WO2006042673A1 - Fliessfähige polyoxymethylene - Google Patents

Fliessfähige polyoxymethylene Download PDF

Info

Publication number
WO2006042673A1
WO2006042673A1 PCT/EP2005/010954 EP2005010954W WO2006042673A1 WO 2006042673 A1 WO2006042673 A1 WO 2006042673A1 EP 2005010954 W EP2005010954 W EP 2005010954W WO 2006042673 A1 WO2006042673 A1 WO 2006042673A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
groups
component
weight
reaction
Prior art date
Application number
PCT/EP2005/010954
Other languages
English (en)
French (fr)
Inventor
Peter Eibeck
Bernd Bruchmann
Andreas Eipper
Jean-Francois Stumbe
Melanie Urtel
Wolfgang Sauerer
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP05802200A priority Critical patent/EP1805247A1/de
Priority to US11/577,587 priority patent/US20080045668A1/en
Priority to JP2007537163A priority patent/JP2008517114A/ja
Publication of WO2006042673A1 publication Critical patent/WO2006042673A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/04Copolyoxymethylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • C08G64/0216Aliphatic polycarbonates saturated containing a chain-terminating or -crosslinking agent

Definitions

  • thermoplastic molding compositions comprising
  • the invention relates to the use of the molding compositions according to the invention for the production of fibers, films and moldings of any kind, as well as the moldings obtainable in this case.
  • Polycarbonates are usually obtained from the reaction of alcohols with phosgene or from the transesterification of alcohols or phenols with dialkyl or diaryl carbonates.
  • aromatic polycarbonates which are produced for example from bisphenols, aliphatic Poiycarbonate play from the market volume heretofore a minor role. See also Becker / Braun, Kunststoff-Handbuch Bd. 3/1, polycarbonates, polyacetals, polyesters, cellulose esters, Carl Hanser Verlag, Kunststoff 1992, pages 118-119.
  • the aliphatic polycarbonates described are generally linear or else built up with a low degree of branching.
  • US Pat. No. 3,305,605 describes the use of solid linear polycarbonates having a molar mass above 15,000 Da as plasticizer for polyvinyl polymers.
  • Hyperbranched polycarbonates can also be prepared according to WO 98/50453. According to the process described therein, triols are in turn reacted with carbonyl bisimine dazole. Initially, imidazolides are formed, which then react further intermolecularly with the polycarbonates. According to the mentioned method, the polycarbonates are obtained as colorless or pale yellow rubbery products.
  • the hyperbranched products are either high-melting or gum-miartig, thereby a later processability is significantly limited.
  • Imidazole liberated during the reaction must be removed from the reaction mixture in a complicated manner.
  • the reaction products always contain terminal imidazolide groups.
  • Carbonyldiimidazole is a comparatively expensive chemical, which greatly increases the input costs.
  • thermoplastic compositions which contain dendrimeric polyester as AB 2 molecule in a polyester.
  • a polyhydric alcohol reacts as the core molecule with dimethylpropionic acid as AB 2 - molecule to a dendrimeric polyester.
  • a disadvantage of these mixtures is the high glass transition temperature of the dendrimeric polyesters, the comparatively complex preparation and above all the poor solubility of the dendrimers in the polymer matrix.
  • silicone oils e.g. from BE-A 720 658, CA-A 733 567, DE-A 222 868, EP-A 47 529, SU 519 449, JP-A 06/100 758, DE-A 31 511 814.
  • thermoplastic polymethylene molding compositions which have good flowability and at the same time good mechanical properties.
  • the molding compositions according to the invention contain from 10 to 98% by weight, preferably from 30 to 98% by weight and in particular from 40 to 98% by weight, of a polyoxymethylene homo- or copolymer.
  • these polymers have at least 50 mol% of repeating units -CH 2 O- in the main polymer chain.
  • the homopolymers are generally prepared by polymerization of formaldehyde or trioxane, preferably in the presence of suitable catalysts.
  • polyoxymethylene copolymers as component A, in particular those which, in addition to the repeating units -CH 2 O-, are still up to 50, preferably 0.1 to 20, in particular 0.3 to 10, mol% and very particularly preferably Have 0.2 to 2.5 mol% of recurring units,
  • R 1 R 4 wherein R 1 to R 4 are independently a hydrogen atom, a C 1 to C 4 alkyl group or a halogen-substituted alkyl group having 1 to 4 C atoms and R s is a -CH 2 -, CH 2 O-, a C 1 - to C 4 alkyl or C 1 - to C 4 haloalkyl substituted methylene group or a corresponding oxymethylene group and n has a value in the range of 0 to 3.
  • these groups can be introduced into the copolymers by ring opening of cyclic ethers.
  • Preferred cyclic ethers are those of the formula
  • R 1 to R 5 and n have the abovementioned meaning.
  • ethylene oxide, 1, 2-propylene oxide, 1, 2-butylene oxide, 1, 3-butylene oxide, 1, 3-dioxane, 1, 3-dioxolane and 1,3-dioxepane called cyclic ethers and linear oligo- or poly ⁇ Formal as polydioxolane or polydioxepan called comonomers.
  • component A) oxymethylene terpolymers which are used, for example, by reacting trioxane, one of the cyclic ethers described above, with a third monomer, preferably bifunctional compounds of the formula
  • Z is a chemical bond
  • Preferred monomers of this type are ethylene diglycide, diglycidyl ether and diether from glycidylene and formaldehyde, dioxane or trioxane in the molar ratio 2: 1 and diether from 2 mol glycidyl compound and 1 mol of an aliphatic diol having 2 to 8 carbon atoms such as the diglycidyl ethers of ethylene glycol, 1 , 4-butanediol, 1, 3-butanediol, S
  • Cyclobutane-1,3-diol, 1,2-propanediol and cyclohexane-1,4-diol to name just a few examples.
  • the preferred polyoxymethylene copolymers have melting points of at least 160 to 170 ° C. (DSC, ISO 3146) and molecular weights (Mw) in the range of 5,000 to 300,000, preferably 7,000 to 250,000 (GPC, standard PMMA).
  • End-group stabilized polyoxymethylene polymers having C-C bonds at the chain ends are particularly preferred.
  • the molding compositions according to the invention contain from 0.01 to 50, preferably from 0.5 to 20, and in particular from 0.7 to 10,% by weight of B1) at least one highly branched or hyperbranched polycarbonate having an OH number of 1 to 600, preferably 10 to 550 and in particular from 50 to 550 mg KOH / g polycarbonate (according to DIN 53240, Part 2) or at least one hyperbranched polyester as Komponen ⁇ te B2) or mixtures thereof as explained below.
  • Hyperbranched polycarbonates B1) in the context of this invention are understood as meaning uncrosslinked macromolecules having hydroxyl groups and carbonate groups which are structurally as well as molecularly nonuniform. On the one hand, they can be based on a central molecule analogous to dendrimers, but with an uneven chain length of the branches. On the other hand, they can also be constructed linearly with functional side groups or, as a combination of the two extremes, they can have linear and branched molecular parts. For the definition of dendrimeric and hyperbranched polymers see also PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 and H. Frey et al., Chem. Eur. J. 2000, 6, no. 14, 2499.
  • hyperbranched means that the degree of branching (DB), ie the mean number of dendritic linkages plus the average number of end groups per molecule, is 10 to 99.9%, preferably from 20 to 99%, more preferably from 20 to 95%.
  • “Dendrimer” in connection with the present invention means that the degree of branching is 99.9 to 100%.
  • component B1) has a number average molecular weight M n of from 100 to 15,000, preferably from 200 to 12,000 and in particular from 500 to 10,000 g / mol (GPC, standard PMMA).
  • the glass transition temperature Tg is preferably from -80 0 C to -140, preferred wise from -60 to 120 0 C (according to DSC, DIN 53765).
  • the viscosity (mPas) at 23 ° C. is from 50 to 200,000, in particular from 100 to 150,000, and very particularly preferably from 200 to 100,000.
  • the component B1) is preferably obtainable by a process which comprises at least the following steps:
  • the quantitative ratio of the OH groups to the carbonates in the Christs ⁇ mixture is chosen so that the condensation products (K) have on average either a carbonate group and more than one OH group or one OH group and more than one carbonate group.
  • Phosphene, diphosgene or triphosgene can be used as starting material, organic carbonates being preferred.
  • radicals R used as starting material organic carbonates (A) of the general formula RO (CO) OR are each independently a straight-chain or branched aliphatic, aromatic / aliphatic or aromatic hydrocarbon radical having 1 to 20 carbon atoms. The two remainders R can also be connected together to form a ring. It is preferably an aliphatic hydrocarbon radical and particularly preferably a straight-chain or branched alkyl radical having 1 to 5 C atoms, or a substituted or unsubstituted phenyl radical.
  • n is preferably 1 to 3, in particular 1.
  • Dialkyl or diaryl carbonates can be prepared, for example, from the reaction of aliphatic, araliphatic or aromatic alcohols, preferably monoalcohols with phosgene. Furthermore, they can also be prepared via oxidative carbonylation of the alcohols or phenols by means of CO in the presence of noble metals, oxygen or NO x .
  • diaryl or dialkyl carbonates see also "Ullmann 's Encyclopedia of Industrial Chemistry", 6th Edition, 2000 Electronic Release, Verlag Wiley-VCH.
  • suitable carbonates include aliphatic, aromatic / aliphatic or aromatic carbonates such as ethylene carbonate, 1,2- or 1,3-propylene carbonate, diphenyl carbonate, ditolyl carbonate, dixylyl carbonate, dinaphthyl carbonate, ethyl phenyl carbonate, dibenzyl carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, diisobutyl carbonate, dipentyl carbonate, dihexyl carbonate, dicyclohexyl carbonate, diheptyl carbonate, dioctyl carbonate, didecylacarbonate or didodecyl carbonate.
  • aliphatic, aromatic / aliphatic or aromatic carbonates such as ethylene carbonate, 1,2- or 1,3-propylene carbonate, diphenyl carbonate, ditolyl carbonate, dixylyl carbonate, dinaphthyl carbonate, eth
  • Examples of carbonates in which n is greater than 1 include dialkyl dicarbonates such as di (-t-butyl) dicarbonate or dialkyl tricarbonates such as di (-t-butyl tricarbonate).
  • Aliphatic carbonates are preferably used, in particular those in which the radicals comprise 1 to 5 C atoms, for example dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate or diisobutyl carbonate.
  • the organic carbonates are reacted with at least one aliphatic alcohol (B) which has at least 3 OH groups or mixtures of two or more different alcohols.
  • Examples of compounds having at least three OH groups include glycerol, trimethylolmethane, trimethylolethane, trimethylolpropane, 1,2,4-butanetriol, tris (hydroxymethyl) amine, tris (hydroxyethyl) amine, tris (hydroxypropyl) amine, pentaerythritol, Diglycerine, triglycerol, polyglycerols, bis (tri-methylolpropane), tris (hydroxymethyl) isocyanurate, tris (hydroxyethyl) isocyanurate, phloroglucinol ,, trihydroxytoluene, trihydroxydimethylbenzene, phloroglucide, hexahydroxybenzene, 1,3,5-benzenetrimethanol, 1, 1, 1-tris (4'-hydroxyphenyl) methane, 1, 1, 1-tris (4'-hydroxyphenyl) ethane, bis (tri-methylolpropane) or sugars,
  • polyfunctional alcohols can also be used in mixture with difunctional alcohols (B '), with the proviso that the average OH functionality of all the alcohols used together is greater than 2.
  • suitable compounds having two OH groups include ethylene glycol, diethylene glycol, triethylene glycol, 1,2- and 1, 3-propanediol, dipropylene glycol, tripropylene glycol, neopentyl glycol, 1, 2, 1, 3, and 1,4-butanediol, 1, 2-, 1, 3- and 1,5-pentanediol, hexanediol, cyclopentanediol, cyclohexanediol, cyclohexanedimethanol, bis (4-hydroxycyclohexyl) methane, bis (4-hydroxycyclohexyl) ethane, 2,2-bis (4- Hydroxycyclohexyl) propane, 1,1'-bis (4-hydroxyphenyl) -3,3-5-trimethylcyclohexane,
  • the diols serve to finely adjust the properties of the polycarbonate. If di ⁇ functional alcohols are used, the ratio of difunctional Alko ⁇ get B ') to the at least trifunctional alcohols (B) by the skilled person depending on the desired properties of the polycarbonate set.
  • the amount of the alcohol or alcohols (B ') is 0 to 39.9 mol% with respect to the total amount of all alcohols (B) and (B') together.
  • the amount is preferably 0 to 35 mol%, more preferably 0 to 25 mol% and most preferably 0 to 10 mol%.
  • reaction of phosgene, diphosgene or triphosgene with the alcohol or Chrysler ⁇ mixture is usually carried out with elimination of hydrogen chloride, the reaction of the carbonates with the alcohol or alcohol mixture to the invention highly functional shark branched polycarbonate with elimination of the monofunktionel ⁇ len alcohol or phenol from the carbonate molecule.
  • the highly functional highly branched polycarbonates formed by the process according to the invention are terminated after the reaction, ie without further modification, with hydroxyl groups and / or with carbonate groups. They dissolve well in various solvents, for example in water, alcohols, such as methanol, ethanol, butanol, alcohol / water mixtures, acetone, 2-butanone, ethyl acetate, butyl acetate, methoxypropyl acetate, methoxyethyl acetate, tetrahydrofuran, dimethylformamide, di- methylacetamide, N-methylpyrrolidone, ethylene carbonate or propylene carbonate.
  • alcohols such as methanol, ethanol, butanol, alcohol / water mixtures, acetone, 2-butanone, ethyl acetate, butyl acetate, methoxypropyl acetate, methoxyethyl acetate, tetrahydrofuran, dimethylform
  • a highly functional polycarbonate is a product which, in addition to the carbonate groups which form the polymer backbone, also has at least three, preferably at least six, more preferably at least ten functional groups.
  • the functional groups are carbonate groups and / or OH groups.
  • the number of terminal or pendant functional groups is in principle not limited above, but products with a very high number of functional groups may have undesired properties, such as, for example, high viscosity or poor solubility.
  • the high-functionality polycarbonates of the present invention generally have not more than 500 terminal or pendant functional groups, preferably not more than 100 terminal or pendant functional groups.
  • the resulting simplest condensation product (called K in the broader condensation product) is either an average Carbonate group or carbamoyl group and more than one OH group or one OH group and more than one carbonate group or carbamoyl group.
  • the simplest structure of the condensation product (K) from a carbonate (A) and a di- or polyalcohol (B) gives the arrangement XY n or Y n X 1 where X is a carbonate group, Y is a hydroxyl group and n in the Rule represents a number between 1 and 6, preferably between 1 and 4, more preferably between 1 and 3.
  • the reactive group which results as a single group, is referred to hereinafter generally "focal group".
  • condensation product (K) from a carbonate and a trihydric alcohol at a conversion ratio of 1: 1 results in the average molecule of the type XY 2 , illustrated by the general formula 2.
  • Focal group here is a carbonate group.
  • R has the meaning defined above and R 1 is an aliphatic or aromatic radical.
  • condensation product (K) can be carried out, for example, also from a carbonate and a trihydric alcohol, illustrated by the general formula 4, wherein the reaction ratio is at molar 2: 1. This results in the average molecule of type X 2 Y 1 focal group here is an OH group.
  • R and R 1 have the same meaning as in the formulas 1 to 3.
  • difunctional compounds for example a dicarbonate or a diol
  • the result is again on average a molecule of the type XY 2 , focal group is a carbonate group.
  • R 2 is an organic, preferably aliphatic radical, R and R 1 are defined as described above.
  • condensation products (K) it is also possible to use a plurality of condensation products (K) for the synthesis.
  • several alcohols or a plurality of carbonates can be used.
  • mixtures of different condensation products of different structure can be obtained by selecting the ratio of the alcohols used and the carbonates or phosgene. This is exemplified by the example of the reaction of a carbonate with a trihydric alcohol. If the starting materials are used in a ratio of 1: 1, as shown in (II), a molecule of XY 2 is obtained . If the starting materials are used in the ratio 2: 1, as shown in (IV), one obtains a molecule X 2 Y. At a ratio between 1: 1 and 2: 1, a mixture of molecules XY 2 and X 2 Y is obtained ,
  • the simple condensation products (K) described by way of example in the formulas 1 to 5 preferably react according to the invention intermolecularly to form highly functional polycondensation products, referred to hereinafter as polycondensation products (P).
  • the conversion to the condensation product (K) and the polycondensation product (P) is usually carried out at a temperature of 0 to 250 0 C, preferably at 60 to 160 0 C in bulk or in solution.
  • all solvents can be used which are inert to the respective starting materials.
  • organic solvents such as, for example, decane, dodecane, benzene, toluene, chlorobenzene, xylene, dimethylformamide, dimethylacetamide or solvent naphtha.
  • the condensation reaction is carried out in bulk.
  • the monofunctional alcohol ROH or the phenol liberated in the reaction can be removed from the reaction equilibrium by distillation, optionally at reduced pressure, to accelerate the reaction.
  • Suitable catalysts are compounds which are used catalyze esterification or transesterification reactions, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal bicarbonates, preferably sodium, potassium or cesium, tertiary amines, guanidines, ammonium compounds, Phosphonium für adiene, aluminum, tin, zinc, titanium, zirconium or bismuth organic Compounds, furthermore so-called double metal cyanide (DMC) catalysts, as described for example in DE 10138216 or in DE 10147712.
  • DMC double metal cyanide
  • potassium hydroxide potassium carbonate, potassium bicarbonate, diaZabicyclooctane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU), imidazoles, such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole, titanium tetrabutylate, titanium tetraisopropylate, dibutyltin oxide, Dibutyltin-dila ⁇ rat, Zinndioctoat, zirconium acetylacetonate or mixtures thereof used.
  • DABCO diaZabicyclooctane
  • DBN diazabicyclononene
  • DBU diazabicycloundecene
  • imidazoles such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole
  • titanium tetrabutylate titanium tetraisopropylate
  • dibutyltin oxide Di
  • the addition of the catalyst is generally carried out in an amount of from 50 to 10,000, preferably from 100 to 5000, ppm by weight, based on the amount of the alcohol or alcohol mixture used.
  • the intermolecular polycondensation reaction both by adding the appropriate catalyst and by selecting a suitable temperature. Furthermore, the average molecular weight of the polymer (P) can be adjusted via the composition of the starting components and over the residence time.
  • the condensation products (K) or the polycondensation products (P), which were prepared at elevated temperature, are usually stable for a relatively long time at room temperature.
  • condensation reaction may result in polycondensation products (P) having different structures which have branching but no crosslinking.
  • the polycondensation products (P) ideally have either a carbonate group as a focal group and more than two OH groups or an OH group as a focal group and more than two carbonate groups.
  • the number of reactive groups results from the nature of the condensation products used (K) and the degree of polycondensation.
  • R and R 1 are as defined above.
  • the temperature can be lowered to a range in which the reaction comes to a standstill and the product (K) or the polycondensation product (P) is storage-stable.
  • the product (P) has a product with opposite to the focal group of (P) to terminate the reaction. added to reactive groups.
  • a carbonate group as the focal group for example, a mono-, di- or polyamine can be added.
  • a hydroxyl group as a focal group, the product (P) may be added, for example, to a mono-, di- or polyisocyanate, an epoxy-group-containing compound or an acid derivative reactive with OH groups.
  • the high-functionality polycarbonates according to the invention are usually prepared in a pressure range from 0.1 mbar to 20 bar, preferably at 1 mbar to 5 bar, in reactors or reactor cascades which are operated in batch mode, semicontinuously or continuously.
  • the products according to the invention can be further processed after preparation without further purification.
  • the product is stripped, that is, freed from low molecular weight, volatile compounds.
  • the catalyst can optionally be deactivated and the low molecular weight volatile constituents, e.g. Monoalcohols, phenols, carbonates, hydrogen chloride or readily volatile oligomeric or cyclic compounds by distillation, if appropriate with introduction of a gas, preferably nitrogen, carbon dioxide or air, if appropriate under reduced pressure.
  • the polycarbonates according to the invention can, in addition to the functional groups already obtained by the reaction, be given further functional groups.
  • the functionalization can during the molecular weight build-up or even subsequently, i. take place after completion of eigentli ⁇ Chen polycondensation.
  • Such effects can be achieved, for example, by adding compounds during the polycondensation which, in addition to hydroxyl groups, carbonate groups or carbamoyl groups, contain further functional groups or functional elements, such as mercapto groups, primary, secondary or tertiary amino groups, ether groups, derivatives of carboxylic acids, derivatives of sulfonic acids , Derivatives of phosphonic acids, silane groups, siloxane groups, aryl radicals or long-chain alkyl radicals.
  • compounds during the polycondensation which, in addition to hydroxyl groups, carbonate groups or carbamoyl groups, contain further functional groups or functional elements, such as mercapto groups, primary, secondary or tertiary amino groups, ether groups, derivatives of carboxylic acids, derivatives of sulfonic acids , Derivatives of phosphonic acids, silane groups, siloxane groups, aryl radicals or long-chain alkyl radicals.
  • ethanolamine, propanolamine, isopropanolamine, 2- (butylamino) ethanol, 2- (cyclohexylamino) ethanol, 2-amino-1-butanol, 2- (2'-aminoethoxy) ethanol can be used or higher alkoxylation products of ammonia, 4-hydroxy-piperidine, 1-hydroxyethylpiperazine, diethanolamine, dipropanolamine, diisopropanolamine, tris (hydroxymethyl) aminomethane, tris (hydroxyethyl) amino methane, ethylene diamine, propylene diamine, hexamethylene diamine or isophorone diamine ,
  • Mercaptoethanol can be used for the modification with mercapto groups, for example.
  • Tertiary amino groups can be produced, for example, by incorporation of N-methyldiethanolamine, N-methyldipropanolamine or N, N-dimethylethanolamine.
  • Ether groups can be synthesized, for example, by condensation of di- or higher-functional nelle polyetherols are generated.
  • Long-chain alkyl radicals can be introduced by reaction with long-chain alkanediols, the reaction with alkyl or aryl diisocyanates generates polycarbonates containing alkyl, aryl and urethane groups or urea groups.
  • tricarboxylic acids e.g. Terephthalic acid dimethyl esters or tricarboxylic acid esters can be produced ester groups.
  • Subsequent functionalization can be obtained by reacting the resulting highly functional, highly branched or hyperbranched polycarbonate in an additional process step (step c)) with a suitable functionalizing reagent which reacts with the OH and / or carbonate groups or carbamoyl groups of the polycarbonate can react, converts.
  • Hydroxyl-containing high-functionality, highly branched or hyperbranched polycarboxylates can be modified, for example, by addition of molecules containing acid groups or isocyanate groups.
  • polycarbonates containing acid groups can be obtained by reaction with anhydride-containing compounds.
  • hydroxyl-containing high-functionality polycarbonates can also be converted into highly functional polycarbonate-polyether polyols by reaction with alkylene oxides, for example ethylene oxide, propylene oxide or butylene oxide.
  • a big advantage of the method lies in its economy. Both the reaction to a condensation product (K) or polycondensation product (P) and the reaction of (K) or (P) to form polycarbonates with other functional groups or elements can be carried out in a reaction apparatus, which is technically and economically advantageous ,
  • the molding compositions according to the invention may contain at least one hyperbranched polyester of the type A x B y , where
  • x at least 1, preferably at least 1, 3, in particular at least 2 y at least 2.1, preferably at least 2.5, in particular at least 3
  • a polyester of the type A x B y is understood to mean a condensate which is composed of an x-functional molecule A and a y-functional molecule B.
  • Hyperbranched polyesters B2) in the context of this invention are understood as meaning undyed macromolecules having hydroxyl and carboxyl groups which are structurally as well as molecularly nonuniform.
  • they can be constructed starting from a central molecule analogous to dendrimers, but with uneven chain length of the branches.
  • they can also be constructed linearly with functional side groups or, as a combination of the two extremes, they can have linear and branched molecular parts.
  • dendritic and hyperbranched polymers see also P. J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 and H. Frey et al., Chem. Eur. J. 2000, 6, no. 14, 2499.
  • hypobranched is understood to mean that the degree of branching (DB), ie the mean number of dendritic linkages plus the average number of end groups per molecule, ranges from 10 to 99.9%. , preferably 20 to 99%, more preferably 20 to 95%
  • DB degree of branching
  • dendrimer in connection with the present invention it is meant that the degree of branching is 99.9 to 100%.
  • degree of branching see H. Frey et al., Acta Polym. 1997, 48, 30.
  • the component B2) preferably has an M n of 300 to 30,000, in particular from 400 to 25,000 and very particularly from 500 to 20,000 g / mol, determined by means of GPC, standard PMMA, mobile phase dimethylacetamide.
  • B2) has an OH number of 0 to 600, preferably 1 to 500, in particular of 20 to 500 mg KOH / g polyester according to DIN 53240 and preferably a COOH number of 0 to 600, preferably from 1 to 500 and in particular from 2 to 500 mg KOH / g polyester.
  • the T 9 is preferably from -50 0 C to 140 0 C and in particular from -50 to 100 0 C (by DSC, according to DIN 53765).
  • such components B2) are preferred in which at least one OH or COOH number is greater than 0, preferably greater than 0.1 and in particular greater than 0.5.
  • the inventive component B2) is obtainable by reacting (A) one or more dicarboxylic acids or one or more derivatives thereof with one or more at least trifunctional alcohols
  • reaction in the solvent is the preferred method of preparation.
  • Highly functional hyperbranched polyesters B2) in the context of the present invention are molecularly and structurally nonuniform. They differ by their molecular nonuniformity of dendrimers and are therefore produced with considerably less effort.
  • the dicarboxylic acids which can be reacted according to variant (a) include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, cork acid, azelaic acid, sebacic acid, undecane-a, w-dicarboxylic acid, dodecane-a, dicarboxylic acid, ice - And trans-cyclohexane-1, 2-dicarboxylic acid, cis- and trans-cyclohexane-1, 3-dicarboxylic acid, cis- and trans-cyclohexane-1, 4-dicarboxylic acid, cis- and trans-cyclopentane-1, 2-dicarboxylic acid and also cis- and trans-cyclopentane-1,3-dicarboxylic acid,
  • dicarboxylic acids may be substituted with one or more radicals selected from
  • C 1 -C 10 -alkyl groups for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neo Pentyl, 1,2-
  • C 3 -C 2 cycloalkyl for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl and Cyclodode- cyl; preferred are cyclopentyl, cyclohexyl and cycloheptyl;
  • Alkylene groups such as methylene or ethylidene or
  • C 6 -C 14 aryl groups such as, for example, phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl and 9- Phenanthryl, preferably phenyl, 1-naphthyl and 2-naphthyl, particularly preferably phenyl.
  • substituted dicarboxylic acids include: 2-methylmalonic acid, 2-ethylmalonic acid, 2-phenylmalonic acid, 2-methylsuccinic acid, 2-ethylsuccinic acid, 2-phenylsuccinic acid, itaconic acid, 3,3-dimethylglutaric acid.
  • dicarboxylic acids which can be reacted according to variant (a) include ethylenically unsaturated acids, such as, for example, maleic acid and fumaric acid, and aromatic dicarboxylic acids, for example phthalic acid, isophthalic acid or terephthalic acid.
  • the dicarboxylic acids can be used either as such or in the form of derivatives.
  • Mono- or dialkyl esters preferably mono- or dimethyl esters or the corresponding mono- or diethyl esters, but also those of higher alcohols such as, for example, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, n Pentanol, n-hexanol derived mono and dialkyl esters,
  • mixed esters preferably methyl ethyl esters.
  • Succinic acid, glutaric acid, adipic acid, phthalic acid, isophthalic acid, terephthalic acid or their mono- or dimethyl esters are particularly preferably used. Most preferably, adipic acid is used.
  • trifunctional alcohols for example, can be implemented: glycerol, butane-1, 2,4-triol, n-pentane-1, 2,5-triol, n-pentane-1, 3,5-triol, n-hexane-1 , 2,6-triol, n-hexane-1, 2,5-triol, ⁇ -hexane-1, 3,6-triol, trimethylolbutane, trimethylolpropane or di-trimethylolpropane, trimethylolethane, pentaerythritol or dipentaerythritol; Sugar alcohols such as mesoerythritol, threitol, sorbitol, mannitol or mixtures of the above-mentioned at least trifunctional alcohols. Preference is given to using glycerol, trimethylolpropane, trimethylolethane and pentaerythritol.
  • convertible tricarboxylic acids or polycarboxylic acids are beispiels ⁇ example, 1, 2,4-benzenetricarboxylic acid, 1, 3,5-benzenetricarboxylic acid, 1, 2,4,5-Benzoltetra- carboxylic acid and mellitic acid.
  • Tricarboxylic acids or polycarboxylic acids can be used in the reaction according to the invention either as such or else in the form of derivatives.
  • Mono-, di- or trialkyl preferably mono-, di- or trimethyl esters or the corresponding mono-, di- or triethyl esters, but also those of higher alcohols such as n-propanol, iso-propanol, n-butanol, isobutanol , tertiary
  • diols used for variant (b) of the present invention are ethylene glycol, propane-1,2-diol, propane-1,3-diol, butane-1,2-diol, butane-1,3-diol, butane-1 , 4-diol, butane-2,3-diol, pentane-1, 2-diol, pentane-1, 3-diol, pentane-1, 4-diol, pentane-1, 5-diol, pentane-2,3 -diol, pentane-2,4-diol, hexane-1, 2-diol, hexane-1, 3-diol, hexane-1, 4-diol, hexane-1, 5-diol, hexane-1, 6-diol , Hexane-2,5-diol, heptane-1, 2-diol 1,
  • Diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycols HO (CH 2 CH 2 O) n -H or polypropylene glycols HO (CH [CH 3 ] CH 2 O) n -H or mixtures of two or more members of the above compounds, wherein n is an integer and n 4 to 25.
  • One or both hydroxyl groups in the abovementioned diols can also be substituted by SH groups.
  • the molar ratio of the molecules A to molecules B in the A x By polyester in variants (a) and (b) is 4: 1 to 1: 4, in particular 2: 1 to 1: 2.
  • the at least trifunctional alcohols reacted according to variant (a) of the process may each have hydroxyl groups of the same reactivity. Also preferred here are at least trifunctional alcohols whose OH groups are initially identically reactive, but in which a decrease in activity, owing to steric or electronic influences, can be induced in the remaining OH groups by reaction with at least one acid group. This is the case, for example, when using trimethylolpropane or pentaerythritol.
  • the at least trifunctional alcohols reacted according to variant (a) can also have hydroxyl groups with at least two chemically different reactivities.
  • the different reactivity of the functional groups can be based either on chemical (for example primary / secondary / tertiary OH group) or on steric causes.
  • the triol may be a triol having primary and secondary hydroxyl groups, preferred example being glycerin.
  • Suitable are, for example, hydrocarbons such as paraffins or aromatics.
  • paraffins are n-heptane and cyclohexane.
  • aromatics are toluene, ortho-xylene, meta-xylene, para-xylene, xylene as a mixture of isomers, ethylbenzene, chlorobenzene and ortho- and meta-dichlorobenzene.
  • solvents in the absence of acidic catalysts are: ethers such as, for example, dioxane or tetrahydrofuran and ketones such as, for example, methyl ethyl ketone and methyl isobutyl ketone.
  • the amount of solvent added is at least 0.1% by weight, based on the mass of the starting materials to be reacted, preferably at least 1% by weight and more preferably at least 10% by weight. It is also possible to use excesses of solvent, based on the mass of reacted starting materials to be reacted, for example 1:01 to 10 times. Solvent amounts of more than 100 times, based on the mass of reacted starting materials to be reacted, are not advantageous, because at significantly lower concentrations of the reactants, the reaction rate decreases significantly, resulting in uneconomical long reaction times.
  • a water-removing agent as an additive, which is added at the beginning of the reaction.
  • Suitable examples are molecular sieves, in particular molecular sieve 4A, MgSO 4 and Na 2 SO 4 . It is also possible during the reaction to add further water-removing agent or to replace the water-removing agent with fresh water-removing agent. It is also possible to distill off water or alcohol formed during the reaction and, for example, to use a water separator.
  • the process can be carried out in the absence of acidic catalysts.
  • the reaction is carried out in the presence of an acidic inorganic, organometallic or organic catalyst or mixtures of several acidic inorganic, organometallic or organic catalysts.
  • alumium compounds of the general formula Al (OR) 3 and titanates of the general formula Ti (OR) 4 can be used as acidic inorganic catalysts, wherein the radicals R may be the same or different and are independently selected from each other
  • C 1 -C 4 -alkyl radicals for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neo -Pentyl, 1, 2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec-hexyl, n-heptyl, iso-heptyl, n-octyl, 2-ethylhexyl, n-nonyl or n- decyl,
  • C 3 -C 12 -cycloalkyl radicals for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl; preferred are cyclopentyl, cyclohexyl and cycloheptyl.
  • the radicals R in Al (OR) 3 or Ti (OR) 4 are preferably identical and selected from isopropyl or 2-ethylhexyl.
  • Preferred acidic organometallic catalysts are, for example, selected from dialkyltin oxides R 2 SnO, where R is as defined above.
  • a particularly preferred representative of acidic organometallic catalysts is di-n-butyltin oxide, which is commercially available as so-called oxo-tin, or di-n-butyltin dilaurate.
  • Preferred acidic organic catalysts are acidic organic compounds with, for example, phosphate groups, sulfonic acid groups, sulfate groups or phosphonic acid groups. Particularly preferred are sulfonic acids such as para-toluene sulfonic acid. It is also possible to use acidic ion exchangers as acidic organic catalysts, for example polystyrene resins containing sulfonic acid groups, which are crosslinked with about 2 mol% of divinylbenzene.
  • acidic inorganic, organometallic or organic catalysts according to the invention 0.1 to 10% by weight, preferably 0.2 to 2% by weight, of catalyst is used.
  • the process according to the invention is carried out under an inert gas atmosphere, that is to say, for example, under carbon dioxide, nitrogen or noble gas, of which special argon may be mentioned.
  • the inventive process is conducted at temperatures of 60 to 200 0 C leads fürge.
  • the pressure conditions of the method according to the invention are not critical per se. You can work at significantly reduced pressure, for example at 10 to 500 mbar.
  • the process according to the invention can also be carried out at pressures above 500 mbar.
  • the reaction is preferably at atmospheric pressure; However, it is also possible to carry it out at slightly elevated pressure, for example up to 1200 mbar. You can also work under significantly elevated pressure, for example, at pressures up to 10 bar.
  • the reaction is preferably at atmospheric pressure.
  • the reaction time of the process according to the invention is usually from 10 minutes to 25 hours, preferably from 30 minutes to 10 hours, and more preferably from one to 8 hours.
  • the highly functional hyperbranched polyesters can easily be isolated, for example by filtering off the catalyst and concentration, the concentration usually being carried out at reduced pressure. Further suitable work-up methods are precipitation after addition of water and subsequent washing and drying.
  • component B2) can be prepared in the presence of enzymes or decomposition products of enzymes (according to DE-A 101 63163).
  • the dicarboxylic acids reacted according to the invention do not belong to the acidic organic catalysts in the sense of the present invention.
  • lipases or esterases are Candida cylindracea, Candida lipolytica, Candida rugosa, Candida antarctica, Candida utilis, Chromobacterium viscosum, Geolrichum viscosum, Geotrichum candidum, Mucoravavanicus, Mucor mihei, pig pancreas, Pseudomonas spp., Pseudomonas fluorescens, Pseudomonas cepacia, Rhizopus arrhizus, Rhizopus delemar, Rhizopus niveus, Rhizopus oryzae, Aspergillus niger, Penicillium roquefortii, Penicillium camembertii or Esterase from Bacillus spp. and Bacillus thermoglucosidase.
  • Candida antarctica lipase B The enzymes listed are commercially available, for example from Novozy
  • the enzyme is used in immobilized form, for example on silica gel or Lewatit®.
  • Processes for the immobilization of enzymes are known per se, for example from Kurt Faber, "Biotransformations in Organic Chemistry", 3rd edition 1997, Springer Verlag, Chapter 3.2 "Immobilization” page 345-356. Immobilized enzymes are commercially available, for example from Novozymes Biotech Inc., Denmark.
  • the amount of immobilized enzyme used is from 0.1 to 20% by weight, in particular from 10 to 15% by weight, based on the mass of the total starting materials to be used.
  • the inventive method is carried out at temperatures above 60 0 C. Vor ⁇ preferably one works at temperatures of 100 0 C or below. Temperatures are preferred to 80 0 C, most preferably from 62 to 75 ° C and even more preferably from 65 to 75 ° C.
  • the process according to the invention is carried out in the presence of a solvent. Suitable are, for example, hydrocarbons such as paraffins or aromatics. Particularly suitable paraffins are n-heptane and cyclohexane.
  • aromatics are toluene, ortho-xylene, meta-xylene, para-xylene, xylene as a mixture of isomers, ethylbenzene, chlorobenzene and ortho- and meta-dichlorobenzene.
  • ethers such as dioxane or tetrahydrofuran and ketones such as methyl ethyl ketone and methyl isobutyl ketone.
  • the amount of solvent added is at least 5 parts by weight, based on the mass of the starting materials to be reacted, preferably at least 50 parts by weight and more preferably at least 100 parts by weight. Amounts of more than 10,000 parts by weight of solvent are not desirable, because at significantly lower concentrations, the reaction rate drops significantly, resulting in unelle ⁇ union long implementation periods.
  • the process of the invention is carried out at pressures above 500 mbar.
  • the reaction is at atmospheric pressure or slightly elevated pressure, for example up to 1200 mbar. You can also work under significantly elevated pressure, for example, at pressures up to 10 bar. Preference is given to the reaction at atmospheric pressure.
  • the reaction time of the method according to the invention is usually 4 hours to 6 days, preferably 5 hours to 5 days and more preferably 8 hours to 4 days.
  • the highly functional hyperbranched polyesters can be isolated, for example by filtering off the enzyme and concentration, the concentration usually being carried out at reduced pressure. Further suitable work-up methods are precipitation after addition of water and subsequent washing and drying.
  • high-functionality, hyperbranched polyesters obtainable by the process according to the invention are distinguished by particularly low levels of discoloration and resinification.
  • hyperbranched polymers see also: PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 and A. Sunder et al., Chem. Eur. J. 2000, 6, No.1, 1-8.
  • "highly functional hyperbranched” means that the degree of branching, that is to say the average number of dendritic linkages plus the average number of end groups per molecule, is 10 - 99.9%, preferably 20 - 99%, particularly preferably 30-90% (see H.
  • the polyesters of the invention have a molecular weight M w of from 500 to 50,000 g / mol, preferably from 1,000 to 20,000, particularly preferably from 1,000 to 19,000.
  • the polydispersity is from 1, 2 to 50, preferably 1, 4 to 40, particularly preferably 1, 5 to 30 and most preferably 1.5 to 10. They are usually readily soluble, that is, clear solutions of up to 50 wt .-%, in some cases even up to 80 wt .-%, of the polyester according to the invention in tetrahydrofuran (THF), n-butyl acetate, ethanol and many other solvents without gel particles being detectable with the naked eye.
  • THF tetrahydrofuran
  • the high-functionality hyperbranched polyesters according to the invention are carboxy-terminated, carboxy- and hydroxyl-terminated and are preferably terminated by hydroxyl groups.
  • the ratios of components B1) to B2) are preferably from 1:20 to 20: 1, in particular from 1:15 to 15: 1 and very particularly from 1: 5 to 5: 1, when used in a mixture.
  • the molding compositions according to the invention may contain from 0 to 80% by weight, preferably from 0 to 50% by weight and in particular from 0 to 40% by weight, of further additives.
  • the molding compositions according to the invention can be from 0.01 to
  • Talc which is a hydrated magnesium silicate of the composition Mg 3 I (OH) 2 ZSi 4 O 10 ] or 3 MgO 4 SiO 2 H 2 O. These so-called three-layer phyllosilicates have a triclinic, monoclinic or rhombic crystal structure with a platelet-like appearance. On further trace elements Mn, Ti, Cr, Ni, Na and K may be present, wherein the OH group may be partially replaced by fluoride.
  • talc whose particle sizes are 100% ⁇ 20 ⁇ m.
  • the particle size distribution is usually determined by sedimentation analysis DIN 6616-1 and is preferably:
  • Suitable hindered phenols C are in principle all compounds having a phenolic structure which have at least one sterically demanding group on the phenolic ring.
  • R 1 and R 2 are an alkyl group, a substituted alkyl group or a substituted Triazollism, wherein the radicals R 1 and R 2 may be the same or different and R 3 is an alkyl group, a substituted alkyl group, an alkoxy group or a substitu ⁇ jewe amino group.
  • Antioxidants of the type mentioned are described, for example, in DE-A 27 02 661 (US Pat. No. 4,360,617).
  • Another group of preferred sterically hindered phenols are derived from substituted benzenecarboxylic acids, especially substituted benzenepropionic acids.
  • Particularly preferred compounds of this class are compounds of the formula
  • R 4 , R 5 , R 7 and R 8 independently of one another are C 1 -C 6 -alkyl groups which in turn may be substituted (at least one of which is a sterically demanding group) and R 6 is a divalent aliphatic radical having 1 to 10 C atoms, which may also have CO bonds in the main chain.
  • the antioxidants (C) which can be used individually or as mixtures, can be used in an amount of from 0.005 to 2% by weight, preferably from 0.1 to 1.0% by weight, based on the total weight of the Molding compounds A) to C) can be used.
  • sterically hindered phenols having no more than one sterically hindered group ortho to the phenolic hydroxy group have been found to be particularly advantageous; especially when assessing color stability when stored in diffused light for extended periods of time.
  • the polyamides which can be used as components C) are known per se. Semicrystalline or amorphous resins, as described, for example, in the Encyclopedia of Polymer Science and Engineering, Vol. 11, pp. 315 to 489, John Wiley & Sons, Inc., 1988, may be used, the melting point of the Polyamide is preferably below 225 0 C, preferably below 215 0 C.
  • polyhexamethylene azelaic acid amide examples include polyhexamethylene sebacic acid amide, polyhexamethylene dodecanedioic acid amide, poly-11-amino undecanoic acid amide and bis (p-aminocyclohexyl) methane dodecanoic acid diamide or those obtained by ring-opening lactams, e.g. or polylaurolactam obtained products.
  • polyamides based on terephthalic acid or isophthalic acid as acid component and / or trimethylhexamethylenediamine or bis (p-aminocyclohexyl) -propane as diamine component and polyamide base resins which have been prepared by copolymerization of two or more of the aforementioned polymers or their components , are suitable.
  • Particularly suitable polyamides are mixed polyamides based on caprolactam, hexamethylenediamine, p, p'-diaminodicyclohexylmethane and adipic acid.
  • An example of this is the product sold under the name Ultramid® 1 C by BASF Aktiengesellschaft.
  • the preparation of these polyamides is also described in the aforementioned document.
  • the ratio of terminal amino groups to terminal acid groups can be controlled by varying the molar ratio of the starting compounds.
  • the proportion of the polyamide in the molding composition according to the invention is from 0.001 to 2 wt .-%, preferably 0.005 to 1, 99 wt .-%, preferably 0.01 to 0.08 wt .-%.
  • the polyoxymethylene molding compositions according to the invention can be from 0.002 to 2.0% by weight, preferably from 0.005 to 0.5% by weight and in particular from 0.01 to 0.3% by weight, based on the total weight of the molding compositions one or more of the alkaline earth silicates and / or alkaline earth glycerophosphates.
  • alkaline earth metals for forming the silicates and glycerophosphates preferably calcium and especially magnesium have proven to be excellent.
  • Calcium glycerophosphate and preferably magnesium glycerophosphate and / or calcium cesium silicate and, preferably, magnesium silicate are advantageously used, the alkaline earth silicates being preferred, those being those represented by the formula
  • Me an alkaline earth metal preferably calcium or magnesium in particular
  • x is a number from 1, 4 to 10, preferably 1, 4 to 6 and
  • n is a number equal to or greater than 0, preferably 0 to 8.
  • the compounds C) are advantageously used in finely ground form. Products with an average particle size of less than 100 ⁇ m, preferably less than 50 ⁇ m, are particularly well suited.
  • calcium and magnesium silicates and / or calcium and magnesium glycerophosphates can be specified in more detail, for example by the following Kennda ⁇ :
  • CaO or MgO 4 to 32% by weight, preferably 8 to 30% by weight and in particular 12 to 25% by weight, SiO 2 ratio: CaO or SiO 2 : MgO (mol / mol ): 1, 4 to 10, preferably 1, 4 to 6 and in particular 1.5 to 4,
  • Bulk density 10 to 80 g / 100 ml, preferably 10 to 40 g / 100 ml and average characteristic value: less than 100 ⁇ m, preferably smaller than 50 microns and
  • CaO or MgO greater than 70% by weight, preferably greater than 80% by weight incineration residue: 45 to 65% by weight melting point: greater than 300 ° C. and average particle size: less than 100 ⁇ m, preferably less than 50 ⁇ m.
  • the molding compositions according to the invention from 0.01 to 5, preferably from 0.09 to 2 and in particular from 0.1 to 0.7 wt .-% of at least one ester or amide of saturated or unsaturated aliphatic carboxylic acids with 10 to 40 carbon atoms preferably 16 to 22 carbon atoms with polyols or aliphatic gesuci ⁇ saturated alcohols or amines having 2 to 40 carbon atoms preferably 2 to 6 carbon atoms or an ether derived from alcohols and ethylene oxide.
  • the carboxylic acids can be 1- or 2-valent. Examples which may be mentioned are pelargonic acid, palmitic acid, lauric acid, margaric acid, dodecanedioic acid, behenic acid and particularly preferably stearic acid, capric acid and montanic acid (mixture of fatty acids having 30 to 40 carbon atoms).
  • the aliphatic alcohols can be 1 to 4 valent.
  • examples of alcohols are n-butanol, n-octanol, stearyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, with glycerol and pentaerythritol being preferred.
  • the aliphatic amines can be monohydric to trihydric. Examples of these are stearylamine, ethylenediamine, propylenediamine, hexamethylenediamine, di (6-aminohexyl) amine, with ethylenediamine and hexamethylenediamine being particularly preferred.
  • preferred esters or amides are glyceryl distearate, glycerol tristearate, ethylenediamine distearate, glycerol monopalmitate, glycerol trilautate, glycerol monobehenate and pentaerythritol tetrastearate.
  • polyether polyols or polyester polyols which are esterified or etherified with mono- or polybasic carboxylic acids, preferably fatty acids.
  • Suitable products are commercially available, for example, as Loxiol® EP 728 from Henkel KGaA.
  • Preferred ethers derived from alcohols and ethylene oxide have the general formula RO (CH 2 CH 2 O) n H
  • R is an alkyl group having 6 to 40 carbon atoms and n is an integer greater than or equal to 1.
  • R is a saturated C 16 to C 8 fatty alcohol with n 50, which is commercially available as Lutensol® AT 50 from BASF.
  • the molding compositions according to the invention may contain from 0.0001 to 1% by weight, preferably from 0.001 to 0.8% by weight and in particular from 0.01 to 0.3% by weight, of further nucleating agents.
  • Suitable nucleating agents are all known compounds, for example melamine cyanurate, boron compounds such as boron nitride, silica, pigments such as e.g. Heiglogenblue® (copper phthalocyanine pigment, registered trademark of BASF Aktiengesellschaft).
  • Fillers in amounts of up to 50% by weight, preferably 5 to 40% by weight, may be mentioned, for example, potassium titanate whiskers, carbon fibers and, preferably, glass fibers, the glass fibers being e.g. in the form of glass fabrics, mats, nonwovens and / or glass silk rovings or cut glass silk from low-alkali E glass with a diameter of 5 to 200 .mu.m, preferably 8 to 50 microns can be used, the fibrous fillers after their incorporation preferably a medium Length of 0.05 to 1 mm, in particular 0.1 to 0.5 mm.
  • suitable fillers are, for example, calcium carbonate or glass beads, preferably in ground form or mixtures of these fillers.
  • additives include, in amounts of up to 50, preferably 0 to 40 wt .-%, impact-modifying polymers (hereinafter also referred to as rubber-elastic poly merisate or elastomers) called.
  • impact-modifying polymers hereinafter also referred to as rubber-elastic poly merisate or elastomers
  • EPM Ethylene propylene
  • EPDM ethylene-propylene-diene
  • EPM rubbers generally have virtually no double bonds, while EPDM rubbers may have from 1 to 20 double bonds / 100 carbon atoms.
  • diene monomers for EPDM rubbers for example, conjugated dienes such as isoprene and butadiene, non-conjugated dienes having 5 to 25 carbon atoms such as penta-1, 4-diene, hexa-1, 4-diene, hexa-1, 5 -diene, 2,5-dimethylhexa-1, 5-diene and octa-1, 4-diene, cyclic dienes such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadienes and alkenylnorbornenes such as 5-ethylidene-2-norbornene, 5-butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and tricyclodienes such as 3 Methyl tricyclo (5.2.1.0.2.6) -3,8-decadiene or mixtures thereof.
  • the diene content of the EPDM rubbers is preferably 0.5 to 50, in particular 1 to 8 wt .-%, based on the total weight of the rubber.
  • the EPDM rubbers may also be grafted with other monomers, e.g. with glycidyl (meth) acrylates, (meth) acrylic esters and (meth) acrylamides.
  • Another group of preferred rubbers are copolymers of ethylene with esters of (meth) acrylic acid.
  • the rubbers may still contain epoxy group-containing monomers. These epoxy group-containing monomers are preferably incorporated into the rubber by adding epoxy group-containing monomers of the general formulas I or II to the monomer mixture
  • CHR 8 CH - (CHR 7 ) g - C - CHR 6 C)
  • R 6 - R 10 represent hydrogen or alkyl groups having 1 to 6 carbon atoms and m is an integer from 0 to 20, g is an integer from 0 to 10 and p is an integer from 0 to 5.
  • the radicals R 6 to R 8 preferably denote hydrogen, where m is 0 or 1 and g is 1.
  • the corresponding compounds are allyl glycidyl ether and vinyl glycidyl ether.
  • Preferred compounds of the formula II are epoxy group-containing esters of acrylic acid and / or methacrylic acid, such as glycidyl acrylate and glycidyl methacrylate.
  • the copolymers consist of 50 to 98 wt .-% of ethylene, 0 to 20 wt .-% of epoxy-containing monomers and the remaining amount of (meth) acrylic acid esters.
  • esters of acrylic and / or methacrylic acid are the methyl, ethyl, propyl and i- or t-butyl esters.
  • vinyl esters and vinyl ethers can also be used as comonomers.
  • the ethylene copolymers described above can be prepared by methods known per se, preferably by random copolymerization under high pressure and elevated temperature. Corresponding methods are generally known.
  • Preferred elastomers are also emulsion polymers, their preparation e.g. at Blackley in the monograph "Emulsion Polymerization".
  • the usable emulsifiers and catalysts are known per se.
  • homogeneously constructed elastomers or those with a shell structure can be used.
  • the shell-like structure is u.a. determined by the Switzerlanda ⁇ order of the individual monomers;
  • the morphology of the polymers is also influenced by this order of addition.
  • acrylates such as e.g. N-butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and their mixtures called.
  • monomers for the preparation of the rubber portion of the elastomers acrylates such as e.g. N-butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and their mixtures called.
  • monomers can be reacted with other monomers such as e.g. Styrene, acrylonitrile, vinyl ethers and strenge ⁇ Ren acrylates or methacrylates such as methyl methacrylate, methyl acrylate, ethyl acrylate and propyl acrylate are copolymerized.
  • the soft or rubber phase (with a glass transition temperature below 0 ° C.) of the elastomers can be the core, the outer shell or a middle shell (in the case of elastomers with a more than two-shell structure); in the case of multi-shell elastomers, it is also possible for a plurality of shells to consist of a rubber phase.
  • one or more hard components on the structure of the elastomer involved, these nitrile generally prepared by polymerization of styrene, acrylonitrile, methacrylonitrile, a-methylstyrene, p-methylstyrene , Acrylic acid esters and methacrylic esters such as Methyl acrylate, ethyl acrylate and methyl methacrylate prepared as major monomers. In addition, smaller proportions of other comonomers can also be used here.
  • emulsion polymers which have reactive groups on the surface.
  • groups are e.g. Epoxy, amino or amide groups and functional groups which by Mitver ⁇ use of monomers of the general formula
  • R 15 is hydrogen or a C 1 - to C 4 -alkyl group
  • R 16 is hydrogen, a C 1 - to C 8 -alkyl group or an aryl group, in particular
  • R 17 is hydrogen, a C 1 - to C 10 -alkyl, a C 6 - to C 12 -aryl group or -OR 18
  • R 18 is a C 1 - to C 8 -alkyl or C 6 - to C 12 -aryl group, optionally with O- or
  • X is a chemical bond, a C 1 - to C 10 -alkylene or C 6 -C 12 -arylene group or
  • Z is a C 1 to C 10 alkylene or C 6 to C 12 arylene group
  • the graft monomers described in EP-A 208 187 are also suitable for introducing reactive groups on the surface.
  • acrylamide, methacrylamide and substituted esters of acrylic acid or methacrylic acid such as (Nt-butylamino) ethyl methacrylate, (N 1 N-dimethylamino) ethyl acrylate, (N, N-dimethylamino) methyl acrylate and (N 1 N-diethylamino) ethyl acrylate named ,
  • the particles of the rubber phase can also be crosslinked.
  • monomers acting as crosslinkers are buta-1,3-diene, divinylbenzene, diallyl phthalate, butanediol diacrylate and dihydrodicyclopentadienyl acrylate, and also the compounds described in EP-A 50 265.
  • graftlinking monomers can also be used, i. Monomers having two or more polymerizable Doppelbin ⁇ compounds which react at different rates in the polymerization. Preference is given to using those compounds in which at least one reactive group polymerizes at about the same rate as the other monomers, while the other reactive group (or reactive groups) is e.g. significantly slower polymerized (polymerize).
  • the different polymerization rates entail a certain proportion of unsaturated double bonds in rubber. If a further phase is subsequently grafted onto such a rubber, the double bonds present in the rubber react at least partially with the grafting monomers to form chemical bonds, ie. the grafted phase is at least partially linked via chemical bonds to the graft base.
  • graft-crosslinking monomers examples include allyl-containing monomers, in particular allyl esters of ethylenically unsaturated carboxylic acids, such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • allyl-containing monomers such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • allyl-containing monomers in particular allyl esters of ethylenically unsaturated carboxylic acids, such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • the proportion of these crosslinking monomers in the component C) is up to 5% by weight, preferably not more than 3% by weight, based on C).
  • graft polymers having a core and at least one outer shell are listed.
  • graft polymers having a core and at least one outer shell are to be mentioned here, which have the following structure:
  • graft polymers having a multi-shell structure instead of graft polymers having a multi-shell structure, homogeneous, i. single-shell elastomers of buta-1, 3-diene, isoprene and n-butyl acrylate or copolymers thereof are used. These products can also be prepared by Mit ⁇ use of crosslinking monomers or monomers having reactive groups.
  • the described elastomers C) can also be prepared by other conventional methods, e.g. by suspension polymerization.
  • thermoplastic polyurethanes for example wel ⁇ che.
  • EP-A 115 846, EP-A 115 847 and EP-A 117 664 are described.
  • the molding compositions of the invention may contain other conventional additives and processing aids.
  • additives for trapping formaldehyde formaldehyde (formaldehyde scavengers), plasticizers, adhesion promoters and pigments may be mentioned here by way of example only.
  • the proportion of such additives is generally in the range of 0.001 to 5 wt .-%.
  • thermoplastic molding compositions according to the invention is carried out by mixing the components in a conventional manner, which is why detailed information is unnecessary here.
  • the mixture of the components takes place on an extruder.
  • Component B) and, if appropriate, component (s) C) can, in a preferred preparation form, preferably be applied to the granules of A) at room temperatures and then extruded.
  • moldings including semi-finished products, films, films and foams
  • the molding compounds are characterized by a very low residual formaldehyde content combined with good mechanical properties and thermal stability.
  • the processing of the individual components without clumping or caking) is possible without problems and in short cycle times, so that in particular thin-walled components come into consideration as an application.
  • the reduction of injection pressures reduces the displacement of the insert in the case of encapsulation of (for example, metallic) inserts, thus improving the dimensional accuracy and service properties and reducing the production scrap.
  • Valve body and valve housing for toilet flushing Outlet fittings and functional parts of fittings e.g. hand mixers
  • Liquid containers, lids and closures for liquids i.a. in motor vehicle construction
  • Transmission electron microscopy was used to study the morphology of selected compounds. It showed a good dispersion of the particles in the blend. Particle sizes of 20 to 500 nm were observed.
  • Irganox® 245 from Ciba Geigy:
  • Synthetic Mg silicate (Ambosol® company Societe Nobel, Puteaux) having the following properties:
  • reaction products were then analyzed by gel permeation chromatography, eluent was dimethylacetamide, polymethylmethacrylate (PMMA) was used as standard.
  • PMMA polymethylmethacrylate
  • TMP trismethylolpropane
  • DEC diethyl carbonate
  • PO propylene oxide
  • EO ethylene oxide
  • Comp. A (Ultraform® N 2320 003, registered trademark of BASF Aktiengesellschaft) contained in each case: 0.35 C1 0.04 C2 0.05 C3 0.14 C4 0.2 C5
  • H-PSA cyclohexane-i ⁇ -dicarboxylic anhydride
  • TMP tris-hydroxymethylpropane
  • CHDM cyclohexanedimethylol
  • Component A see Table 1
  • Component B 2/1 see Table 1
  • HPSA hydrogenated phthalic anhydride
  • TMP trimethylolpropane
  • CHDM cyclohexanedimethanol
  • polyesters were analyzed by gel permeation chromatography with a refractometer as detector. Tetrahydrofuran was used as the mobile phase; polymethyl methacrylate (PMMA) was used as the standard for determining the molecular weight. The determination of the acid number and the OH number was carried out according to DIN 53240, part 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Thermoplastische Formmassen, enthaltend A) 10 bis 98 Gew.-% mindestens eines Polyoxymethylenhomo- oder copolymerisates, B) 0,01 bis 50 Gew.-% B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates mit einer OH-Zahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder B2) mindestens eines hoch- oder hyperverzweigten Polyesters des Typs AxBy mit x mindestens 1,1 und y mindestens 2,1 oder deren Mischungen, C) 0 bis 60 Gew.-% weiterer Zusatzstoffe wobei die Summe der Gewichtsprozente der Komponenten A) bis C) 100 % ergibt.

Description

Fließfähige Polyoxymethylene
Beschreibung
Die Erfindung betrifft thermoplastische Formmassen, enthaltend
A) 10 bis 98 Gew.-% mindestens eines Polyoxymethylenhomo- oder - copolymerisates,
B) 0,01 bis 50 Gew.-% B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates mit einer OH- Zahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder B2) mindestens eines hoch- oder hyperverzweigten Polyesters des Typs AxBy mit x mindestens 1,1 und y mindestens 2,1 oder deren Mischungen C) 0 bis 60 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis C) 100 % ergibt.
Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art, sowie die hierbei erhältlichen Formkörper.
Polycarbonate werden üblicherweise aus der Reaktion von Alkoholen mit Phosgen oder aus der Umesterung von Alkoholen oder Phenolen mit Dialkyl- oder Diarylcarbo- naten erhalten. Technisch bedeutend sind aromatische Polycarbonate, die zum Bei¬ spiel aus Bisphenolen hergestellt werden, aliphatische Poiycarbonate spielen vom Marktvolumen her gesehen bisher eine untergeordnete Rolle. Siehe dazu auch Be¬ cker/Braun, Kunststoff-Handbuch Bd. 3/1 , Polycarbonate, Polyacetale, Polyester, CeI- luloseester, Carl-Hanser-Verlag, München 1992, Seiten 118 - 119.
Die beschriebenen aliphatischen Polycarbonate sind in der Regel linear oder aber mit einem geringen Verzweigungsgrad aufgebaut. So beschreibt die US 3,305,605 die Verwendung fester linearer Polycarbonate mit einer Molmasse oberhalb 15000 Da als Weichmacher für Polyvinylpolymere.
Zur Verbesserung der Fließfähigkeit werden üblicherweise zu Thermplasten niedermo¬ lekulare Additive zugegeben. Die Wirkung derartiger Additive ist jedoch stark be¬ schränkt, da z.B. die Abnahme der mechanischen Eigenschaften bei Erhöhung der Zugabemenge des Additivs nicht mehr tolerierbar ist.
Definiert aufgebaute, hochfunktionelle Polycarbonate sind erst seit kurzer Zeit bekannt. Z
S. P. Rannard und N. J. Davis, J. Am. Chem. Soc. 2000, 122, 11729, beschreiben die Herstellung von perfekt verzweigten dendrimeren Polycarbonaten durch Reaktion von Carbonylbisimidazol als Phosgen-analoger Verbindung mit Bis-hydroxyethylamino-2- propanol. Synthesen zu perfekten Dendrimeren sind vielstufig, daher kostenintensiv und für die Überfragung in einen industriellen Maßstab eher ungeeignet.
D.H. Bolton und K. L. Wooley, Macromolecules 1997, 30, 1890, beschreiben die Her¬ stellung von hochmolekularen, sehr starren hyperverzweigten aromatischen Polycar¬ bonaten durch Umsetzung von 1 ,1,1-Tris(4'-hydroxy)phenylethan mit Carbonylbisimi- dazol.
Hyperverzweigte Polycarbonate lassen sich auch gemäß WO 98/50453 herstellen. Nach dem dort beschriebenen Verfahren werden Triole wiederum mit Carbonylbisimi¬ dazol umgesetzt. Es entstehen zunächst Imidazolide, die dann intermolekular zu den Polycarbonaten weiterreagieren. Nach der genannten Methode fallen die Polycarbona¬ te als farblose oder blassgelbe gummiartige Produkte an.
Die genannten Synthesen zu hoch- oder hyperverzweigten Polycarbonaten weisen folgende Nachteile auf:
a) die hyperverzweigten Produkte sind entweder hochschmelzend oder aber gum¬ miartig, dadurch wird eine spätere Verarbeitbarkeit deutlich eingeschränkt. b) während der Reaktion freiwerdendes Imidazol muß aufwändig aus dem Reakti¬ onsgemisch entfernt werden. c) die Reaktionsprodukte enthalten immer terminale Imidazolid-Gruppen. Diese
Gruppen sind labil und müssen über einen Folgeschritt z.B. in Hydroxylgruppen umgewandelt werden. d) Carbonyldiimidazol ist eine vergleichsweise teure Chemikalie, die die Einsatz¬ stoffkosten stark erhöht.
Aus der WO-97/45474 sind Thermoplastzusammensetzungen bekannt, welche dendrimere Polyester als AB2-Molekül in einem Polyester enthalten. Hierbei reagiert ein mehrfunktioneller Alkohol als Kernmolekül mit Dimethylpropionsäure als AB2- Molekül zu einem dendrimeren Polyester. Dieser enthält nur OH-Funktionalitäten am Ende der Kette. Nachteilig an diesen Mischungen ist die hohe Glastemperatur der dendrimeren Polyester, die vergleichsweise aufwändige Herstellung und vor allem die schlechte Löslichkeit der Dendrimere in der Polymermatrix.
Gemäß der Lehre der DE-A 101 32 928 führt die Einarbeitung derartiger Verzweiger mittels Konfektionierung und Nachkondensation in fester Phase zu einer Verbesserung der Mechanik (Molekulargewichtsaufbau). Nachteilig an der beschriebenen Verfah- rensvariante ist die lange Herstellzeit sowie bereits oben aufgeführten nachteiligen Eigenschaften.
In den DE 102004 005652.8 und DE 102004 005657.9 wurden bereits neue Additive zur Fließverbesserung für Polyester vorgeschlagen.
Als Fließverbesserer für POM sind bekannt: Silikonöle, Amine, Phthalate, Epoxyver- bindungen, Fettsäureester, Sulfonate usw., z.B. aus der BE-A 720 658, CA-A 733 567, DE-A 222 868, EP-A 47 529, SU 519 449, JP-A 06/100 758, DE-A 31 511 814.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, thermoplastische PoIy- oxymethylenformmassen zur Verfügung zu stellen, welche eine gute Fließfähigkeit und gleichzeitig gute mechanische Eigenschaften aufweisen.
Demgemäß wurden die eingangs definierten Formmassen gefunden. Bevorzugte Aus¬ führungsformen sind den Unteransprüchen zu entnehmen.
Als Komponente A) enthalten die erfindungsgemäßen Formmassen 10 bis 98 Gew.-%, vorzugsweise 30 bis 98 Gew.-% und insbesondere 40 bis 98 Gew.-% eines PoIy- oxymethylenhomo- oder -copolymerisats.
Derartige Polymerisate sind dem Fachmann an sich bekannt und in der Literatur be¬ schrieben.
Ganz allgemein weisen diese Polymere mindestens 50 mol.-% an wiederkehrenden Einheiten -CH2O- in der Polymerhauptkette auf.
Die Homopolymeren werden im allgemeinen durch Polymerisation von Formaldehyd oder Trioxan hergestellt, vorzugsweise in der Gegenwart von geeigneten Katalysato- ren.
Im Rahmen der Erfindung werden Polyoxymethylencopolymere als Komponente A bevorzugt, insbesondere solche, die neben den wiederkehrenden Einheiten -CH2O- noch bis zu 50, vorzugsweise 0,1 bis 20, insbesondere 0,3 bis 10 mol.-% und ganz besonders bevorzugt 0,2 bis 2,5 mol.-% an wiederkehrenden Einheiten aufweisen,
R2 R3
— O— C — C — (R5)n —
R1 R4 wobei R1 bis R4 unabhängig voneinander ein Wasserstoffatom, eine C1 - bis C4 - Alkylgruppe oder eine halogensubstituierte Alkylgruppe mit 1 bis 4 C-Atomen und Rs eine -CH2-, CH2O-, eine C1 - bis C4 -Alkyl- oder C1 - bis C4 -Haloalkyl substituierte Methylengruppe oder eine entsprechende Oxymethylengruppe darstellen und n einen Wert im Bereich von 0 bis 3 hat. Vorteilhafterweise können diese Gruppen durch Ring¬ öffnung von cyclischen Ethern in die Copolymere eingeführt werden. Bevorzugte cycli- sche Ether sind solche der Formel
R2
R1 — C _ O
Figure imgf000005_0001
R4
wobei R1 bis R5 und n die oben genannte Bedeutung haben. Nur beispielsweise seien Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2-Butylenoxid, 1 ,3-Butylenoxid, 1 ,3-Dioxan, 1 ,3- Dioxolan und 1,3-Dioxepan als cyclische Ether genannt sowie lineare Oligo- oder Poly¬ formale wie Polydioxolan oder Polydioxepan als Comonomere genannt.
Als Komponente A) ebenfalls geeignet sind Oxymethylenterpolymerisate, die bei¬ spielsweise durch Umsetzung von Trioxan, einem der vorstehend beschriebenen cycli¬ schen Ether mit einem dritten Monomeren, vorzugsweise bifunktionellen Verbindungen der Formel
Figure imgf000005_0002
wobei Z eine chemische Bindung, -O-, -ORO- (R= Crbis C8-Alkylen oder C3-bis C8- Cycloalkylen) ist, hergestellt werden.
Bevorzugte Monomere dieser Art sind Ethylendiglycid, Diglycidylether und Diether aus Glycidylen und Formaldehyd, Dioxan oder Trioxan im Molverhältnis 2 : 1 sowie Diether aus 2 mol Glycidylverbindung und 1 mol eines aliphatischen Diols mit 2 bis 8 C-Atomen wie beispielsweise die Diglycidylether von Ethylenglykol, 1 ,4-Butandiol, 1 ,3-Butandiol, S
Cyclobutan-1 ,3-diol, 1 ,2-Propandiol und Cyclohexan-1 ,4-diol, um nur einige Beispiele zu nennen.
Verfahren zur Herstellung der vorstehend beschriebenen Homo- und Copolymerisate sind dem Fachmann bekannt und in der Literatur beschrieben, so dass sich hier nähe¬ re Angaben erübrigen.
Die bevorzugten Polyoxymethylencopolymere haben Schmelzpunkte von mindestens 160 bis 1700C (DSC, ISO 3146) und Molekulargewichte (Gewichtsmittelwert) Mw im Bereich von 5000 bis 300000, vorzugsweise von 7000 bis 250000 (GPC, Standard PMMA).
Endgruppenstabilisierte Polyoxymethylenpolymerisate, die an den Kettenenden C-C- Bindungen aufweisen, werden besonders bevorzugt.
Als Komponente B) enthalten die erfindungsgemäßen Formmassen 0,01 bis 50, vor¬ zugsweise 0,5 bis 20 und insbesondere 0,7 bis 10 Gew.-% B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates, mit einer OH-Zahl von 1 bis 600, vorzugsweise 10 bis 550 und insbesondere von 50 bis 550 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2) oder mindestens eines hyperverzweigten Polyesters als Komponen¬ te B2) oder deren Mischungen wie nachstehend erläutert wird.
Unter hyperverzweigten Polycarbonaten B1) werden im Rahmen dieser Erfindung un- vernetzte Makromoleküle mit Hydroxyl- und Carbonatgruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite aus¬ gehend von einem Zentralmolekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste, aufgebaut sein. Sie können auf der anderen Seite auch linear, mit funktionellen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrime- ren und hyperverzweigten Polymeren siehe auch PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.
Unter „hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung ver¬ standen, dass der Verzweigungsgrad (Degree of Branching, DB), dass heißt die mittle- re Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro Mole¬ kül, 10 bis 99.9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 - 95 % beträgt. Unter „dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, daß der Verzweigungsgrad 99,9 - 100% beträgt. Zur Definition des „Degree of Bran¬ ching" siehe H. Frey et al., Acta Polym. 1997, 48, 30. Vorzugsweise weist die Komponente B1) ein Zahlenmittel des Molekulargewichtes Mn von 100 bis 15000, vorzugsweise von 200 bis 12000 und insbesondere von 500 bis 10000 g/mol (GPC, Standard PMMA).
Die Glasübergangstemperatur Tg beträgt insbesondere von -800C bis -140, vorzugs¬ weise von -60 bis 1200C (gemäß DSC, DIN 53765).
Insbesondere beträgt die Viskosität (mPas) bei 23°C (gemäß DIN 53019) von 50 bis 200000, insbesondere von 100 bis 150000 und ganz besonders bevorzugt von 200 bis 100000.
Die Komponente B1) ist vorzugsweise erhältlich durch ein Verfahren, welches mindes¬ tens die folgenden Schritte umfasst:
a) Umsetzung mindestens eines organischen Carbonats (A) der allgemeinen For¬ mel ROf(CO)JnOR mit mindestens einem aliphatischen, aliphatisch/aromatisch oder aromatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist, un¬ ter Eliminierung von Alkoholen ROH zu einem oder mehreren Kondensations¬ produkten (K), wobei es sich bei Rjeweils unabhängig voreinander um einen ge- radkettigen oder verzweigten aliphatischen, aromatisch/aliphatisch oder aromati¬ schen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt, und wobei die Res¬ te R auch unter Bildung eines Ringes miteinander verbunden sein können und n eine ganze Zahl zwischen 1 und 5 darstellt, oder
ab) Umsetzung von Phosgen, Diphosgen oder Triphosgen mit o.g. Alkohol (B) unter Chlorwasserstoffeliminierung
b) intermolekulare Umsetzung der Kondensationsprodukte (K) zu einem hochfunkti- onellen, hoch- oder hyperverzweigten Polycarbonat,
wobei das Mengenverhältnis der OH-Gruppen zu den Carbonaten im Reaktions¬ gemisch so gewählt wird, dass die Kondensationsprodukte (K) im Mittel entweder eine Carbonatgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonatgruppe aufweisen.
Als Ausgangsmaterial kann Phosphen, Diphosgen oder Triphosgen eingesetzt werden, wobei organische Carbonate bevorzugt sind.
Bei den Resten R der als Ausgangsmaterial eingesetzten organischen Carbonate (A) der allgemeinen Formel RO(CO)OR handelt es sich jeweils unabhängig voneinander um einen geradkettigen oder verzweigten aliphatischen, aromatisch/aliphatisch oder aromatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt. Die beiden Reste R können auch unter Bildung eines Ringes miteinander verbunden sein. Bevorzugt handelt es sich um einen aliphatischen Kohlenwasserstoffrest und besonders bevor¬ zugt um einen geradkettigen oder verzweigten Alkylrest mit 1 bis 5 C-Atomen, oder um einen substituierten oder unsubstituierten Phenylrest.
Insbesondere werden einfache Carbonate der Formel RO(CO)OR eingesetzt; n beträgt vorzugsweise 1 bis 3, insbesondere 1.
Dialkyl- oder Diarylcarbonate können zum Beispiel hergestellt werden aus der Reaktion von aliphatischen, araliphatischen oder aromatischen Alkoholen, vorzugsweise Mono- alkoholen mit Phosgen. Weiterhin können sie auch über oxidative Carbonylierung der Alkohole oder Phenole mittels CO in Gegenwart von Edelmetallen, Sauerstoff oder NOx hergestellt werden. Zu Herstellmethoden von Diaryl- oder Dialkylcarbonaten siehe auch „Ullmann's Encyclopedia of Industrial Chemistry", 6th Edition, 2000 Electronic Release, Verlag Wiley-VCH.
Beispiele geeigneter Carbonate umfassen aliphatische, aromatisch/aliphatische oder aromatische Carbonate wie Ethylencarbonat, 1,2- oder 1,3-Propylencarbonat, Diphe- nylcarbonat, Ditolylcarbonat, Dixylylcarbonat, Dinaphthylcarbonat, Ethylphenylcarbo- nat, Dibenzylcarbonat, Dimethylcarbonat, Diethylcarbonat, Dipropylcarbonat, Dibutyl- carbonat, Diisobutylcarbonat, Dipentylcarbonat, Dihexylcarbonat, Dicyclohexylcarbo- nat, Diheptylcarbonat, Dioctylcarbonat, Didecylacarbonat oder Didodecylcarbonat.
Beispiele für Carbonate, bei denen n größer 1 ist, umfassen Dialkyldicarbonate, wie Di(-t-butyl)dicarbonat oder Dialkyltricarbonate wie Di(-t-butyltricarbonat).
Bevorzugt werden aliphatische Carbonate eingesetzt, insbesondere solche, bei denen die Reste 1 bis 5 C-Atome umfassen, wie zum Beispiel Dimethylcarbonat, Diethylcar¬ bonat, Dipropylcarbonat, Dibutylcarbonat oder Diisobutylcarbonat.
Die organischen Carbonate werden mit mindestens einem aliphatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist oder Gemischen zweier oder mehrerer verschiedener Alkohole umgesetzt.
Beispiele für Verbindungen mit mindestens drei OH-Gruppen umfassen Glycerin, Tri- methylolmethan, Trimethylolethan, Trimethylolpropan, 1,2,4-Butantriol, Tris(hydroxy- methyl)amin, Tris(hydroxyethyl)amin, Tris(hydroxypropyl)amin, Pentaerythrit, Diglyce- rin, Triglycerin, Polyglycerine, Bis(tri-methylolpropan), Tris(hydroxymethyl)isocyanurat, Tris(hydroxyethyl)isocyanurat, Phloroglucinol,, Trihydroxytoluol, Trihydroxydimethyl- benzol, Phloroglucide, Hexahydroxybenzol, 1 ,3,5-Benzoltrimethanol, 1 ,1 ,1-Tris(4'- hydroxyphenyl)methan, 1 ,1 ,1-Tris(4'-hydroxyphenyl)ethan, Bis(tri-methylolpropan) oder Zucker, wie zum Beispiel Glucose, tri- oder höherfunktionelle Polyetherole auf Basis tri- oder höherfunktioneller Alkohole und Ethylenoxid, Propylenoxid oder Butylenoxid, oder Polyesterole. Dabei sind Glycerin, Trimethylolethan, Trimethylolpropan, 1,2,4- Butantriol, Pentaerythrit, sowie deren Polyetherole auf Basis von Ethylenoxid oder Pro¬ pylenoxid besonders bevorzugt.
Diese mehrfunktionellen Alkohole können auch in Mischung mit difunktionellen Alkoho¬ len (B') eingesetzt werden, mit der Maßgabe, dass die mittlere OH-Funktionalität aller eingesetzten Alkohole zusammen größer als 2 ist. Beispiele geeigneter Verbindungen mit zwei OH-Gruppen umfassen Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2- und 1 ,3-Propandiol, Dipropylenglykol, Tripropylenglykol, Neopentylglykol, 1 ,2-, 1 ,3- und 1,4-Butandiol, 1,2-, 1 ,3- und 1 ,5-Pentandiol, Hexandiol, Cyclopentandiol, Cyclohexan- diol, Cyclohexandimethanol, Bis(4-Hydroxycyclohexyl)methan, Bis(4-Hydroxycyclo- hexyl)ethan, 2,2-Bis(4-Hydroxycyclohexyl)propan, 1 , 1 '-Bis(4-Hydroxyphenyl)-3,3-5- trimethylcyclohexan, Resorcin, Hydrochinon, 4,4'-Dihydroxyphenyl, Bis-(4-Bis(hydroxy- phenyl)sulfid, Bis(4-Hydroxyphenyl)sulfon, Bis(hydroxymethyl)benzol, Bis(hydroxy- methyl)toluol, Bis(p-hydroxyphenyl)methan, Bis(p-hydroxyphenyl)ethan, 2,2-Bis(p- hydroxyphenyl)propan, 1 ,1-Bis(p-hydroxyphenyl)cyclohexan, Dihydroxybenzophenon, difunktionelle Polyetherpolyole auf Basis Ethylenoxid, Propylenoxid, Butylenoxid oder deren Gemische, Polytetrahydrofuran, Polycaprolacton oder Polyesterole auf Basis von Diolen und Dicarbonsäuren.
Die Diole dienen zur Feineinstellung der Eigenschaften des Polycarbonates. Falls di¬ funktionelle Alkohole eingesetzt werden, wird das Verhältnis von difunktionellen Alko¬ holen B') zu den mindestens trifunktionellen Alkoholen (B) vom Fachmann je nach den gewünschten Eigenschaften des Polycarbonates festgelegt. Im Regelfalle beträgt die Menge des oder der Alkohole (B') 0 bis 39,9 mol-% bezüglich der Gesamtmenge aller Alkohole (B) und (B') zusammen. Bevorzugt beträgt die Menge 0 bis 35 mol-%, beson¬ ders bevorzugt 0 bis 25 mol-% und ganz besonders bevorzugt 0 bis 10 mol-%.
Die Reaktion von Phosgen, Diphosgen oder Triphosgen mit dem Alkohol oder Alkohol¬ gemisch erfolgt in der Regel unter Eliminierung von Chlorwasserstoff, die Reaktion der Carbonate mit dem Alkohol oder Alkoholgemisch zum erfindungsgemäßen hochfunkti- onellen hochverzweigten Polycarbonat erfolgt unter Eliminierung des monofunktionel¬ len Alkohols oder Phenols aus dem Carbonat-Molekül.
Die nach dem erfindungsgemäßen Verfahren gebildeten hochfunktionellen hochver¬ zweigten Polycarbonate sind nach der Reaktion, also ohne weitere Modifikation, mit Hydroxylgruppen und/oder mit Carbonatgruppen terminiert. Sie lösen sich gut in ver¬ schiedenen Lösemitteln, zum Beispiel in Wasser, Alkoholen, wie Methanol, Ethanol, Butanol, Alkohol/Wasser-Mischungen, Aceton, 2-Butanon, Essigester, Butylacetat, Methoxypropylacetat, Methoxyethylacetat, Tetrahydrofuran, Dimethylformamid, Di- methylacetamid, N-Methylpyrrolidon, Ethylencarbonat oder Propylencarbonat. Unter einem hochfunktionellen Polycarbonat ist im Rahmen dieser Erfindung ein Pro¬ dukt zu verstehen, das neben den Carbonatgruppen, die das Polymergerüst bilden, end- oder seitenständig weiterhin mindestens drei, bevorzugt mindestens sechs, mehr bevorzugt mindestens zehn funktionelle Gruppen aufweist. Bei den funktionellen Grup¬ pen handelt es sich um Carbonatgruppen und/oder um OH-Gruppen. Die Anzahl der end- oder seitenständigen funktionellen Gruppen ist prinzipiell nach oben nicht be¬ schränkt, jedoch können Produkte mit sehr hoher Anzahl funktioneller Gruppen uner¬ wünschte Eigenschaften, wie beispielsweise hohe Viskosität oder schlechte Löslich- keit, aufweisen. Die hochfunktionellen Polycarbonate der vorliegenden Erfindung wei¬ sen zumeist nicht mehr als 500 end- oder seitenständige funktionelle Gruppen, bevor¬ zugt nicht mehr als 100 end oder seitenständige funktionelle Gruppen auf.
Bei der Herstellung der hochfunktionellen Polycarbonate B1) ist es notwendig, das Verhältnis von den OH-Gruppen enthaltenden Verbindungen zu Phosgen oder Carbo- nat so einzustellen, dass das resultierende einfachste Kondensationsprodukt (im weite¬ ren Kondensationsprodukt (K) genannt) im Mittel entweder eine Carbonatgruppe oder Carbamoylgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonatgruppe oder Carbamoylgruppe enthält. Die einfachste Struktur des Kon- densationsproduktes (K) aus einem Carbonat (A) und einem Di- oder Polyalkohol (B) ergibt dabei die Anordnung XYn oder YnX1 wobei X eine Carbonatgruppe, Y eine Hydroxyl-Gruppe und n in der Regel eine Zahl zwischen 1 und 6, vorzugsweise zwi¬ schen 1 und 4, besonders bevorzugt zwischen 1 und 3 darstellt. Die reaktive Gruppe, die dabei als einzelne Gruppe resultiert, wird im folgenden generell „fokale Gruppe" genannt.
Liegt beispielsweise bei der Herstellung des einfachsten Kondensationsproduktes (K) aus einem Carbonat und einem zweiwertigen Alkohol das Umsetzungsverhältnis bei 1:1, so resultiert im Mittel ein Molekül des Typs XY, veranschaulicht durch die allge- meine Formel 1.
Figure imgf000010_0001
Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem dreiwertigen Alkohol bei einem Umsetzungsverhältnis von 1 : 1 resultiert im Mittel ein Molekül des Typs XY2, veranschaulicht durch die allgemeine Formel 2. Fokale Gruppe ist hier eine Carbonatgruppe.
Figure imgf000011_0001
Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem vierwertigen Alkohol ebenfalls mit dem Umsetzungsverhältnis 1 : 1 resultiert im Mittel ein Molekül des Typs XY3, veranschaulicht durch die allgemeine Formel 3. Fokale Gruppe ist hier eine Carbonatgruppe.
Figure imgf000011_0002
In den Formeln 1 bis 3 hat R die eingangs definierte Bedeutung und R1steht für einen aliphatischen oder aromatischen Rest.
Weiterhin kann die Herstellung des Kondensationsprodukts (K) zum Beispiel auch aus einem Carbonat und einem dreiwertigen Alkohol, veranschaulicht durch die allgemeine Formel 4, erfolgen, wobei das Umsetzungsverhältnis bei molar 2:1 liegt. Hier resultiert im Mittel ein Molekül des Typs X2Y1 fokale Gruppe ist hier eine OH-Gruppe. In der Formel 4 haben R und R1 die gleiche Bedeutung wie in den Formeln 1 bis 3.
Figure imgf000011_0003
Werden zu den Komponenten zusätzlich difunktionelle Verbindungen, z.B. ein Dicar- bonat oder ein Diol gegeben, so bewirkt dies eine Verlängerung der Ketten, wie bei¬ spielsweise in der allgemeinen Formel 5 veranschaulicht. Es resultiert wieder im Mittel ein Molekül des Typs XY2, fokale Gruppe ist eine Carbonatgruppe.
Figure imgf000012_0001
In Formel 5 bedeutet R2 einen organischen, bevorzugt aliphatischen Rest, R und R1 sind wie vorstehend beschrieben definiert.
Es können auch mehrere Kondensationsprodukte (K) zur Synthese eingesetzt werden. Hierbei können einerseits mehrere Alkohole beziehungsweise mehrere Carbonate ein¬ gesetzt werden. Weiterhin lassen sich durch die Wahl des Verhältnisses der eingesetz¬ ten Alkohole und der Carbonate bzw. der Phosgene Mischungen verschiedener Kon¬ densationsprodukte unterschiedlicher Struktur erhalten. Dies sei am Beispiel der Um- setzung eines Carbonates mit einem dreiwertigen Alkohol beispielhaft erläutert. Setzt man die Ausgangsprodukte im Verhältnis 1 :1 ein, wie in (II) dargestellt, so erhält man ein Molekül XY2. Setzt man die Ausgangsprodukte im Verhältnis 2:1 ein, wie in (IV) dargestellt, so erhält man ein Molekül X2Y. Bei einem Verhältnis zwischen 1 :1 und 2:1 erhält man eine Mischung von Molekülen XY2 und X2Y.
Die beispielhaft in den Formeln 1 - 5 beschriebenen einfachen Kondensationsprodukte (K) reagieren erfindungsgemäß bevorzugt intermolekular unter Bildung von hochfunkti- onellen Polykondensationsprodukten, im folgenden Polykondensationsprodukte (P) genannt. Die Umsetzung zum Kondensationsprodukt (K) und zum Polykondensations- produkt (P) erfolgt üblicherweise bei einer Temperatur von 0 bis 250 0C, bevorzugt bei 60 bis 1600C in Substanz oder in Lösung. Dabei können allgemein alle Lösungsmittel verwendet werden, die gegenüber den jeweiligen Edukten inert sind. Bevorzugt ver¬ wendet werden organische Lösungsmittel, wie zum Beispiel Decan, Dodecan, Benzol, Toluol, Chlorbenzol, XyIoI, Dimethylformamid, Dimethylacetamid oder Solventnaphtha.
In einer bevorzugten Ausführungsform wird die Kondensationsreaktion in Substanz durchgeführt. Der bei der Reaktion freiwerdende monofunktionelle Alkohol ROH oder das Phenol, kann zur Beschleunigung der Reaktion destillativ, gegebenenfalls bei ver¬ mindertem Druck, aus dem Reaktionsgleichgewicht entfernt werden.
Falls Abdestillieren vorgesehen ist, ist es regelmäßig empfehlenwert, solche Carbonate einzusetzen, welche bei der Umsetzung Alkohole ROH mit einem Siedepunkt von we¬ niger als 1400C freisetzen.
Zur Beschleunigung der Reaktion können auch Katalysatoren oder Katalysatorgemi¬ sche zugegeben werden. Geeignete Katalysatoren sind Verbindungen, die zum Ver- esterungs- oder Umesterungsreaktionen katalysieren, zum Beispiel Alkalihydroxide, Alkalicarbonate, Alkalihydrogencarbonate, vorzugsweise des Natriums, Kaliums oder Cäsiums, tertiäre Amine, Guanidine, Ammoniumverbindungen, Phosphoniumverbin- dungen, Aluminium-, Zinn-, Zink, Titan-, Zirkon- oder Wismut-organische Verbindun- gen, weiterhin sogenannte Doppelmetallcyanid (DMC)-Katalysatoren, wie zum Beispiel in der DE 10138216 oder in der DE 10147712 beschrieben.
Vorzugsweise werden Kaliumhydroxid, Kaliumcarbonat, Kaliumhydrogencarbonat, Dia- zabicyclooctan (DABCO), Diazabicyclononen (DBN), Diazabicycloundecen (DBU), Imi- dazole, wie Imidazol, 1-Methylimidazol oder 1 ,2-Dimethylimidazol, Titan-tetrabutylat, Titantetraisopropylat, Dibutylzinnoxid, Dibutylzinn-dilaύrat, Zinndioctoat, Zirkonacetyla- cetonat oder Gemische davon eingesetzt.
Die Zugabe des Katalysators erfolgt im allgemeinen in einer Menge von 50 bis 10000, bevorzugt von 100 bis 5000 Gew. ppm bezogen auf die Menge des eingesetzten Alko¬ hols oder Alkoholgemisches.
Ferner ist es auch möglich, sowohl durch Zugabe des geeigneten Katalysators, als auch durch Wahl einer geeigneten Temperatur die intermolekulare Polykondensations- reaktion zu steuern. Weiterhin lässt sich über die Zusammensetzung der Ausgangs¬ komponenten und über die Verweilzeit das mittlere Molekulargewicht des Polymeren (P) einstellen.
Die Kondensationsprodukte (K) bzw. die Polykondensationsprodukte (P), die bei er- höhter Temperatur hergestellt wurden, sind bei Raumtemperatur üblicherweise über einen längeren Zeitraum stabil.
Aufgrund der Beschaffenheit der Kondensationsprodukte (K) ist es möglich, daß aus der Kondensationsreaktion Polykondensationsprodukte (P) mit unterschiedlichen Strukturen resultieren können, die Verzweigungen, aber keine Vernetzungen aufwei¬ sen. Ferner weisen die Polykondensationsprodukte (P) im Idealfall entweder eine Car- bonatgruppe als fokale Gruppe und mehr als zwei OH-Gruppen oder aber eine OH- Gruppe als fokale Gruppe und mehr als zwei Carbonatgruppen auf. Die Anzahl der reaktiven Gruppen ergibt sich dabei aus der Beschaffenheit der eingesetzten Konden- sationsprodukte (K) und dem Polykondensationsgrad.
Beispielsweise kann ein Kondensationsprodukt (K) gemäß der allgemeinen Formel 2 durch dreifache intermolekulare Kondensation zu zwei verschiedenen Polykondensati- onsprodukten (P), die in den allgemeinen Formeln 6 und 7 wiedergegeben werden, reagieren.
Figure imgf000014_0001
Figure imgf000014_0002
In Formel 6 und 7 sind R und R1 wie vorstehend definiert.
Zum Abbruch der intermolekularen Polykondensationsreaktion gibt es verschiedene Möglichkeiten. Beispielsweise kann die Temperatur auf einen Bereich abgesenkt wer¬ den, in dem die Reaktion zum Stillstand kommt und das Produkt (K) oder das Polykon- densationsprodukt (P) lagerstabil ist.
Weiterhin kann man den Katalysator deaktivieren, bei basischen z.B. durch Zugabe von Lewissäuren oder Protonensäuren.
In einer weiteren Ausführungsform kann, sobald aufgrund der intermolekularen Reakti¬ on des Kondensationsproduktes (K) ein Polykondensationsprodukt (P) mit gewünsch- ten Polykondensationsgrad vorliegt, dem Produkt (P) zum Abbruch der Reaktion ein Produkt mit gegenüber der fokalen Gruppe von (P) reaktiven Gruppen zugesetzt wer¬ den. So kann bei einer Carbonatgruppe als fokaler Gruppe zum Beispiel ein Mono-, Di¬ oder Polyamin zugegeben werden. Bei einer Hydroxylgruppe als fokaler Gruppe kann dem Produkt (P) beispielsweise ein Mono-, Di- oder Polyisocyanat, eine Epoxydgrup- pen enthaltende Verbindung oder ein mit OH-Gruppen reaktives Säurederivat zugege¬ ben werden.
Die Herstellung der erfindungsgemäßen hochfunktionellen Polycarbonate erfolgt zu¬ meist in einem Druckbereich von 0,1 mbar bis 20 bar, bevorzugt bei 1 mbar bis 5 bar, in Reaktoren oder Reaktorkaskaden, die im Batchbetrieb, halbkontinuierlich oder konti¬ nuierlich betrieben werden. Durch die vorgenannte Einstellung der Reaktionsbedingungen und gegebenenfalls durch die Wahl des geeigneten Lösemittels können die erfindungsgemäßen Produkte nach der Herstellung ohne weitere Reinigung weiterverarbeitet werden.
In einer weiteren bevorzugten Ausführungsform wird das Produkt gestrippt, das heißt, von niedermolekularen, flüchtigen Verbindungen befreit. Dazu kann nach Erreichen des gewünschten Umsatzgrades der Katalysator optional deaktiviert und die niedermo¬ lekularen flüchtigen Bestandteile, z.B. Monoalkohole, Phenole, Carbonate, Chlorwas- serstoff oder leichtflüchtige oligomere oder cyclische Verbindungen destillativ, gegebe¬ nenfalls unter Einleitung eines Gases, vorzugsweise Stickstoff, Kohlendioxid oder Luft, gegebenenfalls bei vermindertem Druck, entfernt werden.
In einer weiteren bevorzugten Ausführungsform können die erfindungsgemäßen PoIy- carbonate neben den bereits durch die Reaktion erhaltenden funktionellen Gruppen weitere funktionelle Gruppen erhalten. Die Funktionalisierung kann dabei während des Molekulargewichtsaufbaus oder auch nachträglich, d.h. nach Beendigung der eigentli¬ chen Polykondensation erfolgen.
Gibt man vor oder während des Molekulargewichtsaufbaus Komponenten zu, die ne¬ ben Hydroxyl- oder Carbonatgruppen weitere funktionelle Gruppen oder funktionelle Elemente besitzen, so erhält man ein Polycarbonat-Polymer mit statistisch verteilten von den Carbonat-oder Hydroxylgruppen verschiedenen Funktionalitäten.
Derartige Effekte lassen sich zum Beispiel durch Zusatz von Verbindungen während der Polykondensation erzielen, die neben Hydroxylgruppen, Carbonatgruppen oder Carbamoylgruppen weitere funktionelle Gruppen oder funktionelle Elemente, wie Mer- captogruppen, primäre, sekundäre oder tertiäre Aminogruppen, Ethergruppen, Derivate von Carbonsäuren, Derivate von Sulfonsäuren, Derivate von Phosphonsäuren, Si- langruppen, Siloxangruppen, Arylreste oder langkettige Alkylreste tragen. Zur Modifika¬ tion mittels Carbamat-Gruppen lassen sich beispielsweise Ethanolamin, Propanolamin, Isopropanolamin, 2-(Butylamino)ethanol, 2-(Cyclohexylamino)ethanol, 2-Amino-1- butanol, 2-(2'-Amino-ethoxy)ethanol oder höhere Alkoxylierungsprodukte des Ammo¬ niaks, 4-Hydroxy-piperidin, 1-Hydroxyethylpiperazin, Diethanolamin, Dipropanolamin, Diisopropanol-amin, Tris(hydroxymethyl)aminomethan, Tris(hydroxyethyl)amino- methan, Ethylen-diamin, Propylendiamin, Hexamethylendiamin oder Isophorondiamin verwenden.
Für die Modifikation mit Mercaptogruppen lässt sich zum Beispiel Mercaptoethanol einsetzten. Tertiäre Aminogruppen lassen sich zum Beispiel durch Einbau von N-Me- thyldiethanolamin, N-Methyldipropanolamin oder N,N-Dimethylethanolamin erzeugen. Ethergruppen können zum Beispiel durch Einkondensation von di- oder höherfunktio- nellen Polyetherolen generiert werden. Durch Reaktion mit langkettigen Alkandiolen lassen sich langkettige Alkylreste einbringen, die Reaktion mit Alkyl- oder Aryldiisocya- naten generiert Alkyl-, Aryl- und Urethangruppen oder Harnstoffgruppen aufweisende Polycarbonate.
Durch Zugabe von Dicarbonsäuren, Tricarbonsäuren, z.B. Terephthalsäure- dimethylester oder Tricarbonsäureester lassen sich Estergruppen erzeugen.
Eine nachträgliche Funktionalisierung kann man erhalten, indem das erhaltene hoch- funktionelle, hoch- oder hyperverzweigte Polycarbonat in einem zusätzlichen Verfah¬ rensschritt (Schritt c)) mit einem geeigneten Funktionalisierungsreagenz, welches mit den OH- und/oder Carbonat-Gruppen oder Carbamoylgruppen des Polycarbonates reagieren kann, umsetzt.
Hydroxylgruppen enthaltende hochfunktionelle, hoch oder hyperverzweigte Polycarbo¬ nate können zum Beispiel durch Zugabe von Säuregruppen- oder Isocyanatgruppen enthaltenden Molekülen modifiziert werden. Beispielsweise lassen sich Säuregruppen enthaltende Polycarbonate durch Umsetzung mit Anhydridgruppen enthaltenden Ver¬ bindungen erhalten.
Weiterhin können Hydroxylgruppen enthaltende hochfunktionelle Polycarbonate auch durch Umsetzung mit Alkylenoxiden, zum Beispiel Ethylenoxid, Propylenoxid oder Bu- tylenoxid, in hochfunktionelle Polycarbonat-Polyetherpolyole überführt werden.
Ein großer Vorteil des Verfahren liegt in seiner Wirtschaftlichkeit. Sowohl die Umset¬ zung zu einem Kondensationsprodukt (K) oder Polykondensationsprodukt (P) als auch die Reaktion von (K) oder (P) zu Polycarbonaten mit anderen funktionellen Gruppen oder Elementen kann in einer Reaktionsvorrichtung erfolgen, was technisch und wirt¬ schaftlich vorteilhaft ist.
Als Komponente B2) können die erfindungsgemäßen Formmassen mindestens eines hyperverzweigten Polyesters des Typs AxBy enthalten, wobei
x mindestens 1 ,1 vorzugsweise mindestens 1 ,3, insbesondere mindestens 2 y mindestens 2,1 , vorzugsweise mindestens 2,5, insbesondere mindestens 3
beträgt.
Selbstverständlich können als Einheiten A bzw. B auch Mischungen eingesetzt wer- den. Unter einem Polyester des Typs AxBy versteht man ein Kondensat, das sich aus einem x-funktionellen Molekül A und einem y-funktionellen Molekül B aufbaut. Beispielsweise sei genannt ein Polyester aus Adipinsäure als Molekül A (x = 2) und Glycerin als Mole¬ kül B (y = 3).
Unter hyperverzweigten Polyestern B2) werden im Rahmen dieser Erfindung unver- netzte Makromoleküle mit Hydroxyl- und Carboxylgruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite aus¬ gehend von einem Zentralmolekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste aufgebaut sein. Sie können auf der anderen Seite auch linear, mit funktionellen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrime¬ ren und hyperverzweigten Polymeren siehe auch P. J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.
Unter „hyperverzweigt" wird- im Zusammenhang mit der vorliegenden Erfindung ver¬ standen, dass der Verzweigungsgrad (Degree of Branching, DB), dass heißt die mittle¬ re Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro Mole¬ kül, 10 bis 99.9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 - 95 % beträgt. Unter „dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad 99,9 - 100% beträgt. Zur Definition des „Degree of Bran¬ ching" siehe H. Frey et al., Acta Polym. 1997, 48, 30.
Die Komponente B2) weist vorzugsweise ein Mn von 300 bis 30 000, insbesondere von 400 bis 25000 und ganz besonders von 500 bis 20000 g/mol auf, bestimmt mittels GPC, Standard PMMA, Laufmittel Dimethylacetamid.
Vorzugsweise weist B2) eine OH-Zahl von 0 bis 600, vorzugsweise 1 bis 500, insbe¬ sondere von 20 bis 500 mg KOH/g Polyester gemäß DIN 53240 auf sowie bevorzugt eine COOH-Zahl von 0 bis 600, vorzugsweise von 1 bis 500 und insbesondere von 2 bis 500 mg KOH/g Polyester.
Die T9 beträgt vorzugsweise von -500C bis 1400C und insbesondere von -50 bis 1000C (mittels DSC, nach DIN 53765).
Insbesondere solche Komponenten B2) sind bevorzugt, in denen mindestens eine OH- bzw. COOH-Zahl größer 0, vorzugsweise größer 0,1 und insbesondere größer 0,5 ist.
Insbesondere durch die nachfolgend beschriebenen Verfahren ist die erfindungsgemä- ße Komponente B2) erhältlich, u.z. indem man (a) eine oder mehrere Dicarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren mindestens trifunktionellen Alkoholen
oder
(b) eine oder mehrere Tricarbonsäuren oder höhere Polycarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren Diolen
in Gegenwart eines Lösemittels und optional in Gegenwart eines anorganischen, me- tallorganischen oder niedermolekularen organischen Katalysators oder eines Enzyms umsetzt. Die Umsetzung im Lösungsmittel ist die bevorzugte Herstellmethode.
Hochfunktionelle hyperverzweigte Polyester B2) im Sinne der vorliegenden Erfindung sind molekular und strukturell uneinheitlich. Sie unterscheiden sich durch ihre moleku- lare Uneinheitlichkeit von Dendrimeren und sind daher mit erheblich geringerem Auf¬ wand herzustellen.
Zu den nach Variante (a) umsetzbaren Dicarbonsäuren gehören beispielsweise Oxal¬ säure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäu- re, Azelainsäure, Sebacinsäure, Undecan-a,w-dicarbonsäure, Dodecan-a,w- dicarbonsäure, eis- und trans-Cyclohexan-1 ,2-dicarbonsäure, eis- und trans- Cyclohexan-1 ,3-dicarbonsäure, eis- und trans-Cyclohexan-1 ,4-dicarbonsäure, eis- und trans-Cyclopentan-1 ,2-dicarbonsäure sowie eis- und trans-Cyclopentan-1 ,3- dicarbonsäure,
wobei die oben genannten Dicarbonsäuren substituiert sein können mit einem oder mehreren Resten, ausgewählt aus
CrCio-Alkylgruppen, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso- Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-
Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,
C3-Ci2-Cycloalkylgruppen, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclo- hexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclodode- cyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl;
Alkylengruppen wie Methylen oder Ethyliden oder
C6-C14-Arylgruppen wie beispielsweise Phenyl, 1-Naphthyl, 2-Naphthyl, 1-Anthryl, 2- Anthryl, 9-Anthryl, 1-Phenanthryl, 2-Phenanthryl, 3-Phenanthryl, 4-Phenanthryl und 9- Phenanthryl, bevorzugt Phenyl, 1-Naphthyl und 2-Naphthyl, besonders bevorzugt Phe- nyl.
Als beispielhafte Vertreter für substituierte Dicarbonsäuren seien genannt: 2- Methylmalonsäure, 2-Ethylmalonsäure, 2-Phenylmalonsäure, 2-Methylbernsteinsäure, 2-Ethylbemsteinsäure, 2-Phenylbemsteinsäure, Itaconsäure, 3,3-Dimethylglutarsäure.
Weiterhin gehören zu den nach Variante (a) umsetzbaren Dicarbonsäuren ethylenisch ungesättigte Säuren wie beispielsweise Maleinsäure und Fumarsäure sowie aromati- sehe Dicarbonsäuren wie beispielsweise Phthalsäure, Isophthalsäure oder Terephthal- säure.
Weiterhin lassen sich Gemische von zwei oder mehreren der vorgenannten Vertreter einsetzen.
Die Dicarbonsäuren lassen sich entweder als solche oder in Form von Derivaten ein¬ setzen.
Unter Derivaten werden bevorzugt verstanden
die betreffenden Anhydride in monomerer oder auch polymerer Form,
Mono- oder Dialkylester, bevorzugt Mono- oder Dimethylester oder die entspre¬ chenden Mono- oder Diethylester, aber auch die von höheren Alkoholen wie bei- spielsweise n-Propanol, iso-Propanol, n-Butanol, Isobutanol, tert.-Butanol, n-Pentanol, n-Hexanol abgeleiteten Mono- und Dialkylester,
ferner Mono- und Divinylester sowie
- gemischte Ester, bevorzugt Methylethylester.
Im Rahmen der bevorzugten Herstellung ist es auch möglich, ein Gemisch aus einer Dicarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es möglich, ein Gemisch mehrerer verschiedener Derivate von einer oder mehreren Di- carbonsäuren einzusetzen.
Besonders bevorzugt setzt man Bernsteinsäure, Glutarsäure, Adipinsäure, Phthalsäu¬ re, Isophthalsäure, Terephthalsäure oder deren Mono- oder Dimethylester ein. Ganz besonders bevorzugt setzt man Adipinsäure ein.
Als mindestens trifunktionelle Alkohole lassen sich beispielsweise umsetzen: Glycerin, Butan-1 ,2,4-triol, n-Pentan-1 ,2,5-triol, n-Pentan-1 ,3,5-triol, n-Hexan-1 ,2,6-triol, n-Hexan-1 ,2,5-triol, π-Hexan-1 ,3,6-triol, Trimethylolbutan, Trimethylolpropan oder Di- Trimethylolpropan, Trimethylolethan, Pentaerythrit oder Dipentaerythrit; Zuckeralkohole wie beispielsweise Mesoerythrit, Threitol, Sorbit, Mannit oder Gemische der vorstehen¬ den mindestens trifunktionellen Alkohole. Bevorzugt verwendet man Glycerin, Tri- methylolpropan, Trimethylolethan und Pentaerythrit.
Nach Variante (b) umsetzbare Tricarbonsäuren oder Polycarbonsäuren sind beispiels¬ weise 1 ,2,4-Benzoltricarbonsäure, 1 ,3,5-Benzoltricarbonsäure, 1 ,2,4,5-Benzoltetra- carbonsäure sowie Mellitsäure.
Tricarbonsäuren oder Polycarbonsäuren lassen sich in der erfindungsgemäßen Reak¬ tion entweder als solche oder aber in Form von Derivaten einsetzen.
Unter Derivaten werden bevorzugt verstanden
die betreffenden Anhydride in monomerer oder auch polymerer Form,
Mono-, Di- oder Trialkylester, bevorzugt Mono-, Di- oder Trimethylester oder die entsprechenden Mono-, Di- oder Triethylester, aber auch die von höheren Alko- holen wie beispielsweise n-Propanol, iso-Propanol, n-Butanol, Isobutanol, tert-
Butanol, n-Pentanol, n-Hexanol abgeleiteten Mono- Di- und Triester, ferner Mo¬ no-, Di- oder Trivinylester
sowie gemischte Methylethylester.
Im Rahmen der vorliegenden Erfindung ist es auch möglich, ein Gemisch aus einer Tri¬ oder Polycarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es im Rahmen der vorliegenden Erfindung möglich, ein Gemisch mehrerer ver¬ schiedener Derivate von einer oder mehreren Tri- oder Polycarbonsäuren einzusetzen, um Komponente B2) zu erhalten.
Als Diole für Variante (b) der vorliegenden Erfindung verwendet man beispielsweise Ethylenglykol, Propan-1 ,2-diol, Propan-1 ,3-diol, Butan-1 ,2-diol, Butan-1 ,3-diol, Butan- 1 ,4-diol, Butan-2,3-diol, Pentan-1 ,2-diol, Pentan-1 ,3-diol, Pentan-1 ,4-diol, Pentan-1 ,5- diol, Pentan-2,3-diol, Pentan-2,4-diol, Hexan-1 ,2-diol, Hexan-1 ,3-diol, Hexan-1 ,4-diol, Hexan-1 ,5-diol, Hexan-1 ,6-diol, Hexan-2,5-diol, Heptan-1 ,2-diol 1 ,7-Heptandiol, 1 ,8- Octandiol, 1 ,2-Octandiol, 1,9-Nonandiol, 1 ,10-Decandiol, 1 ,2-Decandiol, 1 ,12-Do- decandiol, 1 ,2-Dodecandiol, 1 ,5-Hexadien-3,4-diol, Cyclopentandiole, Cyclohexandiole, Inositol und Derivate, (2)-Methyl-2,4-pentandiol, 2,4-Dimethyl-2,4-Pentandiol, 2-Ethyl- 1 ,3-hexandiol, 2,5-Dimethyl-2,5-hexandiol, 2,2,4-Trimethyl-1 ,3-pentandiol, Pinacol,
Diethylenglykol, Triethylenglykol, Dipropylenglykol, Tripropylenglykol, Polyethylenglyko- Ie HO(CH2CH2O)n-H oder Polypropylenglykole HO(CH[CH3]CH2O)n-H oder Gemische von zwei oder mehr Vertretern der voranstehenden Verbindungen, wobei n eine ganze Zahl ist und n = 4 bis 25 beträgt. Dabei kann eine oder auch beide Hydroxylgruppen in den vorstehend genannten Diolen auch durch SH-Gruppen substituiert werden. Bevor¬ zugt sind Ethylenglykol, Propan-1 ,2-diol sowie Diethylenglykol, Triethylenglykol, Dipropylenglykol und Tripropylenglykol.
Die Molverhältnis der Moleküle A zu Molekülen B im Ax By-Polyester bei den Varianten (a) und (b) beträgt 4:1 bis 1 :4, insbesondere 2:1 bis 1 :2.
Die nach Variante (a) des Verfahrens umgesetzten mindestens trifunktionellen Alkoho¬ le können Hydroxylgruppen jeweils gleicher Reaktivität aufweisen. Bevorzugt sind hier auch mindestens trifunktionelle Alkohole, deren OH-Gruppen zunächst gleich reaktiv sind, bei denen sich jedoch durch Reaktion mit mindestens einer Säuregruppe ein Re¬ aktivitätsabfall, bedingt durch sterische oder elektronische Einflüsse, bei den restlichen OH-Gruppen induzieren lässt. Dies ist beispielsweise bei der Verwendung von Tri- methylolpropan oder Pentaerythrit der Fall.
Die nach Variante (a) umgesetzten mindestens trifunktionellen Alkohole können aber auch Hydroxylgruppen mit mindestens zwei chemisch unterschiedlichen Reaktivitäten aufweisen.
Die unterschiedliche Reaktivität der funktionellen Gruppen kann dabei entweder auf chemischen (z.B. primäre/sekundäre/tertiäre OH Gruppe) oder auf sterischen Ursa¬ chen beruhen.
Beispielsweise kann es sich bei dem Triol um ein Triol handeln, welches primäre und sekundäre Hydroxylgruppen aufweist, bevorzugtes Beispiel ist Glycerin.
Bei der Durchführung der erfindungsgemäßen Umsetzung nach Variante (a) arbeitet man bevorzugt in Abwesenheit von Diolen und monofunktionellen Alkoholen.
Bei der Durchführung der erfindungsgemäßen Umsetzung nach Variante (b) arbeitet man bevorzugt in Abwesenheit von mono- oder Dicarbonsäuren.
Das erfindungsgemäße Verfahren wird in Gegenwart eines Lösemittels durchgeführt. Geeignet sind beispielsweise Kohlenwasserstoffe wie Paraffine oder Aromaten. Be¬ sonders geeignete Paraffine sind n-Heptan und Cyclohexan. Besonders geeignete Aromaten sind Toluol, ortho-Xylol, meta-Xylol, para-Xylol, XyIoI als Isomerengemisch, Ethylbenzol, Chlorbenzol und Ortho- und meta-Dichlorbenzol. Weiterhin sind als Löse- mittel in Abwesenheit von sauren Katalysatoren ganz besonders geeignet: Ether wie beispielsweise Dioxan oder Tetrahydrofuran und Ketone wie beispielsweise Methyl- ethylketon und Methylisobutylketon. Die Menge an zugesetztem Lösemittel beträgt erfindungsgemäß mindestens 0,1 Gew.-%, bezogen auf die Masse der eingesetzten umzusetzenden Ausgangsmate¬ rialien, bevorzugt mindestens 1 Gew.-% und besonders bevorzugt mindestens 10 Gew.-%. Man kann auch Überschüsse an Lösemittel, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, einsetzen, beispielsweise das 1 ,01- bis 10-fache. Lösemittel-Mengen von mehr als dem 100-fachen, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, sind nicht vorteilhaft, weil bei deutlich niedrigeren Konzentrationen der Reaktionspartner die Reaktionsge- schwindigkeit deutlich nachlässt, was zu unwirtschaftlichen langen Umsetzungsdauern führt.
Zur Durchführung des erfindungsgemäß bevorzugten Verfahrens kann man in Gegen¬ wart eines Wasser entziehenden Mittels als Additiv arbeiten, das man zu Beginn der Reaktion zusetzt. Geeignet sind beispielsweise Molekularsiebe, insbesondere Moleku¬ larsieb 4A, MgSO4 und Na2SO4. Man kann auch während der Reaktion weiteres Was¬ ser entziehendes Mittel zufügen oder Wasser entziehendes Mittel durch frisches Was¬ ser entziehendes Mittel ersetzen. Man kann auch während der Reaktion gebildetes Wasser bzw. Alkohol abdestillieren und beispielsweise einen Wasserabscheider ein- setzen.
Man kann das Verfahren in Abwesenheit von sauren Katalysatoren durchführen. Vor¬ zugsweise arbeitet man in Gegenwart eines sauren anorganischen, metallorganischen oder organischen Katalysators oder Gemischen aus mehreren sauren anorganischen, metallorganischen oder organischen Katalysatoren.
Als saure anorganische Katalysatoren im Sinne der vorliegenden Erfindung sind bei¬ spielsweise Schwefelsäure, Phosphorsäure, Phosphonsäure, hypophosphorige Säure, Aluminiumsulfathydrat, Alaun, saures Kieselgel (pH = 6, insbesondere = 5) und saures Aluminiumoxid zu nennen. Weiterhin sind beispielsweise Alumiumverbindungen der allgemeinen Formel AI(OR)3 und Titanate der allgemeinen Formel Ti(OR)4 als saure anorganische Katalysatoren einsetzbar, wobei die Reste R jeweils gleich oder ver¬ schieden sein können und unabhängig voneinander gewählt sind aus
d-C^-Alkylresten, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso- Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-Di- methylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,
C3-C12-Cycloalkylresten, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohe- xyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl. Bevorzugt sind die Reste R in AI(OR)3 bzw. Ti(OR)4 jeweils gleich und gewählt aus Isopropyl oder 2-Ethylhexyl.
Bevorzugte saure metallorganische Katalysatoren sind beispielsweise gewählt aus Dialkylzinnoxiden R2SnO, wobei R wie oben stehend definiert ist. Ein besonders be¬ vorzugter Vertreter für saure metallorganische Katalysatoren ist Di-n-butylzinnoxid, das als sogenanntes Oxo-Zinn kommerziell erhältlich ist, oder Di-n-butylzinndilaurat.
Bevorzugte saure organische Katalysatoren sind saure organische Verbindungen mit beispielsweise Phosphatgruppen, Sulfonsäuregruppen, Sulfatgruppen oder Phosphon- säuregruppen. Besonders bevorzugt sind Sulfonsäuren wie beispielsweise para-Toluol- sulfonsäure. Man kann auch saure lonentauscher als saure organische Katalysatoren einsetzen, beispielsweise Sulfonsäuregruppen-haltige Polystyrolharze, die mit etwa 2 mol-% Divinylbenzol vernetzt sind.
Man kann auch Kombinationen von zwei oder mehreren der vorgenannten Katalysato¬ ren einsetzen. Auch ist es möglich, solche organische oder metallorganische oder auch anorganische Katalysatoren, die in Form diskreter Moleküle vorliegen, in immobilisier- ter Form einzusetzen.
Wünscht man saure anorganische, metallorganische oder organische Katalysatoren einzusetzen, so setzt man erfindungsgemäß 0,1 bis 10 Gew.-%, bevorzugt 0,2 bis 2 Gew.-% Katalysator ein.
Das erfindungsgemäße Verfahren wird unter Inertgasatmosphäre durchgeführt, das heißt beispielsweise unter Kohlendioxid, Stickstoff oder Edelgas, unter denen insbe¬ sondere Argon zu nennen ist.
Das erfindungsgemäße Verfahren wird bei Temperaturen von 60 bis 2000C durchge¬ führt. Vorzugsweise arbeitet man bei Temperaturen von 130 bis 180, insbesondere bis 1500C oder darunter. Besonders bevorzugt sind maximale Temperaturen bis 145°C, ganz besonders bevorzugt bis 135°C.
Die Druckbedingungen des erfindungsgemäßen Verfahrens sind an sich unkritisch. Man kann bei deutlich verringertem Druck arbeiten, beispielsweise bei 10 bis 500 mbar. Das erfindungsgemäße Verfahren kann auch bei Drucken oberhalb von 500 mbar durchgeführt werden. Bevorzugt ist aus Gründen der Einfachheit die Umset¬ zung bei Atmosphärendruck; möglich ist aber auch eine Durchführung bei leicht erhöh- tem Druck, beispielsweise bis 1200 mbar. Man kann auch unter deutlich erhöhtem Druck arbeiten, beispielsweise bei Drucken bis 10 bar. Bevorzugt ist die Umsetzung bei Atmosphärendruck. Die Umsetzungsdauer des erfindungsgemäßen Verfahrens beträgt üblicherweise 10 Minuten bis 25 Stunden, bevorzugt 30 Minuten bis 10 Stunden und besonders be¬ vorzugt eine bis 8 Stunden.
Nach beendeter Reaktion lassen sich die hochfunktionellen hyperverzweigten Polyes¬ ter leicht isolieren, beispielsweise durch Abfiltrieren des Katalysators und Einengen, wobei man das Einengen üblicherweise bei vermindertem Druck durchführt. Weitere gut geeignete Aufarbeitungsmethoden sind Ausfällen nach Zugabe von Wasser und anschließendes Waschen und Trocknen.
Weiterhin kann die Komponente B2) in Gegenwart von Enzymen oder Zersetzungs¬ produkten von Enzymen hergestellt werden (gemäß DE-A 101 63163). Es gehören die erfindungsgemäß umgesetzten Dicarbonsäuren nicht zu den sauren organischen Kata- lysatoren im Sinne der vorliegenden Erfindung.
Bevorzugt ist die Verwendung von Lipasen oder Esterasen. Gut geeignete Lipasen und Esterasen sind Candida cylindracea, Candida lipolytica, Candida rugosa, Candida an- tarctica, Candida utilis, Chromobacterium viscosum, Geolrichum viscosum, Geotrichum candidum, Mucor javanicus, Mucor mihei, pig pancreas, Pseudomonas spp., Pseudo¬ monas fluorescens, Pseudomonas cepacia, Rhizopus arrhizus, Rhizopus delemar, Rhizopus niveus, Rhizopus oryzae, Aspergillus niger, Penicillium roquefortii, Penicilli- um camembertü oder Esterase von Bacillus spp. und Bacillus thermoglucosidasius. Besonders bevorzugt ist Candida antarctica Lipase B. Die aufgeführten Enzyme sind kommerziell erhältlich, beispielsweise bei Novozymes Biotech Inc., Dänemark.
Bevorzugt setzt man das Enzym in immobilisierter Form ein, beispielsweise auf Kiesel¬ gel oder Lewatit®. Verfahren zur Immobilisierung von Enzymen sind an sich bekannt, beispielsweise aus Kurt Faber, „Biotransformations in organic chemistry", 3. Auflage 1997, Springer Verlag, Kapitel 3.2 „Immobilization" Seite 345-356. Immobilisierte En¬ zyme sind kommerziell erhältlich, beispielsweise bei Novozymes Biotech Inc., Däne¬ mark.
Die Menge an immobilisiertem eingesetztem Enzym beträgt 0,1 bis 20 Gew.-%, insbe- sondere 10 bis 15 Gew.-%, bezogen auf die Masse der insgesamt eingesetzten umzu¬ setzenden Ausgangsmaterialien.
Das erfindungsgemäße Verfahren wird bei Temperaturen über 600C durchgeführt. Vor¬ zugsweise arbeitet man bei Temperaturen von 1000C oder darunter. Bevorzugt sind Temperaturen bis 800C, ganz besonders bevorzugt von 62 bis 75°C und noch mehr bevorzugt von 65 bis 75°C. Das erfindungsgemäße Verfahren wird in Gegenwart eines Lösemittels durchgeführt. Geeignet sind beispielsweise Kohlenwasserstoffe wie Paraffine oder Aromaten. Be¬ sonders geeignete Paraffine sind n-Heptan und Cyclohexan. Besonders geeignete Aromaten sind Toluol, ortho-Xylol, meta-Xylol, para-Xylol, XyIoI als Isomerengemisch, Ethylbenzol, Chlorbenzol und Ortho- und meta-Dichlorbenzol. Weiterhin sind ganz be¬ sonders geeignet: Ether wie beispielsweise Dioxan oder Tetrahydrofuran und Ketone wie beispielsweise Methylethylketon und Methylisobutylketon.
Die Menge an zugesetztem Lösemittel beträgt mindestens 5 Gew. -Teile, bezogen auf die Masse der eingesetzten umzusetzenden Ausgangsmaterialien, bevorzugt mindes¬ tens 50 Gew. -Teile und besonders bevorzugt mindestens 100 Gew. -Teile. Mengen von über 10 000 Gew.-Teile Lösemittel sind nicht erwünscht, weil bei deutlich niedrigeren Konzentrationen die Reaktionsgeschwindigkeit deutlich nachlässt, was zu unwirtschaft¬ lichen langen Umsetzungsdauern führt.
Das erfindungsgemäße Verfahren wird bei Drücken oberhalb von 500 mbar durchge¬ führt. Bevorzugt ist die Umsetzung bei Atmosphärendruck oder leicht erhöhtem Druck, beispielsweise bis 1200 mbar. Man kann auch unter deutlich erhöhtem Druck arbeiten, beispielsweise bei Drücken bis 10 bar. Bevorzugt ist die Umsetzung bei Atmosphären- druck.
Die Umsetzungsdauer des erfindungsgemäßen Verfahrens beträgt üblicherweise 4 Stunden bis 6 Tage, bevorzugt 5 Stunden bis 5 Tage und besonders bevorzugt 8 Stunden bis 4 Tage.
Nach beendeter Reaktion lassen sich die hochfunktionellen hyperverzweigten Polyes¬ ter isolieren, beispielsweise durch Abfiltrieren des Enzyms und Einengen, wobei man das Einengen üblicherweise bei vermindertem Druck durchführt. Weitere gut geeignete Aufarbeitungsmethoden sind Ausfällen nach Zugabe von Wasser und anschließendes Waschen und Trocknen.
Die nach dem erfindungsgemäßen Verfahren erhältlichen hochfunktionellen, hyperver¬ zweigten Polyester, zeichnen sich durch besonders geringe Anteile an Verfärbungen und Verharzungen aus. Zur Definition von hyperverzweigten Polymeren siehe auch: PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und A. Sunder et al., Chem. Eur. J. 2000, 6, No.1 , 1-8. Unter "hochfunktionell hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung jedoch verstanden, dass der Verzweigungsgrad (Degree of branching), das heißt die mittlere Anzahl von dendritischen Verknüpfungen plus die mittlere Anzahl von Endgruppen pro Molekül 10 - 99,9 %, bevorzugt 20 - 99 %, be- sonders bevorzugt 30 - 90 % beträgt (siehe dazu H. Frey et al. Acta Polym. 1997, 48, 30). Die erfindungsgemäßen Polyester haben ein Molekulargewicht Mw von 500 bis 50 000 g/mol, bevorzugt 1000 bis 20 000, besonders bevorzugt 1000 bis 19 000. Die Polydispersität beträgt 1 ,2 bis 50, bevorzugt 1 ,4 bis 40, besonders bevorzugt 1 ,5 bis 30 und ganz besonders bevorzugt 1,5 bis 10. Sie sind üblicherweise gut löslich, d.h. man kann klare Lösungen mit bis zu 50 Gew.-%, in einigen Fällen sogar bis zu 80 Gew.-%, der erfindungsgemäßen Polyester in Tetrahydrofuran (THF), n-Butylacetat, Ethanol und zahlreichen anderen Lösemitteln darstellen, ohne dass mit bloßem Auge Gelparti¬ kel detektierbar sind.
Die erfindungsgemäßen hochfunktionellen hyperverzweigten Polyester sind carboxy- terminiert, carboxy- und Hydroxylgruppen-terminiert und vorzugsweise Hydroxylgrup- pen-terminiert.
Die Verhältnisse der Komponenten B1) zu B2) betragen vorzugsweise von 1 : 20 bis 20 : 1 , insbesondere von 1 : 15 bis 15 : 1 und ganz besonders von 1 : 5 bis 5 : 1 , wenn diese in Mischung eingesetzt werden.
Als Komponente C) können die erfindungsgemäßen Formmassen 0 bis 80 Gew.-%, vorzugsweise 0 bis 50 Gew.-% und insbesondere 0 bis 40 Gew.-% weitere Zusatzstof- fe enthalten.
Als Komponente C) können die erfindungsgemäßen Formmassen 0,01 bis
2 Gew.-%, vorzugsweise 0,02 bis 0,8 Gew.-% und insbesondere 0,03 bis 0,4 Gew.-%
Talkum enthalten, welches ein hydratisiertes Magnesiumsilikat der Zusammensetzung Mg3I(OH)2ZSi4O10] oder 3 MgO 4 SiO2 H2O ist. Diese sogenannten Drei-Schicht- Phyllosilikate weisen einen triklinen, monoklinen oder rhombischen Kristallaufbau auf mit blättchenförmigem Erscheinungsbild. An weiteren Spurenelementen können Mn, Ti, Cr, Ni, Na und K anwesend sein, wobei die OH-Gruppe teilweise durch Fluorid ersetzt sein kann.
Besonders bevorzugt wird Talkum eingesetzt, dessen Teilchengrößen zu 100 % < 20 μm beträgt. Die Teilchengrößenverteilung wird üblicherweise durch Sedimentati¬ onsanalyse DIN 6616-1 bestimmt und beträgt vorzugsweise:
< 20 μm 100 Gew.-%
< 10 μm 99 Gew.-%
< 5 μm 85 Gew.-%
< 3 μm 60 Gew.-%
< 2 μm 43 Gew.-%
Derartige Produkte sind im Handel als Micro-Tale IT. extra (Fa. Norwegian TaIc Mine¬ rals) erhältlich. Als sterisch gehinderte Phenole C) eignen sich prinzipiell alle Verbindungen mit pheno¬ lischer Struktur, die am phenolischen Ring mindestens eine sterisch anspruchsvolle Gruppe aufweisen.
Vorzugsweise kommen z.B. Verbindungen der Formel
Figure imgf000027_0001
in Betracht, in der bedeuten:
R1 und R2 eine Alkylgruppe, eine substituierte Alkylgruppe oder eine substituierte Tria- zolgruppe, wobei die Reste R1 und R2 gleich oder verschieden sein können und R3 eine Alkylgruppe, eine substituierte Alkylgruppe, eine Alkoxigruppe oder eine substitu¬ ierte Aminogruppe.
Antioxidantien der genannten Art werden beispielsweise in der DE-A 27 02 661 (US-A 4 360 617) beschrieben.
Eine weitere Gruppe bevorzugter sterisch gehinderter Phenole leiten sich von substitu- ierten Benzolcarbonsäuren ab, insbesondere von substituierten Benzolpropionsäuren.
Besonders bevorzugte Verbindungen aus dieser Klasse sind Verbindungen der Formel
Figure imgf000027_0002
wobei R4, R5, R7 und R8 unabhängig voneinander CrCβ-Alkylgruppen, die ihrerseits substituiert sein können (mindestens eine davon ist eine sterisch anspruchsvolle Grup¬ pe) und R6 einen zweiwertigen aliphatischen Rest mit 1 bis 10 C-Atomen, der in der Hauptkette auch C-O-Bindungen aufweisen kann.
Bevorzugte Verbindungen, die dieser Formen entsprechen, sind
Figure imgf000028_0001
(Irganox® 245 der Firma Ciba-Geigy)
Figure imgf000028_0002
(Irganox® 259 der Firma Ciba-Geigy)
Beispielhaft genannt seien als sterisch gehinderte Phenole:
2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenol), 1 ,6-Hexandiol-bis[3-(3,5-di-tert.-butyl- 4-hydroxyphenyl)-propionat], Pentaerythril-tetrakis-[3-(3,5-di-tert.-butyl-4- hydroxyphenyl)-propionat], Distiaryl-3,5-di-tert.-butyl-4-hydroxybenzylphosphonat, 2,6,7-Trioxa-1-phosphabicyclo-[2.2.2]oct-4-yl-methyl-3,5-di-tert.-butyl-4- hydroxyhydrocinnamat, 3,5-Di-tert.-butyl-4-hydroxyphenyl-3,5-distearyl-thiotriazylamin, 2-(2I-Hydroxy-31-hydroxy-3',5l-di-tert.-butylphenyl)-5-chlorbenzotriazol, 2,6-Di-tert.- butyl-4-hydroxymethylphenol, 1 ,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert.-butyl-4- hydroxybenzyl)-benzol, 4,4'-Methylen-bis-(216-di-tert.-butylphenol), 3,5-Di-tert.-butyl-4- hydroxybenzyl-dimethylamin und N,N'-Hexamethylen-bis-3,5-di-tert.-butyl-4- hydroxyhydrocinnamid.
Als besonders wirksam erwiesen haben sich und daher vorzugsweise verwendet wer¬ den 2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenyl), 1 ,6-Hexandiol-bis-(3,5-di-tert.- butyl-4-hydroxyphenyl]-propionat (Irganox® 259), Pentaerythrityl-tetrakis-[3-(3,5-di- tert.-butyl-4-hydroxyphenyl)-propionat] und das vorstehend beschriebene Irganox® 245 der Firma Ciba Geigy, das besonders gut geeignet ist.
Die Antioxidantien (C), die einzeln oder als Gemische eingesetzt werden können, kön¬ nen in einer Menge von 0,005 bis zu 2 Gew.-%, vorzugsweise von 0,1 bis 1 ,0 Gew.-%, bezogen auf das Gesamtgewicht der Formmassen A) bis C) eingesetzt werden. In manchen Fällen haben sich sterisch gehinderte Phenole mit nicht mehr als einer sterisch gehinderten Gruppe in ortho-Stellung zur phenolischen Hydroxygruppe als besonders vorteilhaft erwiesen; insbesondere bei der Beurteilung der Farbstabilität bei Lagerung in diffusem Licht über längere Zeiträume.
Die als Komponenten C) verwendbaren Polyamide sind an sich bekannt. Halbkristalline oder amorphe Harze, wie sie z.B. in der Encyclopedia of Polymer Science and Engi¬ neering, Vol. 11 , S. 315 bis 489, John Wiley & Sons, Inc., 1988, beschreiben werden, können eingesetzt werden, wobei der Schmelzpunkt des Polyamids vorzugsweise un¬ ter 2250C, vorzugsweise unter 2150C liegt.
Beispiele hierfür sind Polyhexamethylenazelainsäureamid, Polyhexamethylensebacin- säureamid, Polyhexamethylendodekandisäureamid, Poly-11-aminoundekansäureamid und Bis-(p-aminocyclohexyl)-methan-dodekansäurediamid oder die durch Ringöffnung von Lactamen, z.B. oder Polylaurinlactam erhaltenen Produkte. Auch Polyamide auf der Basis von Terephthal- oder Isophthalsäure als Säurekomponente und/oder Tri- methylhexamethylendiamin oder Bis-(p-aminocyclohexyl)-propan als Diaminkompo¬ nente sowie Polyamidgrundharze, die durch Copolymerisation zweier oder mehrerer der vorgenannten Polymeren oder deren Komponenten hergestellt worden sind, sind geeignet.
Als besonders geeignete Polyamide seien Mischpolyamide auf der Grundlage von Caprolactam, Hexamethylendiamin, p,p'-Diaminodicyclohexylmethan und Adipinsäure genannt. Ein Beispiel hierfür ist das unter der Bezeichnung Ultramid® 1 C von der BASF Aktiengesellschaft vertriebene Produkt.
Weitere geeignete Polyamide werden von der Firma Du Pont unter der Bezeichnung Elvamide® vertrieben.
Die Herstellung dieser Polyamide wird ebenfalls in der vorgenannten Schrift beschrie¬ ben. Das Verhältnis von endständigen Aminogruppen zu endständigen Säuregruppen kann durch Variation des Molverhältnisses der Ausgangsverbindungen gesteuert wer¬ den.
Der Anteil des Polyamids in der erfindungsgemäßen Formmasse beträgt von 0,001 bis zu 2 Gew.-%, vorzugsweise 0,005 bis 1 ,99 Gew.-%, bevorzugt 0,01 bis 0,08 Gew.-%.
Durch die Mitverwendung eines Polykondensationsprodukts aus 2,2-Di-(4- hydroxyphenyl)propan (Bisphenol A) und Epichlorhydrin kann in manchen Fällen die Dispergierbarkeit der verwendeten Polyamide verbessert werden. Derartige Kondensationsprodukte aus Epichlorhydrin und Bisphenol A sind kommer¬ ziell erhältlich. Verfahren zu deren Herstellung sind dem Fachmann ebenfalls bekannt. Handelsbezeichnungen der Polykondensate sind Phenoxy® (der Union Carbide Corpo¬ ration) bzw. Epikote® (Firma Shell). Das Molekulargewicht der Polykondensate kann in weiten Grenzen variieren; prinzipiell sind die im Handel erhältlichen Typen sämtlich geeignet.
Als Komponente C) können die erfindungsgemäßen Polyoxymethylen-Formmassen 0,002 bis 2,0 Gew.-%, vorzugsweise 0,005 bis 0,5 Gew.-% und insbesondere 0,01 bis 0,3 Gew.-%, bezogen auf das Gesamtgewicht der Formmassen eines oder mehrerer der Erdalkalisilikate und/oder Erdalkaliglycerophosphate enthalten. Als Erdalkalimetalle zur Bildung der Silikate und Glycerophosphate haben sich vorzugsweise Calcium und insbesondere Magnesium vorzüglich bewährt. Anwendung finden zweckmäßgerweise Calciumglycerophosphat und vorzugsweise Magnesiumglycerophosphat und/oder CaI- ciumsilikat und vorzugsweise Magnesiumsilikat, wobei als Erdalkalisilikate, insbeson¬ dere solche bevorzugt sind, die durch die Formel
Me x SiO2 n H2O
beschrieben werden, in der bedeuten
Me ein Erdalkalimetall, vorzugsweise Calcium oder insbesondere Magnesium,
x eine Zahl von 1 ,4 bis 10, vorzugsweise 1 ,4 bis 6 und
n eine Zahl gleich oder größer als 0, vorzugsweise 0 bis 8.
Die Verbindungen C) werden vorteilhafterweise in feingemahlener Form eingesetzt. Produkte mit einer durchschnittlichen Teilchengröße von kleiner als 100 μm, vorzugs- weise von kleiner als 50 μm sind besonders gut geeignet.
Vorzugsweise Anwendung finden Calcium- und Magnesiumsilikate und/oder Calcium- und Magnesiumglycerophosphate können beispielsweise durch die folgenden Kennda¬ ten näher spezifiziert werden:
Calcium- bzw.- Magnesiumsilikat:
Gehalt an CaO bzw. MgO: 4 bis 32 Gew.-%, vorzugsweise 8 bis 30 Gew.-% und ins¬ besondere 12 bis 25 Gew.-%, Verhältnis SiO2 : CaO bzw. SiO2 : MgO (mol/mol) : 1 ,4 bis 10, vorzugsweise 1 ,4 bis 6 und insbesondere 1,5 bis 4,
Schüttgewicht: 10 bis 80 g/100 ml, vorzugsweise 10 bis 40 g/100 ml und durchschnittli¬ che Kenngröße: kleiner als 100 μm, vorzugsweise kleiner als 50 μm und
Calcium- bzw. Magnesiumglycerophosphate:
Gehalt an CaO bzw. MgO: größer als 70 Gew.-%, vorzugsweise größer als 80 Gew.-% Glührückstand: 45 bis 65 Gew.-% Schmelzpunkt: größer als 3000C und durchschnittliche Korngröße: kleiner als 100 μm, vorzugsweise kleiner als 50 μm.
Als Komponente C) können die erfindungsgemäßen Formmassen von 0,01 bis 5, vor- zugsweise von 0,09 bis 2 und insbesondere von 0,1 bis 0,7 Gew.-% mindestens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40 C-Atomen bevorzugt 16 bis 22 C-Atomen mit Polyolen oder aliphatischen gesät¬ tigten Alkoholen oder Aminen mit 2 bis 40 C-Atomen bevorzugt 2 bis 6 C-Atomen oder einem Ether, der sich von Alkoholen und Ethylenoxid ableitet.
Die Carbonsäuren können 1- oder 2-wertig sein. Als Beispiele seien Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Dodecandisäure, Behensäure und beson¬ ders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung aus Fettsäu¬ ren mit 30 bis 40 C-Atomen) genannt.
Die aliphatischen Alkohole können 1- bis 4-wertig sein. Beispiele für Alkohole sind n- Butanol, n-Octanol, Stearylalkohol, Ethylenglykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.
Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexamethylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamin- distearat, Glycerinmonopalmittat, Glycerintrilautrat, Glycerinmonobehenat und Penta- erythrittetrastearat.
Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Weiterhin geeignet sind Polyetherpolyole oder Polyesterpolyole, welche mit ein- oder mehrwertigen Carbonsäuren, vorzugsweise Fettsäuren verestert bzw. verethert sind. Geeignete Produkte sind im Handel beispielsweise als Loxiol® EP 728 der Firma Henkel KGaA erhältlich.
Bevorzugte Ether, welche sich von Alkoholen und Ethylenoxid ableiten, weisen die allgemeine Formel RO (CH2 CH2 O)n H
auf, in der R eine Alkylgruppe mit 6 bis 40 Kohlenstoffatomen und n eine ganze Zahl größer/gleich 1 bedeutet.
Insbesondere bevorzugt für R ist ein gesättigter C16 bis Ci8 Fettalkohol mit n 50, wel¬ cher als Lutensol® AT 50 der Firma BASF im Handel erhältlich ist.
Als weitere Komponenten C) können die erfindungsgemäßen Formmassen 0,0001 bis 1 Gew.-%, vorzugsweise 0,001 bis 0,8 Gew.-% und insbesondere 0,01 bis 0,3 Gew.-% weitere Nukleierungsmittel enthalten.
Als Nukleierungsmittel kommen alle bekannten Verbindungen in Frage, beispielsweise Melamincyanurat, Borverbindungen wie Bornitrid, Kieselsäure, Pigmente wie z.B. HeIi- ogenblau® (Kupferphtalocyaninpigment; eingetragenes Warenzeichen der BASF Akti¬ engesellschaft).
Als Füllstoffe sind) in Mengen bis zu 50 Gew.-%, vorzugsweise 5 bis 40 Gew.-% seien beispielsweise Kaliumtitanat-Whisker, Kohlenstoff- und vorzugsweise Glasfasern ge- nannt, wobei die Glasfasern z.B. in Form von Glasgeweben, -matten, -Vliesen und/oder Glasseidenrovings oder geschnittener Glasseide aus alkaliarmem E-Glas mit einem Durchmesser von 5 bis 200 μm, vorzugsweise 8 bis 50 μm eingesetzt werden können, wobei die faserförmigen Füllstoffe nach ihrer Einarbeitung vorzugsweise eine mittlere Länge von 0,05 bis 1 mm, insbesondere 0,1 bis 0,5 mm aufweisen.
Andere geeignete Füllstoffe sind beispielsweise Calciumcarbonat oder Glaskugeln, vorzugsweise in gemahlener Form oder Mischungen dieser Füllstoffe.
Als weitere Zusatzstoffe seien, in Mengen bis zu 50, vorzugsweise 0 bis 40 Gew.-%, schlagzäh modifizierende Polymere (im folgenden auch als kautschukelastische Poly¬ merisate oder Elastomere bezeichnet) genannt.
Bevorzugte Arten von solchen Elastomeren sind die sog. EthylenPropylen (EPM) bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke.
EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindungen mehr, wäh¬ rend EPDM-Kautschuke 1 bis 20 Doppelbindungen/ 100 C-Atome aufweisen können.
Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konjugierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1 ,4- dien, Hexa-1 ,4-dien, Hexa-1 ,5-dien, 2,5-Dimethylhexa-1 ,5-dien und Octa-1 ,4-dien, cyclische Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopen- tadien sowie Alkenylnorbornene wie 5-Ethyliden-2-norbornen, 5-Butyliden-2-norbornen, 2-Methallyl-5-norbomen, 2-lsopropenyl-5-norbornen und Tricyclodiene wie 3-Methyl- tricyclo(5.2.1.0.2.6)-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1 ,5-dien,5-Ethyliden-norbomen und Dicyclopentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugsweise 0,5 bis 50, insbesondere 1 bis 8 Gew.-%, bezogen auf das Gesamtgewicht des Kautschuks.
Die EPDM-Kautschuke können auch mit weiteren Monomeren gepfropft sein, z.B. mit Glycidyl(meth)acrylaten, (Meth)acrylsäureestern und (Meth)acrylamiden.
Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Es¬ tern von (Meth)acrylsäure. Zusätzlich können die Kautschuke noch Epoxy-Gruppen enthaltende Monomere enthalten. Diese Epoxygruppen enthaltende Monomere werden vorzugsweise durch Zugabe Epoxygruppen enthaltenden Monomeren der allgemeinen Formeln I oder Il zum Monomerengemisch in den Kautschuk eingebaut
Figure imgf000033_0001
CHR8 = CH — (CHR7)g— C — CHR6 C)
CH2 = CR10 — COO — (CH2)p — CH — CHR9 (II)
wobei R6 - R10 Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen und m eine ganze Zahl von 0 bis 20, g eine ganze Zahl von 0 bis 10 und p eine ganze Zahl von 0 bis 5 ist.
Vorzugsweise bedeuten die Reste R6 bis R8 Wasserstoff, wobei m für 0 oder 1 und g für 1 steht. Die entsprechenden Verbindungen sind Allylglycidylether und Vinylglycidy- lether.
Bevorzugte Verbindungen der Formel Il sind Epoxygruppen-enthaltende Ester der Acrylsäure und/oder Methacrylsäure, wie Glycidylacrylat und Glycidylmethacrylat.
Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethylen, 0 bis 20 Gew.-% Epoxygruppen enthaltenden Monomeren sowie der restlichen Menge an (Meth)acrylsäureestern.
Besonders bevorzugt sind Copolymerisate aus 50 bis 98, insbesondere 55 bis 95 Gew.-% Ethylen,
0,1 bis 40 insbesondere 0,3 bis 20 Gew.-% Glycidylacrylat und/oder Glycidyl- methacrylat, (Meth)acrylsäure und/oder Maleinsäureanhydrid und
1 bis 50, insbesondere 10 bis 40 Gew.-% n-Butylacrylat und/oder
2-Ethylhexylacrylat.
Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.
Daneben können auch Vinylester und Vinylether als Comonomere eingesetzt werden.
Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur. Entsprechende Verfahren sind allgemein be¬ kannt.
Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Herstellung z.B. bei Blackley in der Monographie "Emulsion Polymerization" beschrieben wird. Die ver- wendbaren Emulgatoren und Katalystoren sind an sich bekannt.
Grundsätzlich können homogen aufgebaute Elastomere oder aber solche mit einem Schalenaufbau eingesetzt werden. Der schalenartige Aufbau wird u.a. durch die Zuga¬ bereihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polyme- ren wird von dieser Zugabereihenfolge beeinflusst.
Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z.B. n-Butylacrylat und 2-Ethylhexylacrylat, entsprechende Methacrylate, Butadien und Isopren sowie deren Mischungen genannt. Diese Monome- ren können mit weiteren Monomeren wie z.B. Styrol, Acrylnitril, Vinylethern und weite¬ ren Acrylaten oder Methacrylaten wie Methylmethacrylat, Methylacrylat, Ethylacrylat und Propylacrylat copolymerisiert werden.
Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter O0C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei E- lastomeren mit mehr als zweischaligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen.
Sind neben der Kautschukphase noch eine oder mehrere Hartkomponenten (mit Glas- Übergangstemperaturen von mehr als 2O0C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacryl- nitril, a-Methylstyrol, p-Methylstyrol, Acrylsäureestern und Methacrylsäureestem wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.
In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate ein¬ zusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z.B. Epoxy-, Amino- oder Amidgruppen sowie funktionelle Gruppen, die durch Mitver¬ wendung von Monomeren der allgemeinen Formel
R15 R16
CH2 = C- X — N — C — R17
°
eingeführt werden können,
wobei die Substituenten folgende Bedeutung haben können:
R15 Wasserstoff oder eine C1- bis C4-Alkylgruppe,
R16 Wasserstoff, eine C1- bis C8-Alkylgruppe oder eine Arylgruppe, insbesondere
Phenyl,
R17 Wasserstoff, eine C1- bis C10-Alkyl-, eine C6- bis C12-Arylgruppe oder -OR18
R18 eine C1- bis C8-Alkyl- oder C6- bis C12-Arylgruppe, die gegebenenfalls mit O- oder
N-haltigen Gruppen substituiert sein können,
X eine chemische Bindung, eine C1- bis C10-Alkylen- oder C6-C12-Arylengruppe oder
— C — Y
Y OZ oder NH-Z und
Z eine C1 bis C10-Alkylen - oder C6 bis C12-Arylengruppe
Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet. Als weitere Beispiele seien noch Acrylamid, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t-Butylamino)ethylmethacrylat, (N1N- Dimethylamino)ethylacrylat, (N,N-Dimethylamino)methylacrylat und (N1N- Diethylamino)ethylacrylat genannt.
Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Buta-1 ,3-dien, Divinylbenzol, Diallylphthalat, Butandioldiacrylat und Dihydrodicyclopentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.
Ferner können auch sogenannte pfropfvernetzende Monomere (graftlinkiny monomers) verwendet werden, d.h. Monomere mit zwei oder mehr polymerisierbaren Doppelbin¬ dungen, die bei der Polymerisation mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugsweise werden solche Verbindungen verwendet, in denen mindestens eine re¬ aktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monomeren polyme- risiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z.B. deutlich lang¬ samer polymerisiert (polymerisieren). Die unterschiedlichen Polymerisationsgeschwin¬ digkeiten bringen einen bestimmten Anteil an ungesättigten Doppelbindungen im Kau- tschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbindungen zumindest teilweise mit den Pfropfmonomeren unter Ausbildung von chemischen Bindungen, d.h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.
Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Mo¬ nomere, insbesondere Allylester von ethylenisch ungesättigten Carbonsäuren wie AIIy- lacrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die entspre¬ chenden Monoallylverbindungen dieser Dicarbonsäuren. Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvernetzender Monomeren; für nähere Einzelheiten sei hier beispielsweise auf die US-PS 4 148 846 verwiesen.
Im allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an der Komponen¬ te C) bis zu 5 Gew.-%, vorzugsweise nicht mehr als 3 Gew.-%, bezogen auf C).
Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufgeführt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nen¬ nen, die folgenden Aufbau haben:
Figure imgf000037_0001
Anstelle von Pfropfpolymerisaten mit einem mehrschaligen Aufbau können auch ho¬ mogene, d.h. einschalige Elastomere aus Buta-1 , 3-dien, Isopren und n-Butylacrylat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mit¬ verwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.
Die beschriebenen Elastomere C) können auch nach anderen üblichen Verfahren, z.B. durch Suspensionspolymerisation, hergestellt werden.
Als weitere geeignete Elastomere seien thermoplastische Polyurethane genannt, wel¬ che z. B. in der EP-A 115 846, EP-A 115 847 sowie EP-A 117 664 beschrieben sind.
Selbstverständlich können auch Mischungen der vorstehend aufgeführten Kautschuk¬ typen eingesetzt werden.
Die erfindungsgemäßen Formmassen können noch weitere übliche Zusatzstoffe und Verarbeitungshilfsmittel enthalten. Nur beispielhaft seien hier Zusätze zum Abfangen von Formaldehyd (Formaldehyd-Scavenger), Weichmacher, Haftvermittler und Pig¬ mente genannt. Der Anteil solcher Zusätze liegt im allgemeinen im Bereich von 0,001 bis 5 Gew.-%.
Die Herstellung der erfindungsgemäßen thermoplastischen Formmassen erfolgt durch Mischen der Komponenten in an sich bekannter Weise, weshalb sich hier detaillierte Angaben erübrigen. Vorteilhaft erfolgt die Mischung der Komponenten auf einem Extruder.
Die Komponente B) sowie gegebenenfalls die Komponente(n) C) können in einer be- vorzugten Herstellungsform vorzugsweise bei Raumtemperaturen auf das Granulat von A) aufgebracht und anschließend extrudiert werden.
Aus den Formmassen lassen sich Formkörper (auch Halbzeuge, Folien, Filme und Schäume) aller Art herstellen. Die Formmassen zeichnen sich durch einen sehr gerin- gen Restformaldehydgehalt bei gleichzeitig guter Mechanik und thermischer Stabilität aus. Insbesondere ist die Verarbeitung der einzelnen Komponenten (ohne Verklumpung oder Verbackung) problemlos und in kurzen Zykluszeiten möglich, so dass insbeson¬ dere dünnwandige Bauteile als Anwendung in Frage kommen.
Der Einsatz für ein fließverbessertes POM ist in nahezu sämtlichen Spritzgussanwen¬ dungen denkbar. Die Fließverbesserung ermöglicht eine niedrigere Schmelzetempera¬ tur und kann somit zu einer deutlichen Absenkung der gesamten Zykluszeit des Spritz¬ gussprozesses führen (Absenkung der Herstellkosten eines Spritzgussteiles!). Des weiteren sind niedrigere Einspritzdrücke während der Verarbeitung notwendig, so dass eine geringere Gesamtschließkraft am Spritzgusswerkzeug benötigt wird (niedrigere Investitionskosten bei der Spritzgussmaschine).
Die Reduzierung von Schmelzetemperatur, Spritzdrücken und Zykluszeit erlaubt eine besonders schonende Verarbeitung des Werkstoffs bei minimaler thermooxidativer Schädigung. Die hierbei hergestellten Produkte weisen daher besonders geringe
Emissionen und kaum wahrnehmbaren Geruch auf. Gleichzeitig erhöht sich die Stand¬ zeit von Werkzeugen durch besonders geringe Freisetzung belagbildender Abbaupro¬ dukte.
Die Reduzierung von Spritzdrücken vermindert im Falle der Umspritzung von (z.B, me¬ tallischen) Einlegeteilen die Verschiebung des Einlegeteiles, verbessert damit die Maßhaltigkeit und Gebrauchseigenschaften und reduziert den Fertigungsausschuss.
Neben den Verbesserungen des Spritzgussprozesses kann die Absenkung der Schmelzeviskosität zu deutlichen Vorteilen bei der eigentlichen Bauteilgestaltung füh¬ ren. So können dünnwandige Anwendungen, die z.B. bisher mit gefüllten POM-Typen nicht realisierbar waren, über Spritzguss hergestellt werden. Analog hierzu ist bei be¬ stehenden Applikationen durch den Einsatz verstärkter aber leichter fließender POM- Typen eine Reduzierung der Wandstärken und somit eine Reduzierung der Teilege- wichte denkbar.
Diese eignen sich zur Herstellung von Fasern und Monofilen, Folien und Formkörpern jeglicher Art, insbesondere für Anwendungen der folgenden Art:
Klipse und Befestigungselemente
Gardinengleiter und -röllchen
Federelemente in Lebensmittelverpackungen und Spielzeug
Bürstenaufsätze für elektrische Zahnbürsten
Ventilkörper und Ventilgehäuse für WC-Spülungen Auslaufarmaturen und Funktionsteile von Armaturen, z.B. Einhebelmischern
Duschköpfe und medienführende Innenteile Düsen, Lager und Steuerungselemente für Bewässerungs- und Beregnungssysteme und Scheinwerferwaschanlagen
Gehäuse für Wasserfilter
Brüheinheiten für Kaffeezubereitungsanlagen Aerosoldosierventile und Funktionsteile für Sprays
Umlenkrollen und Hebel für Audio- und Videocassetten
Tastaturen von Computern, Telefonen
Tür- und Fenstergriffe und Fenstergriffoliven
Rollen und Funktionsteile für Schubladenführungen Schnallen und Schnappverbindungen für Gurte, Taschen und Textilien
Reißverschlüsse
Behälter, Verschlusskappen und Verstellmechanismen für Deostifte, Lippenstifte,
Kosmetikartikel
Lagerelemente, Führungs- und Gleitbuchsen für den Maschinen- und Kraftfahrzeug- bau,
Büromaschinen, Überwachungskameras, Spülmaschinen, Sitze, Kopfstützen, Sonnen¬ blenden
Zahnräder, Spindeln, Schnecken und andere Komponenten für Übersetzungs-, Ver¬ stell- und Schaltgetriebe Führungen für Kfz-Schiebedächer
Kugelschalen für Gelenke im Maschinen- und Kraftfahrzeugbau
Pendelstützen im Kraftfahrzeugbau (Fahrwerk)
Pedalhebel
Flüssigkeitsbehälter, Deckel und Verschlüsse für Flüssigkeiten, u.a. im Kraftfahrzeug- bau
Tankdeckel, Tankflansche, Filter, Gehäuse für Filter, Rohre, Staugehäuse, Roll-over-
Ventile von Kraftstoffanlagen im Kraftfahrzeugbau
Drucktasten für Sicherheitsgurtschlösser im Kraftfahrzeugbau
Aufwickelmechanismen für Sicherheitsgurte Lautsprechergitter
Scheibenseparatoren, Ansaugrohre für abgerissene Fäden und Fadenführungen von
Spinn- und Textilmaschinen
Steuerscheiben und -walzen für elektromechanische Schaltwerke
Transportkettenglieder im Maschinen- und Anlagenbau Gaszähler.
Für den Küchen- und Haushaltsbereich ist der Einsatz des fließverbesserten POM zur Herstellung von Komponenten für Küchengeräte, wie z.B. Friteusen, Bügeleisen, Knöp¬ fe, sowie Anwendungen im Garten-Freizeitbereich, z.B. Komponenten für Bewässe- rungssysteme oder Gartengeräte möglich. Im Bereich der Medizintechnik können Inhalatorengehäuse, und deren Komponenten durch fließverbessertes POM einfacher realisiert werden.
Durch Transmissionselektronenmikroskopie wurde die Morphologie ausgewählter Compounds untersucht. Es zeigte sich eine gute Dispergierung der Partikel im Blend. Es wurden Partikelgrößen von 20 bis 500 nm beobachtet.
Beispiele
Es wurden folgende Komponenten eingesetzt:
Komponente A)
Polyoxymethylencopolymerisat aus 96,2 Gew.-% Trioxan und 3,8 Gew.-% Butandiol- formal. Das Produkt enthielt noch ungefähr 6-8 Gew.-% nicht umgesetztes Trioxan und 5 Gew.-% thermisch instabile Anteile. Nach Abbau der thermisch instabilen Anteile hatte das Copolymer eine Schmelzvolumenrate von 7,5 cm3/10 Min. (190°C/2,16 kg, nach ISO 1133).
Komponente C1)
Irganox® 245 der Firma Ciba Geigy:
Figure imgf000040_0001
Komponente C2)
Polyamid-Oligomeres mit einem Molekulargewicht von etwa 3000 g/mol, hergestellt aus Caprolactam, Hexamethylendiamin, Adipinsäure und Propionsäure (als Molekular- gewichtsregler) in Anlehnung an die Beispiele 5-4 der US-A 3 960 984 ("PA- dicapped").
Komponente C3)
Synthetisches Mg-Silicat (Ambosol® Firma Societe Nobel, Puteaux) mit folgenden Ei¬ genschaften:
Gehalt an MgO ≥14,8 Gew.-%
Gehalt an SiO2 ≥59 Gew.-% Verhältnis SiO2:MgO 2,7 mol/mol
Schüttdichte 20 bis 30 g/100 m
Glühverlust < 25 Gew.-%
Komponente C4)
Loxiol® VP 1206 der Firma Henkel KGaA (Glycerindistearat)
Komponente C5)
Melamin-Formaldehyd-Kondensat (MFK) gemäß Beispiel 1 der DE-A 2540 207.
Beispiele der Tabelle 1
Herstellvorschrift für Polycarbonate B1
Allgemeine Arbeitsvorschrift:
Ein Mol des trifunktionellen Alkohols, ein Mol Diethylcarbonat und 0,1 g Kaliumcarbo- nat wurden in einem Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler und In¬ nenthermometer vorgelegt, die Mischung auf 1300C erwärmt, und 2 h bei dieser Tem¬ peratur gerührt. Mit fortschreitender Reaktionsdauer reduzierte sich dabei die Tempe¬ ratur des Reaktionsgemisches bedingt durch die einsetzende Siedekühlung des freige¬ setzten Ethanols. Nun wurde der Rückflusskühler gegen einen absteigenden Kühler getauscht, Ethanol abdestilliert und die Temperatur des Reaktionsgemisches langsam bis auf 18O0C erhöht.
Die Reaktionsprodukte wurden anschließend per Gelpermeationschromatographie analysiert, Laufmittel war Dimethylacetamid, als Standard wurde Polymethylmethacry- lat (PMMA) verwendet. Die Bestimmung der Glasübergangstemperatur bzw. des
Schmelzpunktes erfolgte mittels DSC-Methode (Differential Scanning Calorimetry) ge¬ mäß ASTM 3418/82, ausgewertet wurde die zweite Aufheizkurve.
Komponente B 1/1
Figure imgf000041_0001
Komponente B 1/2
Figure imgf000042_0001
TMP = Trismethylolpropan DEC = Diethylcarbonat PO = Propylenoxid EO = Ethylenoxid
Komponente B 2/1
1645 g (11.27 mol) Adipinsäure und 868 g (9,43 mol) Glycerin wurden in einem 5 I- Glaskolben vorgelegt, der mit Rührer, Innenthermometer, Gaseinleitungsrohr, Rück¬ flusskühler und Vakuumanschluss mit Kühlfalle ausgerüstet war. Man gab 2,5 g Di-n- Butylzinnoxid zu, kommerziell erhältlich als Fascat® 4201, und erhitzt mithilfe eines Ölbads auf eine Innentemperatur von 14O0C. Man legte einen verminderten Druck von 250 mbar an, um bei der Reaktion gebildetes Wasser abzutrennen. Die Reaktionsmi¬ schung wurde 4 h bei der genannten Temperatur und den genannten Druck gehalten, danach wurde auf 100 mbar abgesenkt und weitere 6 h bei 14O0C gehalten. Nach 8,5 h wurden 383 g (4,16 mol) Glycerin zugegeben. Danach wurde auf 20 mbar abgesenkt und weitere 5 h bei 1400C gehalten. Anschließend wurde auf Zimmertemperatur abge¬ kühlt. Man erhielt 2409 g hyperverzweigten Polyester als klare, viskose Flüssigkeiten. Die analytischen Daten sind unten zusammengefasst.
Figure imgf000042_0002
Zur Herstellung der Formmassen wurde die Komponente A mit den in der Tabelle an¬ gegebenen Mengen der Komponente B in einem Trockenmischer bei einer Temperatur von 230C gemischt. Die so erhaltene Mischung wurde in einem Doppelschnecken¬ extruder mit Entgasungsvorrichtung (ZSK 30 der Firma Wernder & Pfleiderer) einge¬ bracht, bei 23O0C homogenisiert, entgast und das homogenisierte Gemisch durch eine Düse als Strang ausgepresst und granuliert. Die Zusammensetzungen und die Ergebnisse der Messungen (Fließspirale) sind der Tabelle 1 zu entnehmen.
Tabelle 1
Figure imgf000043_0001
Komp. A (Ultraform® N 2320 003, eingetragene Marke der BASF Aktiengesellschaft) enthielt jeweils: 0,35 C1 0,04 C2 0,05 C3 0,14 C4 0,2 C5
Beispiele der Tabelle 2
Komponente A: s. Komponente A Tabelle 1
Figure imgf000043_0002
Tabelle 2
Figure imgf000044_0001
Beispiele der Tabelle 3
Komponente B 2/2
1 ,2 mol Cyclohexan-1 ,2-dicarbonsäureanhydrid, 0,66 mol Trimethylolpropan und 0,33 mol 1 ,4-Cyclohexandimethanol wurden in einem 1 I-Glaskolben vorgelegt, der mit Rührer, Innenthermometer, Gaseinleitungsrohr, Rückflusskühler und Vakuuman- schluss mit Kühlfalle ausgerüstet war. Man gab 0,4 g Di-n-Butylzinnoxid zu und erhitzte mit Hilfe eines Ölbads auf eine Innentemperatur von 1150C. Man legte einen vermin¬ derten Druck von 110 mbar an, um bei der Reaktion gebildetes Wasser abzutrennen. Die Reaktionsmischung wurde 10 Stunden bei der genannten Temperatur und dem genannten Druck gehalten. Das Produkt fiel nach dem Abkühlen als klarer Feststoff an. Die analytischen Daten sind unten zusammengefasst.
Komponente B 2/3
1 ,2 mol Cyclohexan-1 ,2-dicarbonsäureanhydrid, 0,33 mol Trimethylolpropan und
0,66 mol 1 ,4-Cyclohexandimethanol wurden in einem 1 I-Glaskolben vorgelegt, der mit Rührer, Innenthermometer, Gaseinleitungsrohr, Rückflusskühler und Vakuuman- schluss mit Kühlfalle ausgerüstet war. Man gab 0,4 g Di-n-Butylzinnoxid zu und erhitzte mit Hilfe eines Ölbads auf eine Innentemperatur von 115°C. Man legte einen vermin- derten Druck von 110 mbar an, um bei der Reaktion gebildetes Wasser abzutrennen. Die Reaktionsmischung wurde 10 Stunden bei der genannten Temperatur und dem genannten Druck gehalten. Das Produkt fiel nach dem Abkühlen als klarer Feststoff an. Die analytischen Daten sind unten zusammengefasst.
Komponente B 2/4
2000 g (12,97 mol) Cyclohexan-i ^-dicarbonsäureanhydrid (H-PSA), 380 g (2,83 mol) Tris-hydroxymethylpropan (TMP) und 817 g (5,67 mol) Cyclohexandimethylol (CHDM) wurden in einem 4 I-Doppelmantelreaktionsgefäß vorgelegt, der mit Rührer, Innen- thermometer, Gaseinleitungsrohr, Rückflusskühler und Vakuumanschluss mit Kühlfalle ausgerüstet war. Man gab 3,2 g Di-n-Butylzinnoxid zu, kommerziell erhältlich als Fas- cat® 4201 , und erhitzte mit Hilfe eines Ölbads auf eine Innentemperatur von 145 bis 15O0C. Man legte einen verminderten Druck von 60 mbar an, um bei der Reaktion ge¬ bildetes Wasser abzutrennen. Die Reaktionsmischung wurde 6,5 Stunden bei der ge¬ nannten Temperatur und dem genannten Druck gehalten. Dann wurde 1315 g TMP zugegeben und die Reaktion wurde noch mal 16,5 Stunden bei der genannten Tempe¬ ratur und dem genannten Druck gehalten bis eine Säurezahl von 86 mg KOH/g erreicht wurde. Man erhielt einen hyperverzweigten Polyester in Form eines klaren Feststoffes.
Komponente A: siehe Tabelle 1 Komponente B 2/1 : siehe Tabelle 1
Komponente B 2/2
Figure imgf000045_0001
Komponente B 2/3
Figure imgf000045_0002
Komponente B 2/4
Figure imgf000045_0003
HPSA = hydriertes Phthalsäureanhydrid TMP = Trimethylolpropan CHDM = Cyclohexandimethanol Analytik der erfindungsgemäßen Produkte:
Die Polyester wurden per Gelpermeationschromatographie mit einem Refraktometer als Detektor analysiert. Als mobile Phase wurde Tetrahydrofuran verwendet, als Stan- dard zur Bestimmung des Molekulargewichts wurde Polymethylmethacrylat (PMMA) eingesetzt. Die Bestimmung der Säurezahl und der OH-Zahl erfolgte nach DIN 53240, Teil 2.
Tabelle 3
Figure imgf000046_0001

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend
A) 10 bis 98 Gew.-% mindestens eines Polyoxymethylenhomo- oder copoly- merisates,
B) 0,01 bis 50 Gew.-%
B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates mit einer
OH-Zahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder
B2) mindestens eines hoch- oder hyperverzweigten Polyesters des Typs AxBy mit x mindestens 1 ,1 und y mindestens 2,1 oder deren Mischungen,
C) 0 bis 60 Gew.-% weiterer Zusatzstoffe
wobei die Summe der Gewichtsprozente der Komponenten A) bis C) 100 % er¬ gibt.
2. Thermoplastische Formmassen nach Anspruch 1 , in denen die Komponente B1) ein Zahlenmittel des Molekulargewichtes Mn von 100 bis 15000 g/mol aufweist.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen die Komponente B1) eine Glasübergangstemperatur Tg von -800C bis 1400C auf¬ weist.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente B1) eine Viskosität (mPas) bei 230C (gemäß DIN 53019) von 50 bis 200000 aufweist.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die
Komponente B2) ein Zahlenmittel des Molekulargewichts Mn von 300 bis 30000 g/mol aufweist.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen die Komponente B2) eine Glasübergangstemperatur T9 von -500C bis 1400C auf¬ weist.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, in denen die Komponente B2) eine OH-Zahl (gemäß DIN 53240) von 0 bis 600 mg KOH/g Po- lyester aufweist.
8. Thermoplastische Formmassen nach den Ansprüchen 1 bis 7, in denen die
Komponente B2) eine COOH-Zahl (gemäß DIN 53240) von 0 bis 600 mg KOH/g Polyester aufweist
9. Thermoplastische Formmassen nach den Ansprüchen 1 bis 8, in denen die
Komponente B2) wenigstens eine OH-Zahl oder COOH-Zahl größer 0 aufweist.
10. Thermoplastische Frommassen nach den Ansprüchen 1 bis 9, in denen das Ver¬ hältnis der Komponenten B1) : B2) von 1:20 bis 20: 1 beträgt.
11. Verwendung der thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 10 zur Herstellung von Fasern, Folien und Formkörpem jeglicher Art.
12. Fasern, Folien und Formkörper jeglicher Art erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 10.
PCT/EP2005/010954 2004-10-20 2005-10-12 Fliessfähige polyoxymethylene WO2006042673A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05802200A EP1805247A1 (de) 2004-10-20 2005-10-12 Fliessfähige polyoxymethylene
US11/577,587 US20080045668A1 (en) 2004-10-20 2005-10-12 Free-flowing polyoxymethylenes
JP2007537163A JP2008517114A (ja) 2004-10-20 2005-10-12 自由流動性ポリオキシメチレン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004051214.0 2004-10-20
DE102004051214A DE102004051214A1 (de) 2004-10-20 2004-10-20 Fließfähige Polyoxymethylene

Publications (1)

Publication Number Publication Date
WO2006042673A1 true WO2006042673A1 (de) 2006-04-27

Family

ID=36010884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/010954 WO2006042673A1 (de) 2004-10-20 2005-10-12 Fliessfähige polyoxymethylene

Country Status (7)

Country Link
US (1) US20080045668A1 (de)
EP (1) EP1805247A1 (de)
JP (1) JP2008517114A (de)
KR (1) KR20070085401A (de)
CN (1) CN101044191A (de)
DE (1) DE102004051214A1 (de)
WO (1) WO2006042673A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134115A1 (de) 2005-06-14 2006-12-21 Basf Aktiengesellschaft Mehrkomponentenformkörper mit polyesterschichten
WO2008012252A1 (de) * 2006-07-26 2008-01-31 Basf Se Hochfunktionelle, hyperverzweigte polycarbonate sowie deren herstellung und verwendung
WO2008012232A1 (de) * 2006-07-26 2008-01-31 Basf Se Verfahren zur herstellung von polyoxymethylenen mit bestimmten desaktivatoren
WO2008015066A1 (en) * 2006-07-31 2008-02-07 Novo Nordisk A/S Low friction systems and devices
WO2009103812A1 (de) * 2008-02-22 2009-08-27 Basf Se Verfahren zur herstellung von formkörpern aus polyoxymethylen
US8263716B2 (en) 2004-02-04 2012-09-11 Basf Aktiengesellschaft Fluid polyester molding masses
US8278381B2 (en) 2004-10-13 2012-10-02 Basf Se Flowable thermoplastics with halogen flame retardancy system
US8293823B2 (en) 2004-10-08 2012-10-23 Basf Se Flowable thermoplastic materials with halogen-free flame protection
US8362146B2 (en) 2004-08-10 2013-01-29 Basf Se Impact-modified polyesters with hyperbranched polyesters/polycarbonates
US8362136B2 (en) 2004-08-10 2013-01-29 Basf Se Flowable polyester molding compositions with ASA/ABS and SAN
US8362122B2 (en) 2005-02-01 2013-01-29 Basf Se Flowable polyesters with carbodiimide stabilizers
US8410227B2 (en) 2004-02-04 2013-04-02 Basf Se Fluid polyester moulding masses
US8445576B2 (en) 2004-07-21 2013-05-21 Basf Se Continuous process for preparing polyalkylene arylates with hyperbranched polyesters and/or polycarbonates
US8501845B2 (en) 2005-01-14 2013-08-06 Basf Se Flowable polyesters with hydrolysis resistance
US8530568B2 (en) 2004-10-20 2013-09-10 Basf Se Flowable polyamides with hyperbranched polyesters/polycarbonates
DE102018200299A1 (de) * 2018-01-10 2019-07-11 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Verstelleinrichtung mit einem Verzahnungsteil aus einem aufgeschäumten Thermoplast

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365101A (zh) 2009-03-27 2012-02-29 阿克塔马克斯手术器材有限责任公司 包含聚甘油醛的组织粘合剂和密封剂
WO2011163657A1 (en) 2010-06-25 2011-12-29 E. I. Du Pont De Nemours And Company Polyoxymethylene compositions with branched polymers
JP2013529712A (ja) * 2010-06-25 2013-07-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリオキシメチレン組成物のメルト−フロー改善の獲得
US9187603B2 (en) * 2011-01-07 2015-11-17 Ndsu Research Foundation Bio-based branched and hyperbranched polymers and oligomers
CN102993624A (zh) * 2011-09-16 2013-03-27 上海杰事杰新材料(集团)股份有限公司 一种改进热稳定性的聚甲醛树脂组合物及其制备方法
CN102516737A (zh) * 2011-12-12 2012-06-27 费近峰 填充导电纤维的导电塑料
US9088842B2 (en) * 2013-03-13 2015-07-21 Bose Corporation Grille for electroacoustic transducer
KR102644544B1 (ko) 2016-09-21 2024-03-11 넥스트큐어 인코포레이티드 Siglec-15를 위한 항체 및 이의 사용 방법
US10053533B1 (en) 2017-04-13 2018-08-21 Presidium Usa, Inc. Oligomeric polyol compositions
KR20210033488A (ko) * 2018-07-13 2021-03-26 바스프 에스이 안정된 폴리옥시메틸렌 코폴리머(cPOM)의 제조 방법
CN109280321B (zh) * 2018-08-07 2020-01-21 唐山开滦化工科技有限公司 一种聚甲醛薄膜及其制备方法
CN109575506B (zh) * 2018-12-04 2021-08-10 重庆云天化瀚恩新材料开发有限公司 一种改性聚甲醛及其制备方法
CN114276647B (zh) * 2021-11-19 2023-08-22 金发科技股份有限公司 一种低浮纤聚甲醛材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484737A2 (de) * 1990-11-09 1992-05-13 BASF Aktiengesellschaft Thermoplastische Formmassen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629160A1 (de) * 1996-07-19 1998-01-22 Basf Ag Verfahren zur Herstellung von Polyurethanweichschaumstoffen
DE19705991A1 (de) * 1997-02-17 1998-08-20 Basf Ag Verfahren zur Herstellung einer homogenen entmischungsstabilen Polyolkomponente
DE19913533A1 (de) * 1999-03-25 2000-09-28 Bayer Ag Hochverzweigte Polykondensate
US6563007B2 (en) * 2000-07-28 2003-05-13 Basf Atiengesellschaft Preparation of polyetherols
DE502004009535D1 (de) * 2003-09-12 2009-07-09 Basf Se Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484737A2 (de) * 1990-11-09 1992-05-13 BASF Aktiengesellschaft Thermoplastische Formmassen

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263716B2 (en) 2004-02-04 2012-09-11 Basf Aktiengesellschaft Fluid polyester molding masses
US8410227B2 (en) 2004-02-04 2013-04-02 Basf Se Fluid polyester moulding masses
US8445576B2 (en) 2004-07-21 2013-05-21 Basf Se Continuous process for preparing polyalkylene arylates with hyperbranched polyesters and/or polycarbonates
US8362136B2 (en) 2004-08-10 2013-01-29 Basf Se Flowable polyester molding compositions with ASA/ABS and SAN
US8362146B2 (en) 2004-08-10 2013-01-29 Basf Se Impact-modified polyesters with hyperbranched polyesters/polycarbonates
US8293823B2 (en) 2004-10-08 2012-10-23 Basf Se Flowable thermoplastic materials with halogen-free flame protection
US8278381B2 (en) 2004-10-13 2012-10-02 Basf Se Flowable thermoplastics with halogen flame retardancy system
US8530568B2 (en) 2004-10-20 2013-09-10 Basf Se Flowable polyamides with hyperbranched polyesters/polycarbonates
US8501845B2 (en) 2005-01-14 2013-08-06 Basf Se Flowable polyesters with hydrolysis resistance
US8362122B2 (en) 2005-02-01 2013-01-29 Basf Se Flowable polyesters with carbodiimide stabilizers
WO2006134115A1 (de) 2005-06-14 2006-12-21 Basf Aktiengesellschaft Mehrkomponentenformkörper mit polyesterschichten
KR101246419B1 (ko) * 2005-06-14 2013-03-21 바스프 에스이 폴리에스테르 층들을 포함하는 다성분 성형체
US8445107B2 (en) 2005-06-14 2013-05-21 Basf Se Multicomponent molding with polyester layers
WO2008012232A1 (de) * 2006-07-26 2008-01-31 Basf Se Verfahren zur herstellung von polyoxymethylenen mit bestimmten desaktivatoren
WO2008012252A1 (de) * 2006-07-26 2008-01-31 Basf Se Hochfunktionelle, hyperverzweigte polycarbonate sowie deren herstellung und verwendung
US20120065328A1 (en) * 2006-07-26 2012-03-15 Basf Se Highly functional, hyperbranched polycarbonates and production and use thereof
CN102585193A (zh) * 2006-07-26 2012-07-18 巴斯夫欧洲公司 高官能度的超支化聚碳酸酯及其制备方法和用途
US8853331B2 (en) 2006-07-26 2014-10-07 Basf Se Highly functional, hyperbranched polycarbonates and production and use thereof
WO2008015066A1 (en) * 2006-07-31 2008-02-07 Novo Nordisk A/S Low friction systems and devices
EP2471863A1 (de) * 2006-07-31 2012-07-04 Novo Nordisk A/S Systeme und Vorrichtungen mit geringer Reibung
US9187634B2 (en) 2006-07-31 2015-11-17 Novo Nordisk A/S Low friction systems and devices
WO2009103812A1 (de) * 2008-02-22 2009-08-27 Basf Se Verfahren zur herstellung von formkörpern aus polyoxymethylen
DE102018200299A1 (de) * 2018-01-10 2019-07-11 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Verstelleinrichtung mit einem Verzahnungsteil aus einem aufgeschäumten Thermoplast

Also Published As

Publication number Publication date
CN101044191A (zh) 2007-09-26
KR20070085401A (ko) 2007-08-27
US20080045668A1 (en) 2008-02-21
EP1805247A1 (de) 2007-07-11
DE102004051214A1 (de) 2006-05-04
JP2008517114A (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2006042673A1 (de) Fliessfähige polyoxymethylene
EP1913087B1 (de) FLIEßFÄHIGE POLYESTER MIT POLYESTERELASTOMEREN
EP1805262B1 (de) Fliessfähige polyamide mit hyperverzweigten polyestern/polycarbonaten
EP1778789B1 (de) Fliessfähige polyesterformmassen mit asa/abs und san
EP1802703B8 (de) Fliessfähige thermoplaste mit halogenflammschutz
EP1846502B1 (de) FLIEßFÄHIGE POLYESTER MIT CARBODIIMID-STABILISATOREN
EP1771511B1 (de) Mischungen aus hyperverzweigten polyestern und polycarbonaten als additiv für polyesterformmassen
EP1913086B1 (de) Fasern und flüssigkeitsbehälter aus pet
EP2430094B1 (de) Verstärkte styrolcopolymere
WO2006018127A1 (de) Schlagzähmodifizierte polyester mit hyperverzweigten polyestern/polycarbonaten
EP1841822B1 (de) FLIEßFAEHIGE POLYESTER MIT HYDROLYSESCHUTZ
EP2212382B1 (de) Verwendung von thermoplastischen formmassen für gid/wit
EP1771513B1 (de) Kontinuierliches verfahren zur herstellung von polyalkylenarylaten mit hyperverzweigten polyestern und/oder polycarbonaten
EP1910467A1 (de) Fliessfähige thermoplaste mit halogenflammschutz
EP1846497A1 (de) Fliessfähige polyolefine
DE102005004857A1 (de) Fließfähiges PVC
DE102004034835A1 (de) Mischungen aus hyperverzweigten Polyestern und Polycarbonaten als Additiv für Polyesterformmassen
DE102004045028A1 (de) Mischungen aus hyperverzweigten Polyestern und Polycarbonaten als Additiv für Polyesterformmassen
WO2006050858A1 (de) Polymerblends aus polyestern und hyperverzweigten copolycarbonaten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005802200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11577587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580035998.8

Country of ref document: CN

Ref document number: 2007537163

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077011363

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005802200

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11577587

Country of ref document: US