WO2006040957A1 - 仮想型紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法 - Google Patents

仮想型紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法 Download PDF

Info

Publication number
WO2006040957A1
WO2006040957A1 PCT/JP2005/018295 JP2005018295W WO2006040957A1 WO 2006040957 A1 WO2006040957 A1 WO 2006040957A1 JP 2005018295 W JP2005018295 W JP 2005018295W WO 2006040957 A1 WO2006040957 A1 WO 2006040957A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
polygon
line
dimensional
pattern
Prior art date
Application number
PCT/JP2005/018295
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Sakaguchi
Dongliang Zhang
Original Assignee
Digital Fashion Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digital Fashion Ltd. filed Critical Digital Fashion Ltd.
Priority to US11/631,988 priority Critical patent/US20070244670A1/en
Priority to EP05788058A priority patent/EP1811410A1/en
Publication of WO2006040957A1 publication Critical patent/WO2006040957A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41HAPPLIANCES OR METHODS FOR MAKING CLOTHES, e.g. FOR DRESS-MAKING OR FOR TAILORING, NOT OTHERWISE PROVIDED FOR
    • A41H3/00Patterns for cutting-out; Methods of drafting or marking-out such patterns, e.g. on the cloth
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41HAPPLIANCES OR METHODS FOR MAKING CLOTHES, e.g. FOR DRESS-MAKING OR FOR TAILORING, NOT OTHERWISE PROVIDED FOR
    • A41H3/00Patterns for cutting-out; Methods of drafting or marking-out such patterns, e.g. on the cloth
    • A41H3/007Methods of drafting or marking-out patterns using computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/12Cloth

Definitions

  • Virtual pattern creation program virtual pattern creation apparatus, and virtual pattern creation method
  • the present invention relates to a technique for virtually creating a three-dimensional pattern.
  • Patent Document 1 a virtual three-dimensional clothing model is created in a virtual three-dimensional space based on a user force operation command, the created virtual three-dimensional clothing model is developed on a two-dimensional plane, and a virtual paper pattern is created.
  • An image processing device for creating a computer is disclosed! RU
  • cloth has anisotropy in the direction of elongation such that the elongation varies depending on the direction of stretching, creating a highly stable garment that fully reflects the mechanical properties of the cloth.
  • the clothes when a person wears clothes, the clothes must be created so that the direction of the fabric thread (generally the warp direction) is along the direction of gravity.
  • a ground line reference line
  • the cloth is cut so that the line direction of the cloth matches the ground line direction.
  • the leather has anisotropy similar to that of the cloth, and the spine direction of the skin with low elongation is along the direction of gravity. Since a three-dimensional object must be created, a reference line is set to specify the spine direction for the pattern as in the case of cloth.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-70519
  • An object of the present invention is to provide a virtual paper pattern creating program, a virtual paper pattern creating apparatus, and a virtual paper pattern creating method capable of directly setting a reference line for a virtual three-dimensional object model.
  • a virtual pattern creating program is a virtual pattern creating program that virtually creates a pattern of a three-dimensional object, obtains three-dimensional data of the three-dimensional object, and obtains a virtual three-dimensional object in a virtual three-dimensional space.
  • a three-dimensional object model generating means for generating a model; a contour line setting means for setting a contour of a pattern on the surface of the virtual three-dimensional object model; and dividing a surface of the virtual three-dimensional object model into a plurality of regions;
  • the virtual three-dimensional object model is set so that the reference line is set to a straight line with reference line setting means for setting a reference line for one region partitioned by the contour line setting means.
  • Each area is expanded in a two-dimensional space, and a computer is caused to function as an expansion means for generating a virtual pattern.
  • the virtual pattern creating device is a virtual pattern creating device that virtually creates a pattern of a three-dimensional object, acquires three-dimensional data of the three-dimensional object, and is virtual in a virtual three-dimensional space.
  • a three-dimensional object model generating means for generating a three-dimensional object model; a contour line setting means for setting a contour line of a pattern on the surface of the virtual three-dimensional object model; and dividing the surface of the virtual three-dimensional object model into a plurality of regions;
  • a reference line setting means for setting a reference line for one area partitioned by the contour setting means, and the solid object model so that the reference line is linear.
  • a developing means for generating a virtual paper pattern by expanding each area into a two-dimensional space.
  • the virtual pattern creating method is a virtual pattern creating method in which a computer virtually creates a three-dimensional pattern, and the computer includes a three-dimensional model generation means and contour line setting means.
  • a three-dimensional object model generating means for acquiring three-dimensional data of the three-dimensional object and generating a virtual three-dimensional object model in a virtual three-dimensional space;
  • a setting unit that sets a contour line of a pattern on the surface of the virtual three-dimensional object model, and divides the surface of the virtual three-dimensional object model into a plurality of regions; and Based on the contour line
  • a step of setting a reference line for one area defined by the setting means, and the expanding means is configured to two-dimensionally define the three-dimensional object model for each area defined so that the reference line is linear.
  • a step of developing in a space and generating a virtual pattern is a virtual pattern creating method in which a computer virtually creates a three-dimensional pattern, and the computer includes a three-dimensional model generation means and contour line setting means.
  • three-dimensional data of a three-dimensional object is acquired, a virtual three-dimensional object model is generated in a virtual three-dimensional space, a contour line is set on the surface of the virtual three-dimensional object model, A reference line is set for the surface of one of the multiple areas partitioned by the line (any one of the multiple areas on the surface of the virtual 3D object) based on an operation command from the user.
  • Each area is expanded to a two-dimensional plane so that the set reference line is a straight line, and a virtual pattern is created. Therefore, the user can directly set the reference line for the virtual three-dimensional object model created in the three-dimensional space.
  • the user can set the reference line while grasping the position of the virtual pattern with respect to the entire virtual three-dimensional object model, and can easily set the reference line.
  • FIG. 1 shows a block configuration diagram of a virtual pattern making device according to the present embodiment.
  • FIG. 2 is a flowchart showing processing of the virtual pattern paper generation device.
  • FIG. 3 is a diagram showing an image displayed on the display unit by the display control unit when the user sets the line of sight of the ground.
  • FIG. 4 is a drawing showing an initial polygon row.
  • FIG. 5 Drawing explaining the process of expanding the initial polygon row on a two-dimensional plane so that the ground line of view becomes a straight line, (a) shows the initial polygon row before unfolding, (b) after unfolding The initial polygon row is shown.
  • FIG. 6 A drawing showing a case where the point V ′ is an outer dividing point of the line segment P P.
  • FIG. 7 is a drawing for explaining how a polygon row is extracted.
  • FIG. 8 Drawings explaining the unfolding process, (a) shows the polygon before unfolding and (b) shows the polygon after unfolding.
  • FIG. 9 is a diagram for explaining the details of the polygon string expansion processing.
  • FIG. 10 A drawing showing a mass spring model.
  • FIG. 11 is a diagram for explaining local relaxation processing.
  • FIG. 12 is a diagram for explaining local relaxation processing.
  • FIG. 13 Drawing showing overlap generated by global mitigation, (a) shows polygon mesh before global mitigation, (b) shows polygon mesh after global mitigation, (c ) Shows the polygon mesh after the overlap correction.
  • FIG. 14 This is a diagram for explaining how a polygon row is extracted for the pattern area force when two lines of sight are set.
  • FIG. 15 A drawing showing a virtual pattern created by the virtual pattern creation device, (a) showing a pattern area of a three-dimensional virtual clothes created on a virtual human body model, and (b) showing a ground pattern.
  • a virtual paper pattern obtained by developing a paper pattern area on a two-dimensional plane using a conventional method that does not take into account the line of sight is shown.
  • C shows a virtual paper pattern developed by the virtual paper pattern generator.
  • FIG. 1 shows a block diagram of the virtual pattern making device according to this embodiment! / Speak.
  • This virtual pattern making device is configured by a personal computer with a virtual pattern creation program installed, and includes an operation unit 1, a program execution unit 2, and a display unit 3.
  • the operation unit 1 includes input devices such as a keyboard and a mouse, and accepts operation instructions from the user.
  • the program execution unit 2 is configured with a CPU equal power, and the CPU executes a virtual paper pattern creation program stored on a hard disk (not shown), so that the clothing model generation unit 21, the cut line setting unit 22, and the ground line Functions as the setting unit 23, the development unit 24, and the display control unit 25.
  • the clothing model generation unit 21 uses a technique described in Japanese Patent Application Laid-Open No. 2004-70519 in accordance with an operation command received by the operation unit 1 to generate a virtual clothing model in a virtual three-dimensional space. Generate. Specifically, among the protruding points such as the apex of the chest and the apex of the scapula of the virtual human body model created in advance in the virtual 3D space, it passes through the protruding point specified by the user (for example, the apex of the chest). And a line (for example, a bust line) along the surface of the virtual human body model is formed.
  • the formed line is slid in a predetermined direction, and the trajectory of the formed line is used as a part of the virtual clothing model.
  • the portion of the embedded trajectory is deformed so as to follow the surface shape of the virtual human body model.
  • the cut line setting unit 22 sets a cut line in the virtual clothing model generated by the clothing model generation unit 21 according to a user force operation command, and divides the surface of the virtual clothing model into a plurality of regions. To do. Since the virtual pattern is generated for each area, the partitioned area is hereinafter referred to as a pattern area.
  • the ground line setting unit 23 sets a ground line on the surface of the pattern area in accordance with an operation command from the user.
  • the ground line is a straight line for designating the yarn direction of the fabric with respect to the pattern, and is usually used for designating the warp direction of the fabric or for specifying both the warp and weft directions. In the present embodiment, the ground line is set in the warp direction of the cloth.
  • the ground eye setting unit 23 sets the ground eye according to any one of the following first to third methods selected by the user.
  • the paper pattern passes through an arbitrary point on the paper pattern area designated by the user via the operation unit 1 and follows the gravity direction preset in the virtual three-dimensional space.
  • a single ground line is set on the surface of the area.
  • the second method is a method in which a line connecting any two points in the pattern area designated by the user via the operation unit 1 is set as the ground line.
  • the paper pattern area passes through any one point of the paper pattern area designated by the user via the operation unit 1 and is parallel to the outline of the paper pattern area developed in a straight line.
  • This is a method to set the ground line on the surface.
  • the contour line that is the shortest distance from the point specified by the user is set as the ground line.
  • the development unit 24 includes a polygon mesh setting unit 241, an initial polygon row development unit 242, and a polygon row development unit 243, and displays each pattern area constituting the virtual clothing model generated by the clothing model generation unit 21. Expands on a two-dimensional plane and generates a virtual pattern.
  • Polygon mesh setting unit 241 applies a plurality of polygons (for example, for the surface of each pattern area). For example, a triangular mesh or a quadrilateral mesh is set.
  • the initial polygon sequence developing unit 242 extracts, as an initial polygon sequence, a polygon sequence that intersects the polygon mesh force set by the polygon mesh setting unit 241 and the ground line set by the ground line setting unit 23,
  • the initial polygon row is developed on a two-dimensional plane so that the shape and area of each polygon constituting the extracted initial polygon row are maintained and the ground line is a straight line.
  • Polygon string expansion unit 243 uses a plane expansion method using a known mass spring model to convert a polygon string adjacent to a polygon string (including the initial polygon string) that has been expanded into a two-dimensional plane. Expand to a two-dimensional plane. As a result, the polygon row is developed on a two-dimensional plane so that the length force S of each side of the polygon is maintained. Thereafter, the polygon array development unit 243 repeatedly extracts and expands the polygon array until all the polygons in the pattern area are expanded on the two-dimensional plane, and expands the pattern area on the two-dimensional plane.
  • the plane expansion method using the mass spring model is disclosed in the publicly known document 1 ⁇ Title: Flattening t nangulated surfaces using mass-spring model '' author: JItuo Li'Dongliang Zhang, Guodo ng
  • the display control unit 25 causes the display unit 3 to display the virtual clothing model generated by the clothing model generation unit 21, the virtual pattern generated by the development unit 24, and the like.
  • the clothing model generation unit 21 corresponds to a three-dimensional object model generation unit
  • the cut line setting unit 22 corresponds to a contour line setting unit
  • the ground eye setting unit 23 serves as a reference line setting unit.
  • the developing unit 24 corresponds to a developing unit
  • the initial polygon column developing unit 242 corresponds to a first polygon column developing unit
  • the polygon column developing unit 243 corresponds to a second polygon column developing unit
  • the ground line corresponds to the reference line.
  • FIG. 2 is a flowchart showing processing of the virtual pattern generation device. It is assumed that a virtual clothing model is generated in advance by the clothing model generation unit 21 before executing this flowchart.
  • the operation unit 1 moves the pattern area.
  • the ground line setting unit 23 applies to the surface of the pattern area by any one of the first to third methods.
  • Set the ground line (S2).
  • the ground line setting unit 23 sets the ground line using any one of the first to third methods selected by the user.
  • FIG. 3 is a diagram showing an image displayed on the display unit 3 by the display control unit 25 when the user sets the line of sight of the ground.
  • the image shown in FIG. 3 includes an area on the right side on which the virtual human body model M is displayed and an area on the left side for selecting the first to third methods.
  • the words “gravity direction”, “any direction”, and “design line direction” are displayed, and check boxes C1 to C3 are displayed on the left side of each word.
  • a virtual human body model M and a pattern area R are displayed.
  • the arrow with the symbol G in the right area is a gravity vector that indicates the predetermined gravity direction in the virtual 3D space.
  • the user operates the operation unit 1 to select the first method by adding a check mark CM to the check box C1, and selects the second method by adding a check mark CM to the check box C2. Select the third method by adding a check mark CM to check box C3.
  • the ground line setting unit 23 calculates a point P1 which is one point of the pattern area R specified by the user and a plane including the gravity vector G and the pattern area R. Find the intersection line and set the obtained intersection line as the ground line of sight Lg.
  • the ground line of sight Lg is set over the entire pattern area R, but in the example of FIG. 3, only a part of the ground line of sight Lg is displayed.
  • the ground line setting unit 23 sets the plane passing through the points P1 and P2, which are the two points on the surface of the pattern area R specified by the user, and the pattern area R.
  • the intersecting line is obtained and the obtained intersecting line is set as the ground line of sight Lg.
  • the ground line setting unit 23 is located at the shortest distance from the point P1, which is one point on the surface of the pattern area R specified by the user, and is a straight line.
  • the line parallel to the contour line EL that is expanded in the shape is set as the ground line Lg. Note that the contour line developed linearly with respect to the two-dimensional plane is specified in advance by the user.
  • the display control unit 25 displays the ground line Lg set by the ground line setting unit 23 on the surface of the pattern area R.
  • the polygon mesh setting unit 241 sets a polygon mesh having a plurality of triangular polygon forces for the pattern area R.
  • step S5 the initial polygon row development unit 242 extracts, from the polygon mesh set in the pattern area R, a plurality of polygons that intersect the ground line Lg as the initial polygon row PL1.
  • FIG. 4 shows the initial polygon row PL1.
  • a plurality of polygons indicated by thick lines intersecting the ground line Lg is the initial polygon row PL 1.
  • step S6 the initial polygon row expanding unit 242 expands the initial polygon row PL1 on a two-dimensional plane so that the ground line Lg intersecting the initial polygon row PL1 is linear.
  • Fig. 5 is a diagram for explaining the process of expanding the initial polygon row PL1 on a two-dimensional plane so that the line of sight of the ground becomes a straight line, and (a) shows a part of the initial polygon row PL1 before expansion ( b) shows a part of the initial polygon row PL1 after expansion.
  • This processing includes three processing powers of the first to third steps.
  • the distance to the vertex V is Shortest
  • Equation (1) is obtained by multiplying the ratio of the line segment PV 'to the line segment PP by s.
  • Equation (2) S in equation (1) is defined by equation (2).
  • equation (2) s is a vector and P
  • Equation (3) indicates the magnitudes of the V and V vectors.
  • d is 1 if vertex V is located on the right side of the! 3 ? Vector, and vertex V is located on the left side of the PP vector.
  • the direction of the line segment pp between the point p on the two-dimensional plane corresponding to the point P and the point p on the two-dimensional plane corresponding to the point P is the expanded line segment pp Of the point p so that the line segment PP and the line segment pp are equal in size.
  • V shown in Equation (5) is a point on the two-dimensional plane corresponding to the vertex V, and p corresponds to the point P.
  • the t vector has the X component equal to the y component value of the p p vector.
  • the y component is equal to the ⁇ component of the P P vector multiplied by minus one. That is, t
  • the j j + l i tuttle is a vector that is perpendicular to and equal in magnitude to the p p vector!
  • the size of the line segment P P is equal to the size of the line segment p p.
  • the size of j j + l j j + l j i is equal to the size of the line segment PV ′. Also, the position of the vertex is determined by the equation (6).
  • the initial polygon row expansion unit 242 performs the above first to third steps for each of the polygons constituting the initial polygon row PL1, and performs polygon processing at one end from the polygon PG1 at one end of the initial polygon row PL1. Execute in order up to PGN, and expand the initial polygon row PL1 on a two-dimensional plane. As a result, the initial polygon row PL1 is expanded into a two-dimensional plane so that the ground line Lg is a straight line and the area and shape of each polygon are maintained. In addition, since the polygon row that intersects the ground line first is expanded into a two-dimensional plane, the ground line can be accurately expanded in a straight line.
  • step S7 shown in FIG. 2 the polygon row development unit 243 creates a polygon row PLi + 1 adjacent to the polygon row PLi (i is a positive number indicating the extraction order of the polygon row) after the development. Extract region R force.
  • Fig. 7 is a drawing for explaining how a polygon row is extracted It is.
  • the polygon row development unit 243 extracts the polygon row PL2 adjacent to the right side of the initial polygon row PL1, and develops the extracted polygon row PL2 on a two-dimensional plane. To do.
  • the polygon row PL3 adjacent to the left of the initial polygon row PL1 is extracted, and the extracted polygon row PL3 is developed on a two-dimensional plane.
  • the polygon rows are sequentially extracted from the pattern area R in the order of the polygon rows PL4, PL5, and P L6.
  • the pattern area R is developed into a two-dimensional plane so as to spread left and right around the initial polygon row PL1.
  • the above polygon row extraction order is merely an example.
  • the polygon row PL3 adjacent to the left is extracted next to the initial polygon row PL1, and then the polygon adjacent to the right next to the initial polygon row PL1 is extracted.
  • the polygon row may be sequentially extracted from the pattern area R in the following order.
  • each polygon row PL1 is sequentially extracted so as to expand in the right direction in the pattern area R, and the initial polygon row PL1 becomes the pattern area.
  • each polygon row is extracted sequentially so as to spread in the left direction on the pattern area scale.
  • step S8 shown in FIG. 2 the polygon row development unit 243 develops the extracted polygon row PLi on a two-dimensional plane by a development method using a mass spring model.
  • Fig. 8 is a drawing for explaining the unfolding process. (A) shows the polygon before unfolding, and (b) shows the polygon after unfolding.
  • VI, V2, and V3 shown in FIG. 8 indicate the vertices of the polygon already developed on the two-dimensional plane, and a straight line passing through the vertices VI to V3 is called a boundary line EL. al, a2, and a3 indicate the angles at the vertex V2 of the polygons PG1 to PG3 before deployment. bl, b2, and b3 indicate angles at the vertex V2 of the expanded polygons PG1 to PG3, respectively.
  • FIG. 9 is a diagram for explaining the details of the polygon string expansion processing.
  • the vertex P1 is connected to the two vertices VI and V2 among the vertices on the boundary line EL, so the position is determined so as to maintain the length of the sides el and e2.
  • Angl (Angl ZP V V +
  • the polygon sequence development unit 243 determines the position of P1 so that Angl becomes small.
  • Vertex P2 is connected to only one vertex V2 among the vertices on boundary line EL.
  • the polygon row development unit 243 determines the position of the vertices so as to maintain the length of the side e3.
  • Vertex P3 is connected to three vertices of the boundary line EL.
  • the polygon row development unit 243 determines the positions of the vertices so that the lengths of the side e4 at one end and the side e6 at the other end are maintained.
  • the polygon line development unit 243 removes the polygons PG1 and PG2.
  • the vertices P1 and P2 are vertices on a contour line that is specified by a user to be developed on a two-dimensional plane in a straight line and parallel to the ground line Lg
  • the position of the two-dimensional plane of vertices PI and P2 is determined so that the line segment connecting vertices P1 and P2 is parallel to the ground line Lg
  • step S9 the polygon row development unit 243 applies a mass spring model to the developed polygon row PLi so that the distortion of the polygon row PLi is alleviated. Execute local relaxation processing to move the position.
  • FIG. 10 is a drawing showing a mass spring model.
  • the mass spring model uses the vertices P1 to P6 of the polygon as mass points, and crosses the tension spring TS set on the side directly connecting the mass points and the side shared by the two adjacent polygons. It is composed of a cross spring CS and a cover set between the mass points of both polygons.
  • the tension spring TS represents the stress generated inside the fabric.
  • Cross spring CS prevents the polygon mesh from extending too much.
  • Equation (7) k represents a panel coefficient between mass points
  • I represents a panel vector
  • f represents an initial panel length
  • X and X represent the positions of mass points P and P, respectively.
  • the initial length 1 ° of the tension spring TS is equal to the corresponding side length in 3D space
  • the panel coefficient k is equal to the initial length 1
  • the initial length 1 ° of the cross spring CS is equal to the length between the vertices of the corresponding two polygons expanded to a two-dimensional plane.
  • the polygon sequence development unit 243 applies a loss force to the polygons removed due to the occurrence of overlap in order to further reduce the distortion of the polygon mesh.
  • Relieve PLi distortion. 11 and 12 are drawings for explaining the loss force. In both figures, (a) shows the polygon row PLi before development, (b) shows the polygon row PLi after development, and (c) shows the loss force acting on the mass point.
  • P and P1 to P4 indicate the vertices before expansion, and V1 to V4 indicate the vertices that have been expanded.
  • FIG. 11 (b) an overlap has occurred in the polygon PG1.
  • This polygon PG1 has one vertex V3 out of three vertices on the boundary line EL.
  • the polygon line expansion unit 243 as shown in (c), out of the three vertices of the polygon PG1 to be removed, the two vertices P2 that do not exist on the boundary line EL
  • the loss force Fp is set in the direction in which both vertices are drawn on the straight line connecting the two vertices.
  • FIG. 12 (b) there is an overlap in polygon PG2.
  • this polygon PG2 two vertices VI and V2 out of three vertices exist on the boundary line EL.
  • the polygon line expansion unit 243 performs boundary line EL connecting vertices VI and V2 to one vertex P not on boundary line EL as shown in (c).
  • the value of the loss power is described in publicly known document 1.
  • step S10 the mass spring model is applied to the entire polygon mesh composed of the polygon row PLi immediately after the relaxation processing and the unfolded processing! /, And the polygon rows PLl to PLi-1 Is applied, and the process of moving each vertex of the polygon (global relaxation process) is executed so that the distortion of the entire polygon mesh is relaxed.
  • overlapping polygons may occur as a result of the movement of each vertex.
  • the polygon sequence development unit 243 appropriately executes a process for correcting the overlap.
  • Figure 13 shows the overlap generated by the global mitigation process.
  • (B) shows the polygon mesh after the global relaxation processing
  • (c) shows the polygon mesh after the overlap correction.
  • the vertex P is moved outside the polygon surrounded by the vertices P1 to P6 by the global relaxation processing, and the polygons including the vertices P, P5, and P6 overlap.
  • the polygon line development unit 243 reduces the amount of movement of the vertex P so that the vertex P is located inside the polygon surrounded by the vertices P1 to P6 (for example, 1Z2), and prevents the occurrence of overlap. (Refer to (c)).
  • step S11 when all polygons have been expanded on the two-dimensional plane
  • step S11 processing is completed, and if all polygons have been expanded on the 2D plane and are V, (NO in S11), processing returns to step S7 and the expanded polygon The polygon row adjacent to the row is extracted, and the processing after step S8 is executed.
  • the virtual pattern making device sets two ground lines for designating the warp and weft directions in the pattern area R, so that the two ground lines are orthogonal to each other. It is also possible to develop R in a two-dimensional plane.
  • the ground line setting unit 23, in step S2, in accordance with the operation command from the user, uses one of the first to third methods to form the first ground line on the surface of the pattern area R. After setting, the second line of sight is set using the second method according to the operation instructions of the user.
  • step S5 the initial polygon row development unit 242 extracts a polygon row that intersects each of the two ground lines, so that the two ground lines are orthogonal and straight. Expand polygon row to 2D plane.
  • the initial polygon row development unit 242 extracts polygon rows as shown in FIG. 14 in step S7.
  • FIG. 14 is a diagram showing how polygon rows are extracted from the pattern area R when two ground lines are set.
  • the polygons adjacent to the initial polygon row PL1 are subsequently selected from the four areas partitioned by the initial polygon rows PL1 and PL1.
  • the polygon rows PL6 to PL9 adjacent to each of the polygon rows PL2 to PL5 are subsequently extracted. In this way, when two ground lines are set, the polygon row is Then, the four regions divided by the initial polygon row PL1 are sequentially extracted so as to face diagonally outward.
  • FIG. 15 is a drawing showing a virtual pattern created by the virtual pattern creation device.
  • (A) shows a pattern area R of a three-dimensional virtual clothing model created on a virtual human body model M.
  • b) shows a virtual paper pattern generated by a conventional method that does not look at the ground line of sight
  • (c) shows a virtual paper pattern generated by this virtual paper pattern generator.
  • two ground lines Lgl and Lg2 are set on the surface of the pattern area R.
  • the ground line Lgl is set by the third method, and is set in parallel with the contour line EL developed in a straight line shape of the pattern area R and the surface of the pattern area R.
  • the ground line Lg2 is set by the second method and is a line connecting two points on the surface of the pattern area R.
  • the virtual pattern creating device it is possible to set the line of sight of the ground directly on the virtual clothing model created in the three-dimensional space.
  • the ground line while grasping the position of the virtual pattern, and the ground line can be easily set.
  • the virtual pattern creating device of the above embodiment creates a virtual pattern of a virtual clothes model.
  • the present invention is not limited to this, and car seats, shoes, stuffed animals, etc. are adopted as a three-dimensional object model.
  • virtual pattern paper for these may be generated.
  • the material for creating the three-dimensional object model is not limited to cloth, and animal skins such as cows and sheep may be used. In the case of leather, since the elongation in the direction of the spine is low, the direction in which the force is applied is set as the reference line.
  • the virtual paper pattern creating apparatus that is useful in the present invention may be applied to the creation of a virtual paper pattern of a three-dimensional object model made of a material (for example, vinyl) without anisotropy. .
  • a material for example, vinyl
  • the present invention is useful. It becomes.
  • the virtual paper pattern generation program useful for the present invention may be stored in a computer-readable recording medium such as a CD-ROM or DVD-ROM, and the virtual paper pattern generation program may be provided to the user. Furthermore, the virtual paper pattern generation program may be provided to the user by downloading from a web server storing the virtual paper pattern generation program.
  • a virtual pattern creating program is a virtual pattern creating program for virtually creating a three-dimensional pattern, which acquires three-dimensional data of the three-dimensional object and stores the virtual three-dimensional object in a virtual three-dimensional space.
  • a three-dimensional object model generating means for generating a model; a contour line setting means for setting a contour line of a pattern on the surface of the virtual three-dimensional object model; and dividing the surface of the virtual three-dimensional object model into a plurality of regions;
  • the virtual three-dimensional object model is set so that the reference line is set to a straight line with reference line setting means for setting a reference line for one region partitioned by the contour line setting means.
  • Each area is expanded in a two-dimensional space, and a computer is caused to function as an expansion means for generating a virtual pattern.
  • the virtual pattern creating device is a virtual pattern creating device that virtually creates a pattern of a three-dimensional object, obtains three-dimensional data of the three-dimensional object, and stores the virtual pattern in a virtual three-dimensional space.
  • a three-dimensional object model generating means for generating a three-dimensional object model; a contour line setting means for setting a contour line of a pattern on the surface of the virtual three-dimensional object model; and dividing the surface of the virtual three-dimensional object model into a plurality of regions;
  • a reference line setting means for setting a reference line for one area partitioned by the contour setting means, and the solid object model so that the reference line is linear.
  • a developing means for generating a virtual paper pattern by expanding each area into a two-dimensional space.
  • the virtual pattern creating method is a virtual pattern creating method in which a computer virtually creates a pattern of a three-dimensional object, and the computer includes a three-dimensional object model generation means and contour line setting means. , A reference line setting unit, and a developing unit, the solid object model Generating means for acquiring three-dimensional data of the three-dimensional object and generating a virtual three-dimensional object model in a virtual three-dimensional space; and A step of setting a line and partitioning the surface of the virtual three-dimensional object model into a plurality of regions, and the reference line setting means is one area partitioned by the contour line setting means based on a user operation command
  • a step of setting a reference line, and the expanding means expands the three-dimensional object model into a two-dimensional space for each partitioned area so that the reference line becomes a straight line, thereby generating a virtual pattern.
  • a step of performing is a virtual pattern creating method in which a computer virtually creates a pattern of a three-dimensional object, and the computer includes
  • three-dimensional data of a three-dimensional object is acquired, a virtual three-dimensional object model is generated in a virtual three-dimensional space, a contour line is set on the surface of the virtual three-dimensional object model, A reference line is set for the surface of one of the multiple areas partitioned by the line (any one of the multiple areas on the surface of the virtual 3D object) based on an operation command from the user.
  • Each area is expanded to a two-dimensional plane so that the set reference line is a straight line, and a virtual pattern is created. Therefore, the user can directly set the reference line for the virtual three-dimensional object model created in the three-dimensional space.
  • the user can set the reference line while grasping the position of the virtual pattern with respect to the entire virtual three-dimensional object model, and can easily set the reference line.
  • the expanding means sets a mesh setting means for setting a polygon mesh in each area, and sets a plurality of polygons intersecting the reference line as an initial polygon row in the area.
  • the extracted polygon mesh force is also extracted, and the initial polygon row expanding means for expanding the initial polygon row into a two-dimensional plane so that the reference line of the extracted initial polygon row becomes a straight line;
  • the image processing apparatus further includes a second polygon string expanding unit that extracts adjacent polygon strings and repeatedly develops the extracted polygon strings on the two-dimensional plane by repeatedly executing the process.
  • a polygon mesh is set for each region, and among the polygons constituting the set polygon mesh, an initial polygon row that also has a polygon force that intersects the reference line is extracted, and the reference line is extracted.
  • the initial polygon row is expanded on a two-dimensional plane so that becomes a straight line.
  • the polygon array adjacent to the initial polygon array is expanded to the 2D plane, and the polygon array is expanded to the 2D plane.
  • the polygon line adjacent to the polygon line is expanded to the 2D plane, and the expansion process to the 2D plane is executed with the polygon line as one unit. Even if the polygon mesh is expanded on a two-dimensional plane so that it is linear, the polygon mesh can be expanded without difficulty.
  • the first and second polygon row expanding means expand the polygon row on a two-dimensional plane so that the area of each polygon is maintained.
  • the polygon row is expanded on a two-dimensional plane so that the area of each polygon is maintained, so that the polygon shape set in the three-dimensional object model is maintained.
  • Columns can be expanded into a two-dimensional plane.
  • the polygon is a triangle
  • the first polygon array expanding means is a vertex to be expanded among the vertices of the polygon constituting the initial polygon.
  • v indicates the coordinates when vertex V is expanded on a two-dimensional plane.
  • V ′ indicates the coordinates when the point V on the reference line connecting the vertex V and the reference line with the shortest distance is expanded on a two-dimensional plane.
  • D indicates the length between the vertex V and the point V ′.
  • d is a vector i i j j + 1 that connects the intersections P and P of the two ridgelines of the polygon passing through the vertex V and the reference line
  • t represents a vector having the same size and orthogonal to the vector p i j j + 1 j j + 1 j p, which is a vector connecting the coordinates p 1 and p 2 when the intersection points P 1 and P 2 are expanded to a two-dimensional plane.
  • the initial polygon sequence can be expanded to the 2D space so that the shape of the initial polygon sequence set in the 3D space is maintained.
  • the first polygon row expansion means is a length of a line segment.
  • the length of the line segment PV 'and the length of the line segment p are equal to each other.
  • the first polygon row can be expanded in the two-dimensional space so that the shape of the first polygon row in the three-dimensional space is maintained.
  • the first polygon row expansion means is configured to detect the line segment p p.
  • the direction of j j + l is the same as the direction of the expanded line segment p p, and the size of the line segment P P and the line segment p
  • the direction of the line segment p p is the same as the direction of the expanded line segment p p.
  • the size of the line segment P P is equal to the size of the line segment P P in the three-dimensional space.
  • the initial polygon can be expanded so that the reference line is a straight line.
  • the reference line setting means sets two reference lines that intersect at the surface of the region 1, and the unfolding means has two reference lines orthogonal to each other, In addition, it is preferable to expand the region into a two-dimensional space so as to form a straight line.
  • the reference line setting means passes through a point in one region of the virtual solid object model designated by the user and is set in advance in the virtual three-dimensional space. It is preferable to set the reference line on the surface of the region so as to follow the direction of gravity.
  • the reference line setting means connects the reference line to the surface of the region so as to connect two points in one region of the virtual solid object model specified by the user. It is preferable to set a line.
  • the user can set a reference line in an arbitrary direction by performing a simple operation of designating two points in one area.
  • the reference line setting means sets the reference line parallel to the surface of the virtual three-dimensional object model with respect to a contour line that is linearly developed by the developing means. Preferred to set ,.
  • the user can set a reference line parallel to the contour line developed in a straight line on the surface of the region only by designating one point in the region.
  • the reference line setting means passes through a point in one area of the virtual three-dimensional object model designated by the user and is set in advance in the virtual three-dimensional space.
  • the reference line is set on the surface of the region so as to follow the direction of gravity, and the two points in the region 1 of the virtual solid object model specified by the user are connected.
  • the reference line is set parallel to the surface of the virtual three-dimensional object model with respect to the second method of setting the reference line on the surface of the region and the one-side contour line developed linearly by the developing means.
  • the reference line is set using a method designated by the user among the third methods.
  • the three-dimensional object is preferably made of a material having anisotropy in elongation characteristics.
  • a reference line can be set directly for a virtual three-dimensional object model. Therefore, it is useful for CAD for creating clothing patterns on a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Textile Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Processing Or Creating Images (AREA)
  • Image Generation (AREA)

Abstract

 直接的に仮想立体物モデルの表面に地の目線を設定する。ユーザからの操作指令に従って3次元空間内で作成された仮想衣服モデルに対してユーザからの操作指令に従って切り込み線を設定し、仮想衣服モデルを複数の型紙領域Rに区画する切込線設定部22と、ユーザからの操作指令に従って、型紙領域Rに対して地の目線Lgを設定する地の目線設定部23と、地の目線設定部23により設定された地の目線Lgが直線状となるように型紙領域Rを2次元平面に展開し仮想型紙を生成する展開部24とを備える。

Description

明 細 書
仮想型紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法 技術分野
[0001] 本発明は、立体物の型紙を仮想的に作成する技術に関する。
背景技術
[0002] 特許文献 1には、ユーザ力 の操作指令に基づいて、仮想 3次元空間内に仮想 3 次元衣服モデルを作成し、作成した仮想 3次元衣服モデルを 2次元平面に展開し、 仮想型紙を作成する画像処理装置が開示されて!、る。
[0003] ところで、布は伸ばす方向に応じて伸び率が異なるというような伸び方向に異方性 を有しており、布の力学的特性が充分に反映された安定性の高いの衣服を作成する には、人物が衣服を着用したときに、布の糸目方向(一般的には縦糸方向)が重力 方向に沿うように衣服を作成しなければならない。そのため、ァバレル業界では、型 紙に対して糸目方向を指定するための地の目線 (基準線)を設定し、設定した地の目 線の方向に布の糸目方向が合うように布を裁断し、衣服が作成されている。また、牛 等の動物の皮を用いて靴等の立体物を作成する場合、皮も布同様に異方性を有し ており、伸び率が低い皮の背骨方向が重力方向に沿うように立体物を作成しなけれ ばならないことから、布の場合と同様に型紙に対して背骨方向を指定するための基 準線が設定される。
特許文献 1:特開 2004— 70519号公報
発明の開示
[0004] し力しながら、特許文献 1の手法では、仮想 3次元衣服モデルの表面にポリゴンメッ シュを設定し、ポリゴンメッシュの歪みが最小となるように、仮想 3次元衣服モデルが 2 次元平面に展開されているに留まり、基準線を考慮した展開がなされていない。その ため、展開後の仮想型紙に対して基準線を設定する作業が必要となる。
[0005] また、仮想型紙及び実際の型紙は平面的であるため、型紙によって裁断された布 力 縫製後、重力方向に対してどのような位置関係を有しているか、或いは衣服全体 に対してどのような位置関係を有して 、るかを、型紙力 速やかに予測することは困 難であり、基準線を設定することは容易ではな力つた。
[0006] 本発明の目的は、仮想立体物モデルに対して直接的に基準線を設定しうる仮想型 紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法を提供することであ る。
[0007] 本発明による仮想型紙作成プログラムは、立体物の型紙を仮想的に作成する仮想 型紙作成プログラムであって、前記立体物の 3次元データを取得し、仮想 3次元空間 内に仮想立体物モデルを生成する立体物モデル生成手段と、前記仮想立体物モデ ルの表面に型紙の輪郭線を設定し、前記仮想立体物モデルの表面を複数の領域に 区画する輪郭線設定手段と、ユーザの操作指令に基づいて、前記輪郭線設定手段 によって区画された 1の領域に対し、基準線を設定する基準線設定手段と、前記基 準線が直線状となるように、前記仮想立体物モデルを前記領域毎に 2次元空間に展 開し、仮想型紙を生成する展開手段としてコンピュータを機能させることを特徴とする
[0008] また、本発明による仮想型紙作成装置は、立体物の型紙を仮想的に作成する仮想 型紙作成装置であって、前記立体物の 3次元データを取得し、仮想 3次元空間内に 仮想立体物モデルを生成する立体物モデル生成手段と、前記仮想立体物モデルの 表面に型紙の輪郭線を設定し、前記仮想立体物モデルの表面を複数の領域に区画 する輪郭線設定手段と、ユーザの操作指令に基づいて、前記輪郭線設定手段によ つて区画された 1の領域に対し、基準線を設定する基準線設定手段と、前記基準線 が直線状となるように、前記立体物モデルを区画された領域毎に 2次元空間に展開 し、仮想型紙を生成する展開手段とを備えることを特徴とする。
[0009] また、本発明による仮想型紙作成方法は、コンピュータが、立体物の型紙を仮想的 に作成する仮想型紙作成方法であって、前記コンピュータは、立体物モデル生成手 段、輪郭線設定手段、基準線設定手段、及び展開手段を備え、前記立体物モデル 生成手段が、前記立体物の 3次元データを取得し、仮想 3次元空間内に仮想立体物 モデルを生成するステップと、前記輪郭線設定手段が、前記仮想立体物モデルの表 面に型紙の輪郭線を設定し、前記仮想立体物モデルの表面を複数の領域に区画す るステップと、前記基準線設定手段が、ユーザの操作指令に基づいて、前記輪郭線 設定手段によって区画された 1の領域に対し、基準線を設定するステップと、前記展 開手段が、前記基準線が直線状となるように、前記立体物モデルを区画された領域 毎に 2次元空間に展開し、仮想型紙を生成するステップとを備えることを特徴とする。
[0010] これらの構成によれば、立体物の 3次元データが取得され、仮想 3次元空間内に、 仮想立体物モデルが生成され、当該仮想立体物モデルの表面に輪郭線が設定され 、輪郭線により区画された複数の領域の 1の領域 (仮想 3次元立体物の表面における 複数の領域のうち任意の 1の領域)の表面に対し、ユーザからの操作指令に基づき、 基準線が設定され、設定された基準線が直線となるように、各領域が 2次元平面へ展 開され、仮想型紙が作成される。したがって、ユーザは、 3次元空間内において作成 された仮想立体物モデルに対して直接的に基準線を設定することができる。その結 果、ユーザは、仮想立体物モデル全体に対する仮想型紙の位置等を把握しながら 基準線を設定することが可能となり、基準線を容易に設定することができる。
図面の簡単な説明
[0011] [図 1]本実施形態による仮想型紙作成装置のブロック構成図を示している。
[図 2]本仮想型紙生成装置の処理を示すフローチャートである。
[図 3]ユーザが地の目線を設定する際に、表示制御部が表示部に表示する画像を示 した図面である。
[図 4]初期ポリゴン列を示した図面である。
[図 5]地の目線が直線状となるように初期ポリゴン列を 2次元平面に展開する処理を 説明する図面であり、 (a)は展開前の初期ポリゴン列を示し (b)は展開後の初期ポリ ゴン列を示している。
[図 6]点 V 'が線分 P P の外分点となる場合を示した図面である。
i j j + 1
[図 7]ポリゴン列が抽出される様子を説明するための図面である。
[図 8]展開処理を説明する図面であり、(a)は展開前のポリゴンを示し、(b)は展開後 のポリゴンを示している。
[図 9]ポリゴン列の展開処理の詳細を説明する図面である。
[図 10]マススプリングモデルを示した図面である。
[図 11]ローカル緩和処理を説明する図面である。 [図 12]ローカル緩和処理を説明する図面である。
[図 13]グローバル緩和処理により発生したオーバーラップを示した図面であり、 (a)は グローバル緩和処理前のポリゴンメッシュを示し、 (b)はグローバル緩和処理後のポリ ゴンメッシュを示し、(c)はオーバーラップの修正後のポリゴンメッシュを示している。
[図 14]2本の地の目線が設定された場合に、型紙領域力もポリゴン列が抽出される様 子を説明する図面である。
[図 15]本仮想型紙作成装置によって作成された仮想型紙を示す図面であり、 (a)は 仮想人体モデル上に作成された 3次元の仮想衣服の型紙領域を示し、 (b)は地の目 線を加味しない従来の手法により型紙領域を 2次元平面へ展開して得られた仮想型 紙を示し、 (c)は本仮想型紙作成装置により展開された仮想型紙を示している。 発明を実施するための最良の形態
[0012] 以下、図面を参照しつつ本発明の最良の実施の形態を説明する。図 1は、本実施 形態による仮想型紙作成装置のブロック構成図を示して!/ヽる。本仮想型紙作成装置 は、仮想型紙作成プログラムがインストールされた、パーソナルコンピュータ力 構成 され、操作部 1、プログラム実行部 2、及び表示部 3を備えている。
[0013] 操作部 1は、キーボード、マウス等の入力装置力 構成され、ユーザからの操作指 令を受け付ける。プログラム実行部 2は、 CPU等力 構成され、 CPUが図略のハード ディスクに記憶された仮想型紙作成プログラムを実行することにより、衣服モデル生 成部 21、切込線設定部 22、地の目線設定部 23、展開部 24、及び表示制御部 25と して機能する。
[0014] 衣服モデル生成部 21は、操作部 1により受け付けられたユーザ力もの操作指令に 従って、特開 2004— 70519号公報に記載された手法を用い、仮想 3次元空間内に 仮想衣服モデルを生成する。具体的には、仮想 3次元空間内に予め作成された仮 想人体モデルの胸の頂点や肩甲骨の頂点等の突出点のうち、ユーザにより指定され た突出点(例えば胸の頂点)を通り、かつ、仮想人体モデルの表面に沿うようなライン (例えばバストライン)を形成する。
[0015] そして、ユーザの操作指令に従って、形成したラインを所定方向にスライドさせ、こ れにより形成されるラインの軌跡を仮想衣服モデルの一部の構成面とする。なお、ス ライドすることで形成された軌跡が仮想人体モデルと交差して仮想人体モデルにめり 込んだ場合は、めり込んだ軌跡の部分が仮想人体モデルの表面形状に沿うように変 形する。このような処理を繰り返し実行することで、衣服モデル生成部 21は、スカート 、ブラウス、シャツ等の仮想衣服モデルを生成する。
[0016] 切込線設定部 22は、ユーザ力 の操作指令にしたがって、衣服モデル生成部 21 により生成された仮想衣服モデルに切込線を設定し、仮想衣服モデルの表面を複数 の領域の区画する。なお、仮想型紙は、この領域毎に生成されるため、以下、区画さ れた領域を型紙領域と称する。
[0017] 地の目線設定部 23は、ユーザからの操作指令にしたがって、型紙領域の表面に地 の目線を設定する。地の目線は、型紙に対して布の糸目方向を指定するための直線 であり、通常、布の縦糸方向を指定するため、或いは縦糸及び横糸の両方向を指定 するために用いられる。本実施形態では、地の目線を布の縦糸方向に設定するもの とする。なお、地の目線設定部 23は、以下に示す第 1〜第 3の方式のうち、ユーザに より選択されたいずれかの方式に従って地の目線を設定する。
[0018] 第 1の方式は、ユーザによって操作部 1を介して指定された型紙領域上の任意の 1 点を通り、かつ、仮想 3次元空間に予め設定された重力方向に沿うように、型紙領域 の表面に 1本の地の目線を設定する方式である。第 2の方式は、ユーザによって操作 部 1を介して指定された型紙領域の任意の 2点を結ぶ線を地の目線として設定する 方式である。
[0019] 第 3の方式は、ユーザによって操作部 1を介して指定された型紙領域の任意の 1点 を通り、かつ、直線状に展開される型紙領域の輪郭線に対して平行に型紙領域の表 面に地の目線を設定する方式である。第 3の方式において、直線状に展開される輪 郭線が 2本以上存在する場合は、ユーザにより指定された 1点に対して最短距離に ある輪郭線が地の目線として設定される。
[0020] 展開部 24は、ポリゴンメッシュ設定部 241、初期ポリゴン列展開部 242、及びポリゴ ン列展開部 243を備え、衣服モデル生成部 21により生成された仮想衣服モデルを 構成する各型紙領域を 2次元平面に展開し、仮想型紙を生成する。
[0021] ポリゴンメッシュ設定部 241は、各型紙領域の表面に対して、複数のポリゴン (例え ば、三角形又は四角形)力もなるポリゴンメッシュを設定する。
[0022] 初期ポリゴン列展開部 242は、ポリゴンメッシュ設定部 241により設定されたポリゴン メッシュ力 、地の目線設定部 23により設定された地の目線と交差するポリゴン列を 初期ポリゴン列として抽出し、抽出した初期ポリゴン列を構成する各ポリゴンの形状及 び面積が維持され、かつ、地の目線が直線となるように、初期ポリゴン列を 2次元平 面に展開する。
[0023] ポリゴン列展開部 243は、 2次元平面への展開が終了した、ポリゴン列(初期ポリゴ ン列を含む)に隣接するポリゴン列を、公知のマススプリングモデルを用いた平面展 開手法により 2次元平面に展開する。これにより、ポリゴン列は、ポリゴンの各辺の長 さ力 S維持されるように、 2次元平面に展開される。以後、ポリゴン列展開部 243は、型 紙領域内の全ポリゴンが 2次元平面に展開されるまで、ポリゴン列の抽出及び展開を 繰り返し実行し、型紙領域を 2次元平面に展開する。なお、マススプリングモデルを用 いた平面展開手法は、本発明者達によって発表された公知文献 1「題名: Flattening t nangulated surfaces using mass-spring model著者: JItuo Li'Dongliang Zhang, Guodo ng
し u'Yanying Peng, Xing Wen.Yoshiyuki Sakaguti雑誌名 : International journal of adva need manufacturing technology
Publisher: springer— verlag London limitedjにその詳糸田力 ti載されている。
[0024] 表示制御部 25は、衣服モデル生成部 21により生成された仮想衣服モデル、及び 展開部 24により生成された仮想型紙等を表示部 3に表示させる。
[0025] 本実施形態では、衣服モデル生成部 21が立体物モデル生成手段に相当し、切込 線設定部 22が輪郭線設定手段に相当し、地の目線設定部 23が基準線設定手段に 相当し、展開部 24が展開手段に相当し、初期ポリゴン列展開部 242が、第 1のポリゴ ン列展開手段に相当し、ポリゴン列展開部 243が第 2のポリゴン列展開手段に相当し 、地の目線が基準線に該当する。
[0026] 図 2は、本仮想型紙生成装置の処理を示すフローチャートである。なお、本フロー チャートを実行する以前に、衣服モデル生成部 21により予め仮想衣服モデルが生 成されているものとする。まず、ステップ S1において、操作部 1が、型紙領域に対して 地の目線を設定するユーザからの操作指令を受け付けた場合 (S1で YES)、地の目 線設定部 23は、前記第 1〜第 3の方式のうちいずれかの方式により型紙領域の表面 に地の目線を設定する(S2)。なお、地の目線設定部 23は、ユーザよつて選択され た、第 1〜第 3の方式のうち、いずれの方式を用いて地の目線を設定する。
[0027] 図 3は、ユーザが地の目線を設定する際に、表示制御部 25が表示部 3に表示する 画像を示した図面である。図 3に示す画像は、仮想人体モデル Mが表示された右側 のエリアと、第 1〜第 3の方式を選択するための左側のエリアとから構成される。左側 のエリアには、「重力方向」、「任意の方向」、及び「デザイン線の方向」との文言が表 示され、各文言の左側にはチェックボックス C1〜C3が表示されている。また、右側の エリアには、仮想人体モデル M及び型紙領域 Rが表示されている。右側のエリアに おいて Gの記号が付された矢印は、仮想 3次元空間内において予め定められた重力 方向を示す重力ベタトルである。
[0028] ユーザは、操作部 1を操作してチェックボックス C1にチェックマーク CMを付すこと により第 1の方式を選択し、チェックボックス C2にチェックマーク CMを付すことにより 第 2の方式を選択し、チェックボックス C3にチェックマーク CMを付すことにより第 3の 方式を選択する。
[0029] 第 1の方式が選択されている場合、地の目線設定部 23は、ユーザにより指定され た型紙領域 Rの 1点である点 P1及び重力ベクトル Gを含む平面と型紙領域 Rとの交 線を求め、求めた交線を地の目線 Lgとして設定する。なお、地の目線 Lgは型紙領域 Rの全域に亘つて設定されるが、図 3の例では、一部の地の目線 Lgのみが表示され ている。
[0030] 第 2の方式が選択されている場合、地の目線設定部 23は、ユーザにより指定され た型紙領域 Rの表面の 2点である点 P1及び点 P2を通る平面と、型紙領域 Rとの交線 を求め、求めた交線を地の目線 Lgとして設定する。
[0031] 第 3の方式が選択されている場合、地の目線設定部 23は、ユーザにより指定され た型紙領域 R表面の 1点である点 P1に対して最短距離に位置し、かつ、直線状に展 開される輪郭線 ELに対して平行な線を地の目線 Lgとして設定する。なお、 2次元平 面に対し直線状に展開される輪郭線は、予めユーザによって指定されている。 [0032] 図 2に示すステップ S3において、表示制御部 25は、地の目線設定部 23により設定 された地の目線 Lgを型紙領域 Rの表面に表示させる。ステップ S4において、ポリゴン メッシュ設定部 241は、型紙領域 Rに対して複数の三角形のポリゴン力もなるポリゴン メッシュを設定する。ステップ S5において、初期ポリゴン列展開部 242は、型紙領域 R内に設定されたポリゴンメッシュから、地の目線 Lgと交差する複数のポリゴンを初期 ポリゴン列 PL1として抽出する。図 4は、初期ポリゴン列 PL1を示した図面である。図 4において、地の目線 Lgと交差する太線で示された複数のポリゴンが初期ポリゴン列 PL 1である。
[0033] ステップ S6において、初期ポリゴン列展開部 242は、初期ポリゴン列 PL1に交差す る地の目線 Lgが直線状となるように、初期ポリゴン列 PL1を 2次元平面に展開する。 図 5は、地の目線が直線状となるように初期ポリゴン列 PL1を 2次元平面に展開する 処理を説明する図面であり、 (a)は展開前の初期ポリゴン列 PL1の一部を示し (b)は 展開後の初期ポリゴン列 PL1の一部を示している。
[0034] この処理は、第 1〜第 3ステップの 3つの処理力 構成される。
[0035] 第 1ステップでは、ポリゴン PGiの頂点 Viを通るポリゴン PGiの 2本の稜線と地の目 線 Lgとの交点である P , P による線分 P P 上に、頂点 Vに対して距離が最短とな
j j+l j j+l i
る点 V「を設定した後、以下に示す式(1)〜式 (4)に示す 、 s , ^及び を算出する
[0036] ri = s.|^ / P j+1 式 (1)
1 PjVi'-PjPj^ >0
式 (2)
式 (3)
1 Viが PjPj+1の右側にある場合 式 (4)
L-1 それ以外の場合
[0037] 式(1)に示す rは、線分 PP に対する線分 PV'の比率に、 sを乗じることにより得
i j j+1 j i i
られ、式(1)に示す sは式(2)により規定される。式(2)に示す sは、 ベクトルと P
P ベクトルとの内積が正の場合、 s = 1となり、 P V ' :クトルと PP ベクトルとの内 j+1 i j i j j+i
積が負の場合、 s =— 1となる。
図 5 (a)〖こ示すよう〖こ、 PV :クトノレと P P :クトルとのなす角度 0力 ¾0度未満の
j j+i
場合、両ベクトルの内積は正の値をとる。この場合、点 V 'は線分 P P の内分点とな
i j j + 1
るため、 s =1としている。一方、図 6に示すように、角度 Θが 90度よりも大きい場合、 内積は負の値をとる。この場合、点 νΊま線分 PP の外分点となるため、 s -1とし
i j j + 1
ている。
[0039] 式(3)に示す Dは V,Vベクトルの大きさを示す。式 (4)に示す dは、頂点 Vが!3? ベクトルの右側に位置する場合、 d = 1となり、頂点 Vが P P ベクトルの左側に位
+1 i i j j+1
置する場合、 d =— 1となる。
[0040] 第 2のステップでは、点 P に対応する 2次元平面上の点 p と点 Pに対応する 2次 元平面上の点 pとによる線分 pp の方向が、展開済みの線分 p pの方向と同一と なり、かつ、線分 PP の大きさと線分 pp との大きさが等しくなるように点 p の座
j j + 1 j j + 1 j + 1 標を決定する。 [0041] 第 3のステップでは、式(5)の演算を実行し、頂点 に対する 2次元平面上の位置 を決定する。
[0042]
Figure imgf000012_0001
は pjp」+1に直交するベクトル …式 (6)
: i 」+1 j-x
[0043] 式(5)に示す Vは頂点 Vに対応する 2次元平面上の点であり、 pは点 Pに対応する
] j
2次元平面上の点であり、 p — pは p p ベクトルを示し、 tベクトルは式(6)により
j + l j j j + 1 i
示される。式(6)〖こ示す t . xは tベクトルの x成分を示し、 t . yは tベクトルの y成分を 示し、(p p ) . は ベクトルの X成分を示し、(ρ ρ ) . は、 の y成分を示 j j + l j j + l j j + l j j + l
して 、る。式(6)に示すように、 tベクトルは、 X成分が p p ベクトルの y成分の値に等
i j j + l
しぐ y成分が P P ベクトルの χ成分にマイナス 1を乗じた値に等しい。すなわち、 tベ
j j + l i タトルは、 p p ベクトルに対し、垂直、かつ、大きさが等し!、ベクトルである。
j j + l
[0044] 式(5)に示す r (p —p )により頂点 の位置が決定されるが、 rは式(1)の関係を
i j + l j i i
有し、かつ、線分 P P の大きさは線分 p p の大きさに等しいため、結局、線分 p
j j + l j j + l j i の大きさは線分 PV 'の大きさと等しくなる。また、式 (6)に示す により、頂点 の位置が決定される。
[0045] 初期ポリゴン列展開部 242は、初期ポリゴン列 PL1を構成する各ポリゴンに対し、上 記第 1〜第 3のステップの処理を、初期ポリゴン列 PL1の一端のポリゴン PG1から他 端のポリゴン PGNまで順番に実行し、初期ポリゴン列 PL1を 2次元平面に展開する。 これにより、初期ポリゴン列 PL1は、地の目線 Lgが直線となり、かつ、各ポリゴンの面 積、及び形状が維持されるように 2次元平面へと展開される。また、最初に地の目線 と交差するポリゴン列が 2次元平面へと展開されているため、地の目線を正確に直線 状に展開することが可能となる。
[0046] 図 2に示すステップ S7において、ポリゴン列展開部 243は、展開が終了したポリゴ ン列 PLi (iはポリゴン列の抽出順序を示す正数)に隣接するポリゴン列 PLi+ 1を、型 紙領域 R力も抽出する。図 7は、ポリゴン列が抽出される様子を説明するための図面 である。 (a)及び (b)に示すように、ポリゴン列展開部 243は、初期ポリゴン列 PL1に 対して右隣に隣接するポリゴン列 PL2を抽出し、抽出したポリゴン列 PL2を 2次元平 面に展開する。次に、初期ポリゴン列 PL1の左隣に隣接するポリゴン列 PL3を抽出し 、抽出したポリゴン列 PL3を 2次元平面へ展開する。以後、ポリゴン列 PL4、 PL5、 P L6の順番で、型紙領域 Rからポリゴン列を順次抽出していく。すなわち、型紙領域 R は、初期ポリゴン列 PL1を中心として左右に広がるように 2次元平面へと展開される。
[0047] なお、上記ポリゴン列の抽出順は一例にすぎず、初期ポリゴン列 PL1の次に、左隣 に隣接するポリゴン列 PL3を抽出し、次に初期ポリゴン列 PL1右隣に隣接するポリゴ ン列 PL2を抽出すると 、うような順番で、型紙領域 Rからポリゴン列を順次抽出しても よい。
[0048] また、初期ポリゴン列 PL1が型紙領域 Rの左端のポリゴン列である場合、各ポリゴン 列は、型紙領域 Rにおいて右方向に広がるように順次抽出されていき、初期ポリゴン 列 PL1が型紙領域 Rの右端のポリゴン列である場合、各ポリゴン列は、型紙領域尺に お!、て左方向に広がるように順次抽出されて 、く。
[0049] 図 2に示すステップ S8において、ポリゴン列展開部 243は、抽出したポリゴン列 PLi をマススプリングモデルを用いた展開手法により、 2次元平面に展開する。図 8は、展 開処理を説明する図面であり、(a)は展開前のポリゴンを示し、(b)は展開後のポリゴ ンを示している。
[0050] 図 8に示す VI、 V2、 V3は、既に 2次元平面へ展開されたポリゴンの頂点を示し、 頂点 VI〜V3を通る直線を境界線 ELと呼ぶ。 al、 a2、 a3は、それぞれ、展開前のポ リゴン PG1〜PG3の頂点 V2における角度を示している。 bl, b2, b3は、それぞれ、 展開後のポリゴン PG1〜PG3の頂点 V2における角度を示している。展開部 24は、 a lZbl = a2Zb2 = a3Zb3となるように頂点 PI及び P2の 2次元平面の位置を決定 し、ポリゴン PG1〜PG3を 2次元平面へ展開する。
[0051] 図 9は、ポリゴン列の展開処理の詳細を説明する図面である。図 9に示すように、頂 点 P1は、境界線 EL上の頂点のうち、 2個の頂点 VI, V2と繋がっているため、辺 el, e2の長さを維持するように位置が決定される。ここで、 Angl (Angl = ZP V V +
1 1 2
ZP V V )が 180度に近い場合、辺 el, e2は非常に長くなる。また、 Anglが 180度 より大きい場合、ポリゴン同士のオーバーラップが発生する。そこで、オーバーラップ を防止するために、ポリゴン列展開部 243は、 Anglが小さくなるように、 P1の位置を 決定する。
[0052] 頂点 P2は、境界線 EL上の頂点のうち、 1個の頂点 V2のみと繋がっている。このよう な頂点に対して、ポリゴン列展開部 243は、辺 e3の長さを維持するように、頂点の位 置を決定する。頂点 P3は、境界線 ELの頂点のうち、 3個の頂点と繋がっている。この ような頂点に対し、ポリゴン列展開部 243は、一端の辺 e4と他端の辺 e6の長さが維 持されるように、頂点の位置を決定する。 V P V力 ^度に近い場合、辺 e4, e6の
2 3 4
長さが非常に長くなるため、ポリゴン列展開部 243は、ポリゴン PG1, PG2を除去す る。
[0053] なお、頂点 P1及び P2がユーザにより、直線、かつ、地の目線 Lgと平行に 2次元平 面へ展開されるように指定された輪郭線上の頂点である場合は、展開部 24は、 alZ bl = a2/b2 = a3/b3を満たし、かつ、頂点 P1及び P2を結ぶ線分が、地の目線 Lg に対して平行となるように頂点 PI及び P2の 2次元平面の位置を決定し、ポリゴン PG 1〜PG3を 2次元平面へ展開する。
[0054] ステップ S9において、ポリゴン列展開部 243は、展開したポリゴン列 PLiに対してマ ススプリングモデルを適用し、ポリゴン列 PLiの歪みが緩和されるように、ポリゴン列 P Liの各頂点の位置を移動させるローカル緩和処理を実行する。
[0055] 図 10は、マススプリングモデルを示した図面である。マススプリングモデルは、ポリゴ ンの各頂点 P1〜P6を質点とし、質点を直接繋ぐ辺上に設定されたテンションスプリ ング TSと、隣接する 2個のポリゴンによって共有される辺と交差するように、両ポリゴン の質点間に設定されたクロススプリング CSとカゝら構成される。テンションスプリング TS は、布内部で生じる応力を表す。クロススプリング CSは、ポリゴンメッシュが過度に延 びてしまうことを防止する。
[0056] マススプリングにお 、て、質点 P , Pを繋ぐパネ(テンションスプリング TS、或!、はク ロススプリング CS)により、両質点に作用する力は、式(7)によって表される。
Figure imgf000014_0001
[0058] 式(7)に示す k は質点間のパネ係数を示し、 I は、パネのベクトルを示し、 f は パネの初期長を示し、 X、 Xは質点 P、 Pの位置を示す。テンションスプリング TSの初 期長 1° は、 3次元空間における対応する辺の長さに等しぐパネ係数 k は、初期長 1
0 辺の長さに応じて決定される。クロススプリング CSの初期長 1° は、 2次元平面へ 展開された対応する 2つのポリゴンの頂点間の長さに等しい。
[0059] ポリゴン列展開部 243は、ローカル緩和処理を実行するにあたり、ポリゴンメッシュ の歪みをより緩和させるために、オーバーラップの発生により除去されたポリゴンに対 して損失力を作用させ、ポリゴン列 PLiの歪みを緩和させる。図 11及び図 12は、損 失力を説明する図面である。両図とも、(a)は展開前のポリゴン列 PLiを示し、(b)は 展開後のポリゴン列 PLiを示し、(c)は質点に作用する損失力を示す図面である。ま た、 P, P1〜P4は展開前の頂点を示し、 V1〜V4は展開済みの頂点を示している。
[0060] 図 11 (b)では、ポリゴン PG1にオーバーラップが発生している。このポリゴン PG1は 、 3個の頂点のうち 1個の頂点 V3が、境界線 EL上に存在している。このようなポリゴ ン PG1対しては、ポリゴン列展開部 243は、(c)に示すように除去対象となるポリゴン PG1の 3個の頂点のうち、境界線 EL上に存在しない 2個の頂点 P2, P3の各々に対 し、両頂点を結ぶ直線上に両頂点が引き合う方向に損失力 Fpを設定する。
[0061] 図 12 (b)では、ポリゴン PG2にオーバーラップが発生している。このポリゴン PG2は 、 3個の頂点のうち 2個の頂点 VI, V2が、境界線 EL上に存在している。このようなポ リゴン PG2に対しては、ポリゴン列展開部 243は、(c)に示すように境界線 EL上にな い 1個の頂点 Pに対して、頂点 VI, V2を結ぶ境界線 ELに対して垂直方向に損失力 Fpを設定する。なお、損失力の値については公知文献 1に記載されている。
[0062] ステップ S10において、緩和処理がされた直後のポリゴン列 PLiと既に展開処理が なされて!/、るポリゴン列 PLl〜PLi— 1とで構成されるポリゴンメッシュ全体に対してマ ススプリングモデルを適用し、当該ポリゴンメッシュ全体の歪みが緩和されるように、ポ リゴンの各頂点を移動させる処理 (グローバル緩和処理)を実行する。ここで、各頂点 が移動する結果、オーバーラップするポリゴンが発生することもある。この場合、ポリゴ ン列展開部 243は、オーバーラップを修正する処理を適宜実行する。図 13は、グロ 一バル緩和処理により発生したオーバーラップを示した図面であり、 (a)はグローバ ル緩和処理前のポリゴンメッシュを示し、 (b)はグローバル緩和処理後のポリゴンメッ シュを示し、(c)はオーバーラップの修正後のポリゴンメッシュを示している。
[0063] (b)に示すように、グローバル緩和処理により、頂点 Pが頂点 P1〜P6により取り囲ま れるポリゴンの外部に移動され、頂点 P, P5, P6からなるポリゴンがオーバーラップし ている。この場合、ポリゴン列展開部 243は、頂点 Pが頂点 P1〜P6により取り囲まれ るポリゴン内部に位置するように頂点 Pの移動量を小さくし (例えば、 1Z2)、オーバ 一ラップの発生を防止して 、る ( (c)参照)。
[0064] ステップ S11において、全てのポリゴンの 2次元平面への展開が終了している場合
(S 11で YES)、処理が終了され、全てのポリゴンの 2次元平面への展開が終了して Vヽな 、場合は(S 11で NO)処理がステップ S7に戻され、展開済みのポリゴン列に隣 接するポリゴン列が抽出され、ステップ S8以降の処理が実行される。
[0065] なお、本仮想型紙作成装置は、型紙領域 Rに縦糸及び横糸方向を指定するため の 2本の地の目線を設定し、この 2本の地の目線が直交するように、型紙領域 Rを 2次 元平面に展開させることも可能である。この場合、地の目線設定部 23は、ステップ S2 において、ユーザからの操作指令に従って、第 1〜第 3の方式のうちいずれかの方式 により型紙領域 Rの表面に 1本の目の地の目線を設定した後、ユーザ力もの操作指 令に従って、第 2の方式を用いて 2本目の地の目線を設定する。
[0066] 初期ポリゴン列展開部 242は、ステップ S5において、 2本の地の目線の各々と交差 するポリゴン列を抽出し、 2本の地の目線が直交し、かつ、直線となるように両ポリゴン 列を 2次元平面へ展開する。
[0067] この場合、初期ポリゴン列展開部 242は、ステップ S7において、ポリゴン列を図 14 に示すように抽出していく。図 14は、 2本の地の目線が設定された場合に、ポリゴン 列が型紙領域 Rから抽出されていく様子を示した図面である。図 14に示すように、十 文字状の初期ポリゴン列 PL1, PL1に対する展開処理が終了すると、続いて、初期 ポリゴン列 PL1, PL1によって区画される 4つの領域から、初期ポリゴン列 PL1に隣 接するポリゴン列 PL2〜PL5が順番に抽出され、各々に対してステップ S8〜S11の 処理が実行されると、続いて、ポリゴン列 PL2〜PL5の各々に隣接するポリゴン列 PL 6〜PL9が抽出される。このように、 2本の地の目線が設定された場合、ポリゴン列は 、初期ポリゴン列 PL1によって区画される 4つの領域において、斜め外側に向力うよう に順次抽出されていく。
[0068] 次に、本仮想型紙作成装置の計算結果を示す。図 15は、本仮想型紙作成装置に よって作成された仮想型紙を示す図面であり、 (a)は仮想人体モデル M上に作成さ れた 3次元の仮想衣服モデルの型紙領域 Rを示し、 (b)は地の目線をカ卩味しない従 来の手法により生成された仮想型紙を示し、 (c)は本仮想型紙作成装置により生成さ れた仮想型紙を示している。 (a)に示すように、型紙領域 Rの表面には 2本の地の目 線 Lgl, Lg2が設定されている。ここで、地の目線 Lglは第 3の方式により設定されて おり、型紙領域 Rの直線状に展開される輪郭線 ELと型紙領域 Rの表面にぉ ヽて平 行に設定されている。また、地の目線 Lg2は、第 2の方式により設定されており、型紙 領域 Rの表面の 2点を結ぶ線となっている。
[0069] (a)に示す型紙領域 Rを地の目線 Lgl, Lg2を考慮せずに 2次元平面へ展開する と、(b)に示すように、生成された仮想型紙の地の目線 Lgl, Lg2は、共に湾曲し、直 線状の地の目線が得られないことが分かる。一方、(a)に示す型紙領域 Rを本仮想 型紙作成装置により 2次元平面に展開すると、(c)に示すように、地の目線 Lgl, Lg2 は、直交し、かつ、直線状になっていることが分かる。
[0070] このように本仮想型紙作成装置によれば、 3次元空間内にお ヽて作成された仮想 衣服モデルに地の目線を直接的に設定することができるため、仮想衣服モデルに対 して仮想型紙の位置を把握しながら、地の目線を設定することが可能となり、地の目 線を容易に設定することができる。
[0071] 上記実施形態の仮想型紙作成装置は、仮想衣服モデルの仮想型紙を作成するも のであつたが、本発明はこれに限定されず、カーシート、靴、縫いぐるみ等を立体物 モデルとして採用し、これらに対する仮想型紙を生成するものであってもよい。また、 立体物モデルを作成する材料として、布に限らず、牛、羊等の動物の皮を用いても 良い。皮の場合は背骨の方向の伸び率が低いため、力かる方向が基準線として設定 される。
[0072] また、本発明に力かる仮想型紙作成装置を、異方性を有しな 、材料 (例えばビニー ル)から構成される立体物モデルの仮想型紙の作成に適用しても良!ヽ。異方性を有 しな 、材料 (例えば、ビニール)を用いて作成される立体物モデルの型紙を作成する 場合であっても、型紙の所定の部分を直線にしたいという要求があり、かかる場合、 本発明は有用となる。
[0073] また、本発明に力かる仮想型紙生成プログラムを CD—ROM、 DVD— ROM等の コンピュータ読取り可能な記録媒体に記憶させ、仮想型紙生成プログラムをユーザに 提供してもよい。さらに、仮想型紙生成プログラムが記憶された WEBサーノくからダウ ンロードすることにより、仮想型紙生成プログラムをユーザに提供してもよい。
[0074] (本発明の纏め)
(1)本発明による仮想型紙作成プログラムは、立体物の型紙を仮想的に作成する 仮想型紙作成プログラムであって、前記立体物の 3次元データを取得し、仮想 3次元 空間内に仮想立体物モデルを生成する立体物モデル生成手段と、前記仮想立体物 モデルの表面に型紙の輪郭線を設定し、前記仮想立体物モデルの表面を複数の領 域に区画する輪郭線設定手段と、ユーザの操作指令に基づいて、前記輪郭線設定 手段によって区画された 1の領域に対し、基準線を設定する基準線設定手段と、前 記基準線が直線状となるように、前記仮想立体物モデルを前記領域毎に 2次元空間 に展開し、仮想型紙を生成する展開手段としてコンピュータを機能させることを特徴と する。
[0075] また、本発明による仮想型紙作成装置は、立体物の型紙を仮想的に作成する仮想 型紙作成装置であって、前記立体物の 3次元データを取得し、仮想 3次元空間内に 仮想立体物モデルを生成する立体物モデル生成手段と、前記仮想立体物モデルの 表面に型紙の輪郭線を設定し、前記仮想立体物モデルの表面を複数の領域に区画 する輪郭線設定手段と、ユーザの操作指令に基づいて、前記輪郭線設定手段によ つて区画された 1の領域に対し、基準線を設定する基準線設定手段と、前記基準線 が直線状となるように、前記立体物モデルを区画された領域毎に 2次元空間に展開 し、仮想型紙を生成する展開手段とを備えることを特徴とする。
[0076] また、本発明による仮想型紙作成方法は、コンピュータが、立体物の型紙を仮想的 に作成する仮想型紙作成方法であって、前記コンピュータは、立体物モデル生成手 段、輪郭線設定手段、基準線設定手段、及び展開手段を備え、前記立体物モデル 生成手段が、前記立体物の 3次元データを取得し、仮想 3次元空間内に仮想立体物 モデルを生成するステップと、前記輪郭線設定手段が、前記仮想立体物モデルの表 面に型紙の輪郭線を設定し、前記仮想立体物モデルの表面を複数の領域に区画す るステップと、前記基準線設定手段が、ユーザの操作指令に基づいて、前記輪郭線 設定手段によって区画された 1の領域に対し、基準線を設定するステップと、前記展 開手段が、前記基準線が直線状となるように、前記立体物モデルを区画された領域 毎に 2次元空間に展開し、仮想型紙を生成するステップとを備えることを特徴とする。
[0077] これらの構成によれば、立体物の 3次元データが取得され、仮想 3次元空間内に、 仮想立体物モデルが生成され、当該仮想立体物モデルの表面に輪郭線が設定され 、輪郭線により区画された複数の領域の 1の領域 (仮想 3次元立体物の表面における 複数の領域のうち任意の 1の領域)の表面に対し、ユーザからの操作指令に基づき、 基準線が設定され、設定された基準線が直線となるように、各領域が 2次元平面へ展 開され、仮想型紙が作成される。したがって、ユーザは、 3次元空間内において作成 された仮想立体物モデルに対して直接的に基準線を設定することができる。その結 果、ユーザは、仮想立体物モデル全体に対する仮想型紙の位置等を把握しながら 基準線を設定することが可能となり、基準線を容易に設定することができる。
[0078] (2)また、上記構成にぉ 、て、前記展開手段は、各領域にポリゴンメッシュを設定す るメッシュ設定手段と、基準線と交差する複数のポリゴンを初期ポリゴン列として領域 に設定されたポリゴンメッシュ力も抽出し、抽出した初期ポリゴン列の基準線が直線と なるように前記初期ポリゴン列を 2次元平面へ展開する第 1のポリゴン列展開手段と、 前記処理が終了したポリゴン列に隣接するポリゴン列を抽出し、抽出したポリゴン列 を 2次元平面へ展開する処理を繰り返し実行することにより各領域を 2次元平面に展 開する第 2のポリゴン列展開手段とを備えることが好ましい。
[0079] この構成によれば、各領域に対してポリゴンメッシュが設定され、設定されたポリゴ ンメッシュを構成するポリゴンのうち、基準線と交差するポリゴン力もなる初期ポリゴン 列が抽出され、基準線が直線となるように初期ポリゴン列が 2次元平面に展開される 。初期ポリゴン列の 2次元平面への展開処理が終了すると、引き続き初期ポリゴン列 に隣接するポリゴン列が 2次元平面へ展開され、当該ポリゴン列が 2次元平面へ展開 されると、当該ポリゴン列に隣接するポリゴン列が 2次元平面へと展開されるというよう にして、ポリゴン列を 1単位として、 2次元平面への展開処理が実行されているため、 基準線が直線状となるようにポリゴンメッシュを 2次元平面に展開しても、ポリゴンメッ シュを無理なく展開することができる。
[0080] (3)また、上記構成において、前記第 1及び第 2のポリゴン列展開手段は、各ポリゴ ンの面積が維持されるようにポリゴン列を 2次元平面に展開することが好ましい。
[0081] この構成によれば、各ポリゴンの面積が維持されるようにしてポリゴン列が 2次元平 面へ展開されるため、立体物モデルに設定されたポリゴンの形状が維持されるように ポリゴン列を 2次元平面へ展開することができる。
[0082] (4)また、上記構成にぉ 、て、前記ポリゴンは三角形であり、前記第 1のポリゴン列 展開手段は、前記初期ポリゴンを構成するポリゴンの頂点のうち展開対象となる頂点
Vを特定し、特定した頂点 Vを式 (A)を用いて 2次元平面上に展開することが好まし い。
[0083] v =v ' +d X D X t (A)
[0084] 但し
vは、頂点 Vを 2次元平面上へ展開したときの座標を示す。
V 'は、頂点 Vと基準線とを最短距離で結ぶ基準線上の点 V ,を 2次元平面へ展開し たときの座標を示す。
Dは頂点 Vと点 V 'との長さを示す。
dは、頂点 Vを通るポリゴンの 2本の稜線と基準線との交点 P , P とを結ぶベクトル i i j j+ 1
である P P ベクトルに対して頂点 Vが右側にある場合は 1をとり、左側にある場合は j j + 1 i
1をとる。
tは、交点 P , P を 2次元平面へ展開したときの座標 p , p を結ぶベクトルである p i j j+ 1 j j+ 1 j p ベクトルと大きさが同一、かつ直交するベクトルを示す。
j + 1
[0085] この構成によれば、 3次元空間内で設定された頂点 Vi及び点 V「の長さを示す と 、 t (P P ベクトルに直交するベクトル)の大きさが維持されるように、初期ポリゴンが i j j + 1
2次元平面へ展開されているため、 3次元空間内で設定された初期ポリゴン列の形状 が維持されるように、初期ポリゴン列を 2次元空間に展開することができる。 [0086] (5)また、上記構成において、前記第 1のポリゴン列展開手段は、線分 の長さ
] 1 と線分 P V 'との長さが等しくなるように、前記 v「の座標を決定することが好ま 、。
[0087] この構成によれば、線分 PV 'の長さと線分 p との長さが等しくなるように の座
j 1 ] 1 1 標が決定されるため、 3次元空間での第 1のポリゴン列の形状が維持されるように第 1 のポリゴン列を 2次元空間に展開することができる。
[0088] (6)また、上記構成において、前記第 1のポリゴン列展開手段は、線分 p p の方
j j + l 向が、展開済みの線分 p pの方向と同一となり、かつ、線分 P P の大きさと線分 p
] - 1 ] ] ] + 1 ]
P との大きさが等しくなるように p の座標を決定することが好ましい。
j + l j + l
[0089] この構成によれば、線分 p p の方向が展開済みの線分 p pの方向と同一となり
j j+ l j- i j
、かつ、線分 P P の大きさが 3次元空間上での線分 P P の大きさと等しくなるよう
j j + l j j+ l
に p の座標が決定されるため、 3次元空間上での初期ポリゴンの形状を維持しつつ j+ i
、基準線が直線となるように初期ポリゴンを展開することができる。
[0090] (7)また、上記構成において、前記基準線設定手段は、 1の領域の表面において 交差する 2本の基準線を設定し、前記展開手段は、 2本の基準線が直交し、かつ、直 線状となるように、当該領域を 2次元空間に展開することが好ましい。
[0091] この構成によれば、 1の領域の表面に 2本の基準線を設定すると、両基準線が直交 し、かつ、直線状となるように、仮想型紙が作成されるため、ユーザは仮想立体物モ デルの表面に 2本の基準線を設定すると 、う簡便な操作を行うだけで、例えば布の 場合であれば縦糸及び横糸の各々に対応する 2本の基準線が設定された仮想型紙 を得ることができる。
[0092] (8)また、上記構成において、前記基準線設定手段は、ユーザによって指定された 前記仮想立体物モデルの 1の領域内の一点を通り、かつ、前記仮想 3次元空間内に 予め設定された重力方向に沿うように、当該領域の表面に前記基準線を設定するこ とが好ましい。
[0093] この構成によれば、ユーザは仮想立体物モデルの表面の一点を指定すると、当該 一点を通り、かつ、重力方向に沿うように、当該一点を含む領域内に基準線が自動 的に設定されるため、ユーザは一点を指定するという簡便な操作を行うことにより、重 力方向が加味された基準線を有する仮想型紙を得ることができる。 [0094] (9)また、上記構成において、前記基準線設定手段は、ユーザによって指定された 前記仮想立体物モデルの 1の領域内の 2点を結ぶように、当該領域の表面に前記基 準線を設定することが好まし 、。
[0095] この構成によれば、ユーザは、 1の領域に 2点を指定するという簡便な操作を行うこ とにより任意の方向に基準線を設定することができる。
[0096] (10)また、上記構成において、前記基準線設定手段は、前記展開手段により直線 状に展開される一辺の輪郭線に対し、前記仮想立体物モデルの表面において平行 に前記基準線を設定することが好まし 、。
[0097] この構成によれば、ユーザは、領域内の 1点を指定するだけで、直線状に展開され る輪郭線に対して平行な基準線を領域の表面に設定することができる。
[0098] (11)また、上記構成において、前記基準線設定手段は、ユーザによって指定され た前記仮想立体物モデルの 1の領域内の一点を通り、かつ、前記仮想 3次元空間内 に予め設定された重力方向に沿うように、当該領域の表面に前記基準線を設定する 第 1の方式と、ユーザによって指定された前記仮想立体物モデルの 1の領域内の 2 点を結ぶように、当該領域の表面に前記基準線を設定する第 2の方式と、前記展開 手段により直線状に展開される一辺の輪郭線に対し、前記仮想立体物モデルの表 面において平行に前記基準線を設定する第 3の方式とのうちユーザによって指定さ れた方式を用いて前記基準線を設定することが好ま 、。
[0099] この構成によれば、第 1〜第 3の方式を容易に選択することができるため、ユーザへ の利便性を高めることができる。
[0100] (12)また、上記構成にぉ 、て、前記立体物は、伸び特性に異方性を有する材料か らなることが好ましい。
[0101] この構成によれば、伸び特性に異方性を有する材料 (例えば、布、皮)からなる立 体物の仮想型紙に対しても容易に基準線を設定することができ、前記材料の伸び率 が低い方向(例えば材料が布の場合は縦糸方向)に対して基準線を設定することに より、安定性の高い立体物を作成することができる。
産業上の利用可能性
[0102] 本発明によれば、仮想立体物モデルに対して直接基準線を設定することができる ため、衣服の型紙をコンピュータ上で作成する CADに対して有用である。

Claims

請求の範囲
[1] 立体物の型紙を仮想的に作成する仮想型紙作成プログラムであって、
前記立体物の 3次元データを取得し、仮想 3次元空間内に仮想立体物モデルを生 成する立体物モデル生成手段と、
前記仮想立体物モデルの表面に型紙の輪郭線を設定し、前記仮想立体物モデル の表面を複数の領域に区画する輪郭線設定手段と、
ユーザの操作指令に基づいて、前記輪郭線設定手段によって区画された 1の領域 に対し、基準線を設定する基準線設定手段と、
前記基準線が直線状となるように、前記仮想立体物モデルを前記領域毎に 2次元 空間に展開し、仮想型紙を生成する展開手段としてコンピュータを機能させることを 特徴とする仮想型紙作成プログラム。
[2] 前記展開手段は、
各領域にポリゴンメッシュを設定するメッシュ設定手段と、
基準線と交差する複数のポリゴンを初期ポリゴン列として領域に設定されたポリゴン メッシュ力 抽出し、抽出した初期ポリゴン列の基準線が直線となるように前記初期ポ リゴン列を 2次元平面へ展開する第 1のポリゴン列展開手段と、
2次元平面への展開処理が終了したポリゴン列に隣接するポリゴン列を抽出し、抽 出したポリゴン列を 2次元平面へ展開する処理を繰り返し実行することにより各領域を 2次元平面に展開する第 2のポリゴン列展開手段とを備えることを特徴とする請求項 1 記載の仮想型紙作成プログラム。
[3] 前記第 1及び第 2のポリゴン列展開手段は、各ポリゴンの面積が維持されるようにポ リゴン列を 2次元平面に展開することを特徴とする請求項 2記載の仮想型紙作成プロ グラム。
[4] 前記ポリゴンは三角形であり、
前記第 1のポリゴン列展開手段は、前記初期ポリゴンを構成する各頂点 Vを式 (A) を用いて 2次元平面上に展開することを特徴とする請求項 1〜3のいずれかに記載の 仮想型紙作成プログラム。
v =v, +d X D X t (A) 但し
は、頂点 Viを 2次元平面上へ展開したときの座標を示す。
頂点 と基準線とを最短距離で結ぶ基準線上の点 V「を 2次元平面へ展開し たときの座標を示す。
D = I νν 'ベクトル I
dは、頂点 Vを通るポリゴンの 2本の稜線と基準線との交点 P , P とを結ぶベクトル i i j j+ 1
である P P ベクトルに対して頂点 Vが右側にある場合は 1をとり、左側にある場合は j j + 1 i
1をとる。
tは、交点 P , P を 2次元平面へ展開したときの座標 p , p を結ぶベクトルである p i j j + 1 j j + 1 j p ベクトルと大きさが同一、かつ直交するベクトルを示す。
j + 1
[5] 前記第 1のポリゴン列展開手段は、線分 PV 'の長さと線分 p v 'との長さが等しくな るように、前記 V の座標を決定することを特徴とする請求項 4記載の仮想型紙作成プ ログラム。
[6] 前記第 1のポリゴン列展開手段は、線分 p p の方向が、展開済みの線分 p の
j j + 1 j - i j 方向と同一となり、かつ、線分 P P の大きさと線分 p p との大きさが等しくなるよう
j j+ i j j + 1
に p の座標を決定することを特徴とする請求項 4又は 5記載の仮想型紙作成プログ j + 1
ラム。
[7] 前記基準線設定手段は、 1の領域の表面において交差する 2本の基準線を設定し 前記展開手段は、 2本の基準線が直交し、かつ、直線状となるように、当該領域を 2 次元空間に展開することを特徴とする請求項 1〜6のいずれかに記載の仮想型紙作 成プログラム。
[8] 前記基準線設定手段は、ユーザによって指定された前記仮想立体物モデルの 1の 領域内の一点を通り、かつ、前記仮想 3次元空間内に予め設定された重力方向に沿 うように、当該領域の表面に前記基準線を設定することを特徴とする請求項 1〜7の V、ずれかに記載の仮想型紙作成プログラム。
[9] 前記基準線設定手段は、ユーザによって指定された前記仮想立体物モデルの 1の 領域内の 2点を結ぶように、当該領域の表面に前記基準線を設定することを特徴と する請求項 1〜7のいずれかに記載の仮想型紙作成プログラム。
[10] 前記基準線設定手段は、前記展開手段により直線状に展開される一辺の輪郭線 に対し、前記仮想立体物モデルの表面にお!ヽて平行に前記基準線を設定すること を特徴とする請求項 1〜7のいずれかに記載の仮想型紙作成プログラム。
[11] 前記基準線設定手段は、
ユーザによって指定された前記仮想立体物モデルの 1の領域内の一点を通り、力 つ、前記仮想 3次元空間内に予め設定された重力方向に沿うように、当該領域の表 面に前記基準線を設定する第 1の方式と、
ユーザによって指定された前記仮想立体物モデルの 1の領域内の 2点を結ぶように 、当該領域の表面に前記基準線を設定する第 2の方式と、
前記展開手段により直線状に展開される一辺の輪郭線に対し、前記仮想立体物モ デルの表面において平行に前記基準線を設定する第 3の方式とのうちユーザによつ て指定された方式を用いて前記基準線を設定することを特徴とする請求項 1〜7のい ずれかに記載の仮想型紙作成プログラム。
[12] 前記立体物は、伸び特性に異方性を有する材料力 なることを特徴とする請求項 1 、ずれかに記載の仮想型紙作成プログラム。
[13] 立体物の型紙を仮想的に作成する仮想型紙作成装置であって、
前記立体物の 3次元データを取得し、仮想 3次元空間内に仮想立体物モデルを生 成する立体物モデル生成手段と、
前記仮想立体物モデルの表面に型紙の輪郭線を設定し、前記仮想立体物モデル の表面を複数の領域に区画する輪郭線設定手段と、
ユーザの操作指令に基づいて、前記輪郭線設定手段によって区画された 1の領域 に対し、基準線を設定する基準線設定手段と、
前記基準線が直線状となるように、前記立体物モデルを区画された領域毎に 2次 元空間に展開し、仮想型紙を生成する展開手段とを備えることを特徴とする仮想型 紙作成装置。
[14] コンピュータが、立体物の型紙を仮想的に作成する仮想型紙作成方法であって、 前記コンピュータは、立体物モデル生成手段、輪郭線設定手段、基準線設定手段 、及び展開手段を備え、
前記立体物モデル生成手段が、前記立体物の 3次元データを取得し、仮想 3次元 空間内に仮想立体物モデルを生成するステップと、
前記輪郭線設定手段が、前記仮想立体物モデルの表面に型紙の輪郭線を設定し 、前記仮想立体物モデルの表面を複数の領域に区画するステップと、
前記基準線設定手段が、ユーザの操作指令に基づいて、前記輪郭線設定手段に よって区画された 1の領域に対し、基準線を設定するステップと、
前記展開手段が、前記基準線が直線状となるように、前記立体物モデルを区画さ れた領域毎に 2次元空間に展開し、仮想型紙を生成するステップとを備えることを特 徴とする仮想型紙作成方法。
PCT/JP2005/018295 2004-10-12 2005-10-03 仮想型紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法 WO2006040957A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/631,988 US20070244670A1 (en) 2004-10-12 2005-10-03 Virtual Paper Pattern Forming Program, Virtual Paper Pattern Forming Device, and Virtual Paper Pattern Forming Method
EP05788058A EP1811410A1 (en) 2004-10-12 2005-10-03 Virtual paper pattern forming program, virtual paper pattern forming device, and virtual paper pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004297934A JP4558437B2 (ja) 2004-10-12 2004-10-12 仮想型紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法
JP2004-297934 2004-10-12

Publications (1)

Publication Number Publication Date
WO2006040957A1 true WO2006040957A1 (ja) 2006-04-20

Family

ID=36148253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018295 WO2006040957A1 (ja) 2004-10-12 2005-10-03 仮想型紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法

Country Status (6)

Country Link
US (1) US20070244670A1 (ja)
EP (1) EP1811410A1 (ja)
JP (1) JP4558437B2 (ja)
KR (1) KR20070062944A (ja)
CN (1) CN100478963C (ja)
WO (1) WO2006040957A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490716B (zh) * 2006-07-17 2012-07-04 皇家飞利浦电子股份有限公司 用于医学图像分割的与多边形网格的高效用户交互
DE102006046709B4 (de) * 2006-10-02 2015-05-13 Marion Bleeck Verfahren zur Herstellung maßgeschneideter Bekleidungsstücke
JP2009042811A (ja) * 2007-08-06 2009-02-26 Univ Of Tokyo 3次元形状展開装置、3次元形状展開方法、および3次元形状展開用プログラム
US8411090B2 (en) * 2008-08-27 2013-04-02 The Chinese University Of Hong Kong Methods for flattening a 3D surface into a 2D piece
CN102365658B (zh) * 2009-04-08 2015-04-15 株式会社岛精机制作所 着装模拟装置和模拟方法
DE102010060146A1 (de) * 2010-10-25 2012-04-26 Hande Akcayli Verfahren zur Herstellung eines Schnittmusters, Textilie und Herstellung derselben mittels eines Schnittmusters
JP2013003635A (ja) * 2011-06-13 2013-01-07 Sony Corp 情報処理装置、情報処理方法及びプログラム
US9498593B2 (en) * 2013-06-17 2016-11-22 MetaMason, Inc. Customized medical devices and apparel
CN103366402B (zh) * 2013-08-05 2015-12-09 上海趣搭网络科技有限公司 三维虚拟服饰的快速姿态同步方法
CN104778292A (zh) * 2014-01-14 2015-07-15 香港纺织及成衣研发中心有限公司 一种服装功能设计计算机辅助系统及方法
CN104699896B (zh) * 2015-02-28 2017-09-15 广东溢达纺织有限公司 服装纸样自动加缩水系统及方法
CN106066898B (zh) * 2015-04-21 2020-03-06 艺能国际发展有限公司 三维全成型针织衫及产生其三维针织纸样的方法和系统
KR101944339B1 (ko) * 2016-08-03 2019-01-31 이승학 단일 카메라를 이용한 대상물의 3차원 좌표 추출 장치 및 그 방법
WO2018026186A1 (ko) * 2016-08-03 2018-02-08 이승학 단일 카메라를 이용한 대상물의 3차원 좌표 추출 장치 및 그 방법
JP6180675B1 (ja) * 2017-03-16 2017-08-16 株式会社Jsol 縫製解析システムおよびプログラム
CN107451339B (zh) * 2017-07-13 2020-05-29 东华大学 基于三维建模的个性化无松量束裤参数化结构设计方法
WO2022226629A1 (en) * 2021-04-30 2022-11-03 Tri-D Technologies Inc. Method and system for automating 3d to 2d custom fit pattern making

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246219A (ja) * 1995-03-13 1996-09-24 Toyobo Co Ltd 3次元形状モデルからの衣類の型紙作成方法
JP2002245115A (ja) * 2001-02-20 2002-08-30 Toray Ind Inc 3次元構造体の展開状態解析方法および3次元構造体の製造支援装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1419634A (en) * 1919-06-14 1922-06-13 Koewing Paterns Inc Pattern for garments
US7149665B2 (en) * 2000-04-03 2006-12-12 Browzwear International Ltd System and method for simulation of virtual wear articles on virtual models
GB0101371D0 (en) * 2001-01-19 2001-03-07 Virtual Mirrors Ltd Production and visualisation of garments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246219A (ja) * 1995-03-13 1996-09-24 Toyobo Co Ltd 3次元形状モデルからの衣類の型紙作成方法
JP2002245115A (ja) * 2001-02-20 2002-08-30 Toray Ind Inc 3次元構造体の展開状態解析方法および3次元構造体の製造支援装置

Also Published As

Publication number Publication date
JP2006113676A (ja) 2006-04-27
US20070244670A1 (en) 2007-10-18
EP1811410A1 (en) 2007-07-25
JP4558437B2 (ja) 2010-10-06
KR20070062944A (ko) 2007-06-18
CN1969278A (zh) 2007-05-23
CN100478963C (zh) 2009-04-15

Similar Documents

Publication Publication Date Title
WO2006040957A1 (ja) 仮想型紙作成プログラム、仮想型紙作成装置、及び仮想型紙作成方法
EP2817749B1 (en) System and method for simulating realistic clothing
US11145098B2 (en) Method and apparatus of simulating apparel reflecting binding
US11308707B2 (en) Automated grading of clothing patterns of garment
JP2009042811A (ja) 3次元形状展開装置、3次元形状展開方法、および3次元形状展開用プログラム
US11094115B2 (en) Generating clothing patterns of garment using bounding volumes of body parts
CN107958488A (zh) 服装裁片的交互式编辑与缝合方法及装置
US11151786B2 (en) Grading garment that includes supplemental material
KR102332069B1 (ko) 부자재 요소를 포함하는 의상의 그레이딩 방법 및 장치
JP2003511576A (ja) 仕立屋用ダミーの着付けをシミュレートおよび表現する方法および装置
EP4002292A2 (en) Method and apparatus for online fitting
KR20210021929A (ko) 의상 시뮬레이션 방법 및 장치
De Luigi et al. Drapenet: Garment generation and self-supervised draping
JP4132199B2 (ja) 衣服の型紙作成方法及びこの方法を用いた衣服の型紙作成システム
JP5721225B2 (ja) 形状データ生成方法、プログラム及び装置
JP5010603B2 (ja) 着装シミュレーション装置とその方法及びプログラム
JPWO2022102476A5 (ja)
CN114241473A (zh) 估计织物物性参数的方法及装置
CN113313842B (zh) 在服装的纸样块上显示省道的方法及装置
KR102366038B1 (ko) 니트 시뮬레이션 방법 및 니트 시뮬레이션 시스템
JPWO2008016026A1 (ja) 着装シミュレーション装置とその方法及びプログラム
KR20210021890A (ko) 의상 패턴들의 오토 그레이딩 방법 및 장치
JP5010450B2 (ja) 着装シミュレーション装置とシミュレーション方法、シミュレーションプログラム
Hwan Sul Fast cloth collision detection using collision matrix
KR102257182B1 (ko) 의상의 풀니스를 위해 패턴 조각을 가공하는 방법 및 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020067010212

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580019190.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11631988

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005788058

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005788058

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631988

Country of ref document: US