutes. From FIG. 1, the diffusion layer has a high Fe concentration and a low Si concentration at the interface with the iron powder, and a low Fe concentration and a high Si concentration at the interface with the SiOx (x = 1.9) deposited oxide film. It can be seen that it has a concentration gradient.
The Si-containing oxide-coated iron powder of the present invention is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, an outer diameter of 35 mm, and an inner diameter of 25 mm. A ring-shaped green compact having a height of 5 mm is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, and is then fired into a plate shape and a ring shape. The composite soft magnetic material made of the body was prepared, the specific resistance of the composite soft magnetic material made of the plate-like fired body was measured, and the result is shown in Table 1, and further wound on the composite soft magnetic material made of the ring-like fired body Measure the magnetic properties such as magnetic flux density, coercive force, and iron loss at magnetic flux density 1.5T, frequency 50Hz, and iron loss at magnetic flux density 1.0T, frequency 400Hz. It is shown in Table 1.

従来例1
先に用意したアトマイズ純鉄粉末の表面にシリケート層を化学的に形成した従来Si酸化膜被覆鉄粉末を作製し、この従来Si酸化膜被覆鉄粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Conventional Example 1
A conventional Si oxide film-coated iron powder in which a silicate layer is chemically formed on the surface of the previously prepared atomized pure iron powder is prepared, and this conventional Si oxide film-coated iron powder is placed in a mold and press-molded in the longitudinal direction: A plate-shaped green compact having dimensions of 55 mm, width: 10 mm, thickness: 5 mm, and ring-shaped green compact having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm, and the obtained pressure The powder is fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes to produce a composite soft magnetic material composed of a plate-shaped and ring-shaped fired body. The specific resistance was measured and the result is shown in Table 1. Further, the composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density, the coercive force, the magnetic flux density 1.5T, and the iron at a frequency of 50 Hz. Loss and magnetic flux density 1.0T, frequency 4 The magnetic properties such as iron loss when 0Hz was measured. The results are shown in Table 1.

Figure 2007123703
Figure 2007123703

表1に示される結果から、実施例1で作製した本発明Si酸化膜被覆鉄粉末を用いた複合軟磁性材は、従来例1で作製した従来Si酸化膜被覆鉄粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆鉄粉末を用いた複合軟磁性材は従来例1で作製した従来Si酸化膜被覆鉄粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 1, the composite soft magnetic material using the Si oxide film-coated iron powder of the present invention produced in Example 1 is a composite soft magnetic material using the conventional Si oxide film-coated iron powder produced in Conventional Example 1. The composite soft magnetic material using the Si oxide film-coated iron powder of the present invention is similar to the composite soft magnetic material using the conventional Si oxide film coated iron powder prepared in Conventional Example 1, although there is no significant difference in density compared to the material. In comparison, it can be seen that the magnetic flux density is high, the coercive force is small, the specific resistance is remarkably high, and therefore the iron loss is remarkably small. In particular, the iron loss decreases as the frequency increases.

実施例2
先に用意した原料粉末である酸化膜被覆Fe−Al系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−Al系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:6.0×10−7MPa、3時間保持することによりFe−Al系鉄基軟磁性合金粉末の表面にSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1.8)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末における前記Si−Fe−Al−O四元系酸化物の拡散層はFe−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1.8)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表2に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表2に示した。
Example 2
SiO powder is added to the oxide film-coated Fe—Al-based iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe—Al-based iron-based soft magnetic alloy powder: SiO powder = 99.9% by mass: 0 .1% by mass added and mixed to prepare a mixed powder, and the obtained mixed powder is maintained at a temperature of 850 ° C. and a pressure of 6.0 × 10 −7 MPa for 3 hours to maintain Fe—Al. Si oxide film coating of the present invention in which a SiOx (x = 1.8) deposited oxide film is formed on the surface of an iron-based iron-based soft magnetic alloy powder through a diffusion layer of Si-Fe-Al-O quaternary oxide Fe—Al-based iron-based soft magnetic alloy powder was prepared. The diffusion layer of the Si-Fe-Al-O quaternary oxide in the Fe-Al-based iron-based soft magnetic alloy powder coated with the Si oxide film of the present invention is Fe at the interface with the Fe-Al-based iron-based soft magnetic alloy powder. The concentration of Fe and Al is low and the concentration of Si is high at the interface with the SiOx (x = 1.8) deposited oxide film. This was confirmed by depth direction analysis of Auger electron spectroscopy.
This Si oxide film-coated Fe—Al-based iron-based soft magnetic alloy powder of the present invention is placed in a mold and press-molded to obtain a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and the outside. A ring-shaped green compact having a diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. A composite soft magnetic material composed of a plate-shaped and ring-shaped fired body was prepared, the specific resistance of the composite soft magnetic material composed of the plate-shaped fired body was measured, and the results are shown in Table 2. Further, from the ring-shaped fired body, The composite soft magnetic material is wound to provide magnetic properties such as magnetic flux density, coercive force, magnetic loss 1.5T, iron loss at a frequency of 50 Hz, and iron loss at a magnetic flux density of 1.0 T, frequency of 400 Hz. The results are shown in Table 2.

従来例2
先に用意したアトマイズFe−Al系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表2に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表2に示した。
Conventional example 2
The previously prepared atomized Fe-Al-based iron-based soft magnetic alloy powder is coated with a Si oxide film with a silicate layer chemically formed on the surface. A Fe-Al-based iron-based soft magnetic alloy powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and an outer diameter of 35 mm and an inner diameter of 25 mm. A ring-shaped green compact having a height of 5 mm is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature of 500 ° C. and held for 30 minutes to form a plate and a ring. The composite soft magnetic material made of the body was prepared, the specific resistance of the composite soft magnetic material made of the plate-like fired body was measured, and the results are shown in Table 2. Further, the composite soft magnetic material made of the ring-like fired body was wound around Magnetic flux density, coercive force, and magnetic flux density .5T, iron loss and magnetic flux density 1.0T when the frequency 50 Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 2.

Figure 2007123703
Figure 2007123703

表2に示される結果から、実施例2で作製した本発明Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例2で作製した従来Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例2で作製した従来Si酸化膜被覆Fe−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 2, the composite soft magnetic material using the Fe-Al-based iron-based soft magnetic alloy powder of the present invention prepared in Example 2 was coated with the conventional Si oxide film coated in Conventional Example 2. Compared to the composite soft magnetic material using the Fe-Al iron-based soft magnetic alloy powder, the density is not much different, but the composite soft magnetic material using the Si oxide film-coated Fe-Al iron-based soft magnetic alloy powder of the present invention is used. The magnetic material has a higher magnetic flux density, a smaller coercive force, and a higher specific resistance than the composite soft magnetic material using the conventional Si oxide film-coated Fe—Al-based iron-based soft magnetic alloy powder prepared in Conventional Example 2. Therefore, it can be seen that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

実施例3
先に用意した原料粉末である酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:2.1×10−6MPa、3時間保持することによりFe−Ni系鉄基軟磁性合金粉末の表面にSi−Fe−Ni−O四元系酸化物の拡散層を介してSiOx(x=1.8)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末における前記Si−Fe−Ni−O四元系酸化物の拡散層はFe−Ni系鉄基軟磁性合金粉末との界面ではFeおよびNiの濃度が高くかつSiの濃度が低く、SiOx(x=1.8)堆積酸化膜との界面ではFeおよびNiの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表3に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表3に示した。
Example 3
SiO powder is added to the oxide film-coated Fe—Ni-based iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe—Ni-based iron-based soft magnetic alloy powder: SiO powder = 99.9% by mass: 0 .1% by mass and mixed to prepare a mixed powder, and the obtained mixed powder is maintained at a temperature of 850 ° C. and a pressure of 2.1 × 10 −6 MPa for 3 hours to maintain Fe—Ni. Si oxide film coating of the present invention in which a SiOx (x = 1.8) deposited oxide film is formed on the surface of an iron-based iron-based soft magnetic alloy powder through a diffusion layer of Si-Fe-Ni-O quaternary oxide Fe—Ni-based iron-based soft magnetic alloy powder was prepared. The diffusion layer of the Si-Fe-Ni-O quaternary oxide in the Fe-Ni-based iron-based soft magnetic alloy powder coated with the Si oxide film of the present invention is Fe at the interface with the Fe-Ni-based iron-based soft magnetic alloy powder. The concentration of Fe and Ni is low and the concentration of Si is high at the interface with the SiOx (x = 1.8) deposited oxide film. This was confirmed by depth direction analysis of Auger electron spectroscopy.
This Si oxide film-coated Fe—Ni-based iron-based soft magnetic alloy powder of the present invention is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and the outside. A ring-shaped green compact having a diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. A composite soft magnetic material composed of a plate-shaped and ring-shaped fired body was prepared, the specific resistance of the composite soft magnetic material composed of the plate-shaped fired body was measured, and the results are shown in Table 3. Further, from the ring-shaped fired body, The composite soft magnetic material is wound to provide magnetic properties such as magnetic flux density, coercive force, magnetic loss 1.5T, iron loss at a frequency of 50 Hz, and iron loss at a magnetic flux density of 1.0 T, frequency of 400 Hz. The results are shown in Table 3.

従来例3
先に用意したアトマイズFe−Ni系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表3に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表3に示した。
Conventional example 3
The previously prepared atomized Fe-Ni-based iron-based soft magnetic alloy powder was prepared by forming a Si oxide film-coated Fe-Ni-based iron-based soft magnetic alloy powder on the surface of this atomized Fe-Ni-based iron-based soft magnetic alloy powder. An Fe-Ni-based iron-based soft magnetic alloy powder is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and an outer diameter of 35 mm and an inner diameter of 25 mm. A ring-shaped green compact having a height of 5 mm is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, and is then fired into a plate shape and a ring shape. The composite soft magnetic material made of the body was prepared, the specific resistance of the composite soft magnetic material made of the plate-like fired body was measured, and the result is shown in Table 3. Further, the composite soft magnetic material made of the ring-like fired body was wound around Magnetic flux density, coercive force, and magnetic flux density .5T, iron loss and magnetic flux density 1.0T when the frequency 50 Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 3.

Figure 2007123703
Figure 2007123703

表3に示される結果から、実施例3で作製した本発明Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例3で作製した従来Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例3で作製した従来Si酸化膜被覆Fe−Ni系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 3, the composite soft magnetic material using the Fe-Ni-based iron-based soft magnetic alloy powder of the present invention prepared in Example 3 was coated with the conventional Si oxide film coated in Conventional Example 3. Compared with the composite soft magnetic material using the Fe-Ni-based iron-based soft magnetic alloy powder, the density is not much different, but the composite soft magnetic material using the Fe-Ni-based iron-based soft magnetic alloy powder coated with the present invention Si oxide film is used. The magnetic material has a higher magnetic flux density, a smaller coercive force, and a higher specific resistance than the composite soft magnetic material using the conventional Si oxide film-coated Fe—Ni-based iron-based soft magnetic alloy powder prepared in Conventional Example 3. Therefore, it can be seen that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

実施例4
先に用意した原料粉末である酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:1.1×10−6MPa、3時間保持することによりFe−Cr系鉄基軟磁性合金粉末の表面にSi−Fe−Cr−O四元系酸化物の拡散層を介してSiOx(x=1.9)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末における前記Si−Fe−Cr−O四元系酸化物の拡散層はFe−Cr系鉄基軟磁性合金粉末との界面ではFeおよびCrの濃度が高くかつSiの濃度が低く、SiOx(x=1.9)堆積酸化膜との界面ではFeおよびCrの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表4に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表4に示した。
Example 4
SiO powder is added to the oxide film-coated Fe—Cr-based iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe—Cr-based iron-based soft magnetic alloy powder: SiO powder = 99.9% by mass: 0 .1% by mass is added and mixed to prepare a mixed powder, and the obtained mixed powder is maintained at a temperature of 850 ° C., a pressure of 1.1 × 10 −6 MPa for 3 hours, and Fe—Cr. Si oxide film coating of the present invention in which a SiOx (x = 1.9) deposited oxide film is formed on the surface of an iron-based iron-based soft magnetic alloy powder through a diffusion layer of Si-Fe-Cr-O quaternary oxide Fe—Cr-based iron-based soft magnetic alloy powder was prepared. The diffusion layer of the Si-Fe-Cr-O quaternary oxide in the Fe-Cr iron-based soft magnetic alloy powder coated with the Si oxide film of the present invention is Fe at the interface with the Fe-Cr iron-based soft magnetic alloy powder. And the concentration of Cr is high and the concentration of Si is low, and at the interface with the SiOx (x = 1.9) deposited oxide film, the concentration of Fe and Cr is low and the concentration of Si is high. This was confirmed by depth direction analysis of Auger electron spectroscopy.
This Si oxide film-coated Fe—Cr-based iron-based soft magnetic alloy powder of the present invention is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and the outside. A ring-shaped green compact having a diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. A composite soft magnetic material made of a plate-like and ring-like fired body was prepared, and the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured. The results are shown in Table 4, and from the ring-like fired body, The composite soft magnetic material is wound to provide magnetic properties such as magnetic flux density, coercive force, magnetic loss 1.5T, iron loss at a frequency of 50 Hz, and iron loss at a magnetic flux density of 1.0 T, frequency of 400 Hz. The results are shown in Table 4.

従来例4
先に用意したアトマイズFe−Cr系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表4に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表4に示した。
Conventional example 4
The previously prepared atomized Fe-Cr-based iron-based soft magnetic alloy powder was prepared by forming a Si oxide film-coated Fe-Cr-based iron-based soft magnetic alloy powder on the surface of this atomized Fe-Cr-based iron-based soft magnetic alloy powder. An Fe—Cr-based iron-based soft magnetic alloy powder is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm A ring-shaped green compact having a height of 5 mm is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, and is then fired into a plate shape and a ring shape. The composite soft magnetic material made of the body was prepared, the specific resistance of the composite soft magnetic material made of the plate-like fired body was measured, and the result is shown in Table 4, and further wound around the composite soft magnetic material made of the ring-like fired body Magnetic flux density, coercive force, and magnetic flux density .5T, iron loss and magnetic flux density 1.0T when the frequency 50 Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 4.

Figure 2007123703
Figure 2007123703

表4に示される結果から、実施例4で作製した本発明Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例4で作製した従来Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例4で作製した従来Si酸化膜被覆Fe−Cr系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 4, the composite soft magnetic material using the Fe-Cr-based iron-based soft magnetic alloy powder of the present invention prepared in Example 4 was coated with the conventional Si oxide film coated in Conventional Example 4. Compared to the composite soft magnetic material using the Fe-Cr iron-based soft magnetic alloy powder, the density is not much different, but the composite soft magnetic material using the Si oxide film-coated Fe-Cr iron-based soft magnetic alloy powder of the present invention is used. The magnetic material has a higher magnetic flux density, a smaller coercive force, and a more specific resistance than the composite soft magnetic material using the conventional Si oxide film-coated Fe—Cr iron-based soft magnetic alloy powder produced in Conventional Example 4. Therefore, it can be seen that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

実施例5
先に用意した原料粉末である酸化膜被覆Fe−Si系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−Si系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:7.0×10−7MPa、3時間保持することによりFe−Si系鉄基軟磁性合金粉末の表面にSi−Fe−O三元系酸化物膜が中間膜として形成されており、このSi−Fe−O三元系酸化物膜の上にSiOx(x=1.8)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末における前記Si−Fe−O三元系酸化物の拡散層はFe−Si系鉄基軟磁性合金粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1.8)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末にシリコーン化合物のバインダ処理を施してから粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表5に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、磁束密度1.5T、周波数50Hzの時の鉄損、磁束密度1.0T、周波数400Hzの時の鉄損、磁束密度0.5T、周波数1kHzの時の鉄損および磁束密度0.5T、周波数10kHzの時の鉄損などの磁気特性を測定し、それらの結果を表5に示した。
Example 5
SiO powder is added to the oxide film-coated Fe—Si-based iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe—Si-based iron-based soft magnetic alloy powder: SiO powder = 99.9% by mass: 0 .1% by mass and mixed to prepare a mixed powder, and the obtained mixed powder is maintained at a temperature of 850 ° C. and a pressure of 7.0 × 10 −7 MPa for 3 hours to maintain Fe—Si. A Si—Fe—O ternary oxide film is formed as an intermediate film on the surface of the iron-based iron-based soft magnetic alloy powder, and SiOx (x = 1) is formed on the Si—Fe—O ternary oxide film. .8) A Fe-Si-based iron-based soft magnetic alloy powder coated with a Si oxide film of the present invention on which a deposited oxide film was formed was produced. The diffusion layer of the Si-Fe-O ternary oxide in the Fe-Si iron-based soft magnetic alloy powder coated with the Si oxide film of the present invention has an Fe concentration at the interface with the Fe-Si iron-based soft magnetic alloy powder. In the depth of Auger electron spectroscopy, the concentration of Si is low and the concentration of Si is low, and there is a concentration gradient in which the Fe concentration is low and the Si concentration is high at the interface with the SiOx (x = 1.8) deposited oxide film. Confirmed by lateral analysis.
The Si oxide film-coated Fe-Si iron-based soft magnetic alloy powder of the present invention is subjected to a binder treatment of a silicone compound, and then the powder is placed in a mold and press-molded to have a length of 55 mm, a width of 10 mm, and a thickness of 5 mm. And a ring-shaped green compact having dimensions of an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm, and the resulting green compact is placed in a nitrogen atmosphere at a temperature of 600. Firing is carried out at a temperature of 30 ° C. for 30 minutes to produce a composite soft magnetic material made of a plate-like and ring-like fired body, and the specific resistance of the composite soft magnetic material made of this plate-like fired body is measured and the result is obtained. Further, a composite soft magnetic material made of a ring-shaped fired body is wound as shown in Table 5, and magnetic flux density, coercive force, magnetic flux density 1.5T, iron loss at a frequency of 50 Hz, magnetic flux density 1.0T, frequency 400 Hz. Iron loss, magnetic flux density 0.5 , Iron loss and magnetic flux density 0.5T when the frequency 1 kHz, the magnetic properties such as iron loss at a frequency 10kHz were measured. The results are shown in Table 5.

従来例5
先に用意したアトマイズFe−Si系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−Si系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末にシリコーン化合物のバインダ処理を施してから粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表5に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、磁束密度1.5T、周波数50Hzの時の鉄損、磁束密度1.0T、周波数400Hzの時の鉄損、磁束密度0.5T、周波数1kHzの時の鉄損および磁束密度0.5T、周波数10kHzの時の鉄損などの磁気特性を測定し、それらの結果を表5に示した。
Conventional Example 5
The previously prepared atomized Fe-Si-based iron-based soft magnetic alloy powder was prepared by forming a Si-oxide film-coated Fe-Si-based iron-based soft magnetic alloy powder with a silicate layer chemically formed on the surface. A Fe-Si based iron-based soft magnetic alloy powder is subjected to a binder treatment of a silicone compound, and then the powder is put into a mold and press-molded to have a plate-like pressure having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness. A powder and a ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm were molded, and the obtained green compact was maintained in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. The composite soft magnetic material made of a plate-like and ring-like fired body was produced, and the specific resistance of the composite soft magnetic material made of the plate-like fired body was measured. Composite soft magnetic material made of fired body When winding, magnetic flux density, coercive force, magnetic flux density 1.5T, iron loss at frequency 50Hz, magnetic flux density 1.0T, iron loss at frequency 400Hz, magnetic flux density 0.5T, frequency 1kHz Magnetic properties such as iron loss and iron loss at a magnetic flux density of 0.5 T and a frequency of 10 kHz were measured, and the results are shown in Table 5.

Figure 2007123703
Figure 2007123703

表5に示される結果から、実施例5で作製した本発明Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例5で作製した従来Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例5で作製した従来Si酸化膜被覆Fe−Si系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有し、リアクトルやチョークコイルに適した材料であることが分かる。   From the results shown in Table 5, the composite soft magnetic material using the Fe-Si-based iron-based soft magnetic alloy powder of the present invention produced in Example 5 was coated with the conventional Si oxide film produced in Conventional Example 5. Compared with the composite soft magnetic material using the Fe-Si iron-based soft magnetic alloy powder, the density is not much different, but the composite soft magnetic material using the Si oxide film-coated Fe-Si iron-based soft magnetic alloy powder of the present invention is used. The magnetic material has a higher magnetic flux density, a smaller coercive force, and a higher specific resistance than the composite soft magnetic material using the conventional Si oxide film-coated Fe—Si-based iron-based soft magnetic alloy powder prepared in Conventional Example 5. Therefore, the iron loss is remarkably small, and it is found that the material is suitable for the reactor and the choke coil.

実施例6
先に用意した原料粉末である酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:1.4×10−6MPa、3時間保持することによりFe−Si−Al系鉄基軟磁性合金粉末の表面にSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1.8)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末における前記Si−Fe−Al−O四元系酸化物の拡散層はFe−Si−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1.8)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表6に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表6に示した。
Example 6
SiO powder is added to the oxide film-coated Fe—Si—Al-based iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe—Si—Al-based iron-based soft magnetic alloy powder: SiO powder = 99.9. Mass%: 0.1% by mass is added and mixed to prepare a mixed powder, and the obtained mixed powder is maintained at a temperature of 850 ° C. and a pressure of 1.4 × 10 −6 MPa for 3 hours. The SiOx (x = 1.8) deposited oxide film is formed on the surface of the Fe-Si-Al-based iron-based soft magnetic alloy powder through the Si-Fe-Al-O quaternary oxide diffusion layer. An Fe-Si-Al-based iron-based soft magnetic alloy powder coated with an Si oxide film of the present invention was produced. The Si-Fe-Al-O quaternary oxide diffusion layer in the Si-oxide-coated Fe-Si-Al-based iron-based soft magnetic alloy powder of the present invention is composed of Fe-Si-Al-based iron-based soft magnetic alloy powder. A concentration gradient in which the Fe and Al concentrations are high and the Si concentration is low at the interface, and the Fe and Al concentrations are low and the Si concentration is high at the interface with the SiOx (x = 1.8) deposited oxide film. It was confirmed by the depth direction analysis of Auger electron spectroscopy.
This Si oxide film-coated Fe—Si—Al-based iron-based soft magnetic alloy powder of the present invention is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness. A ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. To produce a composite soft magnetic material comprising a plate-like and ring-like fired body, and measuring the specific resistance of the composite soft magnetic material comprising the plate-like fired body, and the results are shown in Table 6. A composite soft magnetic material made of a body is wound, and magnetic flux density, coercive force, and magnetic loss such as iron loss at a magnetic flux density of 1.5 T and a frequency of 50 Hz, and an iron loss at a magnetic flux density of 1.0 T and a frequency of 400 Hz, etc. The characteristics were measured and the results are shown in Table 6. .

従来例6
先に用意したアトマイズFe−Si−Al系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表6に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表6に示した。
Conventional Example 6
The conventional Fe-Si-Al-based iron-based soft magnetic alloy powder, in which the silicate layer is chemically formed on the surface of the previously prepared atomized Fe-Si-Al-based iron-based soft magnetic alloy powder, was prepared. A Si-oxide film-coated Fe—Si—Al-based iron-based soft magnetic alloy powder is placed in a mold and press-molded to form a plate-like green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness and an outer diameter. A ring-shaped green compact having dimensions of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, A composite soft magnetic material composed of a plate-shaped and ring-shaped fired body was prepared, the specific resistance of the composite soft magnetic material composed of the plate-shaped fired body was measured, and the results are shown in Table 6. Winding soft magnetic material, magnetic flux density, coercivity , And the magnetic flux density 1.5T, iron loss and magnetic flux density 1.0T when the frequency 50 Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 6.

Figure 2007123703
Figure 2007123703

表6に示される結果から、実施例6で作製した本発明Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例6で作製した従来Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例6で作製した従来Si酸化膜被覆Fe−Si−Al系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 6, the composite soft magnetic material using the Fe-Si-Al-based iron-based soft magnetic alloy powder of the present invention produced in Example 6 is the conventional Si oxide produced in Conventional Example 6. Compared with the composite soft magnetic material using the film-coated Fe-Si-Al-based iron-based soft magnetic alloy powder, the density is not much different, but the present invention Si oxide film-coated Fe-Si-Al-based iron-based soft magnetic alloy The composite soft magnetic material using the powder has a higher magnetic flux density and the coercive force than the composite soft magnetic material using the conventional Si oxide film-coated Fe-Si-Al-based iron-based soft magnetic alloy powder prepared in Conventional Example 6. In addition, the specific resistance is remarkably high, so that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

実施例7
先に用意した原料粉末である酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:1.0×10−6MPa、3時間保持することによりFe−Co−V系鉄基軟磁性合金粉末の表面にSi−Fe−Co−V−O五元系酸化物の拡散層を介してSiOx(x=1.9)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末における前記Si−Fe−Co−V−O五元系酸化物の拡散層はFe−Co−V系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1.9)堆積酸化膜との界面ではFe、CoおよびVの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表7に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表7に示した。
Example 7
SiO powder is added to the oxide film-coated Fe—Co—V-based iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe—Co—V-based iron-based soft magnetic alloy powder: SiO powder = 99.9. Mass%: 0.1% by mass is added and mixed to prepare a mixed powder, and the obtained mixed powder is maintained at a temperature of 850 ° C. and a pressure of 1.0 × 10 −6 MPa for 3 hours. As a result, a SiOx (x = 1.9) deposited oxide film is formed on the surface of the Fe—Co—V iron-based soft magnetic alloy powder through the Si—Fe—Co—V—O ternary oxide diffusion layer. The present invention Si oxide film-coated Fe-Co-V iron-based soft magnetic alloy powder was produced. The Si—Fe—Co—V—O ternary oxide diffusion layer in the Si-oxide-coated Fe—Co—V iron-based soft magnetic alloy powder of the present invention is Fe—Co—V iron-based soft magnetic alloy. The Fe and Al concentrations are high and the Si concentration is low at the interface with the powder, and the Fe, Co, and V concentrations are low and the Si concentration is high at the interface with the SiOx (x = 1.9) deposited oxide film. It was confirmed by the depth direction analysis of Auger electron spectroscopy that it has a concentration gradient.
This Si oxide film-coated Fe—Co—V iron-based soft magnetic alloy powder of the present invention is placed in a mold and press-molded to form a plate-like green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness. A ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. To produce a composite soft magnetic material made of a plate-like and ring-like fired body, and measured the specific resistance of the composite soft magnetic material made of this plate-like fired body, and the results are shown in Table 7, and further ring-like fired A composite soft magnetic material made of a body is wound, and magnetic flux density, coercive force, and magnetic loss such as iron loss at a magnetic flux density of 1.5 T and a frequency of 50 Hz, and an iron loss at a magnetic flux density of 1.0 T and a frequency of 400 Hz, etc. The characteristics were measured and the results are shown in Table 7.

従来例7
先に用意したアトマイズFe−Co−V系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表7に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表7に示した。
Conventional Example 7
A previously prepared atomized Fe-Co-V iron-based soft magnetic alloy powder was prepared by forming a Si oxide film-covered Fe-Co-V iron-based soft magnetic alloy powder on the surface of the silicate layer chemically. A Si-oxide film-coated Fe—Co—V iron-based soft magnetic alloy powder is placed in a mold and press-molded to form a plate-like green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and an outer diameter. A ring-shaped green compact having dimensions of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, A composite soft magnetic material composed of a plate-shaped and ring-shaped fired body was prepared, the specific resistance of the composite soft magnetic material composed of the plate-shaped fired body was measured, and the results are shown in Table 7. Winding a soft magnetic material, magnetic flux density, coercive force, Magnetic flux density 1.5T, iron loss and magnetic flux density 1.0T when the frequency 50 Hz, the magnetic properties such as iron loss at a frequency 400Hz measured. The results are shown in Table 7.

Figure 2007123703
Figure 2007123703

表7に示される結果から、実施例7で作製した本発明Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例7で作製した従来Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例7で作製した従来Si酸化膜被覆Fe−Co−V系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 7, the composite soft magnetic material using the Fe-Co-V iron-based soft magnetic alloy powder of the present invention prepared in Example 7 is the conventional Si oxide prepared in Conventional Example 7. Compared with the composite soft magnetic material using the film-coated Fe—Co—V-based iron-based soft magnetic alloy powder, the density is not much different, but the Si oxide film-coated Fe—Co—V-based iron-based soft magnetic alloy of the present invention. The composite soft magnetic material using the powder has a higher magnetic flux density and coercive force than the composite soft magnetic material using the conventional Si oxide film-coated Fe-Co-V iron-based soft magnetic alloy powder prepared in Conventional Example 7. In addition, the specific resistance is remarkably high, so that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

実施例8
先に用意した原料粉末である酸化膜被覆Fe−Co系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−Co系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:9.1×10−7MPa、3時間保持することによりFe−Co系鉄基軟磁性合金粉末の表面にSi−Fe−Co−O四元系酸化物の拡散層を介してSiOx(x=2)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末における前記Si−Fe−Co−O四元系酸化物の拡散層はFe−Co系鉄基軟磁性合金粉末との界面ではFeおよびCoの濃度が高くかつSiの濃度が低く、SiOx(x=2)堆積酸化膜との界面ではFeおよびCoの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表8に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表8に示した。
Example 8
SiO powder is added to the oxide film-coated Fe-Co iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe-Co iron-based soft magnetic alloy powder: SiO powder = 99.9% by mass: 0 The mixed powder was prepared by adding and mixing so as to be 1% by mass, and the obtained mixed powder was maintained at a temperature of 850 ° C. and a pressure of 9.1 × 10 −7 MPa for 3 hours. Si-oxide-coated Fe- of the present invention in which a SiOx (x = 2) deposited oxide film is formed on the surface of an iron-based iron-based soft magnetic alloy powder via a Si-Fe-Co-O quaternary oxide diffusion layer Co-based iron-based soft magnetic alloy powder was prepared. The diffusion layer of the Si-Fe-Co-O quaternary oxide in the Fe-Co iron-based soft magnetic alloy powder coated with the Si oxide film of the present invention is Fe at the interface with the Fe-Co iron-based soft magnetic alloy powder. Auger electrons have a concentration gradient in which the concentration of Co and Co is high and the concentration of Si is low and the concentration of Fe and Co is low and the concentration of Si is high at the interface with the SiOx (x = 2) deposited oxide film. It confirmed by the depth direction analysis of the spectroscopy.
This Si oxide film-coated Fe—Co iron-based soft magnetic alloy powder of the present invention is placed in a mold and press-molded to form a plate-like green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and the outside. A ring-shaped green compact having a diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. A composite soft magnetic material composed of a plate-shaped and ring-shaped fired body was prepared, the specific resistance of the composite soft magnetic material composed of the plate-shaped fired body was measured, and the results are shown in Table 8. Further, from the ring-shaped fired body, The composite soft magnetic material is wound to provide magnetic properties such as magnetic flux density, coercive force, magnetic loss 1.5T, iron loss at a frequency of 50 Hz, and iron loss at a magnetic flux density of 1.0 T, frequency of 400 Hz. The results are shown in Table 8.

従来例8
先に用意したアトマイズFe−Co系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表8に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表8に示した。
Conventional Example 8
The previously prepared atomized Fe-Co based iron-based soft magnetic alloy powder was prepared by forming a Si oxide film-coated Fe-Co based iron-based soft magnetic alloy powder on the surface of this atomized Fe-Co based iron-based soft magnetic alloy powder. A Fe-Co based iron-based soft magnetic alloy powder is placed in a mold and press-molded to form a plate-like green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and an outer diameter of 35 mm and an inner diameter of 25 mm. A ring-shaped green compact having a height of 5 mm is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, and is then fired into a plate shape and a ring shape. The composite soft magnetic material made of the body was prepared, the specific resistance of the composite soft magnetic material made of the plate-like fired body was measured, and the result is shown in Table 8, and further wound on the composite soft magnetic material made of the ring-like fired body Magnetic flux density, coercive force, and magnetic flux density .5T, iron loss and magnetic flux density 1.0T when the frequency 50 Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 8.

Figure 2007123703
Figure 2007123703

表8に示される結果から、実施例8で作製した本発明Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例8で作製した従来Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例8で作製した従来Si酸化膜被覆Fe−Co系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 8, the composite soft magnetic material using the Fe-Co-based iron-based soft magnetic alloy powder of the present invention produced in Example 8 of the present invention was coated with the conventional Si oxide film produced in Conventional Example 8. Compared to the composite soft magnetic material using the Fe—Co iron-based soft magnetic alloy powder, the density is not much different, but the composite soft magnetic material using the Si oxide film-coated Fe—Co iron-based soft magnetic alloy powder of the present invention is used. The magnetic material has a higher magnetic flux density, a smaller coercive force, and a higher specific resistance than the composite soft magnetic material using the conventional Si oxide film-coated Fe—Co-based iron-based soft magnetic alloy powder prepared in Conventional Example 8. Therefore, it can be seen that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

実施例9
先に用意した原料粉末である酸化膜被覆Fe−P系鉄基軟磁性合金粉末にSiO粉末を、酸化膜被覆Fe−P系鉄基軟磁性合金粉末:SiO粉末=99.9質量%:0.1質量%となるように添加し混合して混合粉末を作製し、得られた混合粉末を温度:850℃、圧力:6.0×10−7MPa、3時間保持することによりFe−P系鉄基軟磁性合金粉末の表面にSi−Fe−P−O四元系酸化物の拡散層を介してSiOx(x=1.8)堆積酸化膜が形成されている本発明Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末を作製した。この本発明Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末における前記Si−Fe−P−O四元系酸化物の拡散層はFe−P系鉄基軟磁性合金粉末との界面ではFeおよびPの濃度が高くかつSiの濃度が低く、SiOx(x=1.8)堆積酸化膜との界面ではFeおよびPの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することをオージェ電子分光法の深さ方向分析により確認した。
この本発明Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表9に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表9に示した。
Example 9
SiO powder is added to the oxide film-coated Fe—P-based iron-based soft magnetic alloy powder, which is the raw material powder prepared earlier, and oxide film-coated Fe—P-based iron-based soft magnetic alloy powder: SiO powder = 99.9% by mass: 0 The mixed powder was prepared by adding and mixing so as to be 1% by mass, and the obtained mixed powder was maintained at a temperature of 850 ° C. and a pressure of 6.0 × 10 −7 MPa for 3 hours. Si oxide film coating of the present invention in which a SiOx (x = 1.8) deposited oxide film is formed on the surface of an iron-based iron-based soft magnetic alloy powder through a diffusion layer of Si-Fe-PO-quaternary oxide Fe-P-based iron-based soft magnetic alloy powder was prepared. The diffusion layer of the Si-Fe-PO-quaternary oxide in the Fe-P-based iron-based soft magnetic alloy powder coated with the Si oxide film of the present invention is Fe at the interface with the Fe-P-based iron-based soft magnetic alloy powder. In addition, the concentration of Fe and P is low and the concentration of Si is high at the interface with the SiOx (x = 1.8) deposited oxide film. This was confirmed by depth direction analysis of Auger electron spectroscopy.
This Si oxide film-coated Fe—P iron-based soft magnetic alloy powder of the present invention is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and the outside. A ring-shaped green compact having a diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. A composite soft magnetic material composed of a plate-shaped and ring-shaped fired body was prepared, the specific resistance of the composite soft magnetic material composed of the plate-shaped fired body was measured, and the results are shown in Table 9. The composite soft magnetic material is wound to provide magnetic properties such as magnetic flux density, coercive force, magnetic loss 1.5T, iron loss at a frequency of 50 Hz, and iron loss at a magnetic flux density of 1.0 T, frequency of 400 Hz. The results are shown in Table 9.

従来例9
先に用意したアトマイズFe−P系鉄基軟磁性合金粉末の表面にシリケート層を化学的に形成したSi酸化膜被覆Fe−P系鉄基軟磁性合金粉末を作製し、この従来Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表9に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表9に示した。
Conventional Example 9
The previously prepared atomized Fe-P-based iron-based soft magnetic alloy powder was prepared by preparing a Si oxide film-coated Fe-P-based iron-based soft magnetic alloy powder on which the silicate layer was chemically formed. A Fe-P-based iron-based soft magnetic alloy powder is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and an outer diameter of 35 mm and an inner diameter of 25 mm. A ring-shaped green compact having a height of 5 mm is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, and is then fired into a plate shape and a ring shape. The composite soft magnetic material made of the body was prepared, the specific resistance of the composite soft magnetic material made of the plate-like fired body was measured, and the results are shown in Table 9. Further, the composite soft magnetic material made of the ring-like fired body was wound on the composite soft magnetic material Magnetic flux density, coercive force, and magnetic flux density 1.5 , Iron loss and magnetic flux density 1.0T when the frequency 50 Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 9.

Figure 2007123703
Figure 2007123703

表9に示される結果から、実施例8で作製した本発明Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末を用いた複合軟磁性材は、従来例9で作製した従来Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末を用いた複合軟磁性材と比べて、密度については大差は無いが、本発明Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末を用いた複合軟磁性材は従来例9で作製した従来Si酸化膜被覆Fe−P系鉄基軟磁性合金粉末を用いた複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 9, the composite soft magnetic material using the Fe-P-based iron-based soft magnetic alloy powder of the present invention prepared in Example 8 was coated with the conventional Si oxide film prepared in Conventional Example 9. Compared to the composite soft magnetic material using the Fe-P-based iron-based soft magnetic alloy powder, the density is not much different, but the composite soft magnetic material using the Si-oxide film-coated Fe-P-based iron-based soft magnetic alloy powder of the present invention is used. The magnetic material has a higher magnetic flux density, a smaller coercive force, and a greater specific resistance than the composite soft magnetic material using the conventional Si oxide film-coated Fe-P-based iron-based soft magnetic alloy powder prepared in Conventional Example 9. Therefore, it can be seen that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

深さ方向のFe,SiおよびOの濃度分布をオージェ電子分光装置を用いて測定した結果を示すグラフである。It is a graph which shows the result of having measured the density | concentration distribution of Fe, Si, and O of a depth direction using the Auger electron spectrometer.

Claims (23)

鉄粉末の表面にSi、FeおよびOからなるSi−Fe−O三元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Si x is characterized in that a SiO x (x = 1 to 2) deposited oxide film is formed on the surface of the iron powder through a diffusion layer of Si—Fe—O ternary oxide composed of Si, Fe and O. Oxide film-coated soft magnetic powder. 前記Si−Fe−O三元系酸化物の拡散層は、鉄粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項1記載のSi酸化膜被覆軟磁性粉末。 The diffusion layer of the Si—Fe—O ternary oxide has a high Fe concentration and a low Si concentration at the interface with the iron powder, and Fe at the interface with the SiOx (x = 1 to 2) deposited oxide film. The Si oxide film-coated soft magnetic powder according to claim 1, having a concentration gradient in which the concentration of Si is low and the concentration of Si is high. Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末の表面にSi、Fe、AlおよびOからなるSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Si: Fe—Al—O 4 composed of Si, Fe, Al, and O on the surface of Fe—Al-based iron-based soft magnetic alloy powder containing Al: 0.1 to 20%, the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder, wherein a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of a ternary oxide. 前記Si−Fe−Al−O四元系酸化物の拡散層は、Fe−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項3記載のSi酸化膜被覆軟磁性粉末。 The Si—Fe—Al—O quaternary oxide diffusion layer has a high Fe and Al concentration and a low Si concentration at the interface with the Fe—Al based iron-based soft magnetic alloy powder. 1-2) The Si oxide film-coated soft magnetic powder according to claim 3, which has a concentration gradient in which the Fe and Al concentrations are low and the Si concentration is high at the interface with the deposited oxide film. Ni:35〜85%を含有し、残部がFeおよび不可避不純物からなるFe−Ni系鉄基軟磁性合金粉末の表面にSi、Fe、NiおよびOからなるSi−Fe−Ni−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Ni: Si—Fe—Ni—O quaternary system comprising Si, Fe, Ni and O on the surface of Fe—Ni-based iron-based soft magnetic alloy powder containing 35 to 85% and the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder, wherein a SiOx (x = 1 to 2) deposited oxide film is formed through an oxide diffusion layer. 前記Si−Fe−Ni−O四元系酸化物の拡散層は、Fe−Ni系鉄基軟磁性合金粉末との界面ではFeおよびNiの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびNiの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項5記載のSi酸化膜被覆軟磁性粉末。 The Si—Fe—Ni—O quaternary oxide diffusion layer has a high Fe and Ni concentration and a low Si concentration at the interface with the Fe—Ni based iron-based soft magnetic alloy powder. 1-2. The Si oxide film-coated soft magnetic powder according to claim 5, which has a concentration gradient in which the Fe and Ni concentrations are low and the Si concentration is high at the interface with the deposited oxide film. Cr:1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末の表面にSi、Fe、CrおよびOからなるSi−Fe−Cr−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Cr: Si—Fe—Cr—O quaternary system comprising Si, Fe, Cr and O on the surface of Fe—Cr based iron-based soft magnetic alloy powder containing 1 to 20% and the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder, wherein a SiOx (x = 1 to 2) deposited oxide film is formed through an oxide diffusion layer. 前記Si−Fe−Cr−O四元系酸化物の拡散層は、Fe−Cr系鉄基軟磁性合金粉末との界面ではFeおよびCrの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびCrの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項7記載のSi酸化膜被覆軟磁性粉末。 The Si—Fe—Cr—O quaternary oxide diffusion layer has a high Fe and Cr concentration and a low Si concentration at the interface with the Fe—Cr iron-based soft magnetic alloy powder. 1-2. The Si oxide film-coated soft magnetic powder according to claim 7, which has a concentration gradient in which the Fe and Cr concentrations are low and the Si concentration is high at the interface with the deposited oxide film. Si:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末の表面にSi、FeおよびOからなるSi−Fe−O三元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Si: Si—Fe—O ternary oxide consisting of Si, Fe and O on the surface of Fe—Si based iron-based soft magnetic alloy powder containing 0.1 to 10% and the balance being Fe and inevitable impurities A SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si oxide film-coated soft magnetic powder. 前記Si−Fe−O三元系酸化物の拡散層は、Fe−Si系鉄基軟磁性合金粉末との界面ではFeの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項9記載のSi酸化膜被覆軟磁性粉末。 The Si—Fe—O ternary oxide diffusion layer has a high Fe concentration and a low Si concentration at the interface with the Fe—Si iron-based soft magnetic alloy powder, and SiOx (x = 1 to 2). 10. The Si oxide film-coated soft magnetic powder according to claim 9, which has a concentration gradient in which the Fe concentration is low and the Si concentration is high at the interface with the deposited oxide film. Si:0.1〜10%、Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末の表面にSi、Fe、AlおよびOからなるSi−Fe−Al−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Si: 0.1 to 10%, Al: 0.1 to 20%, with the balance of Fe and Si-Al-based iron-based soft magnetic alloy powder consisting of Fe and inevitable impurities on the surface of Si, Fe, Al and A Si oxide film-coated soft magnetic powder, wherein a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-Al-O quaternary oxide composed of O. 前記Si−Fe−Al−O四元系酸化物の拡散層は、Fe−Si−Al系鉄基軟磁性合金粉末との界面ではFeおよびAlの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびAlの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項11記載のSi酸化膜被覆軟磁性粉末。 The Si—Fe—Al—O quaternary oxide diffusion layer has a high Fe and Al concentration and a low Si concentration at the interface with the Fe—Si—Al iron-based soft magnetic alloy powder. 12. The Si oxide film-coated soft magnetic powder according to claim 11, wherein the concentration of Fe and Al is low and the concentration of Si is high at the interface with the deposited oxide film. . Co:0.1〜52%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末の表面にSi、Fe、CoおよびOからなるSi−Fe−Co−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Co: Si—Fe—Co—O 4 consisting of Si, Fe, Co and O on the surface of Fe—Co based iron-based soft magnetic alloy powder containing 0.1 to 52%, the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder, wherein a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of a ternary oxide. 前記Si−Fe−Co−O四元系酸化物の拡散層は、Fe−Co系鉄基軟磁性合金粉末との界面ではFeおよびCoの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびCoの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項13記載のSi酸化膜被覆軟磁性粉末。 The Si—Fe—Co—O quaternary oxide diffusion layer has a high Fe and Co concentration and a low Si concentration at the interface with the Fe—Co based iron-based soft magnetic alloy powder, and SiOx (x = The Si oxide film-coated soft magnetic powder according to claim 13, wherein the Si oxide film-coated soft magnetic powder has a concentration gradient in which the concentration of Fe and Co is low and the concentration of Si is high at the interface with the deposited oxide film. Co:0.1〜52%、V:0.1〜3%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末の表面にSi、Fe、Co、VおよびOからなるSi−Fe−Co−V−O五元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 Co: 0.1 to 52%, V: 0.1 to 3%, the remainder of the Fe-Co-V-based iron-based soft magnetic alloy powder consisting of Fe and inevitable impurities on the surface of Si, Fe, Co, Si oxide film coating characterized in that a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of Si-Fe-Co-VO ternary oxide composed of V and O Soft magnetic powder. 前記Si−Fe−Co−V−O五元系酸化物の拡散層は、Fe−Co−V系鉄基軟磁性合金粉末との界面ではFe、CoおよびVの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFe、CoおよびVの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項15記載のSi酸化膜被覆軟磁性粉末。 The diffusion layer of the Si—Fe—Co—V—O ternary oxide has a high concentration of Fe, Co, and V and a concentration of Si at the interface with the Fe—Co—V iron-based soft magnetic alloy powder. 16. The Si according to claim 15, which has a low concentration gradient in which the concentration of Fe, Co and V is low and the concentration of Si is high at the interface with the SiOx (x = 1 to 2) deposited oxide film. Oxide film-coated soft magnetic powder. P:0.5〜1%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末の表面にSi、Fe、PおよびOからなるSi−Fe−P−O四元系酸化物の拡散層を介してSiOx(x=1〜2)堆積酸化膜が形成されていることを特徴とするSi酸化膜被覆軟磁性粉末。 P: Si—Fe—PO—O 4 composed of Si, Fe, P and O on the surface of Fe—P-based iron-based soft magnetic alloy powder containing 0.5 to 1%, the balance being Fe and inevitable impurities A Si oxide film-coated soft magnetic powder, wherein a SiOx (x = 1 to 2) deposited oxide film is formed through a diffusion layer of a ternary oxide. 前記Si−Fe−P−O四元系酸化物の拡散層は、Fe−P系鉄基軟磁性合金粉末との界面ではFeおよびPの濃度が高くかつSiの濃度が低く、SiOx(x=1〜2)堆積酸化膜との界面ではFeおよびPの濃度が低くかつSiの濃度が高くなっている濃度勾配を有することを特徴とする請求項17記載のSi酸化膜被覆軟磁性粉末。 The Si—Fe—P—O quaternary oxide diffusion layer has a high Fe and P concentration and a low Si concentration at the interface with the Fe—P based iron-based soft magnetic alloy powder. 1-2. The Si oxide film-coated soft magnetic powder according to claim 17, wherein the Si oxide film-coated soft magnetic powder has a concentration gradient in which the Fe and P concentrations are low and the Si concentration is high at the interface with the deposited oxide film. 前記SiOx(x=1〜2)堆積酸化膜は非晶質であることを特徴とする請求項1〜18の内のいずれかの請求項に記載のSi酸化膜被覆軟磁性粉末。 19. The Si oxide film-coated soft magnetic powder according to claim 1, wherein the SiOx (x = 1 to 2) deposited oxide film is amorphous. 請求項1〜19の内のいずれかの請求項に記載のSi酸化膜被覆軟磁性粉末を用いて作製した複合軟磁性材。 A composite soft magnetic material produced using the Si oxide film-coated soft magnetic powder according to any one of claims 1 to 19. 請求項20記載の複合軟磁性材からなる電磁気回路部品。 An electromagnetic circuit component comprising the composite soft magnetic material according to claim 20. 前記電磁気回路部品は、磁心、電動機コア,発電機コア,ソレノイドコア,イグニッションコア,リアクトルコア,トランスコア,チョークコイルコアまたは磁気センサコアであることを特徴とする請求項21記載の電磁気回路部品。 The electromagnetic circuit component according to claim 21, wherein the electromagnetic circuit component is a magnetic core, an electric motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, or a magnetic sensor core. 請求項21または22記載の電磁気回路部品を組み込んだ電気機器。 An electric apparatus incorporating the electromagnetic circuit component according to claim 21 or 22.
JP2005316431A 2005-10-31 2005-10-31 SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM Pending JP2007123703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316431A JP2007123703A (en) 2005-10-31 2005-10-31 SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316431A JP2007123703A (en) 2005-10-31 2005-10-31 SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM

Publications (1)

Publication Number Publication Date
JP2007123703A true JP2007123703A (en) 2007-05-17

Family

ID=38147190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316431A Pending JP2007123703A (en) 2005-10-31 2005-10-31 SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM

Country Status (1)

Country Link
JP (1) JP2007123703A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038256A (en) * 2007-08-02 2009-02-19 Kobe Steel Ltd Iron-based soft magnetic powder for dust core, and dust core
JP2009158802A (en) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
WO2011136198A1 (en) * 2010-04-30 2011-11-03 太陽誘電株式会社 Coil-type electronic component and process for producing same
JP2011249836A (en) * 2010-04-30 2011-12-08 Taiyo Yuden Co Ltd Coil-type electronic component and manufacturing method thereof
US8337638B2 (en) * 2008-04-18 2012-12-25 Toyota Jidosha Kabushiki Kaisha Powder for dust core and method for producing the same
US8362866B2 (en) 2011-01-20 2013-01-29 Taiyo Yuden Co., Ltd. Coil component
JP2013026356A (en) * 2011-07-19 2013-02-04 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
US8409707B2 (en) 2007-07-26 2013-04-02 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core and dust core
US8416051B2 (en) 2011-04-27 2013-04-09 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
JP2013065844A (en) * 2011-08-31 2013-04-11 Toshiba Corp Magnetic material, method for producing magnetic material, and inductor element
US8427265B2 (en) 2011-04-27 2013-04-23 Taiyo Yuden Co., Ltd. Laminated inductor
US8525630B2 (en) 2011-08-10 2013-09-03 Taiyo Yuden Co., Ltd. Laminated inductor
US8610525B2 (en) 2011-08-05 2013-12-17 Taiyo Yuden Co., Ltd. Laminated inductor
JP2014060183A (en) * 2012-09-14 2014-04-03 Aisin Seiki Co Ltd Soft magnetic material and method for manufacturing the same
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US8866579B2 (en) 2011-11-17 2014-10-21 Taiyo Yuden Co., Ltd. Laminated inductor
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
US9007159B2 (en) 2011-12-15 2015-04-14 Taiyo Yuden Co., Ltd. Coil-type electronic component
US20150102888A1 (en) * 2013-10-14 2015-04-16 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
CN104889386A (en) * 2014-03-05 2015-09-09 丰田自动车工程及制造北美公司 Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
US9287026B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component
US9318251B2 (en) 2006-08-09 2016-04-19 Coilcraft, Incorporated Method of manufacturing an electronic component
US9349517B2 (en) 2011-01-20 2016-05-24 Taiyo Yuden Co., Ltd. Coil component
KR20160117255A (en) * 2015-03-31 2016-10-10 다이요 유덴 가부시키가이샤 Magnetic material and electronic components comprising the same
EP2221837A4 (en) * 2007-12-14 2016-11-23 Jfe Steel Corp Iron powder for dust core
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
JP2018152381A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Powder-compact magnetic core
KR20210012897A (en) * 2019-07-25 2021-02-03 티디케이가부시기가이샤 Composite magnetic powder, dust core using the same, and method for manufacturing composite magnetic powder
CN113012891A (en) * 2017-04-19 2021-06-22 株式会社村田制作所 Coil component
JP7047959B1 (en) 2021-03-31 2022-04-05 Tdk株式会社 Soft magnetic alloys and magnetic parts.
US11972885B2 (en) 2011-08-26 2024-04-30 Taiyo Yuden Co., Ltd Magnetic material and coil component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328805A (en) * 1991-04-30 1992-11-17 Tokin Corp Anisotropic configuration soft magnet alloy powder and manufacture thereof
JP2001254168A (en) * 2000-03-10 2001-09-18 Kinya Adachi Surface rust prevention and performance improving treatment of magnetic material
JP2003105480A (en) * 2001-04-02 2003-04-09 Mitsubishi Materials Corp Composite soft magnetic sintered material having high density and high magnetic permeability, and manufacturing method therefor
JP2003282317A (en) * 2002-03-25 2003-10-03 Nec Tokin Corp Alloy powder surface treatment method and dust core
JP2004297036A (en) * 2002-12-04 2004-10-21 Mitsubishi Materials Corp Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328805A (en) * 1991-04-30 1992-11-17 Tokin Corp Anisotropic configuration soft magnet alloy powder and manufacture thereof
JP2001254168A (en) * 2000-03-10 2001-09-18 Kinya Adachi Surface rust prevention and performance improving treatment of magnetic material
JP2003105480A (en) * 2001-04-02 2003-04-09 Mitsubishi Materials Corp Composite soft magnetic sintered material having high density and high magnetic permeability, and manufacturing method therefor
JP2003282317A (en) * 2002-03-25 2003-10-03 Nec Tokin Corp Alloy powder surface treatment method and dust core
JP2004297036A (en) * 2002-12-04 2004-10-21 Mitsubishi Materials Corp Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318251B2 (en) 2006-08-09 2016-04-19 Coilcraft, Incorporated Method of manufacturing an electronic component
US10319507B2 (en) 2006-08-09 2019-06-11 Coilcraft, Incorporated Method of manufacturing an electronic component
US11869696B2 (en) 2006-08-09 2024-01-09 Coilcraft, Incorporated Electronic component
US8409707B2 (en) 2007-07-26 2013-04-02 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core and dust core
JP2009038256A (en) * 2007-08-02 2009-02-19 Kobe Steel Ltd Iron-based soft magnetic powder for dust core, and dust core
EP2221837A4 (en) * 2007-12-14 2016-11-23 Jfe Steel Corp Iron powder for dust core
JP2009158802A (en) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
US8337638B2 (en) * 2008-04-18 2012-12-25 Toyota Jidosha Kabushiki Kaisha Powder for dust core and method for producing the same
US8813346B2 (en) 2010-04-30 2014-08-26 Taiyo Yuden Co., Ltd. Method for manufacturing a coil-type electronic component
US8704629B2 (en) 2010-04-30 2014-04-22 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
WO2011136198A1 (en) * 2010-04-30 2011-11-03 太陽誘電株式会社 Coil-type electronic component and process for producing same
JP2011249836A (en) * 2010-04-30 2011-12-08 Taiyo Yuden Co Ltd Coil-type electronic component and manufacturing method thereof
JP2011249774A (en) * 2010-04-30 2011-12-08 Taiyo Yuden Co Ltd Coil-type electronic component and manufacturing method thereof
US8749339B2 (en) 2010-04-30 2014-06-10 Taiyo Yuden Co., Ltd. Coil-type electronic component and process for producing same
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US9349517B2 (en) 2011-01-20 2016-05-24 Taiyo Yuden Co., Ltd. Coil component
US9685267B2 (en) 2011-01-20 2017-06-20 Taiyo Yuden Co., Ltd. Coil component
US8362866B2 (en) 2011-01-20 2013-01-29 Taiyo Yuden Co., Ltd. Coil component
US8427265B2 (en) 2011-04-27 2013-04-23 Taiyo Yuden Co., Ltd. Laminated inductor
US9472341B2 (en) 2011-04-27 2016-10-18 Taiyo Yuden Co., Ltd. Method for manufacturing magnetic grain compact
US8416051B2 (en) 2011-04-27 2013-04-09 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US9287026B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component
US9030285B2 (en) 2011-04-27 2015-05-12 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
US9287033B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
JP2013026356A (en) * 2011-07-19 2013-02-04 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
US9293244B2 (en) 2011-07-19 2016-03-22 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US9165705B2 (en) 2011-08-05 2015-10-20 Taiyo Yuden Co., Ltd. Laminated inductor
US8610525B2 (en) 2011-08-05 2013-12-17 Taiyo Yuden Co., Ltd. Laminated inductor
US8525630B2 (en) 2011-08-10 2013-09-03 Taiyo Yuden Co., Ltd. Laminated inductor
US11972885B2 (en) 2011-08-26 2024-04-30 Taiyo Yuden Co., Ltd Magnetic material and coil component
JP2013065844A (en) * 2011-08-31 2013-04-11 Toshiba Corp Magnetic material, method for producing magnetic material, and inductor element
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
US9362033B2 (en) 2011-08-31 2016-06-07 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
US8840800B2 (en) 2011-08-31 2014-09-23 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
US8866579B2 (en) 2011-11-17 2014-10-21 Taiyo Yuden Co., Ltd. Laminated inductor
US9007159B2 (en) 2011-12-15 2015-04-14 Taiyo Yuden Co., Ltd. Coil-type electronic component
JP2014060183A (en) * 2012-09-14 2014-04-03 Aisin Seiki Co Ltd Soft magnetic material and method for manufacturing the same
US9767950B2 (en) * 2013-10-14 2017-09-19 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
US20150102888A1 (en) * 2013-10-14 2015-04-16 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
JP2015079931A (en) * 2013-10-14 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Laminated type electronic component
CN104889386B (en) * 2014-03-05 2019-01-22 丰田自动车工程及制造北美公司 Iron cobalt ternary-alloy nano particle with silica shell and metal silicate interface
JP2015206111A (en) * 2014-03-05 2015-11-19 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
CN104889386A (en) * 2014-03-05 2015-09-09 丰田自动车工程及制造北美公司 Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
KR20160117255A (en) * 2015-03-31 2016-10-10 다이요 유덴 가부시키가이샤 Magnetic material and electronic components comprising the same
KR101888237B1 (en) * 2015-03-31 2018-08-13 다이요 유덴 가부시키가이샤 Magnetic material and electronic components comprising the same
JP2016195152A (en) * 2015-03-31 2016-11-17 太陽誘電株式会社 Magnetic body and electronic component including the same
JP2018152381A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Powder-compact magnetic core
CN113012891A (en) * 2017-04-19 2021-06-22 株式会社村田制作所 Coil component
CN113012891B (en) * 2017-04-19 2023-09-05 株式会社村田制作所 Coil component
US11842833B2 (en) 2017-04-19 2023-12-12 Murata Manufacturing Co., Ltd. Coil component
KR20210012897A (en) * 2019-07-25 2021-02-03 티디케이가부시기가이샤 Composite magnetic powder, dust core using the same, and method for manufacturing composite magnetic powder
JP2021021097A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder
KR102299348B1 (en) * 2019-07-25 2021-09-07 티디케이가부시기가이샤 Composite magnetic powder, dust core using the same, and method for manufacturing composite magnetic powder
US11239013B2 (en) 2019-07-25 2022-02-01 Tdk Corporation Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder
JP7047959B1 (en) 2021-03-31 2022-04-05 Tdk株式会社 Soft magnetic alloys and magnetic parts.
JP2022157041A (en) * 2021-03-31 2022-10-14 Tdk株式会社 Soft magnetic alloy and magnetic component

Similar Documents

Publication Publication Date Title
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
EP1710815B1 (en) Powder core and method of producing thereof
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
US8481178B2 (en) Iron powder coated with Mg-containing oxide film
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
WO2007077689A1 (en) Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
JP2004288983A (en) Dust core and method for manufacturing same
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP4480015B2 (en) Laminated oxide film coated iron powder
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
JP2011181624A (en) High-strength, high-specific-resistance composite soft magnetic material, electromagnetic circuit component, and method of manufacturing high-strength, high-specific-resistance composite soft magnetic material
WO2006126553A1 (en) Low magnetostriction body and dust core using same
JP4367709B2 (en) Laminated oxide film coated iron powder
JP2007113094A (en) METHOD FOR PRODUCING Si CONCENTRATION GRADIENT LAYER-COATED IRON POWDER
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JPH10208923A (en) Composite magnetic material and production thereof
JP2008088537A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM HAVING LOW RETENTION FORCE AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL HAVING LOW RETENTION FORCE FROM THE POWDER
WO2005024858A1 (en) Soft magnetic material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110516