WO2006040150A1 - Satz von getrieben und hybrid-doppelkupplungsgetriebe - Google Patents

Satz von getrieben und hybrid-doppelkupplungsgetriebe Download PDF

Info

Publication number
WO2006040150A1
WO2006040150A1 PCT/EP2005/011003 EP2005011003W WO2006040150A1 WO 2006040150 A1 WO2006040150 A1 WO 2006040150A1 EP 2005011003 W EP2005011003 W EP 2005011003W WO 2006040150 A1 WO2006040150 A1 WO 2006040150A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
clutch
electric motor
transmission
dual
Prior art date
Application number
PCT/EP2005/011003
Other languages
English (en)
French (fr)
Inventor
Jürgen Lang
Heinrich Straub
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to JP2007536088A priority Critical patent/JP4426624B2/ja
Publication of WO2006040150A1 publication Critical patent/WO2006040150A1/de
Priority to US11/787,118 priority patent/US7798030B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/428Double clutch arrangements; Dual clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H2003/0931Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts each countershaft having an output gear meshing with a single common gear on the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19233Plurality of counter shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19284Meshing assisters
    • Y10T74/19288Double clutch and interposed transmission

Definitions

  • the invention relates to a set of transmissions and a hybrid dual-clutch transmission.
  • the object of the invention is to provide a particularly compact dual-clutch transmission, which can be converted with little structural modification effort to a hybrid dual-clutch transmission.
  • the simple dual-clutch transmission forms the basic transmission for the hybrid dual-clutch transmission. There is thus a Baukasten ⁇ system for transmission available.
  • the dual clutch transmissions can be installed both with and without hybrid addition especially for front-wheel drive. So is a gear arrangement for front transverse drives and front longitudinal drives advantageous. In this way, vehicles with front drive can transmit only a small amount of torque anyway because of the steering, which is usually arranged at the front, so that the dual clutches which are currently not yet designed with a high torque transmission capacity can be advantageously used here.
  • wet multi-plate clutches are used in a particularly advantageous manner as a double clutch, as are known, for example, from DE 19821164 A1.
  • These wet multi-plate clutches can be provided in a particularly advantageous manner with a ⁇ l ⁇ cooler.
  • this oil cooler cools mainly the thermally highly loaded double clutch.
  • the oil cooler which is designed for a strong cooling power for starting, primarily cools the electric motor.
  • the cooling oil for the Lamellenkupp ⁇ ment and the electric motor can be integrated in a particularly advantageous manner in the oil circuit of the basic transmission.
  • the electric motor and a transmission stage which feeds the power from the electric motor into the basic transmission or resumes in the generator function of the electric motor during braking operation, can be dimensioned such that the electric motor does not start or start the combustion engine can start.
  • this requires an additional electric starter motor.
  • a starter motor is sophisticated inexpensive Technology and it can be dispensed in a particularly advantageous manner to expensive power electronics for transmitting high starting currents for the hybrid electric motor for starting the Verbren ⁇ tion motor.
  • the electric motor for the hybrid function, the power electronics and the gear ratio, in particular not on the cold start - especially the Kalt ⁇ start a diesel engine - are designed to request a high torque at low battery power.
  • This cold start design is namely not required for normal driving and deteriorates the efficiency and other functionalities - such as start / stop functionality - the hybrid dual-clutch transmission.
  • the hybrid dual-clutch transmission can therefore be used in a particularly advantageous manner in an unchanged design both the diesel engine and the gasoline engine.
  • the hybrid dual-clutch transmission according to the invention is in a particularly advantageous manner without installation space gegen ⁇ over the dual-clutch transmission without hybrid function executable bar, so that a uniform space utilization of Motor ⁇ space is possible.
  • the hybrid dual-clutch transmission By means of the hybrid dual-clutch transmission according to the invention, all customer-relevant requirements can be realized.
  • the purely electromotive drive is possible without Verbren ⁇ motor drive motor.
  • the boost mode is possible, in which an additional torque is fed from the battery-operated electric motor into the power flow coming from the internal combustion engine.
  • the driver has enough potential in the boost mode for overcurrent operations or fast startup operations.
  • Another advantage of the invention is the parallel Anord ⁇ tion of countershafts.
  • Opposite coaxial Getriebekonzep ⁇ th in which the two countershafts as a hollow shaft and Internal shaft are executed, the transmission can be made axially shorter. Furthermore, the demands on the Wälzla ⁇ ments are lower.
  • the transmission stage which feeds the torque from the electric motor into the dual-clutch basic transmission, can be designed in a particularly advantageous manner as the axially foremost or rearmost wheel set.
  • the torque introduced by the electric motor or via the transmission stage is supported near the bearings of the transmission shafts, which are located on the shaft ends and rotatably receive the transmission shafts in the transmission housing.
  • One of the bearings can be arranged in a particularly advantageous manner axially between the wheelsets of the basic transmission and the double clutch in an intermediate partition wall.
  • braking energy can be fed into an energy store by means of the electric motor in the function of a generator.
  • This feed is also called recuperation.
  • the energy store can in particular be a battery, a supercapacitor or a fuel cell.
  • Showing: 1 is a dual-clutch transmission without hybrid function
  • FIG. 2 shows a double-clutch transmission with hybrid function, which for the most part is identical to those of the double-clutch transmission of FIG.
  • FIG. 3 shows a dual-clutch transmission with a hybrid function, which for the most part has identical parts to the dual-clutch transmission according to FIG. 1 and FIG. 2, wherein an electric motor can be coupled exclusively by means of a clutch into the one partial transmission of the dual-clutch transmission,
  • FIG. 4 shows a dual-clutch transmission with a hybrid function, which for the most part has identical parts to the dual-clutch transmission according to FIG. 1, FIG. 2 and FIG. 3, an electric motor being firmly integrated into a partial transmission.
  • Fig. 1 shows a dual-clutch transmission without hybrid function. This dual-clutch transmission is also called a basic transmission.
  • An input side coupling half 7 of a dual clutch 10 is connected to an internal combustion engine, not shown. This input-side coupling half 7 is alternatively coupled with in each case a further coupling half 8 or 9 of two friction clutches of the double clutch 10.
  • an output side coupling half 9 is rotatably connected to a hollow shaft 12.
  • the other output side coupling half 8 is rotatably connected to an inner shaft 11, which extends coaxially through the second output side coupling half 9 and the hollow shaft 12 therethrough and is received on the other end in the gear housing roller bearings.
  • the inner shaft 11 extends in half through the hollow shaft 12 and projects in half beyond the hollow shaft 12.
  • pinions 18, 26 Immediately behind the two lying in a plane drive pinions 18, 26 are three gears in a gear wheel plane, of which a large gear is designed as a fixed wheel 15 which meshes with two loose wheels 16, 25, each arranged on one of the two countershafts 23, 24 are.
  • the two idler gears 16, 25 are each rotatably coupled by means of a speed change clutch 17, 22 with the respective countershaft 23, 24.
  • Axially behind these two gear change clutches 17, 22 is another gear level having the said reverse gear R and a second forward gear 2.
  • this gear level are gears of all three countershafts 23, 24, 27 and the hollow shaft 12.
  • These Hollow shaft 12 ends in this gear level.
  • the hollow shaft “ 12 is rotatably connected to a fixed gear 28 which meshes with a loose wheel 29 from the lower countershaft 24. If the lower gear change clutch 22 axially displaced to the rear, so it provides a rotationally fixed connection between the countershaft 24 and the idler gear 29 ago, so that the drive power of the internal combustion engine via the friction clutch K2, the hollow shaft 12, the fixed gear 28, the non-rotatably coupled via the gear change clutch 22
  • Losrad 29 the countershaft 24, the drive pinion 26, the drive gear 19 and the front differential 20 is transmitted to the front axle 21 as soon as the friction clutch K2 is engaged.
  • the one gear is a loose wheel of the upper countershaft 23 and the other gear is a fixed gear 30 of the reverse gear R associated countershaft 27.
  • This countershaft 27 carries with a AxialZwischenraum spaced behind the fixed gear 30 another fixed wheel 31, which with a fixed wheel 32 on the Inner shaft 11 meshes.
  • 32 is also the idler gear 33 which is rotatably mounted on the lower countershaft 24 and by means of a gear change clutch 34 with the countershaft 24 rotatably coupled. If this rotationally fixed connection between the idler gear 33 and the countershaft 24 is established, the first forward gear 1 is engaged. In the first forward gear 1 is a drive power from the engine via the friction clutch Kl, the inner shaft 11, the fixed wheel 32, the non-rotatably coupled via the gearshift clutch 34
  • Losrad 33 the countershaft 24, the drive pinion 26, the drive gear 19 and the Vorderachsdifferential 20 is transmitted to the front axle 21 as soon as the friction clutch Kl is engaged.
  • Losrad 35, the countershaft 23, the drive pinion 18, the drive gear 19 and the Vorderachsdifferential 20th is transmitted to the front axle 21, as soon as the friction clutch Kl is engaged.
  • a third forward gear 3 associated gear level comprises two intermeshing gears, one of which as a fixed gear 36 in the exit region 37 of the inner shaft 11 is rotatably connected to the inner shaft 11, whereas the other as idler gear 38 via the gear change clutch 34 rotatably coupled to the countershaft 24. If this rotationally fixed connection is established, the third forward gear 3 is engaged, so that a drive power from the internal combustion engine via the friction clutch K1, the inner shaft 11, the fixed gear 36, which is non-rotatably coupled via the gear change clutch 34
  • the axially rearmost gear level comprises two gears, one of which is designed as a fixed wheel 42 connected to the inner shaft 11 and the other than idler gear 41 which can be coupled to the countershaft 23 via a separate gear change clutch 40. If this idler gear 41 is coupled to the countershaft 23, the fifth forward gear 5 is engaged, so that a drive power from the internal combustion engine via the friction clutch Kl, the inner shaft 11, the fixed gear 42, which rotatably coupled via the gear change clutch 40
  • Losrad 41, the countershaft 23, the drive pinion 18, the drive gear 19 and the Vorderachsdifferential 20 is transmitted to the front axle 21 as soon as the friction clutch Kl is engaged.
  • the inner shaft 11 is on the one hand in a manner not shown within the hollow shaft 12 roller bearings.
  • the inner shaft 11 at its rear end axially directly adjacent to the gear 42 of the gear stage of the electric motor in the gear housing 99 roller bearings.
  • the hollow shaft 12 is in addition to said rolling bearing against the inner shaft 11 also roller-mounted in a partition 98.
  • This partition wall 98 is immovably connected to the transmission housing 99 and arranged axially between the double clutch 10 and the wheelsets of the main transmission.
  • the partition wall 98 connects to the coupling bell in the direction pointing axially toward the internal combustion engine.
  • the input-side coupling half 7 of the double clutch is immovably connected to the said internal combustion engine and has on the outer circumference of a large sprocket 97 which engages in a smaller diameter by the essential gear 96 which is connected to a starter motor M.
  • FIG. 2 shows a dual-clutch transmission with a hybrid function, which additionally has an electric motor unit 100.
  • the reverse gear associated with the countershaft 27 of FIG. 1 and the upper countershaft 23 are not shown in the drawing for clarity.
  • the basic transmission is thus identical to FIG. 1 configured.
  • the identical parts are therefore also provided with the same reference numerals, as in Fig. 1st
  • the electric motor unit 100 comprises an electric motor 112, two separate clutches 102, 103, two countershafts 104, 105 and two fixed wheels 106, 107, these components being arranged coaxially with one another.
  • the electric motor 112 consists of the housing-fixed stator windings 101 and the rotating armature 113th
  • the electric motor unit 100 extends axially from the gear level of the fourth forward gear 4 and the sixth forward gear 6 to the axially rearmost gear level, which is associated with the fifth forward gear 5.
  • the axially outer boundaries of the electric motor unit 100 are formed by the two fixed wheels 106, 107.
  • the front fixed gear 106 meshes with the front fixed gear 15 on the hollow shaft 12.
  • the rear fixed gear 107 meshes with the rearmost fixed gear 42 on the inner shaft eleventh
  • the mutually facing ends of the two countershafts 104, 105 are rotatably connected to one of the two coupling halves 108, 109 respectively.
  • the two with this two coupling halves 108, 109 frictionally coupled second coupling halves 110, 111 are rotatably connected to each other and form the rotating armature 113 of the electric motor 112th Axially between the two countershafts 104, 105 is a stiffener 115 of the armature 113th
  • the six forward gears 1 to 6 and the reverse gear R are configured identically to the first embodiment shown in FIG. 1 and are connected to the two clutches K1, K2 or the four speed change clutches 22, 34, 17, 40 identical.
  • Dual clutch transmission associated with a clutch 102 and 103 of the electric motor unit 100.
  • FIG. 3 shows a dual-clutch transmission with a hybrid function, the electric motor unit 100 of which, in contrast to the dual-clutch transmission according to FIG. 2, has exclusively a single clutch 102 for the electric motor unit 100.
  • the reverse gear associated with the countershaft 27 of FIG. 1 and the upper countershaft 23 are not shown in the drawing for clarity.
  • the basic transmission is thus identical to FIG. 1 configured.
  • the identical parts are therefore also provided with the same reference numerals as in FIG. 1.
  • the same reference numerals have been assigned to the second embodiment of FIG. 2 in the same way.
  • a rotating armature 113 of an electric motor 112 can be coupled to a fixed gear 107, which is non-rotatably connected to a countershaft 104.
  • This fixed gear 107 meshes with a rearmost fixed gear 42 on an inner shaft 11.
  • a torque from the electric motor 122 can be fed directly into the one partial transmission.
  • a torque can be fed directly only from the one partial transmission into the electric motor 122 used as a generator.
  • the electric motor can be decoupled by means of the clutch 102 to avoid a deterioration of the efficiency in certain driving situations drag torque.
  • FIG. 4 shows a dual-clutch transmission with a hybrid function, the electric motor unit 100 of which, unlike the dual-clutch transmission according to FIG. 3, has no clutch for the electric motor unit 100.
  • the reverse gear associated countershaft 27 of FIG. 1 and the upper Countershaft 23 are not shown in the drawing for clarity.
  • the basic transmission is thus identical to FIG. 1 configured.
  • the identical parts are therefore also provided with the same reference numerals as in FIG. 1.
  • the same reference numerals have been assigned in principle to the second and third embodiment FIGS. 2 and 3.
  • a rotating armature 113 of an electric motor 112 is permanently connected in a rotationally fixed manner to a fixed wheel 107.
  • the fixed gear 107 is rotatably connected to a countershaft 104.
  • This fixed gear 107 meshes with a rearmost fixed gear 42 on an inner shaft 11.
  • a torque from the electric motor 122 can be fed directly into the one partial transmission.
  • a torque can be fed directly only from the one partial transmission into the electric motor 122 used as a generator.
  • a friction-optimized electric motor 112 application which can also be alternatively or additionally equipped with a freewheel.
  • Electric motor unit 100 - ie without internal combustion engine operation - to start It is also possible to drive exclusively with the electric motor unit 100-ie without internal combustion engine operation. Thus, a start / stop without time delay is possible. This means that the warm engine can be stopped automatically at standstill of the motor vehicle, for example, at the red light, where the vehicle is operated immediately by means of electric motor unit 100 in the subsequent power demand by the driver is and only when driving the warm engine with or without the aid of the starter motor is started.
  • the additional off-axis starter motor M whose transmission ratio ensures a safe start.
  • the electric motor 112 in each of the straight forward gears 2, 4 and 6 can be indirectly incorporated into the power flow.
  • the clutch 103 of the electric motor 112 is disengaged in the embodiment of FIG. 2 so as not to burden the two switching elements 17 and 22 with the drag torque of the electric motor 112.
  • the electric motor can engage in circuit smoothing by feeding or picking up power, depending on whether it is being upshifted or downshifted.
  • the switching elements can be designed both as synchronizing rings or as purely positive locking jaws.
  • the friction cone can be relieved with the aforementioned methods and thus a long service life of
  • the torsional strength between the hollow shaft 12 and the coupling half 9 or between the inner shaft 11 and the coupling half 8 shown in the embodiment can also be realized by means of a Torsionsschwinungsdämpfers. This allows for a limited rotational mobility.
  • the clutches 102, 103 for the electric motor 112 may include such a torsion damper.
  • the Vorderachsdifferential may have as a drive gear and a tapered gear, as is known from front-longitudinally driven vehicles. Likewise, the Vorderachsdifferential may have a spur gear, as is known from front-transverse-drive vehicles.
  • the two lying on the forward gears associated countershaft drive pinion can have both the same and different diameters.
  • the starter motor for starting the internal combustion engine and the electric motor for the hybrid drive is dimensioned such that the internal combustion engine can be started especially with both electric motors in the cold state.
  • This embodiment of the invention enables a small and lightweight dimensioning of the starter motor with cost advantages.
  • the clutches 102, 103 of the electric motor in FIGS. 2 to 4 are provided with clutch disks 108, 109 only by way of example.
  • the couplings can, for example be designed as a dry clutch, as a dry or wet multi-plate clutch, similar to a synchronizer, as a positive jaw clutch or magnetic particle clutch.
  • the arrangement of the hybrid electric motor parallel to the countershafts and main shafts - i. Inner shaft and hollow shaft - the hybrid dual-clutch transmission is particularly favorable in terms of efficiency and allows a compact design. However, however, other arrangements are conceivable, such as a vertical arrangement with bevel gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Die Erfindung betrifft ein Baukastensystem für Doppelkupplungsgetriebe die alternative mit oder ohne Hybridfunktion ausgestattet werden. Insbesondere betrifft die Erfindung frontgetriebene Fahrzeuge. Der Elektromotor (112) für die Hybridfunktion ist parallel zu den zwei Vorgelegewellen (23, 24) beabstandet, und die Leistung wird vom Anker (113) über zwei Kupplungen (102, 103) und zwei Übersetzungsstufen (94, 93) alternative in die Teilgetrieben eingespeist.

Description

Satz von Getrieben und Hybrid-Doppelkupplungsgetriebe
Die Erfindung betrifft einen Satz von Getrieben und ein Hybrid-Doppelkupplungsgetriebe.
Aus der DE 198 59 458 ist bereits ein Doppelkupplungsgetriebe bekannt, bei welchem ein Elektromotor parallel versetzt zu einer Hauptwelle des Doppelkupplungsgetriebes angeordnet ist.
Aufgabe der Erfindung ist es, ein besonders kompakt bauendes Doppelkupplungsgetriebe zu schaffen, welches mit geringem baulichen Änderungsaufwand zu einem Hybrid- Doppelkupplungsgetriebe wandelbar ist.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen von Pa¬ tentanspruch 1 gelöst.
Gemäß einem Vorteil der Erfindung ist es möglich, auf der selben Fertigungsstrasse einfache Doppelkupplungsgetriebe und Hybrid-Doppelkupplungsgetriebe zu fertigen. Dabei bildet das einfache Doppelkupplungsgetriebe das Grundgetriebe für das Hybrid-Doppelkupplungsgetriebe. Es ist somit ein Baukasten¬ system für Getriebe vorhanden.
Die Doppelkupplungsgetriebe können sowohl mit als auch ohne Hybridzusatz insbesondere für Fronttriebler verbaut sein. So ist eine Getriebeanordnung für Front-quer-Antriebe und Front- längs-Antriebe vorteilhaft. So können Fahrzeuge mit Frontan¬ trieb aufgrund der üblicherweise vorne angeordneten Lenkung ohnehin nur ein geringes Drehmoment übertragen, so dass die derzeitig noch nicht mit einer hohen DrehmomentÜbertragungs¬ kapazität ausgeführten Doppelkupplungen hier vorteilhaft ein¬ gesetzt werden können.
Bei dem erfindungsgemäßen Doppelkupplungsgetriebe finden in besonders vorteilhafter Weise als Doppelkupplung nasse Lamel¬ lenkupplungen Anwendung, wie diese beispielsweise aus der DE 19821164 Al bekannt sind. Diese nassen Lamellenkupplungen können dabei in besonders vorteilhafter Weise mit einem Öl¬ kühler versehen sein. Dieser Ölkühler kühlt während Anfahr¬ vorgängen hauptsächlich die thermisch hoch belastete Doppel- kupplung. Nach den Anfahrvorgängen kühlt der auf eine starke Kühlleistung für das Anfahren ausgelegte Ölkühler vorrangig den Elektromotor. Dabei kann das Kühlöl für die Lamellenkupp¬ lung und den Elektromotor in besonders vorteilhafter Weise in den Ölkreislauf des Grundgetriebes integriert sein. Somit kann in ein Wärmemanagement des Grundgetriebes die Abwärme des Elektromotors bzw. die Reibleistung aus den Anfahrvorgän¬ gen eingebunden sein, so dass das Grundgetriebe sehr frühzei¬ tig die Betriebstemperatur erreicht, so dass das demzufolge hinsichtlich der Viskosität frühzeitig abnehmende - d.h. dünnflüssig werdende - Kühlöl frühzeitig einen hohen Wir¬ kungsgrad des Hybrid-Doppelkupplungsgetriebes sicherstellt.
Beim Hybrid-Doppelkupplungsgetriebe kann der Elektromotor und eine Übersetzungsstufe, welche die Leistung vom Elektro¬ motor in das Grundgetriebe einspeist bzw. in Generator¬ funktion des Elektromotors beim Bremsbetrieb wieder auf¬ nimmt derart dimensioniert sein, dass der Elektromotor den Verbren¬ nungsmotor nicht starten bzw. anlassen kann. Dies macht zwar einen zusätzlichen elektrischen Anlassermotor notwendig. Ein solcher Anlassermotor ist jedoch ausgereifte kostengünstige Technologie und es kann in besonders vorteilhafter Weise auf eine teure Leistungselektronik zur Übertragung hoher Start- ströme für den Hybrid-Elektromotor zum Starten des Verbren¬ nungsmotors verzichtet werden. Damit muss der Elektromotor für die Hybridfunktion, dessen Leistungselektronik und die Übersetzungsstufe insbesondere nicht auf den Kaltstart - insbesondere den Kalt¬ start eines Dieselmotors - ausgelegt werden, die ein hohes Drehmoment bei niedriger Batterieleistung anfordert. Diese Kaltstartauslegung ist nämlich für den normalen Fahrbetrieb nicht erforderlich und verschlechtert den Wirkungsgrad und sonstige Funktionalitäten - beispielsweise Start/Stop- Funktionalität - des Hybrid-Doppelkupplungsgetriebes. Das Hybrid-Doppelkupplungsgetriebe kann demzufolge in besonders vorteilhafter Weise in unveränderter Bauweise sowohl beim Dieselmotor als auch beim Ottomotor Anwendung finden.
Das erfindungsgemäße Hybrid-Doppelkupplungsgetriebe ist in besonders vorteilhafter Weise ohne Bauraumverlängerung gegen¬ über dem Doppelkupplungsgetriebe ohne Hybridfunktion ausführ¬ bar, so dass eine einheitliches Bauraumausnutzung des Motor¬ raums möglich ist.
Mittels des erfindungsgemäßen Hybrid-Doppelkupplungsgetriebes können sämtliche kundenrelevanten Anforderungen verwirklicht werden. So ist die rein elektromotorische Fahrt ohne verbren¬ nungsmotorischen Antrieb möglich. Ferner ist der Boost- Betrieb möglich, in dem ein zusätzliches Drehmoment vom bat¬ teriebetriebenen Elektromotor in den vom Verbrennungsmotor kommenden Leistungsfluss eingespeist wird. Somit steht dem Fahrer im Boost-Betrieb für ÜberhohlVorgänge oder schnelle Anfahrvorgänge ausreichend Potential zur Verfügung.
Ein weiterer Vorteil der Erfindung ist die parallele Anord¬ nung der Vorgelegewellen. Gegenüber koaxialen Getriebekonzep¬ ten, bei welchen die beiden Vorgelgewellen als Hohlwelle und Innenwelle ausgeführt sind, kann das Getriebe axial kürzer ausgeführt sein. Ferner sind die Anforderungen an die Wälzla¬ gerungen geringer.
Die Übersetzungsstufe, welche das Drehmoment vom Elektromotor in das Doppelkupplungsgrundgetriebe einspeist, kann in beson¬ ders vorteilhafter Weise als axial vorderster oder hinterster Radsatz ausgeführt sein. Durch diese Anordnung an einem der Getriebeenden wird das vom Elektromotor bzw. über die Über¬ setzungstufe eingeleitete Drehmoment nahe den Lagerungen der Getriebewellen abgestützt, die sich an den Wellenenden befin¬ den und die Getriebewellen im Getriebegehäuse rotierbar auf¬ nehmen. Eine der Lagerungen kann in besonders vorteilhafter Weise axial zwischen den Radsätzen des Grundgetriebes und der Doppelkupplung in einer dazwischen liegenden Trennwand angeordnet sein.
In besonders vorteilhafter Weise ist mittels des Elektromo¬ tors in der Funktion eines Generators Bremsenergie in einen Energiespeicher einspeisbar. Diese Einspeisung wird auch als Rekuperation bezeichnet. Der Energiespeicher kann insbesonde¬ re eine Batterie, ein Superkondensator oder eine Brennstoff¬ zelle sein.
Weitere Vorteile der Erfindung gehen aus den weiteren Patent¬ ansprüchen, der Beschreibung und der Zeichnung vor.
Die Erfindung ist nachfolgend anhand von Zeichnungen des Grundgetriebes ohne Hybridfunktion und drei aufeinander fol¬ genden Ausführungsbeispielen mit Hybridfunktion dargestellt.
Dabei zeigen: Fig. 1 ein Doppelkupplungsgetriebe ohne Hybridfunktion,
Fig. 2 ein Doppelkupplungsgetriebe mit Hybridfunktion, welches größtenteils Gleichteile zum Dσppelkupplungsgetriebe gemäß Fig. 1 aufweist, wobei ein Elektromotor über zwei separate Kupplungen alternativ oder gleichzeitig in den Leistungsfluss beider Teilgetriebe des Doppelkupplungsgetriebes einkuppelbar ist,
Fig. 3 ein Doppelkupplungsgetriebe mit Hybridfunktion, welches größtenteils Gleichteile zum Doppelkupplungsgetriebe gemäß Fig. 1 und Fig. 2 aufweist, wobei ein Elektromotor mittels einer Kupplung ausschließlich in das eine Teilgetriebe des Doppelkupplungsgetriebes einkuppelbar ist,
Fig. 4 ein Doppelkupplungsgetriebe mit Hybridfunktion, welches größtenteils Gleichteile zum Doppelkupplungsgetriebe gemäß Fig. 1, Fig. 2 und Fig. 3 aufweist, wobei ein Elektromotor fest in ein Teilgetriebe eingebunden ist.
Fig. 1 zeigt ein Doppelkupplungsgetriebe ohne Hybridfunktion. Dieses Doppelkupplungsgetriebe wird auch als Grundgetriebe bezeichnet.
Eine eingangsseitige Kupplungshälfte 7 einer Doppelkupplung 10 ist mit einem nicht näher dargestellten Verbrennungsmotor verbunden. Diese eingangsseitige Kupplungshälfte 7 ist alternativ mit jeweils einer weiteren Kupplungshälfte 8 bzw. 9 von zwei Reibungskupplungen der Doppelkupplung 10 koppelbar.
Die axial vom Verbrennungsmotor weiter weg stehende eine ausgangsseitige Kupplungshälfte 9 ist drehfest mit einer Hohlwelle 12 verbunden. Die andere ausgangsseitige Kupplungshälfte 8 ist drehfest mit einer Innenwelle 11 verbunden, welche sich koaxial durch die zweite ausgangsseitige Kupplungshälfte 9 und die Hohlwelle 12 hindurch erstreckt und am anderen Ende in dem Getriebegehäuse wälzgelagert aufgenommen wird. Dabei erstreckt sich die Innenwelle 11 hälftig durch die Hohlwelle 12 und ragt hälftig über die Hohlwelle 12 hinaus.
Parallel versetzt zu der Hohlwelle 12 und der Innenwelle 11 liegen drei Vorgelegewellen 27, 23, 24, von denen eine Vorgelegewelle 27 dem Rückwärtsgang R zugeordnet ist. Die beiden den sechs Vorwärtsgängen 1, 2, 3, 4, 5, 6 zugeordneten Vorgelegewellen 23, 24 weisen an deren vorderstem Ende jeweils ein Antriebsritzel 18, 26 für ein Vorderachsdifferential 20 auf. Dabei kämmen die beiden Antriebsritzel 18, 26 mit einem Antriebsrad 19 des Vorderachsdifferentials 20.
Unmittelbar hinter den beiden in einer Ebene liegenden Antriebsritzeln 18, 26 liegen drei Zahnräder in einer Zahnradebene, von denen ein großen Zahnrad als Festrad 15 ausgeführt ist, welches mit zwei Losrädern 16, 25 kämmt, die jeweils auf einer der beiden Vorgelegewellen 23, 24 angeordnet sind. Die beiden Losräder 16, 25 sind jeweils mittels einer Gangwechselkupplung 17, 22 drehfest mit der jeweiligen Vorgelegewelle 23, 24 koppelbar.
Wird die in Fig. 1 oben dargestellte Gangwechselkupplung 17 nach vorne verschoben, so wird die obere Vorgelegewelle 23 drehfest mit dem oberen Losrad 16 verbunden, so dass der sechste - d.h. höchste - Vorwärtsgang 6 eingelegt ist. Dabei ist die Reibungskupplung K2 eingerückt und die Reibungskupplung Kl ausgerückt. Die Antriebsleistung wird somit vom Verbrennungsmotor über die Reibungskupplung K2, die Hohlwelle 12, das Festrad 15, das über die Gangwechselkupplung 17 drehfest gekoppelte
Losrad 16, das Antriebsritzel 18, das Antriebszahnrad 19 und das Vorderachsdifferential 20 auf die Vorderachse 21 übertragen.
Wird hingegen die in Fig. 1 unten dargestellte Gangwechselkupplung 22 nach vorne verschoben, so wird die untere Vorgelegewelle 24 drehfest mit dem unteren Losrad 25 verbunden, so dass der vierte Vorwärtsgang 4 eingelegt ist. Dabei ist ebenfalls die Reibungskupplung K2 eingerückt und die Reibungskupplung Kl ausgerückt. Die Antriebsleistung wird somit vom Verbrennungsmotor über die Reibungskupplung K2, die Hohlwelle 12, das Festrad 15, das über die Gangwechselkupplung 22 drehfest gekoppelte
Losrad 25, das Antriebsritzel 26, das Antriebszahnrad 19 und das Vorderachsdifferential 20 auf die Vorderachse 21 übertragen.
Axial hinter diesen beiden Gangwechselkupplungen 17, 22 liegt eine weitere Zahnradebene, die den besagten Rückwärtsgang R und einen zweiten Vorwärtsgang 2 aufweist. In dieser Zahnradebene befinden sich Zahnräder von sämtlichen drei Vorgelegewellen 23, 24, 27 und der Hohlwelle 12. Diese Hohlwelle 12 endet in dieser Zahnradebene. An diesem Ende ist die Hohlwelle "12 drehfest mit einem Festrad 28 verbunden, welches mit einem Losrad 29 aus der unteren Vorgelegewelle 24 kämmt. Wird die untere Gangwechselkupplung 22 axial nach hinten verschoben, so stellt sie eine drehfeste Verbindung zwischen der Vorgelgewelle 24 und dem Losrad 29 her, so dass die Antriebsleistung des Verbrennungsmotors über die Reibungskupplung K2, die Hohlwelle 12, das Festrad 28, das über die Gangwechselkupplung 22 drehfest gekoppelte
Losrad 29, die Vorgelegewelle 24, das Antriebsritzel 26, das Antriebszahnrad 19 und das Vorderachsdifferential 20 auf die Vorderachse 21 übertragen wird, sobald die Reibungskupplung K2 eingerückt ist.
Zwei in dieser Zahnradebene liegende Zahnräder sind dem Rückwärtsgang R zugeordnet und kämmen miteinander und mit keinem der übrigen Zahnräder der Zahnradebene.
Das eine Zahnrad ist ein Losrad der oberen Vorgelegewelle 23 und das andere Zahnrad ist ein Festrad 30 der dem Rückwärtsgang R zugeordneten Vorgelegewelle 27. Diese Vorgelegewelle 27 trägt mit einem AxialZwischenraum beabstandet hinter dem Festrad 30 ein weiteres Festrad 31, welches mit einem Festrad 32 auf der Innenwelle 11 kämmt. In der Zahnradebene dieser beiden Festräder 31, 32 liegt auch das Losrad 33, welches drehbar auf der unteren Vorgelegewelle 24 angeordnet ist und mittels einer Gangwechselkupplung 34 mit der Vorgelegewelle 24 drehfest koppelbar ist. Wird diese drehfeste Verbindung zwischen dem Losrad 33 und der Vorgelegewelle 24 hergestellt, so ist der erste Vorwärtsgang 1 eingelegt. Im ersten Vorwärtsgang 1 wird eine Antriebsleistung vom Verbrennungsmotor über die Reibungskupplung Kl, die Innenwelle 11, das Festrad 32, das über die Gangwechselkupplung 34 drehfest gekoppelte
Losrad 33, die Vorgelegewelle 24, das Antriebsritzel 26, das Antriebszahnrad 19 und das Vorderachsdifferential 20 auf die Vorderachse 21 übertragen wird, sobald die Reibungskupplung Kl eingerückt ist.
Wird hingegen die Gangwechselkupplung 17 nach hinten verschoben, so dass eine drehfeste Verbindung zwischen dem Losrad 35 und der oberen Vorgelegewelle 23 hergestellt ist, so ist der Rückwärtsgang R eingelegt und eine Antriebsleistung wird vom Verbrennungsmotor über die Reibungskupplung Kl, die Innenwelle 11, das Festrad 32, das mit letzterem kämmende Festrad 31, die Vorgelegewelle 27, das Festrad 30, das über die Gangwechselkupplung 17 drehfest gekoppelte
Losrad 35, die Vorgelegewelle 23, das Antriebsritzel 18, das Antriebszahnrad 19 und das Vorderachsdifferential 20 auf die Vorderachse 21 übertragen wird, sobald die Reibungskupplung Kl eingerückt ist.
In dem besagten AxialZwischenraum liegt eine dem dritten Vorwärtsgang 3 zugeordnete Zahnradebene. Diese Zahnradebene umfasst zwei miteinander kämmende Zahnräder, von denen eines als Festrad 36 im Austrittsbereich 37 der Innenwelle 11 drehfest mit der Innenwelle 11 verbunden ist, wohingegen das andere als Losrad 38 über die Gangwechselkupplung 34 drehfest mit der Vorgelegewelle 24 koppelbar ist. Wird diese drehfeste Verbindung hergestellt, so ist der dritte Vorwärtsgang 3 eingelegt, so dass eine AntriebsIeistung vom Verbrennungsmotor über die Reibungskupplung Kl, die Innenwelle 11, das Festrad 36, das über die Gangwechselkupplung 34 drehfest gekoppelte
Losrad 38, die Vorgelegewelle 24, das Antriebsritzel 26, das Antriebszahnrad 19 und das Vorderachsdifferential 20 auf die Vorderachse 21 übertragen wird, sobald die Reibungskupplung Kl eingerückt ist.
Die axial hinterste Zahnradebene umfasst zwei Zahnräder, von denen das eine als mit der Innenwelle 11 verbundenes Festrad 42 und das andere als mit der Vorgelegewelle 23 über eine separate Gangwechselkupplung 40 koppelbares Losrad 41 ausgeführt ist. Wird dieses Losrad 41 mit der Vorgelegewelle 23 gekoppelt, so ist der fünfte Vorwärtsgang 5 eingelegt, so dass eine Antriebsleistung vom Verbrennungsmotor über die Reibungskupplung Kl, die Innenwelle 11, das Festrad 42, das über die Gangwechselkupplung 40 drehfest gekoppelte
Losrad 41, die Vorgelegewelle 23, das Antriebsritzel 18, das Antriebszahnrad 19 und das Vorderachsdifferential 20 auf die Vorderachse 21 übertragen wird, sobald die Reibungskupplung Kl eingerückt ist.
Die Innenwelle 11 ist einerseits in nicht näher dargestellter Weise innerhalb der Hohlwelle 12 wälzgelagert. Andererseits ist die Innenwelle 11 an deren hinterem Ende axial unmittelbar benachbart zum Zahnrad 42 der Übersetzungsstufe des Elektromotors in dem Getriebegehäuse 99 wälzgelagert.
Die Hohlwelle 12 ist neben der besagten Wälzlagerung gegenüber der Innenwelle 11 ferner in einer Trennwand 98 wälzgelagert. Diese Trennwand 98 ist bewegungsfest mit dem Getriebegehäuse 99 verbunden und axial zwischen der Doppelkupplung 10 und den Radsätzen des Grundgetriebes angeordnet. Der Trennwand 98 schließt sich in die axial auf den Verbrennungsmotor weisende Richtung die Kupplungsglocke an.
Die eingangsseitige Kupplungshälfte 7 der Doppelkupplung ist bewegungsfest mit dem besagten Verbrennungsmotor verbunden und weist an deren Außenumfang einen großen Zahnkranz 97 auf, der in einem vom Durchmesser wesentliche kleineres Zahnrad 96 eingreift, das mit einem Anlassermotor M verbunden ist.
Fig. 2 zeigt ein Doppelkupplungsgetriebe mit Hybridfunktion, welches zusätzlich eine Elektromotoreneinheit 100 aufweist. Die dem Rückwärtsgang zugeordnete Vorgelegewelle 27 aus Fig. 1 und die obere Vorgelegewelle 23 sind zur besseren Übersicht nicht zeichnerisch dargestellt. Das Grundgetriebe ist somit identisch Fig. 1 ausgestaltet. Die Gleichteile sind demzufolge auch mit den selben Bezugsziffern versehen, wie in Fig. 1.
Die Elektromotoreneinheit 100 umfasst einen Elektromotor 112, zwei separate Kupplungen 102, 103, zwei Vorgelegewellen 104, 105 und zwei Festräder 106, 107, wobei diese Bauteile koaxial zueinander angeordnet sind. Der Elektromotor 112 besteht dabei aus den gehäusefesten Statorwicklungen 101 und dem rotierenden Anker 113.
Die Elektromotoreneinheit 100 erstreckt sich axial von der Zahnradebene des vierten Vorwärtsganges 4 und des sechsten Vorwärtsganges 6 bis zur axial hintersten Zahnradebene, wobei diese dem fünften Vorwärtsgang 5 zugeordnet ist. Die axial äußeren Begrenzungen der Elektromotoreneinheit 100 werden von den beiden Festrädern 106, 107 gebildet. Das vordere Festrad 106 kämmt mit dem vorderen Festrad 15 auf der Hohlwelle 12. Das hintere Festrad 107 kämmt mit dem hintersten Festrad 42 auf der Innenwelle 11.
Die einander zugewandten Enden der beiden Vorgelegewellen 104, 105 sind jeweils drehfest mit einer der beiden Kupplungshälften 108, 109 verbunden. Die beiden mit diesen beiden Kupplungshälften 108, 109 reibschlüssig kuppelbaren zweiten Kupplungshälften 110, 111 sind drehfest miteinander verbunden und bilden den rotierenden Anker 113 des Elektromotors 112. Axial zwischen den beiden Vorgelegewellen 104, 105 liegt eine Aussteifung 115 des Ankers 113.
Die sechs Vorwärtsgänge 1 bis 6 und der Rückwärtsgang R sind identisch dem ersten Ausführungsbeispiel gemäß Fig. 1 ausgestaltet und werden mit den beiden Kupplungen Kl, K2 bzw. den vier Gangwechselkupplungen 22, 34, 17, 40 identisch geschaltet.
Wird die erste Kupplung 103 der Elektromotoreneinheit 100 eingerückt, so ist ein Drehmoment zwischen dem Anker 113 und der zweiten Reibungskupplung K2 übertragbar, wobei im Leistungsfluss dazwischen die eine Übersetzungsstufe 93 liegt, der das Festrad 15 des sechsten Vorwärtsganges 6 zugehörig ist. Je nachdem, ob bei eingerückter Reibungskupplung K2 die Leistung von der Elektromotoreneinheit 100 kommt oder in die Elektromotoreneinheit 100 fließt, wird Leistung in den Antriebsstrang eingespeist oder Leistung aus dem Antriebsstrang zum Aufladen einer Batterie entnommen.
Wird die zweite Kupplung 102 der Elektromotoreneinheit 100 eingerückt, so ist ein Drehmoment zwischen dem Anker 113 und der ersten Reibungskupplung Kl übertragbar, wobei im Leistungsfluss dazwischen die andere Übersetzungsstufe 94 liegt, der das Festrad 42 des fünften Vorwärtsganges 5 zugehörig ist. Je nachdem, ob bei eingerückter Reibungskupplung Kl die Leistung von der Elektromotoreneinheit 100 kommt oder in die Elektromotoreneinheit 100 fließt, wird Leistung in den Antriebsstrang eingespeist oder Leistung aus dem Antriebsstrang zum Aufladen einer Batterie entnommen. Demzufolge ist beiden Teilgetrieben des
Doppelkupplungsgetriebes eine Kupplung 102 bzw. 103 der Elektromotoreneinheit 100 zugeordnet.
Fig. 3 zeigt ein Doppelkupplungsgetriebe mit Hybridfunktion, dessen Elektromotoreneinheit 100 im Gegensatz zum Doppelkupplungsgetriebe gemäß Fig. 2 ausschließlich eine einzige Kupplung 102 für die Elektromotoreneinheit 100 aufweist. Die dem Rückwärtsgang zugeordnete Vorgelegewelle 27 aus Fig. 1 und die obere Vorgelegewelle 23 sind zur besseren Übersicht nicht zeichnerisch dargestellt. Das Grundgetriebe ist somit identisch Fig. 1 ausgestaltet. Die Gleichteile sind demzufolge auch mit den selben Bezugsziffern versehen, wie in Fig. 1. Ebenso wurden für prinzipiell dem zweiten Ausführungsbeispiel Fig. 2 gleiche Bauteile gleiche Bezugsziffern vergeben.
Mittels der Kupplung 102 ist ein rotierender Anker 113 eines Elektromotors 112 mit einem Festrad 107 koppelbar, welches drehfest mit einer Vorgelegewelle 104 verbunden ist. Dieses Festrad 107 kämmt mit einem hintersten Festrad 42 auf einer Innenwelle 11. Damit ist ein Drehmoment vom Elektromotor 122 direkt nur in das eine Teilgetriebe einspeisbar. Analog ist ein Drehmoment direkt nur von dem einen Teilgetriebe in den als Generator genutzten Elektromotor 122 einspeisbar. Der Elektromotor kann zur Vermeidung eines den Wirkungsgrad in bestimmten Fahrsituationen verschlechternden Schleppmomentes mittels der Kupplung 102 abgekoppelt werden.
Fig. 4 zeigt ein Doppelkupplungsgetriebe mit Hybridfunktion, dessen Elektromotoreneinheit 100 im Gegensatz zum Doppelkupplungsgetriebe gemäß Fig. 3 keine Kupplung für die Elektromotoreneinheit 100 aufweist. Die dem Rückwärtsgang zugeordnete Vorgelegewelle 27 aus Fig. 1 und die obere Vorgelegewelle 23 sind zur besseren Übersicht nicht zeichnerisch dargestellt. Das Grundgetriebe ist somit identisch Fig. 1 ausgestaltet. Die Gleichteile sind demzufolge auch mit den selben Bezugsziffern versehen, wie in Fig. 1. Ebenso wurden für prinzipiell dem zweiten und dritten Ausführungsbeispiel Fig. 2 und Fig. 3 gleiche Bauteile gleiche BezugsZiffern vergeben.
Ein rotierender Anker 113 eines Elektromotors 112 ist mit einem Festrad 107 permanent drehfest verbunden. Das Festrad 107 ist drehfest mit einer Vorgelegewelle 104 verbunden. Dieses Festrad 107 kämmt mit einem hintersten Festrad 42 auf einer Innenwelle 11. Damit ist ein Drehmoment vom Elektromotor 122 direkt nur in das eine Teilgetriebe einspeisbar. Analog ist ein Drehmoment direkt nur von dem einen Teilgetriebe in den als Generator genutzten Elektromotor 122 einspeisbar. Zur Verringerung einer wirkungsgradverschlechtenden permanent vorhandenen Schleppleistung findet ein reibungsoptimierter Elektromotor 112 Anwendung, der auch alternativ oder zusätzlich mit einem Freilauf ausgestattet sein kann.
Mit den Hybridgetriebeaufbauten gemäß Fig. 2, Fig. 3 und Fig. 4 ist es möglich, ausschließlich mit der
Elektromotoreneinheit 100 - d.h. ohne verbrennungsmotorischen Betrieb - anzufahren. Ebenso ist es möglich ausschließlich mit der Elektromotoreneinheit 100 - d.h. ohne verbrennungsmotorischen Betrieb - zu fahren. Somit ist auch ein Start/Stopp ohne Zeitverzug möglich. D.h. der betriebswarme Verbrennungsmotor kann im Stillstand des Kraftfahrzeuges beispielsweise an der roten Ampel automatisiert stillgesetzt werden, wobei bei der anschließenden Leistungsanforderung durch den Fahrer das Fahrzeug sofort mittels Elektromotoreneinheit 100 betrieben wird und erst in der Fahrt der betriebswarme Verbrennungsmotor mit oder ohne Zuhilfenahme des Anlassermotors angelassen wird.
Insbesondere für den Kaltstart von hoch verdichtenden Verbrennungsmotoren, wie beispielsweise Dieselmotoren, kann für sämtliche Ausführungsbeispiele des Hybridantriebs gemäß Fig. 2 bis Fig. 4 der zusätzliche achsversetzte Anlassermotor M notwendig sein, dessen Übersetzungsverhältnis ein sicheres Anlassen gewährleistet.
Mit den Hybridgetriebeaufbauten gemäß Fig. 2, Fig. 3 und Fig. 4 ist es ferner möglich, zwischen zwei Gängen, welche dem selben Teilgetriebe bzw. der selben Vorgelegewelle 23 oder 24 zugeordnet sind, zugkraftunterbrechungsfrei zu schalten. Bei dem beispielhaft dargestellten Doppelkupplungsgetriebe gemäß Fig. 1 bis Fig. 4 sind die Vorwärtsgänge 1, 3, 5 dem einen Teilgetriebe zugeordnet und die Vorwärtsgänge 2, 4, 6 dem anderen Teilgetriebe zugeordnet. Damit ist ein sequentieller Zugkraftunterbrechungsfreier Gangwechsel zwischen zwei benachbarten Gängen auch ohne Elektromotor 112 schon alleine aufgrund des Doppelkupplungsgetriebeprinzipes mittels Gangvorwahl und Überschneidungssteuerung der beiden Reibungskupplungen Kl und K2 möglich. Bei diesen sequentiellen Gangwechseln kann der Elektromotor jedoch auch zusätzlich sowohl mittels Leistungsabnahme als auch mittels Leistungsaufnahme schaltungsglättend eingreifen.
Der Verzicht auf eine bzw. zwei Kupplungen gemäß Fig. 3 bzw. Fig. 4 stellt den Vorteilen der Kostengünstigkeit, Kompaktheit und der Leichtigkeit des Aggregates den Nachteil eines verringerten Funktionsumfanges gegenüber. Beim Hybridgetriebe gemäß Fig. 2 ist der Elektromotor 112 in jedem der Vorwärtsgänge 1 bis 6 und dem Rückwärtsgang R in den Leistungsfluss einbindbar.
Bei den Hybridgetrieben gemäß Fig. 3 und Fig. 4 ist der Elektromotor 112 in jedem der geraden Vorwärtsgänge 2, 4 und 6 indirekt in den Leistungsfluss einbindbar.
Beim Einlegen der beiden dem einen Teilgetriebe zugeordneten Schaltelemente 17 und 22 wird beim Ausführungsbeispiel gemäß Fig. 2 die Kupplung 103 des Elektromotors 112 ausgerückt, um die beiden Schaltelemente 17 und 22 nicht mit dem Schleppmoment des Elektromotors 112 zu belasten.
Beim Einlegen der beiden Schaltelemente 34 und 40 wird beim Ausführungsbeispiel gemäß Fig. 2 die Kupplung 102 des Elektromotors 112 ausgerückt', um die beiden Schaltelemente 34 und 40 nicht mit dem Schleppmoment des Elektromotors 112 zu belasten.
Alternativ zum Ausrücken der Kupplung 102 bzw. 103 kann der Elektromotor schaltungsglättend eingreifen, indem Leistung eingespeist oder aufgenommen wird, je nachdem ob hochgeschaltet oder rückgeschaltet wird.
Die Schaltelemente können sowohl als Synchronringe oder als rein formschlüssige Schaltklauen ausgeführt sein. Bei der Verwendung von Synchronringen als Schaltelemente können die Reibkegel mit den vorgenannten Verfahren entlastet werden und somit eine hohe Lebensdauer auch von
Einkonussynchronisierungen sichergestellt werden. Bei der Verwendung von Schaltklauen als Schaltelemente können mit dem vorgenannten schaltungsglättenden Verfahren geringe Schaltschläge beim Einrücken der Schaltklauen sichergestellt werden.
Die im Ausführungsbeispiel dargestellte Drehfestigkeit zwischen der Hohlwelle 12 und der Kupplungshälfte 9 bzw. zwischen der Innenwelle 11 und der Kupplungshälfte 8 kann auch mittels eines Torsionsschwinungsdämpfers verwirklicht sein. Dieser lässt eine begrenzte Drehbeweglichkeit zu.
Auch die Kupplungen 102, 103 für den Elektromotor 112 können einen solchen Torsionsdämpfer aufweisen.
Das Vorderachsdifferential kann als Antriebszahnrad auch ein kegeliges Zahnrad aufweisen, wie dies von front-längs- getriebenen Fahrzeugen bekannt ist. Ebenso kann das Vorderachsdifferential ein Stirnrad aufweisen, wie dies von front-quer-getriebenen Fahrzeugen bekannt ist.
Die beiden auf den den Vorwärtsgängen zugeordneten Vorgelegewellen liegenden Antriebsritzel können sowohl gleichen als auch unterschiedlichen Durchmesser aufweisen.
In einer besonders vorteilhaften Ausgestaltung der Erfindung ist der Anlassermotor zum Anlassen des Verbrennungsmotors und der Elektromotor für den Hybridantrieb derart dimensioniert, dass der Verbrennungsmotor insbesondere im kalten Zustand ausschließlich mit beiden Elektromotoren angelassen werden kann. Diese Ausgestaltung der Erfindung ermöglicht eine kleine und leichte Dimensionierung des Anlassermotors bei Kostenvorteilen.
Die Kupplungen 102, 103 des Elektromotors in Fig. 2 bis Fig. 4 sind nur exemplarisch mit Kupplungsscheiben 108, 109 versehen. Die Kupplungen können beispielsweise als Trockenkupplung, als trockene oder nasse Lamellenkupplung, ähnlich einer Synchronisiereinrichtung, als formschlüssige Klauenkupplung oder als Magnetpulverkupplung ausgeführt sein.
Die Anordnung des Hybrid-Elektromotors parallel zu den Vorgelegewellen und Hauptwellen - d.h. Innenwelle und Hohlwelle - des Hybrid-Doppelkupplungsgetriebes ist hinsichtlich des Wirkungsgrades besonders günstig und ermöglicht eine kompakte Bauweise. Ebenso sind jedoch aber auch andere Anordnungen denkbar, wie beispielsweise ein senkrechte Anordnung mit Kegeltrieb.
Bei den beschriebenen Ausführungsformen handelt es sich nur um beispielhafte Ausgestaltungen. Eine Kombination der be¬ schriebenen Merkmale für unterschiedliche Ausführungsformen ist ebenfalls möglich. Weitere, insbesondere nicht beschrie¬ bene Merkmale der zur Erfindung gehörenden Vorrichtungsteile, sind den in den Zeichnungen dargestellten Geometrien der Vor¬ richtungsteile zu entnehmen.

Claims

DaimlerChrysler AGPatentansprüche
1. Satz von Getrieben mit einem Hybrid-
Doppelkupplungsgetriebe und einem Doppelkupplungsgetriebe ohne Hybridfunktion, wobei eine Antriebsleistung alternativ über zwei parallel beabstandet zueinander angeordnete Vorgelegewellen (23, 24) fließt.
2. Satz von Getrieben nach Patentanspruch 1, dadurch gekennzeichnet, dass ein Elektromotor (112) für die Hybridfunktion ebenfalls parallel beabstandet zu den beiden Vorgelegewellen (23, 24) angeordnet ist.
3. Satz von Getrieben nach Patentanspruch 2, dadurch gekennzeichnet, dass der Elektromotor (112) über eine Übersetzungsstufe (93 bzw. 94) derart auf eine drehfest mit einer Kupplungshälfte (8 bzw. 9) einer Doppelkupplung
(10) verbundene Hauptwelle (11 bzw. 12) abtreibt, dass sowohl eine Rekuperation als auch ein alleiniger Fahrantrieb mittels Elektromotor (112) möglich ist, hingegen zum Anlassen eines getriebeeingangsseitigen Verbrennungsmotors zumindest im kalten Zustand ein Anlassermotor (M) vorgesehen ist .
4. Satz von Getrieben nach Patentanspruch 3, dadurch gekennzeichnet, dass ein Zahnrad (42) der besagten Übersetzungsstufe das axial letzte Zahnrad (42) auf der besagten Hauptwelle (11) ist, wobei die Hauptwelle (11) auf der von der Doppelkupplung (10) abgewandten Seite axial benachbart zum besagten Zahnrad (42) in einem Getriebegehäuse (99) drehbar wälzgelagert aufgenommen ist.
5. Satz von Getrieben nach Patentanspruch 4, dadurch gekennzeichnet, dass ein anderes Zahnrad (107) der besagten Übersetzungsstufe (94) drehfest mit einem gegenüber dem Getriebegehäuse (99) drehbaren Anker (113) des Elektromotors (112) gekoppelt ist.
6. Satz von Getrieben nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass ein anderes Zahnrad (107) der besagten Übersetzungsstufe (94) mittels einer Kupplung (102) drehfest mit einem drehbaren Anker (113) des Elektromotors (112) koppelbar und von diesem lösbar ist.
7. Satz von Getrieben nach Patentanspruch 3, dadurch gekennzeichnet, dass die besagte Übersetzungsstufe (93) zumindest zwei parallel versetzte Zahnräder (15, 106) umfasst und einer Zahnradebene eines Ganges (6 bzw. 4) zugeordnet ist, welche der Doppelkupplung (10) axial am nächsten steht, wobei die Hauptwelle (12) axial zwischen dem einen Zahnrad (15) und der Doppelkupplung (10) in einer Trennwand (98) drehbar wälzgelagert aufgenommen ist, welche bewegungsfest mit dem Getriebegehäuse (99) verbunden - insbesondere verschraubt - ist.
8. Satz von Getrieben nach Patentanspruch 7, dadurch gekennzeichnet, dass eine Kupplung (103) vorgesehen ist, mit welcher eine drehfeste Verbindung zwischen dem anderen Zahnrad (106) und dem Anker (113) des Elektromotors (112) herstellbar und lösbar ist.
9. Satz von Getrieben nach Patentanspruch 2, dadurch gekennzeichnet, dass zwei Kupplungen (102, 103) vorgesehen sind, wobei zusätzlich und alternativ zur verbrennungsmotorischen Leistung mit der ersten Kupplung (102) eine Leistung vom Anker
(113) des Elektromotors (112) über eine erste
Übersetzungsstufe (94) in ein erstes Teilgetriebe einspeisbar ist und mit der zweiten Kupplung (103) eine Leistung vom
Anker (113) des Elektromotors (112) über eine zweite
Übersetzungsstufe (93) in ein zweites Teilgetriebe einspeisbar ist.
10. Hybrid-Doppelkupplungsgetriebe, bei welchem eine Antriebsleistung alternativ über zwei parallel beabstandet zueinander angeordnete Vorgelegewellen (23, 24) fließt, wobei ein Elektromotor (112) für die Hybridfunktion ebenfalls parallel beabstandet zu den beiden Vorgelegewellen (23, 24) angeordnet ist, wobei zwei Kupplungen (102, 103) vorgesehen sind, mit welchen eine Leistungsübertragung vom Anker (113) des Elektromotors (112) über eine Übersetzungsstufe (94) in ein Teilgetriebe und alternativ über eine weitere Übersetzungsstufe (93) in ein anderes Teilgetriebe einspeisbar ist.
PCT/EP2005/011003 2004-10-16 2005-10-13 Satz von getrieben und hybrid-doppelkupplungsgetriebe WO2006040150A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007536088A JP4426624B2 (ja) 2004-10-16 2005-10-13 トランスミッションセット及びハイブリッド用ツインクラッチトランスミッション
US11/787,118 US7798030B2 (en) 2004-10-16 2007-04-13 Twin clutch transmission design with selective hybrid power transfer compatibility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004050757.0 2004-10-16
DE102004050757A DE102004050757A1 (de) 2004-10-16 2004-10-16 Satz von Getrieben und Hybrid-Doppelkupplungsgetriebe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/787,118 Continuation-In-Part US7798030B2 (en) 2004-10-16 2007-04-13 Twin clutch transmission design with selective hybrid power transfer compatibility

Publications (1)

Publication Number Publication Date
WO2006040150A1 true WO2006040150A1 (de) 2006-04-20

Family

ID=35725968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/011003 WO2006040150A1 (de) 2004-10-16 2005-10-13 Satz von getrieben und hybrid-doppelkupplungsgetriebe

Country Status (4)

Country Link
US (1) US7798030B2 (de)
JP (1) JP4426624B2 (de)
DE (1) DE102004050757A1 (de)
WO (1) WO2006040150A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017034A1 (ja) * 2007-08-02 2009-02-05 Mitsubishi Fuso Truck And Bus Corporation ハイブリッド電気自動車の駆動装置
WO2009056193A2 (de) * 2007-10-31 2009-05-07 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug mit doppelkupplungsgetriebe
US8117933B2 (en) 2009-04-02 2012-02-21 GM Global Technology Operations LLC Five speed dual clutch transmission
US8240224B2 (en) 2009-04-06 2012-08-14 GM Global Technology Operations LLC Dual clutch five speed transmission
US8302500B2 (en) 2009-04-22 2012-11-06 GM Global Technology Operations LLC Dual clutch transmission
JP2012240623A (ja) * 2011-05-24 2012-12-10 Jatco Ltd ハイブリッド駆動装置
US8327730B2 (en) 2009-04-02 2012-12-11 GM Global Technology Operations LLC Dual clutch transmission
US8375817B2 (en) 2009-04-22 2013-02-19 GM Global Technology Operations LLC Dual clutch transmission
US8474341B2 (en) 2010-03-05 2013-07-02 GM Global Technology Operations LLC Dual clutch transmission
US8495926B2 (en) 2009-04-22 2013-07-30 GM Global Technology Operations LLC Dual clutch transmission
DE102012009484B3 (de) * 2012-05-09 2013-09-12 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Doppelkupplungsgetriebe
CN104228542A (zh) * 2013-06-20 2014-12-24 Zf腓德烈斯哈芬股份公司 用于混合驱动装置的包括变速器和电机的设施以及混合驱动装置
CN104723862A (zh) * 2013-12-19 2015-06-24 格特拉格传动机构和齿轮工厂赫尔曼·哈根迈尔有限公司&两合公司 用于机动车辆的混合动力传动系
US9249863B2 (en) 2009-04-22 2016-02-02 Gm Global Technology Operations, Llc Dual clutch transmission
WO2016034259A3 (de) * 2014-09-06 2016-04-28 Daimler Ag Antriebsstrang für ein fahrzeug, insbesondere ein hybridfahrzeug
DE102017007608A1 (de) 2017-08-14 2017-10-19 FEV Europe GmbH Hybridgetriebe mit einer Doppelkupplungseinheit und mit einer elektrischen Maschine
WO2018028747A1 (de) * 2016-08-08 2018-02-15 Schaeffler Engineering GmbH Antriebsstrang für ein kraftfahrzeug und verfahren zum betrieb eines antriebsstrangs
EP3296592A1 (de) * 2016-09-19 2018-03-21 PSA Automobiles SA Kraftübertragungssystem für kraftfahrzeug und kraftfahrzeug
DE102019101085A1 (de) 2019-01-16 2019-03-21 FEV Europe GmbH Hybridgetriebe für Fahrzeuge, insbesondere zur Handschaltbetätigung
EP3476637A4 (de) * 2016-06-29 2019-07-10 BYD Company Limited Stromantriebssystem und fahrzeug
WO2020177886A1 (de) * 2019-03-05 2020-09-10 Zf Friedrichshafen Ag Hybrid-getriebeeinrichtung sowie kraftfahrzeug
WO2021052687A1 (de) * 2019-09-16 2021-03-25 Magna Pt B.V. & Co. Kg Antriebsanordnung für ein kraftfahrzeug

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1714817A1 (de) * 2005-04-19 2006-10-25 Getrag Ford Transmissions GmbH Hybrid-Doppelkupplungsgetriebe
DE502005003092D1 (de) * 2005-04-19 2008-04-17 Getrag Ford Transmissions Gmbh Doppelkupplungsgetriebe
DE102005048938A1 (de) * 2005-10-13 2007-04-19 Volkswagen Ag Doppelkupplungsgetriebe für ein Kraftfahrzeug, insbesondere mit einem Hybridantrieb bzw. Verfahren zur Steuerung dieses Doppelkupplungsgetriebes
DE102005057802B4 (de) * 2005-12-03 2014-02-13 Daimler Ag Doppelkupplungsgetriebe
DE102006045824B4 (de) * 2006-09-28 2016-10-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung eines Hybrid-Fahrzeugantriebs
DE102007005525A1 (de) * 2007-02-03 2008-08-07 Zf Friedrichshafen Ag Getriebevorrichtung und Verfahren zum Betreiben einer Getriebevorrichtung
JP4285571B2 (ja) * 2007-09-27 2009-06-24 トヨタ自動車株式会社 車両用駆動装置
DE102008000342A1 (de) * 2008-02-19 2009-08-20 Zf Friedrichshafen Ag Getriebevorrichtung und Verfahren zum Betreiben eines Fahrzeugantriebsstranges
DE102008000646A1 (de) * 2008-03-13 2009-09-17 Zf Friedrichshafen Ag Anordnung zum Schalten von zumindest zwei Losrädern
DE102008000645B4 (de) * 2008-03-13 2021-06-24 Zf Friedrichshafen Ag Doppelkupplungsgetriebe in Vorgelegebauweise für ein Fahrzeug mit einer Zentralsynchronisierung
DE102008040692A1 (de) * 2008-07-24 2010-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anfahren eines Hybridfahrzeuges
DE102008047288A1 (de) 2008-09-16 2010-04-15 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Hybridantrieb für ein Fahrzeug
JP5312242B2 (ja) * 2008-12-16 2013-10-09 本田技研工業株式会社 トランスミッション
US20110239820A1 (en) * 2008-12-18 2011-10-06 Honda Motor Co., Ltd Power transmission device for hybrid vehicle
US8573084B2 (en) * 2009-04-22 2013-11-05 GM Global Technology Operations LLC Dual clutch transmission
US8528431B2 (en) 2009-04-28 2013-09-10 GM Global Technology Operations LLC Dual clutch transmission
DE102009030135A1 (de) * 2009-06-24 2010-12-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridantriebsstrang
DE102009027931A1 (de) * 2009-07-22 2011-01-27 Robert Bosch Gmbh Steuervorrichtung für eine elektrische Maschine und Betriebsverfahren für die Steuervorrichtung
DE102010008726A1 (de) * 2010-02-20 2011-08-25 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 Verfahren zum Betreiben eines Antriebssystems für ein Kraftfahrzeug
CN101947914A (zh) * 2010-05-31 2011-01-19 重庆长安汽车股份有限公司 一种混合动力车辆的动力耦合与传递装置
JP2012201116A (ja) * 2011-03-23 2012-10-22 Mitsubishi Motors Corp ハイブリッド車の走行駆動装置
JP2012201117A (ja) * 2011-03-23 2012-10-22 Mitsubishi Motors Corp ハイブリッド車の変速装置
US8795008B2 (en) 2011-04-06 2014-08-05 Twin Disc, Inc. Two-into-two or one hybrid power device for a marine vehicle
US20130152732A1 (en) * 2011-12-19 2013-06-20 David E Klingston Off-axis motor with hybrid transmission method and system
US9777798B2 (en) 2011-12-19 2017-10-03 Fca Us Llc Off-axis motor with hybrid transmission method and system
DE102012000654A1 (de) * 2012-01-14 2013-08-01 Daimler Ag Kupplungsvorrichtung
DE102012001948A1 (de) * 2012-02-02 2013-08-08 Daimler Ag Doppelkupplungsgetriebe
US9162667B2 (en) 2012-06-05 2015-10-20 Hyundai Motor Company Power transmitting apparatus for vehicle
DE102013105785B4 (de) 2012-06-18 2022-09-15 Hyundai Motor Company Leistungsübertragungsvorrichtung für ein Fahrzeug
EP4367416A1 (de) 2012-09-05 2024-05-15 Volvo Lastvagnar AB Antriebsstrang für ein hybridfahrzeug und verfahren zur steuerung des antriebsstrangs
EP2705968B1 (de) * 2012-09-06 2017-11-29 IVECO S.p.A. Fahrzeug mit Zweiwellen-Drehmomentverteiler, Steuerungsverfahren dafür, Computerprogramm und computerlesbare Mittel.
KR101481304B1 (ko) * 2013-08-09 2015-01-09 현대자동차주식회사 Dct를 구비한 하이브리드 파워트레인
US9327733B2 (en) * 2014-08-07 2016-05-03 GM Global Technology Operations LLC Method of controlling a vehicle during a clutch-to-clutch power upshift of a transmission
DE102014112646A1 (de) 2014-09-03 2016-03-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsstrang eines Hybridfahrzeugs
DE102015221403A1 (de) 2015-11-02 2017-05-04 Bayerische Motoren Werke Aktiengesellschaft Drehmomentübertragungsvorrichtung
US10259308B2 (en) * 2016-02-29 2019-04-16 Ford Global Technologies, Llc Axle assembly for hybrid electric vehicle
CN105818669B (zh) * 2016-03-28 2018-04-13 中国石油大学(华东) 一种混合动力驱动装置
DE102016221061B4 (de) 2016-10-26 2023-05-17 Audi Ag Hybridantriebsstrang für ein hybridgetriebenes Kraftfahrzeug
DE102016221060A1 (de) * 2016-10-26 2018-04-26 Audi Ag Hybridantriebsstrang für ein hybridgetriebenes Kraftfahrzeug
KR20200030058A (ko) * 2017-07-21 2020-03-19 섀플러 테크놀로지스 아게 운트 코. 카게 하우징의 바깥쪽에 분리 클러치를 포함한 하이브리드 모듈
DE102019202957A1 (de) * 2019-03-05 2020-09-10 Zf Friedrichshafen Ag Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug
DE102019203488A1 (de) * 2019-03-14 2020-09-17 Zf Friedrichshafen Ag Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug
US11186378B2 (en) * 2019-03-29 2021-11-30 Pratt & Whitney Canada Corp. Hybrid aircraft propulsion power plants
SE543431C2 (en) * 2019-06-18 2021-02-16 Scania Cv Ab A powertrain for a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821164A1 (de) * 1998-05-12 1999-11-18 Volkswagen Ag Doppelkupplungsgetriebe
DE19940288C1 (de) * 1999-08-25 2001-03-15 Daimler Chrysler Ag Doppelkupplungs-Mehrganggetriebe
DE19950679A1 (de) * 1999-10-21 2001-04-26 Volkswagen Ag Automatisiertes Doppelkupplungsgetriebe und Verfahren zur Steuerung eines automatisierten Doppelkupplungsgetriebes
DE10133629A1 (de) * 2001-07-15 2003-01-30 Richard Boisch Modulare Lastschaltgetriebe
DE10225331A1 (de) * 2001-07-15 2003-12-24 Richard Boisch Lastschaltgetriebe mit Zentralsynchronisiertung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1266918B1 (it) * 1994-08-09 1997-01-21 New Holland Fiat Spa Cambio di velocita' per un veicolo, particolarmente un trattore agricolo.
DE19745995A1 (de) 1997-03-11 1998-09-17 Bosch Gmbh Robert Getriebeintegrierte Elektromaschine für Kraftfahrzeug-Brennkraftmaschinen und deren Steuerung
CN1109615C (zh) 1997-12-23 2003-05-28 卢克摩擦片和离合器有限公司 变速箱
EP0984202B1 (de) * 1998-08-25 2002-07-31 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Wechselgetriebe in 3-Wellenbauweise, insbesondere für Kraftfahrzeuge
DE19850549A1 (de) 1998-11-03 2000-05-04 Bosch Gmbh Robert Getriebe für ein Kraftfahrzeug, insbesondere Doppelkupplungs-Schaltgetriebe, und Verfahren zum Betreiben des Getriebes
DE19860251C1 (de) * 1998-12-24 2000-11-02 Daimler Chrysler Ag Zahnräderwechselgetriebe mit zwei Teilgetrieben mit je einer Lastschaltkupplung
DE10122084A1 (de) * 2000-05-17 2001-12-13 Luk Lamellen & Kupplungsbau Getriebe mit Kupplung sowie Verfahren zum Betreiben einer Kupplung
DE10165096B3 (de) * 2000-07-18 2015-08-13 Schaeffler Technologies AG & Co. KG Getriebe
JP4108265B2 (ja) 2000-11-22 2008-06-25 本田技研工業株式会社 車両用クラッチの接続状態判定装置およびこれを用いた変速制御装置
US6427550B1 (en) * 2001-01-12 2002-08-06 New Venture Gear, Inc. Twin clutch automated transaxle
DE10209514B4 (de) * 2001-03-30 2016-06-09 Schaeffler Technologies AG & Co. KG Antriebsstrang
JP3621916B2 (ja) * 2001-06-19 2005-02-23 株式会社日立製作所 自動車の動力伝達装置
EP1270301A3 (de) 2001-06-19 2007-02-21 Hitachi, Ltd. Kraftfahrzeuggetriebe mit Schaltungen ohne Drehmoment Unterbrechung
JP2003237393A (ja) * 2002-02-12 2003-08-27 Aisin Ai Co Ltd 動力源を備えた変速装置
US7175555B2 (en) * 2002-03-28 2007-02-13 Ford Global Technologies, Llc Hybrid automotive powertrain with torsional vibration damper
JP2003336701A (ja) * 2002-05-22 2003-11-28 Hitachi Ltd 自動変速機
US6945893B2 (en) * 2002-05-28 2005-09-20 Eaton Corporation Hybrid powertrain system
US6766705B1 (en) * 2003-01-24 2004-07-27 General Motors Corporation Seven-speed power transmission
KR100634589B1 (ko) 2003-12-24 2006-10-13 현대자동차주식회사 하이브리드 전기자동차용 이중 클러치 변속기 및 그모드별 작동방법
US7082850B2 (en) * 2003-12-30 2006-08-01 Eaton Corporation Hybrid powertrain system
JP4093370B2 (ja) * 2004-05-20 2008-06-04 日野自動車株式会社 デュアルクラッチ式変速機を搭載したハイブリッド車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821164A1 (de) * 1998-05-12 1999-11-18 Volkswagen Ag Doppelkupplungsgetriebe
DE19940288C1 (de) * 1999-08-25 2001-03-15 Daimler Chrysler Ag Doppelkupplungs-Mehrganggetriebe
DE19950679A1 (de) * 1999-10-21 2001-04-26 Volkswagen Ag Automatisiertes Doppelkupplungsgetriebe und Verfahren zur Steuerung eines automatisierten Doppelkupplungsgetriebes
DE10133629A1 (de) * 2001-07-15 2003-01-30 Richard Boisch Modulare Lastschaltgetriebe
DE10225331A1 (de) * 2001-07-15 2003-12-24 Richard Boisch Lastschaltgetriebe mit Zentralsynchronisiertung

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017034A1 (ja) * 2007-08-02 2009-02-05 Mitsubishi Fuso Truck And Bus Corporation ハイブリッド電気自動車の駆動装置
WO2009056193A2 (de) * 2007-10-31 2009-05-07 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug mit doppelkupplungsgetriebe
WO2009056193A3 (de) * 2007-10-31 2010-03-04 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug mit doppelkupplungsgetriebe
US8117933B2 (en) 2009-04-02 2012-02-21 GM Global Technology Operations LLC Five speed dual clutch transmission
US8327730B2 (en) 2009-04-02 2012-12-11 GM Global Technology Operations LLC Dual clutch transmission
US8240224B2 (en) 2009-04-06 2012-08-14 GM Global Technology Operations LLC Dual clutch five speed transmission
DE102010015598B4 (de) * 2009-04-22 2017-03-02 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Doppelkupplungsgetriebe
US8302500B2 (en) 2009-04-22 2012-11-06 GM Global Technology Operations LLC Dual clutch transmission
US9249863B2 (en) 2009-04-22 2016-02-02 Gm Global Technology Operations, Llc Dual clutch transmission
US8375817B2 (en) 2009-04-22 2013-02-19 GM Global Technology Operations LLC Dual clutch transmission
US8495926B2 (en) 2009-04-22 2013-07-30 GM Global Technology Operations LLC Dual clutch transmission
US8474341B2 (en) 2010-03-05 2013-07-02 GM Global Technology Operations LLC Dual clutch transmission
JP2012240623A (ja) * 2011-05-24 2012-12-10 Jatco Ltd ハイブリッド駆動装置
US9003907B2 (en) 2012-05-09 2015-04-14 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Dual coupling gear mechanism
EP2662594A1 (de) 2012-05-09 2013-11-13 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Doppelkupplungsgetriebe
DE102012009484B3 (de) * 2012-05-09 2013-09-12 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Doppelkupplungsgetriebe
CN104228542A (zh) * 2013-06-20 2014-12-24 Zf腓德烈斯哈芬股份公司 用于混合驱动装置的包括变速器和电机的设施以及混合驱动装置
CN104723862A (zh) * 2013-12-19 2015-06-24 格特拉格传动机构和齿轮工厂赫尔曼·哈根迈尔有限公司&两合公司 用于机动车辆的混合动力传动系
EP2886383A3 (de) * 2013-12-19 2015-09-02 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Hybrid-Antriebsstrang für ein Kraftfahrzeug
WO2016034259A3 (de) * 2014-09-06 2016-04-28 Daimler Ag Antriebsstrang für ein fahrzeug, insbesondere ein hybridfahrzeug
US10899219B2 (en) 2016-06-29 2021-01-26 Byd Company Limited Power drive system and vehicle
EP3476637A4 (de) * 2016-06-29 2019-07-10 BYD Company Limited Stromantriebssystem und fahrzeug
CN109843623A (zh) * 2016-08-08 2019-06-04 舍弗勒工程有限公司 用于机动车的动力总成系统以及操作动力总成系统的方法
WO2018028747A1 (de) * 2016-08-08 2018-02-15 Schaeffler Engineering GmbH Antriebsstrang für ein kraftfahrzeug und verfahren zum betrieb eines antriebsstrangs
FR3056157A1 (fr) * 2016-09-19 2018-03-23 Peugeot Citroen Automobiles Sa Systeme de transmission de puissance pour vehicule automobile
EP3296592A1 (de) * 2016-09-19 2018-03-21 PSA Automobiles SA Kraftübertragungssystem für kraftfahrzeug und kraftfahrzeug
DE102018117583A1 (de) 2017-08-14 2018-10-11 FEV Europe GmbH Hybridgetriebe mit einer Doppelkupplungseinheit und mit einer elektrischen Maschine
DE102017007608A1 (de) 2017-08-14 2017-10-19 FEV Europe GmbH Hybridgetriebe mit einer Doppelkupplungseinheit und mit einer elektrischen Maschine
DE102019101085A1 (de) 2019-01-16 2019-03-21 FEV Europe GmbH Hybridgetriebe für Fahrzeuge, insbesondere zur Handschaltbetätigung
WO2020177886A1 (de) * 2019-03-05 2020-09-10 Zf Friedrichshafen Ag Hybrid-getriebeeinrichtung sowie kraftfahrzeug
WO2021052687A1 (de) * 2019-09-16 2021-03-25 Magna Pt B.V. & Co. Kg Antriebsanordnung für ein kraftfahrzeug

Also Published As

Publication number Publication date
DE102004050757A1 (de) 2006-04-27
JP2008516827A (ja) 2008-05-22
JP4426624B2 (ja) 2010-03-03
US20080000312A1 (en) 2008-01-03
US7798030B2 (en) 2010-09-21

Similar Documents

Publication Publication Date Title
WO2006040150A1 (de) Satz von getrieben und hybrid-doppelkupplungsgetriebe
EP2886383B1 (de) Hybrid-Antriebsstrang für ein Kraftfahrzeug
DE102010004711C5 (de) Verfahren zum Ansteuern eines Hybrid-Antriebsstrangs
DE102010037451A1 (de) Antriebssystem für ein Kraftfahrzeug und Kraftfahrzeug mit einem derartigen Antriebssystem
DE102017223488B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102020205099A1 (de) Getriebeanordnung, Hybrid-Antriebsstrang sowie Kraftfahrzeug
WO2012156041A1 (de) Hybridantrieb für kraftfahrzeuge
DE102019202961A1 (de) Kupplungsanordnung, Kraftfahrzeugantriebsstrang und Verfahren zum Betreiben eines Antriebsstranges
DE102019202966A1 (de) Hybrid-Antriebsstrang für ein Kraftfahrzeug sowie Verfahren zum Betreiben eines Hybrid-Antriebsstranges
DE102015201458A1 (de) Hybrid-Antriebsstrang für ein Kraftfahrzeug
DE102019202958B4 (de) Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug
EP3765323A1 (de) Hybrid-getriebeeinrichtung sowie kraftfahrzeug
DE102019202959A1 (de) Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug
DE102020203802A1 (de) Kompaktes Hybridgetriebe
WO2020177888A1 (de) Hybridgetriebe für einen kraftfahrzeug-antriebsstrang, kraftfahrzeug-antriebsstrang und kraftfahrzeug damit
DE102021203414B4 (de) Gangvorwahlfrei lastschaltbares Hybridgetriebe
DE102020214540B4 (de) Kompaktes lastschaltbares Getriebe
DE102010048857A1 (de) Getriebe eines Hybridfahrzeugs mit Verbrennungsmotor und elektrodynamischer Vorrichtung
DE102010033074A1 (de) Kraftfahrzeuggetriebe sowie Verfahren zum Schalten eines Kraftfahrzeuggetriebes
DE102020203195A1 (de) Getriebe für ein Kraftfahrzeug
WO2020177890A1 (de) Getriebeanordnung, antriebsstrang und verfahren zu dessen betreiben
DE102019202948A1 (de) Verfahren zum Betrieb eines Kraftfahrzeuges, Steuerungseinrichtung sowie Kraftfahrzeug
DE102020214534B4 (de) Kompaktes Kraftfahrzeuggetriebe
DE102020214543B4 (de) Kompaktes Doppelkupplungsgetriebe
DE102020131909B4 (de) Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007536088

Country of ref document: JP

Ref document number: 11787118

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05796336

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11787118

Country of ref document: US