JP2010236018A - High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts - Google Patents

High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts Download PDF

Info

Publication number
JP2010236018A
JP2010236018A JP2009085228A JP2009085228A JP2010236018A JP 2010236018 A JP2010236018 A JP 2010236018A JP 2009085228 A JP2009085228 A JP 2009085228A JP 2009085228 A JP2009085228 A JP 2009085228A JP 2010236018 A JP2010236018 A JP 2010236018A
Authority
JP
Japan
Prior art keywords
soft magnetic
low
strength
magnetic particles
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009085228A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
裕明 池田
Kazunori Igarashi
和則 五十嵐
Hiroshi Tanaka
寛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009085228A priority Critical patent/JP2010236018A/en
Publication of JP2010236018A publication Critical patent/JP2010236018A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite soft magnetic material of high strength and low core loss. <P>SOLUTION: A high-strength low-core-loss composite soft magnetic material is obtained by mixing a plurality of soft magnetic particles coated with an insulation film, which is formed by coating a soft magnetic particle with the insulation film, with particles of a nanomaterial powder of low-melting point glass, and a nanofiller, and compacting and firing the mixture; and includes a plurality of soft magnetic particles which are soft magnetic particles coated with the insulation film, and a boundary layer which is formed in a grain boundary between the soft magnetic particles coated with the insulation film and is formed of the low-melting point glass including the nanofiller. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、モータ、アクチュエータ、リアクトル、トランス、チョークコア、磁気センサコアなどの各種電磁気回路部品の素材として使用される高強度低損失複合軟磁性材とその製造方法及び電磁気回路部品に関する。   The present invention relates to a high-strength, low-loss composite soft magnetic material used as a material for various electromagnetic circuit components such as a motor, an actuator, a reactor, a transformer, a choke core, and a magnetic sensor core, a manufacturing method thereof, and an electromagnetic circuit component.

従来、モータ、アクチュエータ、磁気センサなどの磁心用材料として、鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末、Fe−P系鉄基軟磁性合金粉末(以下、これらを軟磁性粒子と総称する)を焼結して得られた軟磁性焼結材が知られている。
一方、鉄粉末や合金粉末をガス又はアトマイズ法で粉末化して作製した場合、鉄粉末や合金粉末は単体では比抵抗が低いため、鉄粉末や合金粉末の表面に絶縁皮膜の被覆を行うか、有機化合物を混合するなどして焼結を防止し、比抵抗を上げるなどの対策を講じている。この種の軟磁性焼結材において、渦電流損失を抑制するために、鉄を含む金属磁性粒子の表面を非鉄金属の下層被膜と無機化合物を含む絶縁膜とで覆った圧粉軟磁性材料などが提案されている。
Conventionally, as magnetic core materials for motors, actuators, magnetic sensors, etc., iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr iron-based soft magnetic alloy powder Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder, Fe A soft magnetic sintered material obtained by sintering -P-based iron-based soft magnetic alloy powder (hereinafter collectively referred to as soft magnetic particles) is known.
On the other hand, when iron powder or alloy powder is made by pulverization by gas or atomization method, iron powder or alloy powder alone has a low specific resistance, so the surface of iron powder or alloy powder is coated with an insulating film, Measures such as mixing organic compounds to prevent sintering and increase specific resistance are taken. In this kind of soft magnetic sintered material, in order to suppress eddy current loss, powder soft magnetic material in which the surface of metal magnetic particles containing iron is covered with a non-ferrous metal lower layer coating and an insulating film containing an inorganic compound, etc. Has been proposed.

この種の軟磁性材の強度を向上させる1つの手段として、MgおよびOが表面から内部に向かって減少しておりかつFeが内部に向かって増加している濃度勾配を有するMg−Fe−O三元系酸化物堆積膜を鉄粉末の表面に被覆したMg含有酸化膜被覆鉄粉末を用い、鉄粉末との界面領域に鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有するMg含有酸化鉄膜被覆鉄粉末を低融点ガラス相で結合してなる高強度複合軟磁性材が知られている。(特許文献1参照)
また、この種の軟磁性材の強度を向上させる他の手段として、少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜と鉄粉末との界面領域に鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有するMg含有酸化鉄膜被覆鉄粉末を低融点ガラス相で結合してなる高強度複合軟磁性材であって、前記少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜は、結晶粒径200nm以下の微細結晶組織を有し、前記少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜は、その最表面を実質的にMgOで構成している高強度複合軟磁性材が知られている。(特許文献2参照)
As one means for improving the strength of this kind of soft magnetic material, Mg—Fe—O having a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside. Sulfur containing a higher concentration of sulfur than the sulfur contained in the center of the iron powder in the interface region with the iron powder using the Mg-containing oxide film-coated iron powder coated with the ternary oxide deposited film on the surface of the iron powder A high-strength composite soft magnetic material obtained by binding Mg-containing iron oxide film-coated iron powder having a concentrated layer with a low-melting glass phase is known. (See Patent Document 1)
As another means for improving the strength of this kind of soft magnetic material, the iron powder is formed in the interface region between the Mg—Fe—O ternary oxide deposited film containing at least (Mg, Fe) O and the iron powder. A high-strength composite soft magnetic material obtained by bonding a Mg-containing iron oxide film-coated iron powder having a sulfur-concentrated layer containing sulfur at a concentration higher than that of sulfur contained in the center portion, in a low-melting glass phase, The Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O has a fine crystal structure with a crystal grain size of 200 nm or less, and includes Mg—Fe—O containing at least (Mg, Fe) O. As the ternary oxide deposited film, a high-strength composite soft magnetic material whose outermost surface is substantially composed of MgO is known. (See Patent Document 2)

次に、この種の軟磁性材の強度を向上させる更に他の手段として、鉄粉末、リン酸塩被覆鉄粉末または酸化物膜被覆鉄粉末の表面に低融点ガラスを構成する元素の錯体またはアルコキシドを有機溶媒に溶かした溶液を塗布することにより溶液膜形成鉄粉末、溶液膜形成リン酸塩被覆鉄粉末または溶液膜形成酸化物膜被覆鉄粉末を作製し、この溶液膜形成鉄粉末、溶液膜形成リン酸塩被覆鉄粉末または溶液膜形成酸化物膜被覆鉄粉末における溶液膜の有機成分を加熱分解することにより低融点ガラスを被覆した鉄粉末、リン酸塩被覆鉄粉末または酸化物膜被覆鉄粉末を作製したのちこれら粉末を圧縮成形したのち熱処理するか、または前記溶液膜形成鉄粉末、溶液膜形成リン酸塩被覆鉄粉末または溶液膜形成酸化物膜被覆鉄粉末を圧縮成形したのち熱処理して複合軟磁性材を製造する技術が知られている。(特許文献3参照)   Next, as yet another means for improving the strength of this kind of soft magnetic material, the complex or alkoxide of the elements constituting the low melting point glass on the surface of the iron powder, phosphate-coated iron powder or oxide film-coated iron powder is used. A solution film-forming iron powder, a solution film-forming phosphate-coated iron powder, or a solution film-forming oxide film-coated iron powder is prepared by applying a solution in which an organic solvent is dissolved. Low melting point glass coated iron powder, phosphate coated iron powder or oxide film coated iron by thermally decomposing organic components of solution film in formed phosphate coated iron powder or solution film formed oxide film coated iron powder After the powders are prepared, these powders are compression molded and then heat treated, or the solution film-forming iron powder, the solution film-forming phosphate-coated iron powder, or the solution film-forming oxide film-coated iron powder is compression-molded. Technique for producing a composite soft magnetic material with Chi heat treatment is known. (See Patent Document 3)

特開2006−332525号公報JP 2006-332525 A 特開2006−332524号公報JP 2006-332524 A 特開2006−278833号公報JP 2006-278833 A

前記各特許文献に記載の技術を用いて複合軟磁性材料の特性改善を行う場合、絶縁被覆した鉄粉に低融点ガラスなどの原料粉末を混合し、圧密後に焼成することで製造しているが、絶縁皮膜被覆鉄粉と低融点ガラスの原料粉末との均一混合を行ったとしても、焼成後に得られた軟磁性複合材において数10〜数100μm程度の微細粒径をもつ鉄粉末の周囲の隅々に均一な厚さの低融点ガラス層をバインダー層として形成することが困難なことから、得られた複合軟磁性材の特性において、特に強度の面で不均一性を解消することができない問題があった。   When improving the characteristics of a composite soft magnetic material using the techniques described in the above patent documents, it is manufactured by mixing raw material powder such as low-melting-point glass with insulating coated iron powder and firing it after consolidation. Even if the insulating film-coated iron powder and the low melting point glass raw material powder are uniformly mixed, the soft magnetic composite material obtained after firing has a fine particle diameter of about several tens to several hundreds of micrometers around the iron powder. Since it is difficult to form a low-melting glass layer having a uniform thickness every corner as a binder layer, it is not possible to eliminate non-uniformity particularly in terms of strength in the characteristics of the obtained composite soft magnetic material There was a problem.

例えば、前述の鉄粉末と低融点ガラスの原料粉末を均一混合して焼成する方法により軟磁性材を得ようとすると、微細化された鉄粉末の周囲に前述の技術に基づき形成しているMg−Fe−O三元系酸化物堆積膜は、厚さ100nm程度であるが、この軟磁性材にバインダーとして低融点ガラスの原料粉末を混合する場合、一般的な方法により低融点ガラスの原料粉末を極微細に粉砕しても、粉砕法により微細化する限り、その粒径を1μm程度、あるいはそれよりも若干細粒とする程度が限界であるので、この程度の粒径の原料粉末を前述のMg−Fe−O三元系酸化物堆積膜を備えた鉄粉末と混合して圧密し、焼成しても低融点ガラスの原料成分が全ての鉄粉末の周囲に均一に回り込むことができず、バインダー層としての低融点ガラスの境界層が不均一になり易いという問題を有している。   For example, when trying to obtain a soft magnetic material by a method of uniformly mixing and firing the above-mentioned iron powder and low melting point glass raw material powder, Mg formed around the refined iron powder based on the above-mentioned technique The Fe-O ternary oxide deposited film has a thickness of about 100 nm, but when a soft-magnetic material is mixed with a low-melting glass raw material powder as a binder, the low-melting glass raw material powder is obtained by a general method. Even if the powder is pulverized extremely finely, as long as it is refined by the pulverization method, the particle size is limited to about 1 μm or slightly finer than that. Mixing with iron powder with Mg-Fe-O ternary oxide deposited film, compacting and firing, the raw material components of the low melting point glass cannot evenly wrap around all the iron powder Low melting glass as a binder layer Boundary layer has a liable to become uneven.

また、前述の粒径の低融点ガラス原料粉末を用いて製造した複合軟磁性材は、微細化された鉄粉末の周囲にMg−Fe−O三元系酸化物堆積膜を形成して各軟磁性粉末を個々に絶縁することで比抵抗を向上させ、複合軟磁性材としての渦電流損失を少なくしようとしているが、この複合軟磁性材を実際に製造してみると、期待したほど比抵抗が向上しないという問題を有していた。
この原因について本発明者らが鋭意研究したところ、軟磁性粉末を加圧成形する時にMg−Fe−O三元系酸化物堆積膜が低融点ガラス原料粉末によって部分的に損傷される場合があり、本来鉄粉末の周囲を完全に取り囲んでいるべきMg−Fe−O三元系酸化物堆積膜が部分的に損傷し、本来有するはずの優れた絶縁性を確保できていない結果として、比抵抗を高めることができず、渦電流損失の面で不利となり易い問題があった。
In addition, the composite soft magnetic material manufactured using the low melting point glass raw material powder having the above-mentioned particle size is formed by forming an Mg—Fe—O ternary oxide deposited film around the refined iron powder. We try to improve the specific resistance by individually insulating the magnetic powder and reduce the eddy current loss as a composite soft magnetic material, but when we actually manufacture this composite soft magnetic material, the specific resistance is as expected. Had the problem of not improving.
As a result of extensive research by the present inventors, the Mg-Fe-O ternary oxide deposited film may be partially damaged by the low melting point glass raw material powder when the soft magnetic powder is pressed. As a result, the Mg-Fe-O ternary oxide deposited film, which should originally completely surround the iron powder, is partially damaged, and as a result, it has not been possible to secure the excellent insulating property that it should originally have. There is a problem that it is difficult to increase the eddy current loss, which tends to be disadvantageous in terms of eddy current loss.

本発明は前記の問題に鑑みて創案されたものであり、その目的は、軟磁性粒子の周囲に形成する絶縁皮膜に損傷を与えることなく圧密し、焼成することが可能であり、高抵抗化することが可能であり、また、バインダーとして用いる低融点ガラスを軟磁性粒子の周囲の隅々まで浸透させて焼成し生成するので、高強度化することができ、しかも高比抵抗かつ低損失な特性を確保できる高強度高比抵抗複合軟磁性材の提供を目的とする。   The present invention was devised in view of the above-mentioned problems, and its purpose is to enable compaction and firing without damaging the insulating film formed around the soft magnetic particles, and to increase the resistance. In addition, low melting point glass used as a binder is infiltrated into every corner of the soft magnetic particles and baked to produce high strength, high resistivity and low loss. An object of the present invention is to provide a high-strength, high-resistivity composite soft magnetic material capable of ensuring characteristics.

上記目的を達成するために本発明の高強度低損失複合軟磁性材は、軟磁性粒子を絶縁皮膜で被覆してなる複数の絶縁被覆軟磁性粒子と低融点ガラスのナノ原料粉末粒子とナノフィラーを混合して圧密し、焼成して得られた高強度低損失複合軟磁性材であって、軟磁性粒子を絶縁皮膜で被覆してなる複数の絶縁被覆軟磁性粒子と、これら絶縁被覆軟磁性粒子同士の粒界に形成されたナノフィラーを備えた低融点ガラスからなる境界層とを備えたことを特徴とする高強度低損失複合軟磁性材。   In order to achieve the above object, the high-strength, low-loss composite soft magnetic material of the present invention comprises a plurality of insulating coated soft magnetic particles obtained by coating soft magnetic particles with an insulating film, nano raw material powder particles of low melting point glass, and nanofillers. A high-strength low-loss composite soft magnetic material obtained by mixing, compacting, and firing, a plurality of insulating coated soft magnetic particles obtained by coating soft magnetic particles with an insulating film, and these insulating coated soft magnetic materials A high-strength, low-loss composite soft magnetic material comprising a boundary layer made of low-melting glass having nanofillers formed at grain boundaries between particles.

本発明の高強度低損失複合軟磁性材は、前記絶縁被覆軟磁性粒子の絶縁皮膜の厚さが5〜200nmの範囲とされてなることを特徴とする。
本発明の高強度低損失複合軟磁性材は、前記軟磁性粒子の平均粒径が5〜500μmの範囲とされてなることを特徴とする。
本発明の高強度低損失複合軟磁性材は、前記絶縁被覆軟磁性粒子の絶縁皮膜が、(Mg、Fe)Oを主体としてなるMg含有絶縁皮膜であることを特徴とする。
本発明の高強度低損失複合軟磁性材は、前記低融点ガラスが、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上であることを特徴とする。
本発明の高強度低損失複合軟磁性材は、前記ナノフィラーが、CuO、ZnO、CoO、MgO、SiOの少なくとも1種からなることを特徴とする。
本発明の電磁気回路部品は、先のいずれかに記載の高強度低損失複合軟磁性材からなることを特徴とする。
The high-strength low-loss composite soft magnetic material of the present invention is characterized in that the insulating coating soft magnetic particles have a thickness of 5 to 200 nm.
The high-strength low-loss composite soft magnetic material of the present invention is characterized in that the average particle diameter of the soft magnetic particles is in the range of 5 to 500 μm.
The high-strength low-loss composite soft magnetic material of the present invention is characterized in that the insulating coating of the insulating coating soft magnetic particles is a Mg-containing insulating coating mainly composed of (Mg, Fe) O.
In the high-strength low-loss composite soft magnetic material of the present invention, the low-melting glass is composed of SiO2-B2O3-Na2O-based, Na2O-B2O3-ZnO-based, SiO2-B2O3-ZnO-based, SiO2-B2O3-Li2O-based glasses. It is characterized by at least one or more types.
High-strength low loss composite soft magnetic material of the present invention, the nanofiller, wherein CuO, ZnO, CoO, MgO, that comprises at least one SiO 2.
The electromagnetic circuit component of the present invention is characterized by comprising the high-strength low-loss composite soft magnetic material described above.

本発明の高強度低損失複合軟磁性材の製造方法は、軟磁性粒子を絶縁皮膜で被覆してなる複数の絶縁被覆軟磁性粒子と低融点ガラスのナノ原料粉末粒子とナノフィラーを混合して圧密し、焼成することにより、絶縁被覆軟磁性粒子同士の粒界に、低融点ガラスの境界層を形成するとともに、ナノフィラーを溶融せずに残存させることを特徴とする。   The method for producing a high-strength, low-loss composite soft magnetic material of the present invention comprises mixing a plurality of insulating coated soft magnetic particles obtained by coating soft magnetic particles with an insulating film, low-melting glass nano raw material powder particles, and nanofillers. By compacting and firing, a boundary layer of low-melting glass is formed at the grain boundary between the insulating coated soft magnetic particles, and the nanofiller is left without melting.

本発明の高強度低損失複合軟磁性材の製造方法は、絶縁皮膜として(Mg、Fe)Oを主体としてなるMg含有絶縁皮膜を備えた絶縁被覆軟磁性粒子を用いることを特徴とする。
本発明の高強度低損失複合軟磁性材の製造方法は、低融点ガラスとして、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上を用いることを特徴とする。
本発明の高強度低損失複合軟磁性材の製造方法は、前記ナノフィラーとして、CuO、ZnO、CoO、MgO、SiOの少なくとも1種以上を用いることを特徴とする。
The method for producing a high-strength, low-loss composite soft magnetic material of the present invention is characterized by using insulating coated soft magnetic particles having an Mg-containing insulating film mainly composed of (Mg, Fe) O as an insulating film.
The manufacturing method of the high-strength low-loss composite soft magnetic material of the present invention is a low melting glass of SiO2-B2O3-Na2O-based, Na2O-B2O3-ZnO-based, SiO2-B2O3-ZnO-based, SiO2-B2O3-Li2O-based glass. Of these, at least one kind is used.
The method for producing a high-strength, low-loss composite soft magnetic material of the present invention is characterized in that at least one of CuO, ZnO, CoO, MgO, and SiO 2 is used as the nanofiller.

本発明の高強度低損失複合軟磁性材によれば、絶縁被覆軟磁性粒子が個々に絶縁皮膜で確実に被覆された上に、絶縁皮膜の欠損部が少ないので、圧密焼成後の状態において個々の軟磁性粒子が確実に絶縁被覆されている結果として、圧密焼成後に得られた状態において比抵抗を高くすることができる結果、損失を少なくすることができる。
ナノフィラーを含む低融点ガラスの境界層を介し絶縁被覆軟磁性粒子同士を結合しているので、境界層部分での機械的結合力に優れ、高強度な複合軟磁性材が得られる。
境界層が均一であり、かつ、軟磁性粒子が個々に確実に絶縁被覆されているので、低融点ガラスの境界層が高比抵抗の状態とされる結果、軟磁性焼成材として高抵抗化ができており、渦電流損失も抑制することができる。
According to the high-strength, low-loss composite soft magnetic material of the present invention, since the insulating coating soft magnetic particles are individually covered with the insulating coating and there are few defects in the insulating coating, the individual portions in the state after consolidation firing As a result of the insulating coating of the soft magnetic particles reliably, the specific resistance can be increased in the state obtained after the consolidation firing, so that the loss can be reduced.
Since the insulating coated soft magnetic particles are bonded to each other through the boundary layer of the low melting point glass containing the nanofiller, a high-strength composite soft magnetic material having excellent mechanical coupling force at the boundary layer portion can be obtained.
Since the boundary layer is uniform and the soft magnetic particles are reliably insulated and coated, the boundary layer of the low melting point glass is brought into a high specific resistance state. The eddy current loss can be suppressed.

また、絶縁被覆が(Mg、Fe)Oを主体としてなるMg含有絶縁皮膜であるならば、Mg含有絶縁物被覆軟磁性粒子が個々に高比抵抗の境界層で分離されているので、Mg含有絶縁物被覆軟磁性粒子が本来有する、優れた軟磁気特性を維持しながら、高比抵抗で渦電流損失の抑制された低損失の高強度低損失複合軟磁性材を提供できる。
本発明の高強度低損失複合軟磁性材は、高密度、高強度、高比抵抗および高磁束密度を有するので、本発明の複合軟磁性材は、高強度と高磁束密度、かつ、高周波低鉄損の特徴を兼ね備え、優れたものであり、これらの特徴を生かした各種電磁気回路部品の材料として使用できる。
Further, if the insulating coating is an Mg-containing insulating film mainly composed of (Mg, Fe) O, since the Mg-containing insulating-coated soft magnetic particles are individually separated by the boundary layer having a high resistivity, the Mg containing It is possible to provide a low-strength, high-strength, low-loss composite soft magnetic material having high specific resistance and reduced eddy current loss while maintaining the excellent soft magnetic properties inherent in the insulating-coated soft magnetic particles.
Since the high-strength, low-loss composite soft magnetic material of the present invention has high density, high strength, high specific resistance, and high magnetic flux density, the composite soft magnetic material of the present invention has high strength, high magnetic flux density, and low frequency. It has the characteristics of iron loss and is excellent, and can be used as a material for various electromagnetic circuit components utilizing these characteristics.

前記高強度高比抵抗低損失複合軟磁性材を用いて構成される電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品を提供できる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化に寄与するという効果がある。
As an electromagnetic circuit component configured using the high strength, high specific resistance, low loss composite soft magnetic material, for example, a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core or An electromagnetic circuit component that can be used as a magnetic sensor core or the like and can exhibit excellent characteristics in any case can be provided.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. There is an effect that it contributes to performance improvement and reduction in size and weight.

図1は本発明に係る高強度高比抵抗複合軟磁性材の一例構造を示す組織写真の模式図。FIG. 1 is a schematic diagram of a structure photograph showing an example structure of a high-strength, high-resistivity composite soft magnetic material according to the present invention. 図2は本発明に係る高強度高比抵抗複合軟磁性材を製造するための工程の一例を示す工程図。FIG. 2 is a process diagram showing an example of a process for producing a high-strength, high-resistivity composite soft magnetic material according to the present invention. 図3は実施例において製造された高強度低損失複合軟磁性材の一例構造においてナノフィラーが分散された低融点ガラスからなる境界層部分を示す組織写真。FIG. 3 is a structure photograph showing a boundary layer portion made of a low melting point glass in which nanofillers are dispersed in an example structure of a high-strength low-loss composite soft magnetic material manufactured in Examples. 図4は実施例において製造された高強度低損失複合軟磁性材の一例構造において酸素の分布状態を測定した結果を示す組織写真。FIG. 4 is a structure photograph showing the result of measuring the oxygen distribution state in an example structure of a high-strength low-loss composite soft magnetic material manufactured in the example. 図5は実施例において製造された高強度低損失複合軟磁性材の一例構造においてMgの分布状態を測定した結果を示す組織写真。FIG. 5 is a structural photograph showing the result of measuring the distribution of Mg in an example structure of a high-strength, low-loss composite soft magnetic material manufactured in the example. 図6は実施例において製造された高強度低損失複合軟磁性材の一例構造においてFeの分布状態を測定した結果を示す組織写真。FIG. 6 is a structural photograph showing the result of measuring the distribution of Fe in an example structure of a high-strength, low-loss composite soft magnetic material manufactured in the example. 図7は実施例において製造された高強度低損失複合軟磁性材の一例構造においてCuの分布状態を測定した結果を示す組織写真。FIG. 7 is a structure photograph showing the result of measuring the distribution state of Cu in an example structure of a high-strength, low-loss composite soft magnetic material manufactured in Example. 図8は実施例において製造された高強度低損失複合軟磁性材の一例構造においてZnの分布状態を測定した結果を示す組織写真。FIG. 8 is a structure photograph showing the results of measuring the distribution state of Zn in an example structure of a high-strength, low-loss composite soft magnetic material manufactured in Example.

以下に本発明をMg含有絶縁物被覆軟磁性粒子に適用した場合を例にして以下に詳細に説明するが、本発明では軟磁性粒子の外面に被覆する絶縁皮膜をMgOの絶縁皮膜に限定するものではなく、リン酸塩皮膜、またはシリカのゾルゲル溶液(シリケート)もしくはアルミナのゾルゲル溶液などの湿式溶液を添加し、混合した後に乾燥し焼成した酸化ケイ素もしくは酸化アルミニウム皮膜等であってもよい。   In the following, the present invention is applied in detail to an Mg-containing insulator-coated soft magnetic particle as an example. However, in the present invention, the insulating film coated on the outer surface of the soft magnetic particle is limited to an MgO insulating film. Instead, it may be a phosphate film, or a silicon oxide or aluminum oxide film obtained by adding a wet solution such as a sol-gel solution (silicate) of silica or a sol-gel solution of alumina, mixing, drying and firing.

図1は本発明に係る第1実施形態の高強度高比抵抗複合軟磁性材の一例構造を示す組織写真の模式図であり、この形態の高強度高比抵抗複合軟磁性材Aは、ナノフィラー4を分散させた低融点ガラスからなる境界層8でMg含有絶縁物被覆軟磁性粒子5A、5Aを結合した組織構造とされている。
なお、図1では2つのMg含有絶縁物被覆軟磁性粒子5Aを低融点ガラスからなる境界層8で結合した構造の一部分のみを示しているが、実際の高強度低損失複合軟磁性材Aは多数のMg含有絶縁物被覆軟磁性粒子5Aがそれらの境界部分に境界層8を介在させた組織構造の部分と、複数のMg含有絶縁物被覆軟磁性粒子5A同士が直接接触されてなる組織構造の部分とが混在された圧密体組織構造とされている。
また、この形態の高強度低損失複合軟磁性材Aは、Mg含有絶縁物被覆軟磁性粒子5A、5A間に存在するナノフィラー4を分散させた低融点ガラスからなる境界層8が実質的に全てのMg含有絶縁物被覆軟磁性粒子間に可能な限り均一に分散されたものであり、ナノフィラー4を分散させた境界層8の均一分散により高強度かつ低損失の高強度低損失複合軟磁性材Aが得られる。なお、境界層8においてナノフィラー4は、単独で存在するか、または、それらが凝集した状態で広い領域に分布している。
FIG. 1 is a schematic diagram of a structure photograph showing an example structure of a high-strength, high-resistivity composite soft magnetic material according to the first embodiment of the present invention. The structure is such that Mg-containing insulator-coated soft magnetic particles 5A and 5A are bonded to each other at a boundary layer 8 made of low-melting glass in which filler 4 is dispersed.
FIG. 1 shows only a part of the structure in which two Mg-containing insulator-coated soft magnetic particles 5A are joined by a boundary layer 8 made of low-melting glass, but the actual high-strength low-loss composite soft magnetic material A is A structure structure in which a plurality of Mg-containing insulator-coated soft magnetic particles 5A are directly in contact with a portion of the structure in which the boundary layer 8 is interposed between the plurality of Mg-containing insulator-coated soft magnetic particles 5A. It is considered as a compacted body structure in which these parts are mixed.
Further, the high-strength low-loss composite soft magnetic material A in this form is substantially composed of a boundary layer 8 made of low-melting glass in which nanofillers 4 existing between the Mg-containing insulator-coated soft magnetic particles 5A and 5A are dispersed. All the Mg-containing insulator-coated soft magnetic particles are dispersed as uniformly as possible, and the high-strength and low-loss composite soft softening with high strength and low loss is achieved by uniform dispersion of the boundary layer 8 in which the nanofiller 4 is dispersed. Magnetic material A is obtained. In the boundary layer 8, the nanofillers 4 are present alone or distributed over a wide area in a state where they are aggregated.

この形態の高強度低損失複合軟磁性材Aにあっては、Mg含有絶縁物被覆軟磁性粒子本体5の表面に存在するMg含有絶縁皮膜6が軟磁性粒子に十分に密着し、Mg含有絶縁物被覆軟磁性粒子5Aが形成されている。
このような組織であると、多数のMg含有絶縁物被覆軟磁性粒子本体5が十分な量のMg含有絶縁皮膜6により絶縁被覆されるとともに、それらがナノフィラー4を分散させた低融点ガラスの境界層8を介し接合されるか、Mg含有絶縁物被覆軟磁性粒子5A同士が接合されている組織構造となっている。なお、ナノフィラー4とMg含有絶縁物被覆軟磁性粒子本体5とMg含有絶縁皮膜6、ナノフィラー4を分散させた粒界層8については後に詳細に説明する。
In the high-strength low-loss composite soft magnetic material A of this form, the Mg-containing insulating coating 6 existing on the surface of the Mg-containing insulator-coated soft magnetic particle main body 5 is sufficiently adhered to the soft magnetic particles, and the Mg-containing insulation Object-coated soft magnetic particles 5A are formed.
With such a structure, a large number of Mg-containing insulator-coated soft magnetic particle bodies 5 are insulatively coated with a sufficient amount of Mg-containing insulating film 6, and they are made of low-melting-point glass in which nanofillers 4 are dispersed. It is joined through the boundary layer 8 or has a structure in which Mg-containing insulator-coated soft magnetic particles 5A are joined together. The nanofiller 4, the Mg-containing insulator-coated soft magnetic particle body 5, the Mg-containing insulating film 6, and the grain boundary layer 8 in which the nanofiller 4 is dispersed will be described in detail later.

以下、図1に示す組織構造の高強度低損失複合軟磁性材Aを製造する方法の一例について以下に順次工程順に説明する。
「Mg含有絶縁物被覆軟磁性粒子の製造」
本発明ではまず、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が軟磁性粒子の表面に被覆形成されたMg含有絶縁物被覆軟磁性粒子(粉末)を作製する。
この被覆軟磁性粒子を得るためには、以下のいずれかの原料粉末を用い、後述に記載の方法で実施すれば良い。
この発明のMg含有絶縁物被覆軟磁性粒子の製造方法において使用する原料粉末としてのFe系軟磁性粒子は、従来から一般に知られている鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末であることが好ましい。
更に具体的には、鉄粉末は純鉄粉末であり、Fe−Al系鉄基軟磁性合金粉末はAl:0.1〜20質量%を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末(例えば、Fe−15質量%Alからなる組成を有するアルパーム粉末)であることが好ましい。
Hereinafter, an example of a method for producing the high-strength low-loss composite soft magnetic material A having the structure shown in FIG.
"Production of Mg-containing insulator-coated soft magnetic particles"
In the present invention, first, Mg-containing insulator-coated soft magnetic particles (powder) in which a Mg—Fe—O ternary oxide deposition film containing (Mg, Fe) O is coated on the surface of the soft magnetic particles are produced. .
In order to obtain the coated soft magnetic particles, any of the following raw material powders may be used and the method described later may be used.
Fe-based soft magnetic particles as raw material powder used in the method for producing Mg-containing insulator-coated soft magnetic particles of the present invention are conventionally known iron powder, Fe-Al based iron-based soft magnetic alloy powder, Fe -Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron A base soft magnetic alloy powder, an Fe—Co—V iron-based soft magnetic alloy powder, or an Fe—P iron-based soft magnetic alloy powder is preferable.
More specifically, the iron powder is pure iron powder, the Fe—Al-based iron-based soft magnetic alloy powder contains Al: 0.1 to 20% by mass, and the balance is Fe—Al composed of Fe and inevitable impurities. It is preferable to be an iron-based soft magnetic alloy powder (for example, an alpalm powder having a composition composed of Fe-15 mass% Al).

また、Fe−Ni系鉄基軟磁性合金粉末はNi:35〜85質量%を含有し、必要に応じてMo:5質量%以下、Cu:5質量%以下、Cr:2質量%以下、Mn:0.5質量%以下の内の1種または2種以上を含有し、残部がFeおよび不可避不純物からなるニッケル基軟磁性合金粉末(例えば、Fe−49質量%Ni粉末)であり、Fe−Cr系鉄基軟磁性合金粉末はCr:1〜20質量%を含有し、必要に応じてAl:5質量%以下、Ni:5質量%以下の内の1種または2種を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末であり、Fe−Si系鉄基軟磁性合金粉末は、Si:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末であることが好ましい。
また、Fe−Si−Al系鉄基軟磁性合金粉末は、Si:0.1〜10質量%、Al:0.1〜20質量%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末であり、Fe−Co−V系鉄基軟磁性合金粉末は、Co:0.1〜52質量%、V:0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末であり、Fe−Co系鉄基軟磁性合金粉末は、Co:0.1〜52質量%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末であり、Fe−P系鉄基軟磁性合金粉末は、P:0.5〜1質量%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末であることが好ましい。
Further, the Fe—Ni-based iron-based soft magnetic alloy powder contains Ni: 35 to 85% by mass, and Mo: 5% by mass or less, Cu: 5% by mass or less, Cr: 2% by mass or less, and Mn as required. : A nickel-based soft magnetic alloy powder (for example, Fe-49 mass% Ni powder) containing one or more of 0.5 mass% or less, with the balance being Fe and inevitable impurities, Fe— Cr-based iron-based soft magnetic alloy powder contains Cr: 1 to 20% by mass, and optionally contains one or two of Al: 5% by mass or less, Ni: 5% by mass or less, and the balance Is an Fe—Cr-based iron-based soft magnetic alloy powder composed of Fe and inevitable impurities, and the Fe—Si-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10% by mass, with the balance being Fe and inevitable Preferably, the Fe-Si iron-based soft magnetic alloy powder is made of impurities. Arbitrariness.
The Fe—Si—Al-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10% by mass, Al: 0.1 to 20% by mass, and the balance is Fe—Si composed of Fe and inevitable impurities. -Al-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder contains Co: 0.1 to 52 mass%, V: 0.1 to 3 mass%, the balance Is an Fe—Co—V-based iron-based soft magnetic alloy powder comprising Fe and inevitable impurities, and the Fe—Co-based iron-based soft magnetic alloy powder contains 0.1% to 52% by mass of Co, with the balance being Fe. And Fe—Co-based iron-based soft magnetic alloy powder composed of inevitable impurities, Fe—P-based iron-based soft magnetic alloy powder contains P: 0.5 to 1% by mass, and the balance is Fe and inevitable impurities. The Fe-P-based iron-based soft magnetic alloy powder is preferable.

そして、これらFe系の軟磁性粒子は平均粒径:5〜500μmの範囲内にある軟磁性合金粉末(粒子)を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、軟磁性粒子の圧縮性が低下し、軟磁性粒子の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、軟磁性粒子内部の渦電流が増大して高周波における透磁率が低下することによるものである。   The Fe-based soft magnetic particles are preferably soft magnetic alloy powders (particles) having an average particle size in the range of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the soft magnetic particles is lowered, and the volume ratio of the soft magnetic particles is lowered, so that the value of the magnetic flux density is lowered. If the diameter is larger than 500 μm, the eddy current inside the soft magnetic particles increases and the magnetic permeability at high frequency decreases.

これら各種のFe系軟磁性粒子のいずれかを原料粉末として用い、酸化雰囲気中において室温〜500℃に保持する酸化処理を施した後、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱し、さらに必要に応じて酸化雰囲気中、温度:50〜400℃で加熱すると、Fe系軟磁性粒子の表面にMg含有酸化絶縁皮膜6を有するMg含有絶縁物被覆軟磁性粉末(粒子)5Aが得られる。
前記Mg粉末の添加量は0.1〜0.3質量%の範囲内にあることが好ましく、前記加熱温度は650℃、前記真空雰囲気は圧力:1×10−7〜1×10−4MPaの真空雰囲気であることが好ましい。
このMg含有絶縁物被覆軟磁性粒子5Aは、従来のMgフェライト膜を形成したMg含有絶縁物被覆軟磁性粒子に比べて密着性が格段に優れたものとなり、このMg含有絶縁物被覆軟磁性粒子5Aをプレス成形して圧粉体を作製しても絶縁皮膜が破壊し剥離することが少なく、また、このMg含有絶縁物被覆軟磁性粒子5Aの圧粉体を温度:400〜1300℃で焼成して得られた軟磁性複合圧密焼成材は粒界にMg含有酸化膜が均一に分散し、粒界三重点にMg含有酸化膜が集中していない組織が得られる。
Using any one of these various Fe-based soft magnetic particles as a raw material powder, and after subjecting it to an oxidation treatment of keeping at room temperature to 500 ° C. in an oxidizing atmosphere, Mg powder was added to this raw material powder and mixed. The mixed powder is heated in an inert gas atmosphere or a vacuum atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa, and further in an oxidizing atmosphere, if necessary, a temperature of 50 to 50 When heated at 400 ° C., Mg-containing insulator-coated soft magnetic powder (particles) 5A having the Mg-containing oxide insulating film 6 on the surface of the Fe-based soft magnetic particles is obtained.
The addition amount of the Mg powder is preferably in the range of 0.1 to 0.3% by mass, the heating temperature is 650 ° C., and the vacuum atmosphere is pressure: 1 × 10 −7 to 1 × 10 −4 MPa The vacuum atmosphere is preferable.
This Mg-containing insulator-coated soft magnetic particle 5A has much better adhesion than the conventional Mg-containing insulator-coated soft magnetic particle on which an Mg ferrite film is formed. Even if a green compact is produced by press molding 5A, the insulating film is less likely to break and peel off, and the green compact of this Mg-containing insulator-coated soft magnetic particle 5A is fired at a temperature of 400 to 1300 ° C. The soft magnetic composite compacted fired material obtained in this way has a structure in which the Mg-containing oxide film is uniformly dispersed at the grain boundaries and the Mg-containing oxide film is not concentrated at the grain boundary triple points.

前述の製造方法の場合、酸化処理した軟磁性粒子を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱するには、前記混合粉末を転動させながら加熱することが好ましい。 In the case of the manufacturing method described above, oxidized soft magnetic particles are used as raw material powder, and mixed powder obtained by adding and mixing Mg powder to this raw material powder is temperature: 150-1100 ° C., pressure: 1 × 10 −12. In order to heat in an inert gas atmosphere or vacuum atmosphere of ˜1 × 10 −1 MPa, it is preferable to heat the mixed powder while rolling.

「堆積膜」という用語は、通常、真空蒸着やスパッタされた皮膜構成原子が例えば基板上に堆積された皮膜を示すが、本発明において用いる堆積膜とは、酸化鉄膜を有するFe系軟磁性粒子の酸化鉄(Fe−O)とMgが反応を伴って当該Fe系軟磁性粒子表面に堆積したMg含有絶縁皮膜を示す。このFe系軟磁性粒子の表面に形成されているMg含有絶縁皮膜(Mg−Fe−O三元系酸化物堆積膜)の膜厚は、圧粉成形後に軟磁性複合圧密焼成材の高磁束密度と高比抵抗を得るために、5nm〜200nmの範囲内にあることが好ましい。
ここでの膜厚が5nmより薄いと、圧粉成形した軟磁性複合圧密焼成材の比抵抗が充分ではなくなる傾向があり、渦電流損失が増加するので好ましくなく、膜厚が200nmを越える厚さでは、圧粉成形した軟磁性複合圧密焼成材の磁束密度が低下する傾向となる。このような範囲において好ましい膜厚は、5nm〜100nmの範囲内である。
The term “deposited film” usually indicates a film in which atoms constituting a film deposited by vacuum evaporation or sputtering are deposited on a substrate, for example. The deposited film used in the present invention is an Fe-based soft magnetic film having an iron oxide film. 3 shows an Mg-containing insulating film deposited on the surface of the Fe-based soft magnetic particles with the reaction of particles of iron oxide (Fe—O) and Mg. The film thickness of the Mg-containing insulating film (Mg—Fe—O ternary oxide deposition film) formed on the surface of the Fe-based soft magnetic particles is equal to the high magnetic flux density of the soft magnetic composite compacted fired material after compacting. In order to obtain a high specific resistance, it is preferably in the range of 5 nm to 200 nm.
If the film thickness is less than 5 nm, the specific resistance of the compacted soft magnetic composite compacted fired material tends to be insufficient, and eddy current loss increases, which is not preferable, and the film thickness exceeds 200 nm. Then, the magnetic flux density of the soft magnetic composite compacted fired material that has been compacted tends to decrease. A preferable film thickness in such a range is in the range of 5 nm to 100 nm.

「高強度低損失複合軟磁性材の製造方法」
以上説明した方法により前述の如く作製したMg含有絶縁物被覆軟磁性粒子を使用して高強度低損失複合軟磁性材を製造するには、まず、前述の方法で作製したMg含有絶縁物被覆軟磁性粒子に対し、バインダー材としての低融点ガラスの原料粉末(粒子)を添加するとともに、分散物としてのナノフィラーを添加する。
前記低融点ガラスの原料混合粉末(粒子)として、ナノオーダー、特に平均粒径2〜200nm程度の原料粉末であることが好ましく、平均粒径2〜100nmの範囲がより好ましい。また、低融点ガラスの原料混合粉末の添加量はMg含有絶縁物被覆軟磁性粒子の質量に対して0.1〜5質量%の範囲が好ましい。
ナノフィラーは、CuO、ZnO、CoO、MgO、SiOなどの無機系粒子からなり、平均粒径は2〜200nmの範囲が好ましく、2〜100nmの範囲がより好ましい。ナノフィラーの添加量は、Mg含有絶縁物被覆軟磁性粒子の質量に対して0.1〜0.4質量%の範囲が好ましい。添加するナノフィラーが多すぎると、粒界でのMg含有絶縁物被覆軟磁性粒子同士をつなぐ結合力が弱くなる傾向となる。
なお、これらの粒径範囲の原料粉末とナノフィラーをハンドリングすることは容易ではないので、先のMg含有絶縁物被覆軟磁性粒子に添加する場合、原料粉末とナノフィラーをエタノールなどの有機溶媒に超音波分散により均一分散し、この有機溶媒中に先のMg含有絶縁物被覆軟磁性粒子を浸漬して取り出し、有機溶媒を加熱し乾燥して除去し、成形する方法を採用することが好ましい。ただし、乾式によって原料粉末と先のMg含有絶縁物被覆軟磁性粒子を混合し成形する方法も可能である。
"Method of manufacturing high-strength, low-loss composite soft magnetic material"
In order to produce a high-strength low-loss composite soft magnetic material using the Mg-containing insulator-coated soft magnetic particles prepared as described above by the method described above, first, the Mg-containing insulator-coated soft magnetic material prepared by the method described above is used. A raw material powder (particles) of a low melting glass as a binder material is added to the magnetic particles, and a nano filler as a dispersion is added.
The raw material mixed powder (particles) of the low-melting glass is preferably a raw material powder having a nano order, particularly an average particle size of about 2 to 200 nm, and more preferably an average particle size of 2 to 100 nm. Moreover, the addition amount of the raw material mixed powder of the low melting glass is preferably in the range of 0.1 to 5% by mass with respect to the mass of the Mg-containing insulator-coated soft magnetic particles.
Nanofillers, CuO, ZnO, become CoO, MgO, an inorganic particles such as SiO 2, the average particle diameter is preferably in the range of 2 to 200 nm, range of 2~100nm is more preferable. The addition amount of the nanofiller is preferably in the range of 0.1 to 0.4% by mass with respect to the mass of the Mg-containing insulator-coated soft magnetic particles. If too much nanofiller is added, the bonding force connecting the Mg-containing insulator-coated soft magnetic particles at the grain boundary tends to be weakened.
In addition, since it is not easy to handle the raw material powder and nanofiller in these particle size ranges, when adding to the Mg-containing insulator-coated soft magnetic particles, the raw material powder and nanofiller are added to an organic solvent such as ethanol. It is preferable to adopt a method of uniformly dispersing by ultrasonic dispersion, immersing the Mg-containing insulator-coated soft magnetic particles in this organic solvent, taking out, removing the organic solvent by drying, and molding. However, a method of mixing the raw material powder and the above-mentioned Mg-containing insulator-coated soft magnetic particles by a dry method and molding them is also possible.

ここで用いる低融点ガラスとして、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上を使用することが好ましい。
また、必要に応じ、これらの低融点ガラスにSiO2、Na2O、ZnO、B2O3、Li2O、SnO、BaO、CaO、Al2O3、KOの1種類または2種類以上を添加した組成を有する低融点ガラスを使用しても良い。
例えば、SiO2−B2O3−ZnO系にAl2O3とLi2Oを添加した組成系、SiO2−B2O3−ZnO系にSnOとBaOとCaOとAl2O3、KOを添加した組成系などを例示することができる。
As the low melting point glass used here, it is preferable to use at least one of SiO 2 -B 2 O 3 -Na 2 O, Na 2 O—B 2 O 3 —ZnO, SiO 2 —B 2 O 3 —ZnO, and SiO 2 —B 2 O 3 —Li 2 O glasses.
If necessary, SiO2 in these low-melting glass, Na2O, ZnO, B2O3, Li2O , SnO, BaO, a low-melting glass having a composition with the addition of one or more kinds of CaO, Al2 O3, K 2 O May be used.
For example, it can be exemplified such as SiO2-B2O3-ZnO system the added composition system of Al2O3 and Li2O, the composition system with the addition of SnO BaO, CaO and Al2O3, K 2 O in the SiO2-B2O3-ZnO system.

更に具体的な組成例として、(A1)SiO2:15質量%、ZnO:31質量%、B2O3:48質量%、Al2O3:4質量%、Li2O:2質量%の組成例、(A2)SiO2:10〜25質量%、Na2O:5〜10質量%、ZnO:30〜40質量%、B2O3:40〜50質量%の組成例、(A3)SiO2+Na2O:45質量%以下、ZnO:20〜30質量%、BaO:1〜10質量%、B2O3:20〜30質量%、Al2O3:1〜10質量%の組成例(A4)SiO2:5〜25質量%、SnO:1〜10質量%、ZnO:30〜55質量%、BaO:1〜10質量%、CaO:1〜10質量%、B2O3:20〜30質量%、Al2O3:1〜10質量%、KO:1〜10質量%の組成例などを例示することができる。
次に、先の成形体を望ましくは窒素雰囲気中などの非酸化性雰囲気において300℃〜1000℃、例えば650℃で数10分、例えば30分程度焼成して高強度低損失複合軟磁性材を形成する。
As more specific composition examples, (A1) SiO2: 15% by mass, ZnO: 31% by mass, B2O3: 48% by mass, Al2O3: 4% by mass, Li2O: 2% by mass, (A2) SiO2: 10 -25 mass%, Na2O: 5-10 mass%, ZnO: 30-40 mass%, B2O3: 40-50 mass% composition example, (A3) SiO2 + Na2O: 45 mass% or less, ZnO: 20-30 mass%, Composition example of BaO: 1 to 10 mass%, B2O3: 20 to 30 mass%, Al2O3: 1 to 10 mass% (A4) SiO2: 5 to 25 mass%, SnO: 1 to 10 mass%, ZnO: 30 to 55 wt%, BaO: 1-10 wt%, CaO: 1 to 10 wt%, B2 O3: 20 to 30 wt%, Al2 O3: 1 to 10 mass%, K 2 O: illustrated and 1 to 10 mass% of the composition example To do Kill.
Next, the high-strength and low-loss composite soft magnetic material is obtained by firing the molded body in a non-oxidizing atmosphere such as a nitrogen atmosphere, preferably at 300 ° C. to 1000 ° C., for example, 650 ° C. for several tens of minutes, for example, about 30 minutes. Form.

図2は、Mg含有絶縁物被覆軟磁性材を製造する場合において、原料を準備するための最初の工程から、最終処理するまでの工程順の一例を記載したもので、図2の工程S1において用意した原料としての軟磁性合金粉末の原料(例えば純鉄粉末)を工程S2において前酸化して表面酸化し、工程S3においてMgを蒸着し、工程S4において別途用意した低融点ガラス原料粉末(粒子)1及びナノフィラー2と混合した後、工程S5において乾燥し、工程S6において目的の形状に成形し、工程S7において焼成処理することにより、先に説明した如く本発明に係る高強度低損失複合軟磁性材を得ることができる。
なお、前述の混合を行う工程S4においては、1つの例として、低融点ガラス原料混合粉末1とナノフィラー2をエタノールなどの有機溶媒中において超音波振動を付加してエタノール中に均一分散し、この有機溶媒中に前述のMg−Fe−O三元系酸化物堆積膜を形成した絶縁被覆軟磁性粒子を投入し、この後の工程S5において乾燥する方法でも良いし、前述のMg−Fe−O三元系酸化物堆積膜を形成した絶縁被覆軟磁性粒子と低融点ガラス原料混合粉末1とナノフィラー2を直接混合しても良い。なお、このような乾式で直接混合する方法を採用する場合、工程S5の加熱し乾燥する工程は必要がない。
以上説明した工程S1〜S7において選択するべき各種の条件は前述した条件、あるいは後述する条件が好ましい。
FIG. 2 shows an example of the order of steps from the first step for preparing the raw material to the final processing in the case of manufacturing the Mg-containing insulator-coated soft magnetic material. In step S1 of FIG. The raw material of the soft magnetic alloy powder (for example, pure iron powder) as the prepared raw material is pre-oxidized and surface oxidized in step S2, Mg is vapor-deposited in step S3, and low melting point glass raw material powder (particles separately prepared in step S4) ) After mixing with 1 and nanofiller 2, it is dried in step S5, formed into the desired shape in step S6, and fired in step S7, so that the high-strength low-loss composite according to the present invention as described above A soft magnetic material can be obtained.
In step S4 in which the above mixing is performed, as an example, the low-melting glass raw material mixed powder 1 and the nanofiller 2 are uniformly dispersed in ethanol by applying ultrasonic vibration in an organic solvent such as ethanol. Insulating coated soft magnetic particles in which the above Mg—Fe—O ternary oxide deposited film is formed in this organic solvent may be introduced and dried in the subsequent step S5. Alternatively, the Mg—Fe— The insulating coating soft magnetic particles on which the O ternary oxide deposited film is formed, the low melting glass raw material mixed powder 1 and the nanofiller 2 may be directly mixed. In addition, when employ | adopting the method of mixing directly by such a dry type, the process of heating and drying of process S5 is unnecessary.
The various conditions to be selected in the above-described steps S1 to S7 are preferably the conditions described above or the conditions described later.

以上説明のS6工程においてMg含有絶縁物被覆軟磁性粒子とその周囲に存在する低融点ガラス原料混合粉末及びナノフィラーとを金型等を用いて圧密すると、目的の形状の成形体を得ることができる。なお、圧密時にMg含有絶縁皮膜(Mg−Fe−O三元系酸化物堆積膜)の損傷をできるだけ防止する目的で、Mg−Fe−O三元系酸化物堆積膜の膜厚が5nm〜200nmの範囲内にあり、低融点ガラスの原料混合粉末(粒子)として2〜200nm程度の原料粉末であり、ナノフィラーとして2〜200nm程度の原料である場合、Mg−Fe−O三元系酸化物堆積膜の膜厚に対して低融点ガラスの原料混合粉末およびナノフィラーの粒径を小さいものとすることが好ましい。
これは、圧密時に必然的にMg−Fe−O三元系酸化物堆積膜に対して低融点ガラスの原料混合粉末が押し付けられるので、物理的にMg−Fe−O三元系酸化物堆積膜が損傷するのを低減するためである。この関係を外れてMg−Fe−O三元系酸化物堆積膜の膜厚より大きい低融点ガラス原料粉末あるいはナノフィラーを用いると、圧密時にMg−Fe−O三元系酸化物堆積膜の損傷により、損傷部位で軟磁性粒子同士が接触し、導通が引き起こされることで、最終的に得られた複合軟磁性材の比抵抗値が低下する。また、この関係を外れてMg−Fe−O三元系酸化物堆積膜の膜厚より小さい低融点ガラス原料粉末を用意しようとしても、粉末粒径が小さくなり過ぎて製造時のハンドリングに支障を来すおそれが高い。
When the Mg-containing insulator-coated soft magnetic particles and the low-melting-point glass raw material mixed powder and nanofiller existing around the Mg-containing insulator-coated soft magnetic particles in the above-described step S6 are compacted using a mold or the like, a molded body having a desired shape can be obtained. it can. The thickness of the Mg—Fe—O ternary oxide deposited film is 5 nm to 200 nm for the purpose of preventing damage to the Mg-containing insulating film (Mg—Fe—O ternary oxide deposited film) as much as possible during consolidation. When the raw material powder (particles) of the low-melting glass is about 2 to 200 nm and the nanofiller is about 2 to 200 nm, the Mg—Fe—O ternary oxide It is preferable to make the particle size of the raw material mixed powder of the low melting point glass and the nano filler smaller than the film thickness of the deposited film.
This is because the raw material mixed powder of the low melting point glass is inevitably pressed against the Mg—Fe—O ternary oxide deposited film during consolidation, so that the Mg—Fe—O ternary oxide deposited film physically This is to reduce the damage to the surface. If a low melting glass raw material powder or nanofiller larger than the film thickness of the Mg-Fe-O ternary oxide deposited film is removed from this relationship, the Mg-Fe-O ternary oxide deposited film is damaged during consolidation. As a result, the soft magnetic particles come into contact with each other at the damaged site to cause conduction, so that the specific resistance value of the finally obtained composite soft magnetic material is lowered. Further, even if it is attempted to prepare a low melting point glass raw material powder having a thickness smaller than that of the Mg—Fe—O ternary oxide deposited film by deviating from this relationship, the powder particle size becomes too small, which hinders handling during production. There is a high risk of coming.

以上説明の方法により得られた高強度低損失複合軟磁性材Aは、前記複数のMg含有絶縁物被覆軟磁性粒子5Aの結合が、前記軟磁性粒子本体5と該軟磁性粒子本体5の表面に被覆されたMg含有絶縁皮膜(Mg含有酸化物皮膜)6とを具備してなるMg含有絶縁物被覆軟磁性粒子5Aを介してなされたものであり、前述のナノオーダーの低融点ガラス原料混合粉末及びナノフィラーを混合し、圧密して焼成することによりナノフィラーを分散した低融点ガラス層からなる境界層8が得られた材料であり、しかも、Mg含有絶縁皮膜6で軟磁性粒子本体5が十分に被覆されているので、高い比抵抗が得られる。
従って例えば、図1に示す如く、Mg含有絶縁物被覆軟磁性粒子5A、5Aの間に存在するナノフィラー4入りの低融点ガラスからなる境界層8が実質的に全てのMg含有絶縁物被覆軟磁性粒子間に可能な限り均一に分散されて境界層8とされるとともに、各Mg含有絶縁物被覆軟磁性粒子本体5の表面にMg含有絶縁皮膜6が必要充分な厚さで存在するので、高強度かつ高比抵抗で低損失のものが得られる。これは、ナノオーダーの微細な低融点ガラスの原料混合粉末7軟化もしくは溶融する際に各元素がMg含有絶縁物被覆軟磁性粒子の周囲に容易に流動して組成比が均一であり、かつ、ナノフィラー4が均一分散した境界層8が生成するためであり、かつ、Mg−Fe−O三元系酸化物堆積膜の膜厚に対して十分に小さな粒径の低融点ガラス原料混合粉末及びナノフィラーを用いたことにより、圧密時にMg−Fe−O三元系酸化物堆積膜の損傷が少なく、十分な膜厚で軟磁性粒子本体5が被覆されているためである。
The high-strength, low-loss composite soft magnetic material A obtained by the method described above has a combination of the plurality of Mg-containing insulator-coated soft magnetic particles 5A so that the soft magnetic particle main body 5 and the surface of the soft magnetic particle main body 5 The Mg-containing insulator-coated soft magnetic particles 5A including the Mg-containing insulating film (Mg-containing oxide film) 6 coated on the nano-order low-melting-point glass raw material mixture described above It is a material obtained by mixing the powder and the nanofiller, compacting and firing, and thereby obtaining the boundary layer 8 composed of the low melting point glass layer in which the nanofiller is dispersed, and the soft magnetic particle body 5 with the Mg-containing insulating film 6 Is sufficiently covered, a high specific resistance can be obtained.
Therefore, for example, as shown in FIG. 1, the boundary layer 8 made of low-melting glass containing nanofillers 4 existing between the Mg-containing insulator-coated soft magnetic particles 5A and 5A has substantially all of the Mg-containing insulator-coated soft magnetic particles 5A and 5A. Since the boundary layer 8 is dispersed as uniformly as possible between the magnetic particles, and the Mg-containing insulating coating 6 exists on the surface of each Mg-containing insulator-coated soft magnetic particle body 5 in a necessary and sufficient thickness, High strength, high specific resistance and low loss are obtained. This is because when the nano-order fine low melting point glass raw material mixed powder 7 is softened or melted, each element easily flows around the Mg-containing insulator-coated soft magnetic particles, the composition ratio is uniform, and This is because the boundary layer 8 in which the nanofiller 4 is uniformly dispersed is formed, and the low melting point glass raw material mixed powder having a sufficiently small particle size with respect to the thickness of the Mg—Fe—O ternary oxide deposited film and This is because the use of the nanofiller causes less damage to the Mg—Fe—O ternary oxide deposited film during consolidation and covers the soft magnetic particle body 5 with a sufficient film thickness.

また、ナノフィラーを添加することで、圧粉成形後の焼成時に低融点ガラスが軟化もしくは溶融する際、ナノフィラーが絶縁皮膜同士の間に入ることで、絶縁皮膜被覆軟磁性粒子同士が接近し接触することを防止できる。この結果、絶縁被膜が損傷されることで、損傷部位での軟磁性粒子同士の接触により引き起こされる導通を原因とする比抵抗の低下を防止でき、高強度性との両立を図ることができる。   In addition, by adding nanofillers, when the low melting point glass is softened or melted during firing after compacting, the nanofiller enters between the insulating films, so that the insulating coating-coated soft magnetic particles approach each other. Contact can be prevented. As a result, the insulating coating is damaged, so that it is possible to prevent a decrease in specific resistance caused by conduction caused by the contact of the soft magnetic particles at the damaged site, and to achieve both high strength and compatibility.

また、以上の製造方法により得られた高強度低損失複合軟磁性材は、高密度、高強度、高比抵抗、低損失および高磁束密度を有し、この高比抵抗低損失複合軟磁性材は、高磁束密度で高周波低鉄損の特徴を有する事から、この特徴を生かした各種電磁気回路部品の材料として使用できる。
また、以上の製造方法により得られた高強度低損失複合軟磁性材にあっては、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜と、その界面に存在するナノフィラー入りの低融点ガラスの均一性に優れた境界層を備えているので、特にMg含有絶縁物被覆軟磁性粒子同士の粒子接合が良好になされ、かつ、粒子個々の絶縁被覆が十分になされていて、強度が高く、比抵抗の高い、渦電流損失の少ない、低鉄損失の軟磁気特性に優れた高強度低損失複合軟磁性材を得ることができる。
Moreover, the high-strength low-loss composite soft magnetic material obtained by the above manufacturing method has high density, high strength, high specific resistance, low loss, and high magnetic flux density. Since it has the characteristics of high magnetic flux density and high frequency and low iron loss, it can be used as a material for various electromagnetic circuit components utilizing this characteristic.
Further, in the high-strength low-loss composite soft magnetic material obtained by the above manufacturing method, the Mg-Fe-O ternary oxide deposited film containing (Mg, Fe) O exists at the interface thereof. Since it has a boundary layer with excellent uniformity of low melting point glass containing nanofillers, especially the Mg-containing insulator-coated soft magnetic particles are well-bonded, and the individual insulation coating of the particles is sufficient. Therefore, it is possible to obtain a high-strength, low-loss composite soft magnetic material having high strength, high specific resistance, low eddy current loss, and excellent soft magnetic characteristics with low iron loss.

なお、軟磁性粒子の表面に被覆する絶縁皮膜は先のMg−Fe−O三元系酸化物堆積膜に限るものではなく、リン酸塩皮膜、酸化ケイ素皮膜、酸化アルミニウム皮膜等であっても良く、前述の望ましい膜厚とすることで、十分に小さな粒径の低融点ガラス原料混合粉末との混合圧密時に絶縁皮膜の損傷を低減することができ、同等の作用効果を得ることができる。   The insulating film to be coated on the surface of the soft magnetic particles is not limited to the Mg-Fe-O ternary oxide deposited film, but may be a phosphate film, a silicon oxide film, an aluminum oxide film, etc. Well, by setting the desired film thickness as described above, it is possible to reduce damage to the insulating film at the time of mixing and compacting with a low melting point glass raw material mixed powder having a sufficiently small particle diameter, and an equivalent effect can be obtained.

平均粒径100μmの軟磁性粒子(純鉄粉末)に対して大気中250℃にて加熱処理を0〜60分間行った。ここでMgO膜は前段の250℃大気中加熱処理で生成される酸化膜厚に比例するので、Mgの添加量は必要最小限度で良く、鉄粉に対して0.3質量%のMg粉末を配合し、この配合粉末を0.1Paの真空雰囲気中、バッチ式回転キルンによって転動させながら650℃に加熱することによりMg−Fe−O三元系酸化物堆積膜被覆軟磁性粒子(Mg含有絶縁物被覆軟磁性粒子)を作製した。
このMg含有絶縁物被覆軟磁性粒子の外周面に形成されている(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜の膜厚は、前述の大気中加熱処理で生成される酸化膜厚に比例するので、膜厚20〜200nmのものを試験試料として用いた。
Heat treatment was performed for 0 to 60 minutes at 250 ° C. in the air on soft magnetic particles (pure iron powder) having an average particle size of 100 μm. Here, since the MgO film is proportional to the oxide film thickness generated by the heat treatment at 250 ° C. in the previous stage, the addition amount of Mg may be the minimum necessary, and 0.3% by mass of Mg powder with respect to the iron powder. The blended powder was heated to 650 ° C. while being rolled by a batch rotary kiln in a vacuum atmosphere of 0.1 Pa, so that the Mg—Fe—O ternary oxide deposited film-coated soft magnetic particles (Mg containing Insulator-coated soft magnetic particles) were prepared.
The film thickness of the Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O formed on the outer peripheral surface of the Mg-containing insulator-coated soft magnetic particle is generated by the above-described heat treatment in the atmosphere. Since the film thickness is proportional to the oxide film thickness, a film having a film thickness of 20 to 200 nm was used as a test sample.

次に表2に示す各組成比であって、表1に示す各平均粒径の低融点ガラス用の原料粉末試料1〜6を用い、これらの原料粉末を適宜使用し、CuOフィラー(平均粒径48nm)またはZnOフィラー(平均粒径30nm)を混合してMg含有絶縁物被覆軟磁性粒子とともにエタノール中に10g/cmの割合で投入し、超音波加振器により均一分散させた後、加熱してエタノールを蒸発させることで、Mg含有絶縁物被覆軟磁性粒子の表面に前述の各組成比の低融点ガラスの原料粉末とCuOフィラーもしくはZnOフィラーを付着させた混合粉末を得た。
次に表1に示す成形圧力で圧密し、表3に示す如く窒素雰囲気中、650℃にて0.5時間焼成し、目的の軟磁性複合圧密焼成材を得た。
得られた軟磁性複合圧密焼成材の各試料の抗折強度(MPa)、比抵抗(μΩ・m)、密度(Mg/m)、10kA/mにおける磁束密度(T)、1.0T・400Hzにおけるコアロス(W/kg)の値を測定した結果を表3に示す。
Next, it is each composition ratio shown in Table 2, Comprising: Using the raw material powder samples 1-6 for low melting glass of each average particle diameter shown in Table 1, these raw material powders are used suitably, CuO filler (average particle size) 48 nm) or ZnO filler (average particle diameter 30 nm) and mixed with Mg-containing insulator-coated soft magnetic particles at a rate of 10 g / cm 3 in ethanol, and uniformly dispersed by an ultrasonic vibrator, By heating and evaporating ethanol, a mixed powder was obtained in which the raw material powder of the low melting point glass and the CuO filler or ZnO filler having the above composition ratios were adhered to the surface of the Mg-containing insulator-coated soft magnetic particles.
Next, it compacted with the shaping | molding pressure shown in Table 1, and baked at 650 degreeC in nitrogen atmosphere for 0.5 hour as shown in Table 3, and obtained the target soft-magnetic composite compacted fired material.
Fracture strength (MPa), specific resistance (μΩ · m), density (Mg / m 3 ), magnetic flux density at 10 kA / m (T), 1.0 T · Table 3 shows the results of measuring the core loss (W / kg) value at 400 Hz.

「比較例」
比較のために、表2に示す各組成比であって、表1に示す各平均粒径の低融点ガラス用の原料粉末試料7〜12を適宜使用して、CuOフィラーまたはZnOフィラーと混合し、Mg含有絶縁物被覆軟磁性粒子とともにエタノール中に10g/cmの割合で投入し、超音波加振器により均一分散させた後、加熱してエタノールを蒸発させることで、Mg含有絶縁物被覆軟磁性粒子の表面に前述の各組成比の低融点ガラスの原料粉末を付着させた混合粉末を得た。
次に表1に示す成形圧力で圧密し、表3に示す如く窒素雰囲気中、650℃にて0.5時間焼成し、目的の軟磁性複合圧密焼成材を得た。
"Comparative example"
For comparison, the composition ratios shown in Table 2 were mixed with CuO filler or ZnO filler using the raw material powder samples 7 to 12 for low melting point glass having the average particle diameter shown in Table 1 as appropriate. Mg-containing insulator coating Soft magnetic particles and 10 g / cm 3 in ethanol, uniformly dispersed by an ultrasonic vibrator, and heated to evaporate ethanol, Mg-containing insulator coating A mixed powder was obtained in which the raw material powder of the low melting point glass having the above-described composition ratio was adhered to the surface of the soft magnetic particles.
Next, it compacted with the shaping | molding pressure shown in Table 1, and baked at 650 degreeC in nitrogen atmosphere for 0.5 hour as shown in Table 3, and obtained the target soft-magnetic composite compacted fired material.

「従来例」
Mg含有絶縁物被覆軟磁性粒子を成形圧力:790MPaで圧密し、表3に示す如く窒素雰囲気中、650℃にて0.5時間焼成し、前記低融点ガラス用の原料混合粉末無添加の軟磁性複合圧密焼成材を得た。
従来例および比較例で得られた軟磁性複合圧密焼成材の各試料の抗折強度(MPa)、比抵抗(μΩ・m)、密度(Mg/m)、10kA/mにおける磁束密度(T)、1T・400Hzにおけるコアロス(W/kg)の値を測定した結果を表3に示す。
"Conventional example"
The Mg-containing insulator-coated soft magnetic particles are compacted at a molding pressure of 790 MPa, and fired at 650 ° C. for 0.5 hours in a nitrogen atmosphere as shown in Table 3. A magnetic composite compacted fired material was obtained.
Fracture strength (MPa), specific resistance (μΩ · m), density (Mg / m 3 ), magnetic flux density at 10 kA / m (T) of each sample of the soft magnetic composite compacted fired material obtained in the conventional example and the comparative example ) The results of measuring the core loss (W / kg) value at 1T · 400 Hz are shown in Table 3.

次に、表3のNo.3の試料について、2つの隣接するMg含有絶縁物被覆軟磁性粒子とそれらの間に存在する境界層部分を断面とした組織写真を図3に示す。図3の組織写真において、左斜め上側から右斜め下側の方向に延在する溝状の部分が境界層を示している。また、図3に示す如く境界層の内部に溶融していないナノフィラーが分散していることを確認することができた。   Next, with respect to the sample No. 3 in Table 3, FIG. 3 shows a structure photograph in which the cross-section of two adjacent Mg-containing insulator-coated soft magnetic particles and the boundary layer portion existing between them is shown. In the structure photograph of FIG. 3, a groove-like portion extending from the upper left diagonal direction to the lower right diagonal side indicates the boundary layer. Further, as shown in FIG. 3, it was confirmed that the non-melted nanofiller was dispersed inside the boundary layer.

表3に示す結果から、従来例および比較例に比べ抗折強度が高く、比抵抗が高く、密度が同等か若干高く、磁束密度が同等か若干高く、鉄損が少ない優れた高強度高比抵抗低損失複合軟磁性材を得られることが判明した。また、低融点ガラスの原料粉末の粒径の好ましい範囲は5〜200nmの範囲であるが、具体的に19〜135nmの範囲で良好な特性が得られ、より好ましい範囲は、5〜100nmの範囲であるが、具体的に19〜31nmの範囲ならば、比抵抗がより高く、鉄損がより小さいことがわかった。   From the results shown in Table 3, the high bending strength is higher than that of the conventional example and the comparative example, the specific resistance is high, the density is the same or slightly higher, the magnetic flux density is the same or slightly higher, and the excellent high strength and high ratio with less iron loss. It was found that a low resistance loss composite soft magnetic material can be obtained. Further, the preferred range of the particle size of the raw powder of the low melting point glass is in the range of 5 to 200 nm. Specifically, good characteristics are obtained in the range of 19 to 135 nm, and the more preferred range is in the range of 5 to 100 nm. However, in the specific range of 19 to 31 nm, it was found that the specific resistance was higher and the iron loss was smaller.

表3においてNo.7〜No.12の試料はいずれも低融点ガラス原料粉末の平均粒径が200nmを超える大きい試料であるが、抗折強度においてNo.7、8、10の試料は実施例の試料より大幅に低く、比抵抗についてはNo.7〜12のいずれの試料においても実施例試料よりも大幅に小さく、鉄損について数値が大幅に増大し、特性が悪化した。また、従来例の試料は、抗折強度が著しく劣化しており、比較例の試料よりも比抵抗は若干高いものの、実施例の試料よりも遙かに低い比抵抗となり、鉄損も大幅に悪化している。
表3に示す対比から、本発明に係るNo.1〜6の試料は、抗折強度が高く、比抵抗値が高く、従って鉄損が少なく、密度も高く磁束密度で示される軟磁気特性においても優秀であることが明らかとなった。
また、表1のNo.13〜15の試料によるとナノフィラーの添加量がMg含有絶縁物被覆軟磁性粒子の質量に対して0.1〜0.4質量%の範囲にあることが望ましく、この範囲を外れると、添加量少ない場合は、圧密成形時のフィラーによる(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜同士の接触を妨げる効果を低下させる問題があり、添加量が多い場合は圧密成形後のMg含有絶縁物被覆軟磁性粒子間の粒界がより広がり、焼成後に硬化したガラス層に空孔がより多くできることで、密度および強度が共に低下する傾向がある。
更に、ナノフィラーの添加量が低融点ガラスに対し、著しく少ない場合は、低融点ガラスのみを添加した構造の特徴に近づくことになる。
In Table 3, the samples No. 7 to No. 12 are all large samples in which the average particle size of the low-melting glass raw material powder exceeds 200 nm. The specific resistance of the samples Nos. 7 to 12 was much smaller than that of the example sample, the numerical value of the iron loss was greatly increased, and the characteristics were deteriorated. In addition, the bending strength of the sample of the conventional example is remarkably deteriorated, and although the specific resistance is slightly higher than that of the sample of the comparative example, the specific resistance is much lower than that of the sample of the example, and the iron loss is greatly increased. It is getting worse.
From the comparison shown in Table 3, the samples No. 1 to 6 according to the present invention have a high bending strength, a high specific resistance value, a low iron loss, a high density, and a soft magnetic property indicated by a magnetic flux density. Was also found to be excellent.
In addition, according to the samples Nos. 13 to 15 in Table 1, the addition amount of the nano filler is desirably in the range of 0.1 to 0.4% by mass with respect to the mass of the Mg-containing insulator-coated soft magnetic particles, Outside this range, if the addition amount is small, there is a problem of reducing the effect of preventing the contact between the Mg—Fe—O ternary oxide deposited films containing (Mg, Fe) O by the filler during compaction molding. When the amount added is large, the grain boundary between the Mg-containing insulator-coated soft magnetic particles after compaction forming becomes wider, and the glass layer hardened after firing tends to have more voids, which tends to decrease both density and strength. There is.
Furthermore, when the addition amount of the nanofiller is remarkably small with respect to the low-melting glass, it approaches the characteristics of the structure in which only the low-melting glass is added.

次に図4〜図8は、図3に示す試料について、組織写真と同じ位置を元素分析した結果を示す。図4はO(酸素)の分布図、図5はMg(マグネシウム)の分布図、図6はFe(鉄)の分布図、図7はCu(銅)の分布図、図8は表1のNo.3の試料におけるZn(亜鉛)の分布図である。
これらの図から、境界層の部分にFeの存在割合が少なく、低融点ガラスの主成分に由来するO、Znと、フィラーの成分に由来するCuとMg−Fe−O三元系酸化物堆積膜の主成分に由来するMgとが境界層に存在し、境界層に確実に低融点ガラスが生成し、ナノフィラーが多数凝集しつつ広い領域に分布していることを確認することができた。また、Cuの分布を示す図7の分布状態から、CuOナノフィラーが低融点ガラスの境界層に単独又は凝集しながら多数存在している(図7の粒界層に存在する灰色の複数の粒子部分)ことを確認できた。
また、低融点ガラス成分中のZnの分布を示す図8の分布状態から、ガラス層が軟磁性粒子間の粒界に存在することを確認できた。
Next, FIGS. 4 to 8 show the results of elemental analysis of the sample shown in FIG. 4 is a distribution diagram of O (oxygen), FIG. 5 is a distribution diagram of Mg (magnesium), FIG. 6 is a distribution diagram of Fe (iron), FIG. 7 is a distribution diagram of Cu (copper), and FIG. It is a distribution map of Zn (zinc) in the sample of No.3.
From these figures, the presence of Fe in the boundary layer is small, O and Zn derived from the main components of the low-melting glass, and Cu and Mg—Fe—O ternary oxide deposits derived from the filler components. It was confirmed that Mg derived from the main component of the film was present in the boundary layer, a low-melting glass was reliably generated in the boundary layer, and a large number of nanofillers were aggregated and distributed over a wide area. . Further, from the distribution state of FIG. 7 showing the distribution of Cu, a large number of CuO nanofillers are present in the boundary layer of the low-melting-point glass alone or aggregated (a plurality of gray particles existing in the grain boundary layer of FIG. 7). Part) was confirmed.
Moreover, it has confirmed that the glass layer existed in the grain boundary between soft-magnetic particles from the distribution state of FIG. 8 which shows distribution of Zn in a low melting glass component.

本発明による高強度高比抵抗低損失複合軟磁性材は、電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品へ適用ができる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化を推進できる。
The high-strength, high-resistivity, low-loss composite soft magnetic material according to the present invention includes, for example, a magnetic core, an electric motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, or a magnetic sensor core. And can be applied to electromagnetic circuit components that can exhibit excellent characteristics.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. Increase performance and reduce size and weight.

A…高強度高比抵抗複合軟磁性材、4…ナノフィラー、5…Mg含有絶縁物被覆軟磁性粒子本体、5A…Mg含有絶縁物被覆軟磁性粒子、6…Mg含有絶縁皮膜(Mg−Fe−O三元系酸化物堆積膜)、8…境界層。   A ... high strength high specific resistance composite soft magnetic material, 4 ... nano filler, 5 ... Mg-containing insulator-coated soft magnetic particle body, 5A ... Mg-containing insulator-coated soft magnetic particle, 6 ... Mg-containing insulating film (Mg-Fe -O ternary oxide deposited film), 8 ... boundary layer.

Claims (11)

軟磁性粒子を絶縁皮膜で被覆してなる複数の絶縁被覆軟磁性粒子と低融点ガラスのナノ原料粉末粒子とナノフィラーを混合して圧密し、焼成して得られた高強度低損失複合軟磁性材であって、軟磁性粒子を絶縁皮膜で被覆してなる複数の絶縁被覆軟磁性粒子と、これら絶縁被覆軟磁性粒子同士の粒界に形成されたナノフィラーを備えた低融点ガラスからなる境界層とを備えたことを特徴とする高強度低損失複合軟磁性材。   High-intensity low-loss composite soft magnetism obtained by mixing, sintering and firing a mixture of soft magnetic particles coated with a soft magnetic particle, a plurality of insulating coated soft magnetic particles, low-melting glass nano raw material powder particles, and nanofillers Boundary made of a low-melting glass comprising a plurality of insulating coated soft magnetic particles formed by coating soft magnetic particles with an insulating coating, and a nanofiller formed at a grain boundary between the insulating coated soft magnetic particles. A high-strength, low-loss composite soft magnetic material characterized by comprising a layer. 前記絶縁被覆軟磁性粒子の絶縁皮膜の厚さが5〜200nmの範囲とされてなることを特徴とする請求項1に記載の高強度低損失複合軟磁性材。   2. The high-strength low-loss composite soft magnetic material according to claim 1, wherein a thickness of the insulating coating of the insulating coating soft magnetic particles is in a range of 5 to 200 nm. 前記軟磁性粒子の平均粒径が5〜500μmの範囲とされてなることを特徴とする請求項1または2に記載の高強度低損失複合軟磁性材。   3. The high-strength, low-loss composite soft magnetic material according to claim 1, wherein an average particle diameter of the soft magnetic particles is in a range of 5 to 500 μm. 前記絶縁被覆軟磁性粒子の絶縁皮膜が、(Mg、Fe)Oを主体としてなるMg含有絶縁皮膜であることを特徴とする請求項1〜3のいずれか1項に記載の高強度低損失複合軟磁性材。   The high-strength, low-loss composite according to any one of claims 1 to 3, wherein the insulating coating of the insulating coating soft magnetic particles is an Mg-containing insulating coating mainly composed of (Mg, Fe) O. Soft magnetic material. 前記低融点ガラスが、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上であることを特徴とする請求項1〜4のいずれか1項に記載の高強度低損失複合軟磁性材。   The low-melting glass is at least one of SiO2-B2O3-Na2O-based, Na2O-B2O3-ZnO-based, SiO2-B2O3-ZnO-based, and SiO2-B2O3-Li2O-based glasses. The high-strength low-loss composite soft magnetic material according to any one of 1 to 4. 前記ナノフィラーが、CuO、ZnO、CoO、MgO、SiOの少なくとも1種からなることを特徴とする請求項1〜5のいずれか1項に記載の高強度低損失複合軟磁性材。 The nanofiller, CuO, ZnO, CoO, MgO , high strength low loss composite soft magnetic material according to claim 1, characterized in that it consists of at least one of SiO 2. 請求項1〜6のいずれかに記載の高強度低損失複合軟磁性材からなることを特徴とする電磁気回路部品。   An electromagnetic circuit component comprising the high-strength low-loss composite soft magnetic material according to any one of claims 1 to 6. 軟磁性粒子を絶縁皮膜で被覆してなる複数の絶縁被覆軟磁性粒子と低融点ガラスの原料粉末粒子とナノフィラーを混合して圧密し、焼成することにより、絶縁被覆軟磁性粒子同士の粒界に、低融点ガラスの境界層を形成するとともに、ナノフィラーを溶融せずに残存させることを特徴とする高強度低損失複合軟磁性材の製造方法。   Grain boundaries between insulating coated soft magnetic particles by mixing a plurality of insulating coated soft magnetic particles formed by coating soft magnetic particles with an insulating film, raw powder particles of low-melting glass, and nanofillers, and compacting and firing. In addition, a method for producing a high-strength low-loss composite soft magnetic material is characterized in that a boundary layer of low-melting glass is formed and the nanofiller is left without melting. 絶縁皮膜として(Mg、Fe)Oを主体としてなるMg含有絶縁皮膜を備えた絶縁被覆軟磁性粒子を用いることを特徴とする請求項8に記載の高強度低損失複合軟磁性材の製造方法。   9. The method for producing a high-strength, low-loss composite soft magnetic material according to claim 8, wherein the insulating coated soft magnetic particles having an Mg-containing insulating film mainly composed of (Mg, Fe) O are used as the insulating film. 低融点ガラスとして、SiO2−B2O3−Na2O系、Na2O−B2O3−ZnO系、SiO2−B2O3−ZnO系、SiO2−B2O3−Li2O系ガラスのうち、少なくとも1種類以上を用いることを特徴とする請求項7または8に記載の高強度低損失複合軟磁性材の製造方法。   8. The low melting point glass is characterized by using at least one of SiO2-B2O3-Na2O-based, Na2O-B2O3-ZnO-based, SiO2-B2O3-ZnO-based, and SiO2-B2O3-Li2O-based glasses. Or 9. A method for producing a high-strength, low-loss composite soft magnetic material according to 8. 前記ナノフィラーとして、CuO、ZnO、CoO、MgO、SiOの少なくとも1種以上を用いることを特徴とする請求項8〜10のいずれか1項に記載の高強度低損失複合軟磁性材。 11. The high-strength low-loss composite soft magnetic material according to claim 8, wherein at least one of CuO, ZnO, CoO, MgO, and SiO 2 is used as the nanofiller.
JP2009085228A 2009-03-31 2009-03-31 High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts Withdrawn JP2010236018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085228A JP2010236018A (en) 2009-03-31 2009-03-31 High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085228A JP2010236018A (en) 2009-03-31 2009-03-31 High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts

Publications (1)

Publication Number Publication Date
JP2010236018A true JP2010236018A (en) 2010-10-21

Family

ID=43090622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085228A Withdrawn JP2010236018A (en) 2009-03-31 2009-03-31 High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts

Country Status (1)

Country Link
JP (1) JP2010236018A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230948A (en) * 2011-04-25 2012-11-22 Toyota Central R&D Labs Inc Powder for magnetic core, dust core, and method of manufacturing the same
KR20150021951A (en) * 2012-08-10 2015-03-03 가부시키가이샤 무라타 세이사쿠쇼 Magnetic material composition and coil component
CN110211760A (en) * 2018-02-28 2019-09-06 精工爱普生株式会社 Insulant coats soft magnetic powder and its manufacturing method, compressed-core
WO2019182519A1 (en) * 2018-03-22 2019-09-26 Agency For Science, Technology And Research Soft magnetic composites
CN111863378A (en) * 2020-07-28 2020-10-30 安徽智磁新材料科技有限公司 Soft magnetic particle film with high-temperature magnetic stability and preparation method thereof
US11289254B2 (en) 2018-04-27 2022-03-29 Seiko Epson Corporation Insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230948A (en) * 2011-04-25 2012-11-22 Toyota Central R&D Labs Inc Powder for magnetic core, dust core, and method of manufacturing the same
KR20150021951A (en) * 2012-08-10 2015-03-03 가부시키가이샤 무라타 세이사쿠쇼 Magnetic material composition and coil component
US20150099115A1 (en) * 2012-08-10 2015-04-09 Murata Manufacturing Co., Ltd. Magnetic material composition and coil component
KR101688299B1 (en) * 2012-08-10 2016-12-20 가부시키가이샤 무라타 세이사쿠쇼 Magnetic material composition and coil component
JP7124342B2 (en) 2018-02-28 2022-08-24 セイコーエプソン株式会社 Insulator-coated soft magnetic powder, method for producing insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device and moving object
CN110211760A (en) * 2018-02-28 2019-09-06 精工爱普生株式会社 Insulant coats soft magnetic powder and its manufacturing method, compressed-core
JP2019151868A (en) * 2018-02-28 2019-09-12 セイコーエプソン株式会社 Insulator-coated soft-magnetic powder, insulator-coated soft-magnetic powder producing method, powder magnetic core, magnetic element, electronic apparatus and movable body
CN110211760B (en) * 2018-02-28 2024-01-02 精工爱普生株式会社 Soft magnetic powder coated with insulator, method for producing same, and compressed magnetic core
US11456098B2 (en) 2018-02-28 2022-09-27 Seiko Epson Corporation Insulator-coated soft magnetic powder, method for producing insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle
WO2019182519A1 (en) * 2018-03-22 2019-09-26 Agency For Science, Technology And Research Soft magnetic composites
US11289254B2 (en) 2018-04-27 2022-03-29 Seiko Epson Corporation Insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle
CN111863378B (en) * 2020-07-28 2021-09-24 安徽智磁新材料科技有限公司 Soft magnetic particle film with high-temperature magnetic stability and preparation method thereof
CN111863378A (en) * 2020-07-28 2020-10-30 安徽智磁新材料科技有限公司 Soft magnetic particle film with high-temperature magnetic stability and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009130286A (en) Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component
US9773597B2 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
JP2010238914A (en) Method of producing high strength low loss composite soft magnetic material, and high strength low loss composite soft magnetic material
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
CN104919546B (en) For producing the method for permanent magnet and permanent magnet
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP6048378B2 (en) Powder magnetic core, powder for magnetic core, and production method thereof
JP5263653B2 (en) Powder magnetic core and manufacturing method thereof
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
WO2007077689A1 (en) Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
JP2011181624A (en) High-strength, high-specific-resistance composite soft magnetic material, electromagnetic circuit component, and method of manufacturing high-strength, high-specific-resistance composite soft magnetic material
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
CN107396630B (en) Method for producing soft magnetic bodies
JP2018073996A (en) Soft magnetic material, powder-compact magnetic core arranged by use thereof, and method for manufacturing powder-compact magnetic core

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605