WO2006038662A1 - 画像表示装置および電子眼鏡 - Google Patents

画像表示装置および電子眼鏡 Download PDF

Info

Publication number
WO2006038662A1
WO2006038662A1 PCT/JP2005/018477 JP2005018477W WO2006038662A1 WO 2006038662 A1 WO2006038662 A1 WO 2006038662A1 JP 2005018477 W JP2005018477 W JP 2005018477W WO 2006038662 A1 WO2006038662 A1 WO 2006038662A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
pupil
image
display device
point
Prior art date
Application number
PCT/JP2005/018477
Other languages
English (en)
French (fr)
Inventor
Hideya Takahashi
Eiji Shimizu
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP05790488A priority Critical patent/EP1798589A1/en
Priority to US11/576,830 priority patent/US20080266530A1/en
Priority to JP2006539324A priority patent/JPWO2006038662A1/ja
Publication of WO2006038662A1 publication Critical patent/WO2006038662A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye

Definitions

  • Image display device and electronic glasses are Image display devices and electronic glasses.
  • the present invention relates to an image display device for projecting display image light directly onto a retina through a pupil using Maxwell's vision, and an electronic spectacle using the image display device.
  • the convergence point of Maxwell's view must be aligned with the pupil position of about 2 mm in diameter, and the convergence point of Maxwell's view and the position of the pupil must match. I can't.
  • Non-Patent Document 1 discloses a paper reporting the results of measuring the reading ability of a low vision person using a retinal projection display using laser scanning. .
  • Non-Patent Document 1 when a display is fixed to the head with a headband for mono, and this is aligned with the position of the pupil of the eye, the image is projected onto the retina. Is Umono.
  • Patent Document 1 discloses an image providing device for a disease patient using Maxwell's vision
  • Patent Document 2 allows an observer to observe an image using Maxwell's vision
  • Paragraph No. 0011 discloses that adjustment is performed so that the focal point of the image is guided to a suitable position of the eyeball.
  • paragraph numbers 0044 and 0045 of Patent Document 3 the image displayed on the image board in the Maxwell view state is displayed in an image display device that projects the image of the image board on the retina of the eyeball of the observer. Is converged as an image of the light source in the pupil.
  • Patent Document 4 discloses that the photon to be scanned is moved and the pupil on the incident side is moved.
  • Patent Document 4 discloses a Maxwell vision optical system.
  • Sarakuko discloses that image light obtained by transmitting light source light through a liquid crystal display panel is supplied to an eyepiece optical system (Maxwellian view).
  • Non-Patent Document 1 Journal of Visual Impairment and Blindness, March 200
  • Patent Document 1 JP 2002-282299 A
  • Patent Document 2 JP 2005-55560 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-93769
  • Patent Document 4 Japanese Patent Publication No. 8-502372
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-167212
  • the display device In a retinal projection display device using Maxwell's vision, the display device is mounted on the head with a headband and an image from the display device is observed when the display device is observed. Due to the unique nature, it was difficult to first bring the convergence point of the display image light to the pupil position.
  • Non-Patent Document 1 The conventional wearing device shown in Non-Patent Document 1 is integrated with a headset, and when this device is worn, it is more difficult to stably fix it at a position along the face that is a living body unique to the user. It was. Although the mechanism has a certain degree of freedom in position in three dimensions, it has to be fixed at the same time as the degree of freedom, and it has become an extremely complex mechanism with a large force. Moreover, it is necessary to replace the right eye and the left eye, and it takes time to align the convergence point and pupil of Maxwellian vision.
  • retinal projection eyeglasses which are displays, do not require an eye imaging function by projecting a light beam with a very deep depth of focus using Maxwell's vision onto the retina.
  • Maxwell vision the basic principle of the system, does not project images from the center of the pupil onto the retina. It has the necessary characteristics, which hinders the realization of easy-to-use products.
  • the force displacement which is an image display device using Maxwell's vision, is adjusted to guide the convergence point including image information to the position of the pupil, There's no mention of how to make this easier, more stable, and faster.
  • the present invention solves the above-described conventional problems, and with a simple configuration, the converging convergence point of the Maxwell view and the position of the pupil can be easily and stably quickly adjusted to sharpen the Maxwell view.
  • An object of the present invention is to provide an image display device capable of seeing various images and electronic glasses using the same.
  • the image display device of the present invention is an image display device that can project an image onto the retina through the pupil of the eye by Maxwell's view, and emits display image light from the display screen using the point light source.
  • Display means display image light of the display means power, light collecting means for illuminating, and the position of the pupil are detected, and the condensing convergence point of Maxwell's view is positioned in the pupil.
  • a light source driving means for automatically controlling the position, thereby achieving the above object.
  • An image display device of the present invention is a point light source and a display image light emitted from a display screen using the point light source in an image display device capable of projecting an image on the retina through the pupil of the eye by Maxwell's view.
  • the image display device of the present invention is an image display device that can project an image onto the retina through the pupil of the eye by Maxwell's view, and emits display image light from the display screen using the point light source.
  • Display means and a plurality of condensing means for illuminating display image light with the power of the display means, and a lenticular lens means arranged in an array, thereby achieving the above object.
  • the position of the pupil is detected, and the position of the point light source is automatically adjusted so that the condensing convergence point of Maxwell's view is located in the pupil.
  • Movement control Further includes a light source driving means.
  • the light source driving means in the image display device of the present invention includes a pupil detection means for detecting the position of the pupil, and a Mac Swell-view condensing according to the detection result detected by the pupil detection means.
  • Point light source moving means for moving the point light source at least in the X and Y directions perpendicular to the optical axis direction so that the convergence point and the position of the pupil coincide two-dimensionally .
  • the light source driving means in the image display device of the present invention includes a pupil detecting means for detecting the position of the pupil, and moving the point light source by a predetermined amount in a random direction so that the pupil is detected by the pupil detecting means.
  • a point light source moving means for finely adjusting the position of the point light source with higher accuracy so that the Maxwell's converging convergence point comes to the center of the pupil from the detected position.
  • the light condensing means in the image display device of the present invention is a convex lens or a holographic optical element.
  • the display means in the image display device of the present invention is a liquid crystal display means.
  • the two cylindrical lens means in the image display apparatus of the present invention have the same focal point position or different forces or different forces.
  • the point light source in the image display device of the present invention is a laser beam generator.
  • the point light source and the point light source moving means in the image display device of the present invention are configured by a liquid crystal display device, and the liquid crystal display device has a combination of the point light source and a pinhole of a pinhole member. As a new point light source, the pinhole of the pinhole member can be moved and controlled.
  • Electronic glasses according to the present invention use the image display device according to any one of claims 1 to 11, and thereby achieve the above object.
  • An electronic spectacle of the present invention includes the image display device according to any one of claims 1 to 11 and a video camera device capable of supplying a video signal to the image display device. thing This achieves the above object.
  • the electronic spectacles of the present invention are preferably hand-held electronic spectacles or spectacles that can be fixed with a nose and an ear.
  • a condensing means such as a convex lens or a holographic optical element (HOE)
  • HOE holographic optical element
  • the movement control of the light source position includes a method of directly moving the light source (embodiments 1 to 3 described later) and a method of moving a pinhole through which light from the light source passes (embodiment 4 described later). is there.
  • pinhole movement can also be realized using a device that can be easily controlled electronically, such as an LCD (liquid crystal display panel) (see Fig. 7).
  • the light incident on the condensing means such as the lens or HOE uses parallel light, and the position of the converging convergence point in Maxwell's view is automatically adjusted by moving and controlling the position of the light source such as a point light source. It is also possible to adjust automatically by moving up and down.
  • a cylindrical lens or a lenticular lens (or sheet) must be Can be easily combined to achieve multiple convergence points.
  • this method it is possible to produce an HOE having multiple convergence points in a single shot. Therefore, a photopolymer that has many advantages as an HOE photosensitive material but is not suitable for multiple exposure is used as a photosensitive material.
  • V can be used as a reference (see Fig. 6).
  • electronic glasses having the image display device of the present invention and a video camera device capable of supplying a video signal to the image display device are obtained, and the effects of the present invention can be obtained. Since the present invention is lightweight and can be reduced in size, if it is set up in a normal eyeglass type that can be fixed with the nose and ears, it becomes hands-free and further visual assistance for visually impaired people is expected.
  • the force for automatically adjusting the position of the convergence point in at least the left and right and up and down directions for example, the front and rear, the left and the right, the up and down direction, or the cross-shaped vertical convergence line by the two cylindrical lens means A and horizontal convergence line A, and vertical convergence line A and
  • Maxwell's convergence point A and the position of the pupil can be quickly and easily aligned with each other so that a sharp image can be seen.
  • FIG. 1 is an arrangement configuration diagram showing an example of an image display device according to Embodiment 1 of the present invention
  • (a) is a top view showing a state in which parallel light beams are incident on the liquid crystal display
  • (b) is a top view showing a state in which the position of the convergence point is adjusted by moving the point light source in the left-right direction.
  • FIG. 2 In the image display device of FIG. 1, (a) is an arrangement configuration diagram showing a case where parallel rays are incident on a liquid crystal display, and (b) is an arrangement configuration showing a case where spherical wave rays are incident on a liquid crystal display.
  • FIG. 1 (a) is an arrangement configuration diagram showing a case where parallel rays are incident on a liquid crystal display, and (b) is an arrangement configuration showing a case where spherical wave rays are incident on a liquid crystal display.
  • FIG. 3 is an arrangement configuration diagram showing an example of an image display device according to Embodiment 1 of the present invention, wherein (a) is an upper surface showing a state where a point light source is positioned on the near side and a convergence point is adjusted
  • FIG. 4B is a top view showing the state force of (a) in which the point light source is positioned behind and the convergence point is adjusted.
  • FIG. 4 (a) and (b) are diagrams for explaining a method for producing a holographic optical element (HOE) used in the present invention.
  • FIG. 5 is an arrangement configuration diagram showing an example of a lens portion of an image display device according to Embodiment 2 of the present invention, where (a) is a perspective view of the lens portion, and (b) is a vertical direction and a horizontal direction. Side view and top view of the lens portion showing the same focal depth at the convergence point, (c) Side view and top view of the lens portion showing the case where the focal depth of the convergence point differs in the vertical and horizontal directions FIG.
  • FIG. 6 is an arrangement configuration diagram showing an example of a lens portion of an image display device according to Embodiment 3 of the present invention, where (a) is a top view of the lens portion, and (b) is a side view of the lens portion. (C) is a perspective view of the lens portion.
  • FIG. 7 is an arrangement configuration diagram showing an example of an image display device according to Embodiments 1 and 4 of the present invention, respectively, and (a) is parallel to the liquid crystal display of the image display device according to Embodiment 1 of the present invention.
  • FIG. 6B is a top view showing a state in which a light beam is incident.
  • FIG. 5B shows a state in which the pinhole is moved in the left-right direction (and Z or up-down direction) without moving the point light source of the image display device according to Embodiment 4 of the present invention. It is a top view which shows the state which adjusted the convergence point position.
  • FIG. 1 is an arrangement configuration diagram showing an example of a projection type liquid crystal display device according to Embodiment 1 of the present invention, in which (a) is a top view showing a state in which parallel rays are incident on a liquid crystal display; (B) is a top view showing a state in which parallel rays are incident on a liquid crystal display; (B) is a top view showing a state in which parallel rays are incident on a liquid crystal display; (B)
  • the image display device 10 of Embodiment 1 includes a point light source 11 and a liquid crystal display that emits display image light from the display screen using the point light source 11.
  • the liquid crystal display 12 as a means
  • the convex lens 13 as a light collecting means for condensing the display image light from the liquid crystal display 12, and the position of the pupil are detected.
  • a light source driving device 14 is provided as light source driving means for automatically moving and controlling the position of the point light source 11 so as to be positioned, and a display image can be projected onto the retina through the pupil of the eye by Maxwell view.
  • the point light source 11 uses a high-luminance white light emitting diode (white LED) or a laser device.
  • White LED is white when each light from red LED, green LED and blue LED is mixed. You can use these three primary color LEDs to get the light!
  • the liquid crystal display 12 is a transmissive projection type color liquid crystal display (color LCD), and a powerful image signal such as a video camera device is supplied to the color LCD by a liquid crystal display control device (not shown) to perform display control.
  • a liquid crystal display control device not shown
  • the desired image is displayed on the display screen.
  • the point light source 11 is arranged behind the liquid crystal display 12 and used as its knock light.
  • the convex lens 13 is used for condensing the display image light from the liquid crystal display 12 for retinal projection and positioning the converging convergence point A at a predetermined position in the pupil.
  • a holographic optical element HOE
  • Using a film-made HOE makes it easier to form a lens surface (which can easily produce the same characteristics as a free-form surface) compared to a plastic glass lens, and its weight is much lighter.
  • the light source driving device 14 includes a pupil detection means of a position sensor that detects the position of the pupil (pupil movement), and a converging convergence point A in Maxwellian vision according to the detection result detected by the pupil detection means.
  • Point light source 11 in the horizontal and vertical directions (X and Y directions) on the vertical plane with respect to the optical axis direction C (front-rear direction) so that the position of the pupil and the position of the pupil coincide two-dimensionally.
  • a motor as a point light source moving means for moving the X and Y table means (not shown).
  • the point light source moving means moves the point light source 11 randomly and roughly so that the converging convergence point A in Maxwell's view comes to the center of the pupil more accurately from the position where the pupil (pupil) is detected. Fine-tune the position of the light source 11.
  • the pupil position of the user's eyes is detected by the position sensor as the pupil detection means, and the point light source moving means is configured to collect the Maxwellian view based on the detected pupil position of the user's eyes.
  • the position of the point light source 11 is viewed from the front by the light source driving device 14 so that the light converging point A and the position of the pupil coincide two-dimensionally (see Fig. 1 (a) and Fig. 1 (b)).
  • the position of the converging convergence point A in Maxwellian view is also the same.
  • the position of the point light source 11 is automatically adjusted by the light source driving device 14 using the wave, the position of the converging convergence point A in Maxwellian view relative to the pupil position can be adjusted easily and stably.
  • the optical path length L of the entire optical system shown in Fig. 2 (b) using spherical waves should be made shorter by a distance M than in the case of Fig. 2 (a) using parallel light. Can do.
  • the light used to regenerate the HOE has been used as a parallel light until now, but using a spherical wave shortens the entire optical system. it can.
  • Embodiment 1 by moving the light source 11 in a direction perpendicular to the optical axis, the position of the converging convergence point A of the spherically focused light is changed to a direction perpendicular to the optical axis, for example, left and right and Although the case where the position is adjusted on the plane in the upward and downward direction (which may be parallel light or spherical wave light) has been described, the present invention is not limited to this, and the light source 11 is placed in the light source driving device 14 in the optical axis direction C (front and rear direction; only spherical wave light).
  • the position of the point light source 11 is moved also in the optical axis direction C by the light source driving device 14 (for example, in the direction of the arrow in FIG. 3B).
  • Convergence convergence point with respect to the depth position of the eye by moving the position of the convergence point A in the forward and backward direction (optical axis direction C) and moving the convergence point closer to or away from the pupil. This can be done by automatically adjusting the position of point A.
  • the display image light incident on the convex lens 13 may be a parallel light that may be a spherical wave instead of a parallel light. Even when collimated light is used as the display image light incident on the convex lens 13, the position of the point light source 11 is adjusted left and right and up and down to adjust the position of the converging convergence point A in Maxwellian view up and down and up and down. It becomes possible to do.
  • parallel light is used as display image light incident on the convex lens 13 (or HOE) from the liquid crystal display 12, the position of the converging convergence point A cannot be adjusted in the front-rear direction.
  • HOE is an optical element that has the same characteristics as an optical element such as a lens using holographic technology and is called a holographic optical element.
  • Figure 4 shows the principle of realizing a simple lens with HOE.
  • FIG. 4 (a) shows a state in which a spherical wave from a point light source is recorded on the hologram recording material 13a.
  • the HOE condensing means 13; hologram
  • FIG. 4 (b) shows irradiated with reproduction light as shown in FIG. 4 (b)
  • the point light source used during recording is reproduced.
  • the function of a convex lens that converges parallel light to one point is realized.
  • the HOE used in the present invention is manufactured.
  • FIG. 5 is an arrangement configuration diagram illustrating an example of a lens portion of the image display device according to the second embodiment of the present invention, where (a) is a perspective view of the lens portion, and (b) is a vertical light condensing.
  • the side and top views of the lens part showing the focal depth of the converging convergence line is the same in the horizontal and horizontal condensing directions, and (c) shows the converging converging line in the vertical and horizontal condensing directions. It is the side view and top view of the lens part which show a case where a depth of focus differs.
  • Members having the same effects as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • an image display device 20 includes a point light source 11, a liquid crystal display 12 as liquid crystal display means for emitting display image light from the display screen using the point light source 11, and A cylindrical lens 23a and a cylindrical lens 23b are provided as two cylindrical lens means each of which is a “kamaboko-shaped lens” for condensing light in one direction.
  • the cylindrical lens 23a and the cylindrical lens 23b condense the display image light from the liquid crystal display 12, respectively, and converge the converging point A (vertical focusing direction convergence line A and horizontal focusing direction convergence line A in the pupil). ) To position each longitudinal of its convex shape
  • the image is displayed within the range of the depth difference N in the optical axis direction C between A and the horizontal focusing direction convergence line A.
  • the image is clearly visible in the area.
  • the depth of focus can be changed in the vertical direction (up and down direction) and the horizontal direction (left and right direction) by the cylindrical lens 23a and the cylindrical lens 23b.
  • the focal point can be reduced within the range of depth of focus (depth difference N), and the focal point A and the pupil can be aligned accordingly.
  • FIG. 6 is an arrangement configuration diagram showing an example of a lens portion of the image display apparatus according to Embodiment 3 of the present invention, where (a) is a top view of the lens portion, and (b) is the lens portion. (C) is a perspective view of the lens part.
  • Members having the same functions and effects as those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
  • the image display device 30 of Embodiment 3 includes a point light source 11, a liquid crystal display 12, and a lenticular lens means (rate) as a plurality of condensing means. Ikiyura lens 33).
  • the lenticular lens means in order to obtain a plurality of condensing points A, the cylindrical lens 33 shown in FIG.
  • the cylindrical lens 33 shown in FIG. 6 (c) one cylindrical lens is composed of one lens and the other cylindrical lens is composed of multiple lenses arranged in an array!
  • the lenticular lens 33 has a plurality of convex lenses arranged in an array and continuously in a sheet shape, and condenses image light from the liquid crystal display 12 at a plurality of points (here, three) to the pupil.
  • it is always used to position one convergence point A.
  • the adjacent distances of the converging points A (A1 to A3) by these convex lenses be the pupil diameter or slightly smaller than that, and here the adjacent distance is 1.5mn! ⁇ 2.0mm. If this adjacent distance is less than 1.5 mm, two convergence points A may be located in the pupil, and the image projected on the retina appears to be doubled. If the adjacent distance is greater than 2.0 mm, the convergence point A may not exist on the pupil when the pupil moves, and the Maxwellian image may not be projected on the retina.
  • the image light from the liquid crystal display 12 is condensed by the plurality of convex lenses of the lenticular lens 33 to obtain a plurality of convergence points A1 to A3. Since the pitch of these convergence points A1 to A3 is substantially equal to the diameter of the pupil, one convergence point A can always be located in the pupil. Therefore, it is possible to easily and stably match any of the convergence points A1 to A3 of Maxwell's view and the position of the pupil, and to view a good image by Maxwell's view. [0058]
  • the lenticular lens 33 (or lenticular sheet) is arranged in the vertical direction, thereby realizing a plurality of convergence points A1 to A3 (three in this case). it can.
  • this method makes it possible to produce HOE with a single shot as described above, so even when using a photopolymer as the photosensitive material. It is valid.
  • HOE when recording one point at a time and using a silver salt photosensitive material, this is difficult with a photopolymer that can achieve multiple convergence points with multiple recording. This is because multiple recording is not possible due to the characteristics of the photopolymer material.
  • a photopolymer if multiple converging points are made HOE by a single recording, a photopolymer is also possible.
  • the use of a photopolymer material is far more advantageous than a silver salt light-sensitive material because of its light utilization efficiency and ease of handling.
  • the position of the light source 11 is moved by the light source driving device 14 in at least the left, right, up, and down directions among the left, right, up, and down directions, so that the condensing point A in Maxwellian view is obtained.
  • the position of the light source position is also moved at least in the left and right and up and down directions, and the position of the focal point A can be automatically adjusted to the pupil position.
  • FIG. 7 is an arrangement configuration diagram showing an example of the image display device according to each of Embodiments 1 and 4 of the present invention, and (a) is a liquid crystal of the image display device according to Embodiment 1 of the present invention.
  • FIG. 6B is a top view showing a state in which parallel rays are incident on the display;
  • FIG. 5B is a diagram illustrating adjustment of a convergence point position by moving a pinhole in the left-right direction instead of the point light source of the image display apparatus according to Embodiment 4 of the present invention. It is a top view which shows the state which carried out.
  • Members having the same functions and effects as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the image display device 40 of Embodiment 4 includes a point light source 11 and the point light source 1.
  • the liquid crystal display 12 as a liquid crystal display means for emitting display image light from the display screen using 1, the convex lens 13 as a condensing means for condensing display image light from the liquid crystal display 12, and the position of the pupil
  • a light source driving device 14 as a light source driving means for detecting and automatically moving the light source position as a pinhole position instead of the point light source 11 so that the Maxwell's condensing convergence point A is located in the pupil;
  • a pinhole member 15 that can form a pinhole is provided, and a display image that is automatically positioned can be projected onto the retina through the pupil of the eye by Maxwell's view.
  • the pinhole member 15 may be an optical mask having a pinhole that allows a part of the light from the point light source 11 to pass therethrough.
  • the light source driving device 14 moves an optical mask having a pinhole in order to make the position of the pupil coincide with the light collecting point A.
  • the position of this optical mask is the position of the point light source 11.
  • LCD liquid crystal display
  • This liquid crystal display device uses a combination of the point light source 11 and the pinhole member 15 in the image display device of the present invention as a new point light source, as a point light source moving means, and a pinhole ( The movement of the opening hole) can be controlled.
  • FIG. 7B parallel light is used.
  • the present invention is not limited to this, and an automatic position adjustment effect between the pupil and the light collection point A can be obtained even by using a spherical wave.
  • the movement control is a movement in the direction perpendicular to the optical axis
  • the pinhole is Movement in the optical axis direction (front-rear direction) requires a moving part.
  • the HOE in the case of Embodiments 1 to 3 can be used instead of the convex lens 13 as the light collecting means, or the two cylindrical lenses of Embodiments 2 and 3 can be used.
  • the present embodiment 4 can be applied to a method for realizing a plurality of convergence points using a converging point shape contrivance or a lenticular lens or a cylindrical lens.
  • the image display devices 10, 20, 30, and 40 can be applied to electronic glasses, although not particularly described.
  • the electronic glasses can be equipped with a video camera device or the like, or a video camera device or a television set provided outside. It is also possible to supply an image signal from an image signal generator such as a monitor device or a monitor device to the liquid crystal display 12 to obtain a desired image.
  • the image light from the liquid crystal display 12 can be positioned in each pupil of both eyes with a convergence point A by Maxwell's view, and a sharp image by Maxwell's view can be seen by both eyes.
  • the position of the convergence point A of the spherical convergent light is automatically adjusted left and right and up and down.
  • the light is condensed in one direction (up and down direction) by the cylindrical lens 23a. Condensed in the other direction (left-right direction) with the cylindrical lens 23b, and crossed converging lines A and A
  • the convergence point A of Maxwell's view and the position of the pupil are easily and stably aligned to view a good sharp image in Maxwell's view Can do.
  • the electronic spectacles may be hand-held, fixed, one eye, or both eyes. If the electronic glasses are hand-held, you may or may not have a grip part if you have a hand-held part!
  • the present invention can be reduced in weight and size, the above hand-held electronic glasses can be set up in the shape of a round-necked lens, which is hands-free. Therefore, further visual support for visually impaired people is expected.
  • the light source driving device 14 may be provided.
  • the present invention provides an image display device for projecting image light directly on the retina through the pupil using Maxwell's vision, and a converging point of Maxwell's vision with a simple configuration in the field of electronic glasses using the same. Even with low vision, a good image by Maxwell's view can be seen by matching the position of the pupil easily and stably.
  • the electronic glasses can be equipped with a video camera device or the like, and can transmit image signals from an external video camera device, a television device, and an image signal generator such as a monitor device. It can also be supplied to a liquid crystal display device such as a liquid crystal display to obtain a desired image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

 簡単な構成で、マックスウェル視の集光収束点と瞳孔の位置とを容易かつ安定的に素早く合わせてマックスウェル視によるシャープな画像を見る。  凸レンズ13(またはHOE)に入射する表示画像光として図1(a)のように平行光を用いるかまたは、図1(b)のように平行光を用いずに、球面波を用いて、光源駆動装置14により点光源11の位置を自動調整すれば、瞳孔の位置に対するマックスウェル視の集光収束点Aの位置調整が容易かつ安定的に素早く為される。これと同時に、球面波を用いた図2(b)に示す光学系全体の光路長Lのように、平行光を用いた図2(a)の場合に比べて距離Mだけ短く構成することができる。

Description

明 細 書
画像表示装置および電子眼鏡
技術分野
[0001] 本発明は、マックスウェル視を用いて瞳孔を通して直に網膜に表示画像光を投影 するための画像表示装置およびこれを用いた電子眼鏡に関する。
背景技術
[0002] 従来、ピンホールカメラの原理で指向性の高い表示画像光を瞳孔位置で収束させ て、水晶体によるピント合わせをしないで、網膜に直接的に表示画像光を投影するマ ックスゥエル視は、焦点深度が深いために、水晶体や角膜の機能が低下した低視力 者であっても、網膜に焦点が合って、表示画像をぼやけずにシャープに見ることがで きる。
[0003] ところが、マックスウェル視の収束点を直径が約 2mm程度の瞳孔位置に合わせな ければならず、このマックスウェル視の収束点と瞳孔の位置とがー致しな 、と画像を 見ることができない。
[0004] これを解決する事例として、レーザスキャンを利用して、網膜投影方式のディスプレ ィを使った低視力者の読書力を測定した結果を報告した論文が非特許文献 1に開示 されている。
[0005] この非特許文献 1では、モノィル用に、ディスプレイを頭部にヘッドバンドで固定し 、これを眼の瞳孔の位置に合わせることによって網膜投影型表示装置力 網膜に映 像を投影すると 、うものである。
[0006] また、特許文献 1には、マックスウェル視を用いた疾患患者用の映像付与装置が開 示され、特許文献 2には、マックスウェル視によって観察者に映像を観察させることお よび、その段落番号 0011には映像の集光点を眼球の好適な位置に導くように調整 することが開示されている。また、特許文献 3の段落番号 0044および 0045には、観 察者の眼球の網膜に映像板の映像を投影する画像表示装置にぉ 、て、マックスゥェ ル視状態に、映像板に表示された映像が瞳孔に光源の像として収束されることが開 示されている。さらに、特許文献 4には、走査される光子を移動させて入射側の瞳の 位置と略一致させるための光子偏光器を有する仮想面像表示システムが開示されて いる。また、この特許文献 4の図 4には、マックスウェル視光学的システムが開示され ている。さら〖こ、特許文献 5には、光源光が液晶表示パネルを透過して得られる映像 光は接眼光学系(マックスウェル視)に供給されることが開示されている。
非特許文献 1 :Journal of Visual Impairment and Blindness, March 200
4 P148〜P159 ;「A Comparative With a Head— mounted Laser Displ ay and し onventional Low Vision DevicesJ
特許文献 1 :特開 2002- 282299号公報
特許文献 2 :特開 2005-55560号公報
特許文献 3 :特開 2004- 93769号公報
特許文献 4:特表平 8 - 502372号公報
特許文献 5 :特開 2003- 167212号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、マックスウェル視を用いた網膜投影型表示装置において、その表示 装置をヘッドバンドで頭部に装着し、表示装置からの映像を観察する際、この表示装 置の機器特有の性質上、まず初めに瞳孔位置に表示映像光の収束点を導くことが 困難であった。
[0008] 従来の非特許文献 1に示す装着機器はヘッドセットと一体となり、これを装着した場 合、ユーザ固有の生体である顔面に沿った位置に安定的に固定することが一層困難 であった。ある程度、 3次元的に位置の自由度を持たせた機構ではあるものの、その 自由度と同時に固定する必要もあり極めて複雑な機構となり大掛力りな構造となって いた。しかも、右目用と左目用とを取り替える必要があり、一層、マックスウェル視の収 束点と瞳孔の位置合わせに時間を要していた。
[0009] また、繰り返して説明するが、マックスウェル視を利用した非常に焦点深度の深い 光束を網膜に投影して、眼の結像機能を必要としな 、ディスプレイである網膜投影電 子めがねは、視覚障害者の視覚支援機器として有望視されているものの、システム の基本的な原理であるマックスウェル視は、瞳の中心点から映像を網膜に投影しな ければならない特質を持ち、これが使いやすい製品の実現の妨げとなっている。前 述した特許文献 1〜5では、マックスウェル視を利用した画像表示装置である力 い ずれも画像情報を含む収束点を瞳孔の位置に導くように調整することについては開 示しているものの、これをどのようにしてより容易かつ安定的に素早く自動調整するか についは何ら記載されて ヽな 、。
[0010] 本発明は、上記従来の問題を解決するもので、簡単な構成で、マックスウェル視の 集光収束点と瞳孔の位置とを容易かつ安定的に素早く合わせてマックスウェル視に よるシャープな画像を見ることができる画像表示装置およびこれを用いた電子眼鏡を 提供することを目的とする。
課題を解決するための手段
[0011] 本発明の画像表示装置は、マックスウェル視により眼の瞳孔を通して網膜に画像を 投影可能とする画像表示装置において、点光源と、該点光源を用いて表示画像光を 表示画面から出射させる表示手段と、該表示手段力 の表示画像光^^光させる集 光手段と、瞳孔の位置を検出し、該瞳孔にマックスウェル視の集光収束点が位置す るように該点光源の位置を自動移動制御する光源駆動手段とを備えており、そのこと により上記目的が達成される。
[0012] 本発明の画像表示装置は、マックスウェル視により眼の瞳孔を通して網膜に画像を 投影可能とする画像表示装置において、点光源と、該点光源を用いて表示画像光を 表示画面から出射させる表示手段と、該表示画像光を、それぞれ一方向に集光させ る 2枚のシリンドリカルレンズ手段とを備えており、そのことにより上記目的が達成され る。
[0013] 本発明の画像表示装置は、マックスウェル視により眼の瞳孔を通して網膜に画像を 投影可能とする画像表示装置において、点光源と、該点光源を用いて表示画像光を 表示画面から出射させる表示手段と、該表示手段力 の表示画像光^^光させる複 数の集光手段がアレイ状に並んだレイティキュラーレンズ手段とを備えており、そのこ とにより上記目的が達成される。
[0014] また、好ましくは、本発明の画像表示装置にお!、て、瞳孔の位置を検出し、該瞳孔 にマックスウェル視の集光収束点が位置するように該点光源の位置を自動移動制御 する光源駆動手段をさらに有する。
[0015] さらに、好ましくは、本発明の画像表示装置における光源駆動手段は、瞳孔の位置 を検出する瞳孔検出手段と、該瞳孔検出手段で検出した検出結果に応じて、マック スゥエル視の集光収束点と該瞳孔の位置とが 2次元的に一致するように、光軸方向 に対して少なくとも垂直面の直交する X方向および Y方向に前記点光源を移動させ る点光源移動手段とを有する。
[0016] また、好ましくは、本発明の画像表示装置における光源駆動手段は、瞳孔の位置 を検出する瞳孔検出手段と、前記点光源をランダム方向に所定量移動させ、該瞳孔 検出手段で瞳孔を検出した位置から、該瞳孔の中心にマックスウェル視の集光収束 点が来るように該点光源の位置を更に高精度に微調整する点光源移動手段とを有 する。
[0017] さらに、好ましくは、本発明の画像表示装置における集光手段は、凸レンズまたは ホログラフィック光学素子である。
[0018] さらに、好ましくは、本発明の画像表示装置における表示手段は液晶表示手段で ある。
[0019] さらに、好ましくは、本発明の画像表示装置における 2枚のシリンドリカルレンズ手 段は焦点位置が一致して 、る力または異なって 、る。
[0020] さらに、好ましくは、本発明の画像表示装置における点光源は、レーザ光発生装置
、フォトダイオードおよび蛍光ランプの少なくともいずれかであるかまたは、該点光源 およびピンホール部材の組合せである。
[0021] さらに、好ましくは、本発明の画像表示装置における点光源と点光源移動手段が液 晶表示装置で構成され、該液晶表示装置は、前記点光源およびピンホール部材の ピンホールの組合せを新たな点光源として、該ピンホール部材のピンホールを移動 制御可能とする。
[0022] 本発明の電子眼鏡は、請求項 1〜11のいずれかに記載の画像表示装置を用いて おり、そのことにより上記目的が達成される。
[0023] 本発明の電子眼鏡は、請求項 1〜11のいずれかに記載の画像表示装置と、該画 像表示装置に映像信号を供給可能とするビデオカメラ装置とを有しており、そのこと により上記目的が達成される。
[0024] 本発明の電子眼鏡は、好ましくは、手持ち式電子眼鏡または、鼻と耳で固定可能と する眼鏡である。
[0025] 上記構成により、以下、本発明の作用を説明する。
[0026] 本発明にあっては、(1)凸レンズまたはホログラフィック光学素子(HOE ;Holograp hie Optical Element)などの集光手段に入射する表示画像光を平行光とはせず に、球面波を用いることにより、点光源などの光源位置を移動制御して自動調整する ことにより、マックスウェル視の集光収束点の位置調整を、前後、左右および上下の 各方向で容易かつ安定に素早くできる(図 1および図 3参照)。これと同時に、光学系 の全長を短く構成することも可能である(図 2参照)。さらに、この光源位置の移動制 御は、直接、光源を移動させる方式 (後述する実施形態 1〜3)と、光源からの光を通 すピンホールを移動させる方式 (後述する実施形態 4)がある。後者の場合、ピンホー ルの移動を LCD (液晶表示パネル)など電子的に容易に制御できるデバイスを用い て実現することも可能である(図 7参照)。
(2)レンズまたは HOEなどの集光手段に入射する光は平行光を用い、点光源などの 光源位置を移動制御して自動調整することにより、マックスウェル視の集光収束点の 位置を左右および上下に移動制御して自動調節することが可能である。
(3)一方向の集光収束線だけに収束するシリンドリカルレンズ手段を 2枚用い、これら の集光収束線が直角に交差するように二つ組み合わせることにより、従来のマックス ゥエル視の収束点と同等の収束線 (クロス状の収束線)を実現できる。この方式を用 いる場合、直交する二つの方向(縦方向と横方向)で表示画像光の収束線の光軸方 向の位置 (焦点深度)をずらす (図 4 (c)の深度差 N)こともできるため、この深 、焦点 深度の広!、範囲 (深度差 N)にお 、て(5mmまでは実験良好)、従来のマックスゥヱ ル視の収束点と同等の効果を得ることができ、 + 20Dのレンズを挟んでもピントのタリ ァなシャープな映像を観察することが可能であった。また、これを、 HOEを用いて実 現した場合、シリンドリカルレンズであれば 2枚必要である力 1枚の HOEで実現可 能である。
(4)シリンドリカルレンズやレイティキュラーレンズ (またはシート)を垂直な方向(また は zおよび水平な方向)に組み合わせ、複数の収束点を容易に実現することができ る。特に、 HOEで複数の収束点を実現する場合には、これまでは単一収束点を作製 する撮影を複数回行い、多重露光する必要があった。しかし、この方式を用いれば、 1回の撮影で複数の収束点を有する HOEを作製することが可能となるため、 HOEの 感光材料として多くの利点を持つが多重感光に適さないホトポリマーを感材として用 Vヽることを可能とする(図 6参照)。
[0027] このように、マックスウェル視を利用した非常に焦点深度の深い光束を網膜に投影 して、眼の結像機能を必要としな 、ディスプレイである網膜投影電子めがねにぉ 、て 、眼窩とのインターフェイス部分の機構について、瞳孔と、画像情報を含んだ収束点 との位置合わせを容易に自動調整できる手段として、光学系全体を動かすのではな ぐ光学系の一部である光源やピンホール部分などを動かす手段、 2枚のシリンドリカ ルレンズを用いた新しい形態のマックスウェル視の実現手段、さらには、レイティキュ ラーレンズを用いた複数の収束点の実現手段が得られる。また、集光手段に HOEを 使えば、軽量で高機能化が可能となり、いっそう優れたディスプレイとなる。
[0028] 以上により、マックスウェル視の集光収束点 Aと瞳孔の位置とを容易かつ安定的に 素早く合わせてマックスウェル視によるシャープな画像を見ることが可能となる。
[0029] また、本発明の上記画像表示装置と、この画像表示装置に映像信号を供給可能と するビデオカメラ装置とを有する電子眼鏡が得られて、上記本発明の効果が得られる 。本発明は軽量で小型化が可能なため、鼻と耳で固定可能とする通常のめがね型に セットアップすれば、ハンズフリーとなって視覚障害者のいっそうの視覚支援が期待 される。
発明の効果
[0030] 以上により、本発明のよれば、収束点位置を例えば前後、左右および上下の少なく とも左右および上下方向に自動調整する力または、 2枚のシリンドリカルレンズ手段に よるクロス状の垂直収束線 Aおよび水平収束線 A上で、また、垂直収束線 Aおよ
V H V
び水平収束線 A の深度差 Nの範囲内で、または、レイティキュラーレンズ手段による
H
複数の収束点を用いて、マックスウェル視の収束点 Aと瞳孔の位置とを容易かつ安 定的に素早く合わせてマックスウェル視によるシャープな画像を見ることができる。 図面の簡単な説明
[0031] [図 1]本発明の実施形態 1に係る画像表示装置の一例を示す配置構成図であって、
(a)は、液晶ディスプレイに平行光線を入射させた状態を示す上面図、(b)は、点光 源を左右方向に移動させて収束点位置調節した状態を示す上面図である。
[図 2]図 1の画像表示装置において (a)は液晶ディスプレイに平行光線を入射させた 場合を示す配置構成図、 (b)は液晶ディスプレイに球面波光線を入射させた場合を 示す配置構成図である。
[図 3]本発明の実施形態 1に係る画像表示装置の一例を示す配置構成図であって、 (a)は、点光源を手前側に位置させて収束点を位置調節した状態を示す上面図、(b )は、 (a)の状態力も後ろ側に点光源を位置させて収束点を位置調節した状態を示 す上面図である。
[図 4] (a)および (b)は、本発明で用いるホログラフィック光学素子 (HOE)の製造方 法について説明するための図である。
[図 5]本発明の実施形態 2に係る画像表示装置のレンズ部分の一例を示す配置構成 図であって、(a)はそのレンズ部分の斜視図、(b)は垂直方向と水平方向で収束点の 焦点深度が同じ場合を示すそのレンズ部分の側面図および上面図、(c)は垂直方向 と水平方向で収束点の焦点深度が異なる場合を示すそのレンズ部分の側面図およ び上面図である。
[図 6]本発明の実施形態 3に係る画像表示装置のレンズ部分の一例を示す配置構成 図であって、(a)はそのレンズ部分の上面図、(b)はそのレンズ部分の側面図、(c)は そのレンズ部分の斜視図である。
[図 7]本発明の実施形態 1、 4に係る画像表示装置の一例をそれぞれ示す配置構成 図であって、(a)は、本発明の実施形態 1に係る画像表示装置の液晶ディスプレイに 平行光線を入射させた状態を示す上面図、(b)は、本発明の実施形態 4に係る画像 表示装置の点光源を移動せずにピンホールを左右方向(および Zまたは上下方向) に移動させて収束点位置調節した状態を示す上面図である。
符号の説明
[0032] 10, 20, 30, 40 画像表示装置 11 点光源
12 液晶ディスプレイ
13 凸レンズ(または HOE)
14 光源駆動装置
15 ピンホール部材
23a, 23b シリンド、ジ为ノレレンズ
33 レイティキュラーレンズ (またはシリンドリカルレンズ)
A, A1〜A3 集光点
A , A 集光線
V H
発明を実施するための最良の形態
[0033] 以下に、本発明の画像表示装置の実施形態 1〜4を投影型液晶表示装置に適用 した場合にっ 、て図面を参照しながら説明する。
[0034] (実施形態 1)
本実施形態 1では、球面波収束光 (または平行光)の収束点位置を左右および上 下に自動調整する場合について説明する。
[0035] 図 1は本発明の実施形態 1に係る投影型液晶表示装置の一例を示す配置構成図 であって、(a)は、液晶ディスプレイに平行光線を入射させた状態を示す上面図、(b
)は、点光源を左右方向に移動させて集光収束点の位置調節をする状態を示す上 面図である。
[0036] 図 1 (a)および図 1 (b)において、本実施形態 1の画像表示装置 10は、点光源 11と 、この点光源 11を用いて表示画像光を表示画面から出射させる液晶表示手段として の液晶ディスプレイ 12と、この液晶ディスプレイ 12からの表示画像光を集光させる集 光手段としての凸レンズ 13と、瞳孔の位置を検出し、瞳孔内にマックスウェル視の集 光収束点 Aが位置するように点光源 11の位置を自動移動制御する光源駆動手段と しての光源駆動装置 14とを備え、マックスウェル視により眼の瞳孔を通して網膜上に 表示画像を投影可能とする。
[0037] 点光源 11は、高輝度の白色発光ダイオード(白色 LED)やレーザ装置を用いる。
白色 LEDは、赤色 LED、緑色 LEDおよび青色 LEDからの各光を混合すると、白色 光が得られるので、これらの三原色の LEDを用いてもよ!、。
[0038] 液晶ディスプレイ 12は、透過投影型のカラー液晶ディスプレイ (カラー LCD)であつ て、ビデオカメラ装置など力もの画像信号が、図示されていない液晶表示制御装置 によってカラー LCDに供給されて表示制御が為されてその表示画面上に所望の画 像表示を行う。この場合、点光源 11は液晶ディスプレイ 12の後方に配置されてその ノ ックライトとして用いられて ヽる。
[0039] 凸レンズ 13は、液晶ディスプレイ 12からの表示画像光を網膜投影用に集光させて 瞳孔内の所定位置に集光収束点 Aを位置させるために用いる。なお、凸レンズ 13に 代えて、集光手段としてホログラフィック光学素子(HOE ; Holographic Optical e lement)を用いることもできる。フィルムからなる HOEを用いればプラスチックゃガラ ス製のレンズに比べてレンズ面(自由曲面と同じ特性を作ることが容易にできる)の成 形も容易であるし、その重量が格段に軽い。
[0040] 光源駆動装置 14は、瞳孔の位置 (瞳孔の動き)を検出する位置センサの瞳孔検出 手段と、この瞳孔検出手段で検出した検出結果に応じて、マックスゥヱル視の集光収 束点 Aと瞳孔の位置とが 2次元的に一致するように、点光源 11を光軸方向 C (前後方 向)に対して垂直面上の左右方向および上下方向(X, Y方向)に点光源 11を移動さ せる点光源移動手段としてのモータおよび X, Yテーブル手段(図示せず)とを有して いる。なお、点光源移動手段は、点光源 11をランダムに粗く動力して瞳 (瞳孔)を検 出した位置から、更に高精度に瞳孔中心にマックスウェル視の集光収束点 Aが来る ように点光源 11の位置を微調整してもよ 、。
[0041] 上記構成により、まず、瞳孔検出手段としての位置センサによってユーザの目の瞳 孔位置を検出し、ユーザの目の検出瞳孔位置に基づいて、点光源移動手段が、マツ クスゥエル視の集光収束点 Aと瞳孔の位置とが 2次元的に一致するように、点光源 11 の位置を光源駆動装置 14にて正面から見て左右方向(図 1 (a)および図 1 (b)の矢 印方向)および上下方向(図 1 (a)および図 1 (b)を側面図とした場合の矢印方向)に 移動させると、これと同様にマックスウェル視の集光収束点 Aの位置も左右方向およ び上下方向に移動する。このように、点光源 11の位置を光源駆動装置 14にて左右 および上下に二次元状に動力せば、それに応じて凸レンズ 13による液晶ディスプレ ィ 12の表示画像光の集光収束点 Aも、マックスウェル視の集光収束点 Aと瞳孔の位 置とが 2次元的に一致するように移動する。凸レンズ 13による液晶ディスプレイ 12の 画像光の集光収束点 Aを瞳孔内に位置させれば、マックスウェル視による網膜投影 が行われて、ユーザはシャープな表示画像を見ることができる。
[0042] 以上により、凸レンズ 13 (または HOE)に入射する表示画像光として図 1 (a)のよう に平行光を用いる力または、図 1 (b)のように平行光を用いずに、球面波を用いて、 光源駆動装置 14により点光源 11の位置を自動調整すれば、瞳孔の位置に対するマ ックスゥエル視の集光収束点 Aの位置調整が容易かつ安定的に素早く為される。こ れと同時に、球面波を用いた図 2 (b)に示す光学系全体の光路長 Lのように、平行光 を用いた図 2 (a)の場合に比べて距離 Mだけ短く構成することができる。なお、レンズ を用いた場合と同様に、 HOEを用いた場合にも、 HOEを再生する光を、今までは平 行光を用いていたが、球面波を用いることにより、光学系全体を短くできる。
[0043] なお、本実施形態 1では、光軸に垂直な方向に光源 11を移動させることにより、球 面収束光の集光収束点 Aの位置を、光軸に垂直な方向、例えば左右および上下方 向(平行光や球面波光でもよい)の平面上に位置調整する場合について説明したが 、これに限らず、光源駆動装置 14に光源 11を光軸方向 C (前後方向;球面波光のみ )にも駆動できる機構を加えて、点光源 11の位置を光源駆動装置 14にて光軸方向 C にも移動(例えば図 3 (b)の矢印方向)させることにより、球面収束光 (表示画像光)の 集光収束点 Aの位置を前後方向(光軸方向 C)に移動させて、収束点を瞳孔に近づ けたり遠ざけたりして、眼の奥行き位置 (瞳の位置)に対する集光収束点 Aの位置を 自動調整することちでさる。
[0044] また、凸レンズ 13 (または HOE)に入射する表示画像光は、平行光を用いずに球 面波を用いてもよぐ平行光を用いてもよい。凸レンズ 13に入射する表示画像光とし て平行光を用いる場合にも、点光源 11の位置を左右'上下に調整することにより、マ ックスゥエル視の集光収束点 Aの位置を左右 '上下に調節することが可能となる。液 晶ディスプレイ 12から凸レンズ 13 (または HOE)に入射される表示画像光として平行 光を用いる場合には、集光収束点 Aの位置を前後方向に調整することはできな 、。
[0045] さらに、上記実施形態 1では、特に説明しなかったが、前述した HOEの作製方法に ついて簡単に説明する。 HOEとは、ホログラフィの技術を用いて、レンズなどの光学 素子と同じような特性を持った光学素子を実現したもので、ホログラフィック光学素子 と呼ばれている。図 4に、簡単なレンズを HOEで実現する原理を示している。図 4 (a) では、点光源からの球面波をホログラム記録材料 13aに記録する様子を示して 、る。 このように記録された HOE (集光手段 13 ;ホログラム)に、図 4 (b)に示すように再生 光を照射してやると、記録時に用いた点光源が再生される。つまり、平行な光を 1点 に収束する凸レンズの機能が実現される。このような手法で、本発明に用いる HOE を作製する。
[0046] (実施形態 2)
本実施形態 2では、収束点の形状が工夫された球面収束光以外の集光収束線を 用いる場合にっ 、て説明する。
[0047] 図 5は、本発明の実施形態 2に係る画像表示装置のレンズ部分の一例を示す配置 構成図であって、(a)はそのレンズ部分の斜視図、(b)は垂直集光方向と水平集光 方向とで集光収束線の焦点深度が同じ場合を示すそのレンズ部分の側面図および 上面図、 (c)は垂直集光方向と水平集光方向とで集光収束線の焦点深度が異なる 場合を示すそのレンズ部分の側面図および上面図である。なお、図 1および図 2と同 様の作用効果を奏する部材には同一の符号を付してその説明を省略する。
[0048] 図 5において、本実施形態 2の画像表示装置 20は、点光源 11と、この点光源 11を 用いて表示画像光を表示画面から出射させる液晶表示手段としての液晶ディスプレ ィ 12と、それぞれ一方向に集光させるための「かまぼこ型レンズ」である 2枚のシリンド リカルレンズ手段としてのシリンドリカルレンズ 23aおよびシリンドリカルレンズ 23bとを 備えている。
[0049] シリンドリカルレンズ 23aおよびシリンドリカルレンズ 23bは、液晶ディスプレイ 12から の表示画像光をそれぞれ集光させて瞳孔内に集光収束点 A (垂直集光方向収束線 Aおよび水平集光方向収束線 A )を位置させるために、その断面凸形状の各長手
V H
方向を直交させるように所定間隔に配置している。これらの垂直集光方向収束線 A
V
と水平集光方向収束線 Aがー致する場合(図 5 (b)参照)には、その一致点が集光
H
収束点 Aであって、クロスした線状の垂直集光方向収束線 Aと水平集光方向収束 線 A上で表示画像がはっきりと見え、そのクロス点である集光収束点 Aで最もはっき
H
りとした映像を見ることができる。また、垂直集光方向収束線 Aと水平集光方向収束
V
線 Aがー致せず焦点深度が異なる場合 (図 5 (c)参照)には、垂直集光方向収束線
H
Aと水平集光方向収束線 A の光軸方向 Cにおける深度差 Nの範囲内で映像がシ
V H
ヤープに見える。この深度差 Nの範囲内であれば、マックスウェル視の集光収束点 A の場合ほどではないが、そこそこはっきりとした表示画像が見られる。
[0050] 上記構成により、液晶ディスプレイ 12からの表示画像光がシリンドリカルレンズ 23a で縦方向(上下方向)に集光され、さらに、液晶ディスプレイ 12からの画像光がシリン ドリカルレンズ 23bで横方向(左右方向)に集光されて、垂直集光方向収束線 Aと水
V
平集光方向収束線 Aがー致するマックスウェル視の集光収束点 Aが瞳孔内に位置
H
する場合に画像がはっきりと見える。クロスした線状の垂直集光方向収束線 Aと水平
V
集光方向収束線 Aでも画像がそれなりにはっきりと見える。また、垂直集光方向収
H
束線 Aと水平集光方向収束線 Aがー致せず各焦点深度が異なる場合には、垂直
V H
集光方向収束線 Aと水平集光方向収束線 Aの光軸方向 Cにおける深度差 Nの範
V H
囲内で映像がそれなりにはっきりと見える。
[0051] このように、 2枚のシリンドリカルレンズ 23aおよびシリンドリカルレンズ 23bを垂直な 方向に組み合わせて、それぞれの収束点を個別に決めることができ、両者を合わせ た場合は、これまでの収束点と等価である力 2枚のレンズの収束位置を意図的にず らした場合、両方の収束位置の間で、マックスウェル視と同様な効果を得ることができ る。約 5cmまでずらした場合、 20ジォプターのレンズを用いても(強度の近視に相当 )効果が確認できた。なお、このような 2枚のレンズを用いてもよいが、 HOEを用いれ ば、 1枚の HOEで実現できる。 2枚のレンズを用いた光学系と等価な機能を 1枚の H OEに焼きこむことができる。
[0052] 以上により、シリンドリカルレンズ 23aおよびシリンドリカルレンズ 23bにより、垂直方 向(上下方向)と水平方向 (左右方向)で焦点深度を変えることができる。焦点深度を 変えた範囲内 (深度差 N)で焦点ボケを抑えて、集光収束点 Aと瞳孔との位置合わせ をそれなりに行うことができる。
[0053] (実施形態 3) 本実施形態 3では、レイティキュラーレンズゃシリンドリカルレンズなどによる複数の 収束点を用いる場合にっ 、て説明する。
[0054] 図 6は本発明の実施形態 3に係る画像表示装置のレンズ部分の一例を示す配置構 成図であって、(a)はそのレンズ部分の上面図、(b)はそのレンズ部分の側面図、(c )はそのレンズ部分の斜視図である。なお、図 1および図 2と同様の作用効果を奏す る部材には同一の符号を付してその説明を省略する。
[0055] 図 6 (a)および図 6 (b)において、本実施形態 3の画像表示装置 30は、点光源 11と 、液晶ディスプレイ 12と、複数の集光手段としてのレイティキュラーレンズ手段(レイテ ィキユラ一レンズ 33)とを備えている。なお、このレイティキュラーレンズ手段として、複 数の集光点 Aを得るために、レイティキュラーレンズ 33の代わりに、図 6 (c)のシリンド リカルレンズ 33を用いることもできる。図 6 (c)のシリンドリカルレンズ 33を用いる場合 には、一方のシリンドリカルレンズは 1枚で、他方のシリンドリカルレンズはレンズがァ レイ状に並んだ複数枚力 構成されて!、る。
[0056] レイティキュラーレンズ 33は、複数の凸レンズがアレイ状でシート状に連続して設け られており、液晶ディスプレイ 12からの画像光を複数点(ここでは三つ)で集光させて 瞳孔に対して必ず一つの収束点 Aを位置させるために用いる。これらの凸レンズによ る複数の収束点 A(A1〜A3)の隣接距離は、瞳孔の直径かそれよりも僅かに小さい 距離であることが望ましぐここでは、その隣接距離を 1.5mn!〜 2.0mmとしている。こ の隣接距離が 1.5mmよりも小さ 、と、瞳孔内に二つの収束点 Aが位置する可能性が あり、網膜上に投影される画像が二重にダブって見える。また、この隣接距離が 2.0 mmよりも大きいと、瞳孔が移動した際に瞳孔上に収束点 Aが存在しない場合が生じ 、網膜上にマックスウェル視による画像が投影されない場合が生じるからである。
[0057] 上記構成により、液晶ディスプレイ 12からの画像光がレイティキュラーレンズ 33の 複数の凸レンズによりそれぞれ集光されて複数の収束点 A1〜A3を得る。これらの 収束点 A1〜A3のピッチは瞳孔の直径と略等しいので瞳孔内には必ず一つの収束 点 Aを位置させることができる。したがって、マックスウェル視の収束点 A1〜A3のい ずれ力と瞳孔の位置とを容易かつ安定的に合わせてマックスウェル視による良好な 画像を見ることができる。 [0058] 以上により、レイティキュラーレンズ 33 (またはレイティキュラーシート)ゃシリンドリカ ルレンズ 33を垂直な方向に配置し、これによつて複数の収束点 A1〜A3 (ここでは三 つ)を実現することができる。特に、 HOEで複数の収束点を実現する場合には、この 方式を用いれば、前述したように 1回の撮影で HOEを作製することが可能となるため 、感材にホトポリマーを用いた場合でも有効である。本実施形態 3では、図 6 (c)の 3 次元図に示すように前後 2つのシリンドリカルレンズを組み合わせて複数の収束点 A が同時に複数 (ここでは三つ)できる力 これを HOEであれば 1枚で実現可能である 。 HOEで実現する場合、 1点づっ記録して、銀塩の感光材料を用いた場合、多重記 録で複数の収束点を実現できる力 フォトポリマーでは、これが困難である。これは、 フォトポリマー材料の特性上、多重記録ができないためである。ところが、図 6 (c)の 光学系で、複数の収束点を 1回の記録で HOEにする場合には、フォトポリマーでも 可能となる。銀塩感光材料よりもフォトポリマー材料を用いた方が、光の利用効率と取 り扱 、の簡単さから断然有利である。
[0059] (実施形態 4)
上記実施形態 1では、光源 11の位置を光源駆動装置 14にて左右、上下および前 後の各方向のうち、少なくとも左右および上下の各方向に移動させることにより、マツ クスゥエル視の集光点 Aの位置も、少なくとも左右および上下の各方向に移動させて 、集光点 Aの位置を瞳孔の位置に自動調整することができる場合について説明した 力 本実施形態 4では、光源位置の移動制御として、光源 11を直接移動させる方式 に代えて、光源 11からの光を通すピンホールを光源駆動装置 14にて移動させる方 式について説明する。
[0060] 図 7は、本発明の実施形態 1、 4に係る画像表示装置の一例をそれぞれ示す配置 構成図であって、(a)は、本発明の実施形態 1に係る画像表示装置の液晶ディスプレ ィに平行光線を入射させた状態を示す上面図、(b)は、本発明の実施形態 4に係る 画像表示装置の点光源の代わりにピンホールを左右方向に移動させて収束点位置 調節した状態を示す上面図である。なお、図 1および図 2と同様の作用効果を奏する 部材には同一の符号を付してその説明を省略する。
[0061] 図 7 (b)において、本実施形態 4の画像表示装置 40は、点光源 11と、この点光源 1 1を用いて表示画像光を表示画面から出射させる液晶表示手段としての液晶ディス プレイ 12と、この液晶ディスプレイ 12からの表示画像光を集光させる集光手段として の凸レンズ 13と、瞳孔の位置を検出し、瞳孔内にマックスウェル視の集光収束点 Aが 位置するように、点光源 11に代えてピンホール位置である光源位置を自動移動制御 する光源駆動手段としての光源駆動装置 14と、ピンホールを形成可能とするピンホ 一ル部材 15とを備え、マックスウェル視により眼の瞳孔を通して網膜上に、自動位置 調整された表示画像を投影可能とする。
[0062] ピンホール部材 15は、点光源 11からの光の一部を透過可能とするピンホールを有 する光学マスクであってもよい。この場合には、光源駆動装置 14は、瞳孔の位置と集 光点 Aを一致させるために、ピンホールを持つ光学マスクを移動させる。この光学マ スクの位置が点光源 11の位置となる。この光学マスクおよび光源駆動装置 14の点光 源移動手段を実現するデバイスとして、液晶表示装置 (LCD)を用いることにより、光 源の位置 (光学マスクの開口部の位置)の制御を可動部なしに電子的に容易かつ正 確に行うことができる。この液晶表示装置 (LCD)は、本発明の画像表示装置におけ る点光源 11およびピンホール部材 15の組合せを、新たな点光源として、点光源移動 手段として、ピンホール部材 15のピンホール(開口穴)を移動制御可能とする。
[0063] 図 7 (b)では、平行光を用いているが、これに限らず、球面波を用いても、瞳孔と集 光点 Aとの自動位置調整効果が得られる。また、本実施形態 4で、ピンホール (開口 部)とその移動制御に液晶表示装置 (LCD)を用いる場合には、その移動制御は光 軸に対して垂直方向の移動であって、ピンホールの光軸方向(前後方向)の移動は 可動部を必要とする。さらに、この場合にも、集光手段としての凸レンズ 13に代えて、 上記実施形態 1〜3の場合の上記 HOEを用いることもできるし、上記実施形態 2、 3 の 2枚のシリンドリカルレンズを用いた収束点形状の工夫や、レイティキュラーレンズ ゃシリンドリカルレンズなどを用いた複数の収束点の実現手法に、本実施形態 4を適 用することちでさる。
[0064] なお、上記実施形態 1〜4では、特に説明しな力つたが、上記画像表示装置 10, 2 0、 30および 40を電子眼鏡に適用することができる。この電子眼鏡は、ビデオカメラ 装置などを装着することもできるし、外部に設けられたビデオカメラ装置やテレビジョ ン装置、さらにはモニタ装置などの画像信号発生装置力ゝらの画像信号を液晶ディス プレイ 12に供給して所望の画像を得ることもできる。液晶ディスプレイ 12からの画像 光を両眼の各瞳孔にそれぞれマックスウェル視による収束点 Aを位置させて、マック スゥエル視によるシャープな画像を両眼で見ることができる。このとき、上記実施形態 1では、球面収束光の収束点 Aの位置を左右および上下に自動調整し、上記実施形 態 2では、シリンドリカルレンズ 23aで一方向(上下方向)に集光され、さらにシリンドリ カルレンズ 23bで他方向(左右方向)に集光して、クロス状の収束線 Aおよび A上
V H
で、また、収束線 Aおよび A の深度差 Nの範囲内で、上記実施形態 3では、レイテ
V H
ィキユラ一レンズ 33による複数の収束点 A1〜A3を用いて、マックスウェル視の収束 点 Aと瞳孔の位置とを容易かつ安定的に合わせてマックスウェル視による良好なシャ ープな画像を見ることができる。
[0065] この電子眼鏡は手持ち式であっても固定式であっても片目用であっても両目用で あってもよい。電子眼鏡が手持ち式の場合に、グリップ部を有していてもよいしなくて も手で持つ部分があればよ!、。
[0066] また、本発明は軽量小型化が可能なため、上記手持ち式電子眼鏡ではなぐまが ね型にセットアップすることができ、ハンズフリーとなる。よって、視覚障害者の一層の 視覚支援が期待される。
[0067] また、上記実施形態 2, 3では特に説明しな力つたが、光源駆動装置 14を設けてい てもよい。
[0068] 以上のように、本発明の好ましい実施形態 1〜3を用いて本発明を例示してきた力 本発明は、この実施形態 1〜3に限定して解釈されるべきものではない。本発明は、 特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当 業者は、本発明の具体的な好ましい実施形態 1〜3の記載から、本発明の記載およ び技術常識に基づ 、て等価な範囲を実施することができることが理解される。本明細 書において引用した特許、特許出願および文献は、その内容自体が具体的に本明 細書に記載されているのと同様にその内容が本明細書に対する参考として援用され るべきであることが理解される。
産業上の利用可能性 本発明は、マックスウェル視を用いて瞳孔を通して直に網膜に画像光を投影するた めの画像表示装置およびこれを用いた電子眼鏡の分野において、簡単な構成で、 マックスウェル視の収束点と瞳孔の位置とを容易かつ安定的に合わせて低視力者で あってもマックスウェル視による良好な画像を見ることができる。また、これを電子眼鏡 に適用することができる。この電子眼鏡は、ビデオカメラ装置などを装着することもで きるし、外部に設けられたビデオカメラ装置やテレビジョン装置、さらにはモニタ装置 などの画像信号発生装置からの画像信号を透過投影型の液晶ディスプレイなどの液 晶表示装置に供給して所望の画像を得るようにすることもできる。

Claims

請求の範囲
[1] マックスウェル視により眼の瞳孔を通して網膜に画像を投影可能とする画像表示装 ¾【こ; i l /、て、
点光源と、該点光源を用いて表示画像光を表示画面から出射させる表示手段と、 該表示手段からの表示画像光を集光させる集光手段と、瞳孔の位置を検出し、該瞳 孔にマックスウェル視の集光収束点が位置するように該点光源の位置を自動移動制 御する光源駆動手段とを備えた画像表示装置。
[2] マックスウェル視により眼の瞳孔を通して網膜に画像を投影可能とする画像表示装 ¾【こ; i l /、て、
点光源と、該点光源を用いて表示画像光を表示画面から出射させる表示手段と、 該表示画像光を、それぞれ一方向に集光させる 2枚のシリンドリカルレンズ手段とを 備えた画像表示装置。
[3] マックスウェル視により眼の瞳孔を通して網膜に画像を投影可能とする画像表示装 ¾【こ; i l /、て、
点光源と、該点光源を用いて表示画像光を表示画面から出射させる表示手段と、 該表示手段からの表示画像光を集光させる複数の集光手段がアレイ状に並んだレ ィティキユラ一レンズ手段とを備えた画像表示装置。
[4] 瞳孔の位置を検出し、該瞳孔にマックスウェル視の集光収束点が位置するように該 点光源の位置を自動移動制御する光源駆動手段をさらに有する請求項 2または 3に 記載の画像表示装置。
[5] 前記光源駆動手段は、瞳孔の位置を検出する瞳孔検出手段と、該瞳孔検出手段 で検出した検出結果に応じて、マックスウェル視の集光収束点と該瞳孔の位置とが 2 次元的に一致するように、光軸方向に対して少なくとも垂直面の直交する X方向およ ひ Ύ方向に前記点光源を移動させる点光源移動手段とを有する請求項 1または 4〖こ 記載の画像表示装置。
[6] 前記光源駆動手段は、瞳孔の位置を検出する瞳孔検出手段と、前記点光源をラン ダム方向に所定量移動させ、該瞳孔検出手段で瞳孔を検出した位置から、該瞳孔の 中心にマックスウェル視の集光収束点が来るように該点光源の位置を更に高精度に 微調整する点光源移動手段とを有する請求項 1または 4に記載の画像表示装置。
[7] 前記集光手段は、凸レンズまたはホログラフィック光学素子である請求項 1または 3 に記載の画像表示装置。
[8] 前記表示手段は液晶表示手段である請求項 1〜3の 、ずれかに記載の画像表示 装置。
[9] 前記 2枚のシリンドリカルレンズ手段は焦点位置が一致して 、る力または異なって
V、る請求項 2に記載の画像表示装置。
[10] 前記点光源は、レーザ光発生装置、フォトダイオードおよび蛍光ランプの少なくとも
V、ずれかであるかまたは、該点光源およびピンホール部材の組合せである請求項 1 〜6の 、ずれかに記載の画像表示装置。
[11] 前記点光源と前記点光源移動手段が液晶表示装置で構成され、該液晶表示装置 は、前記点光源およびピンホール部材のピンホールの組合せを新たな点光源として 、該ピンホール部材のピンホールを移動制御可能とする請求項 5または 6に記載の画 像表示装置。
[12] 請求項 1〜11のいずれかに記載の画像表示装置を用いた電子眼鏡。
[13] 請求項 1〜11のいずれかに記載の画像表示装置と、該画像表示装置に映像信号 を供給可能とするビデオカメラ装置とを有する電子眼鏡。
[14] 手持ち式電子眼鏡または、鼻と耳で固定可能とする眼鏡である請求項 13または 14 に記載の電子眼鏡。
PCT/JP2005/018477 2004-10-07 2005-10-05 画像表示装置および電子眼鏡 WO2006038662A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05790488A EP1798589A1 (en) 2004-10-07 2005-10-05 Image display unit and electronic glasses
US11/576,830 US20080266530A1 (en) 2004-10-07 2005-10-05 Image Display Unit and Electronic Glasses
JP2006539324A JPWO2006038662A1 (ja) 2004-10-07 2005-10-05 画像表示装置および電子眼鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004295400 2004-10-07
JP2004-295400 2004-10-07

Publications (1)

Publication Number Publication Date
WO2006038662A1 true WO2006038662A1 (ja) 2006-04-13

Family

ID=36142734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018477 WO2006038662A1 (ja) 2004-10-07 2005-10-05 画像表示装置および電子眼鏡

Country Status (4)

Country Link
US (1) US20080266530A1 (ja)
EP (1) EP1798589A1 (ja)
JP (1) JPWO2006038662A1 (ja)
WO (1) WO2006038662A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294605A (ja) * 2008-06-09 2009-12-17 Canon Inc 走査型表示装置
WO2015136850A1 (ja) * 2014-03-12 2015-09-17 オリンパス株式会社 表示装置
KR20190097675A (ko) * 2018-02-13 2019-08-21 전자부품연구원 시공간 다중화 방법을 적용한 맥스웰리안 디스플레이
US11156896B2 (en) 2019-10-31 2021-10-26 Samsung Electronics Co., Ltd. Augmented reality device
CN113916502A (zh) * 2021-09-29 2022-01-11 歌尔光学科技有限公司 智能眼镜红外led测试方法、系统及其定位方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788977B2 (en) * 2008-11-20 2014-07-22 Amazon Technologies, Inc. Movement recognition as input mechanism
US8878773B1 (en) 2010-05-24 2014-11-04 Amazon Technologies, Inc. Determining relative motion as input
GB201103200D0 (en) * 2011-02-24 2011-04-13 Isis Innovation An optical device for the visually impaired
US9123272B1 (en) 2011-05-13 2015-09-01 Amazon Technologies, Inc. Realistic image lighting and shading
US9041734B2 (en) 2011-07-12 2015-05-26 Amazon Technologies, Inc. Simulating three-dimensional features
US8754831B2 (en) 2011-08-02 2014-06-17 Microsoft Corporation Changing between display device viewing modes
US10088924B1 (en) 2011-08-04 2018-10-02 Amazon Technologies, Inc. Overcoming motion effects in gesture recognition
US8947351B1 (en) 2011-09-27 2015-02-03 Amazon Technologies, Inc. Point of view determinations for finger tracking
US9223415B1 (en) 2012-01-17 2015-12-29 Amazon Technologies, Inc. Managing resource usage for task performance
US8884928B1 (en) 2012-01-26 2014-11-11 Amazon Technologies, Inc. Correcting for parallax in electronic displays
US9063574B1 (en) 2012-03-14 2015-06-23 Amazon Technologies, Inc. Motion detection systems for electronic devices
US9285895B1 (en) 2012-03-28 2016-03-15 Amazon Technologies, Inc. Integrated near field sensor for display devices
US9423886B1 (en) 2012-10-02 2016-08-23 Amazon Technologies, Inc. Sensor connectivity approaches
CN104781873B (zh) * 2012-11-13 2017-06-06 索尼公司 图像显示装置、图像显示方法、移动装置、图像显示系统
US9035874B1 (en) 2013-03-08 2015-05-19 Amazon Technologies, Inc. Providing user input to a computing device with an eye closure
JP6449236B2 (ja) * 2013-03-25 2019-01-09 インテル コーポレイション 多射出瞳頭部装着型ディスプレイのための方法および装置
US9269012B2 (en) 2013-08-22 2016-02-23 Amazon Technologies, Inc. Multi-tracker object tracking
US11199906B1 (en) 2013-09-04 2021-12-14 Amazon Technologies, Inc. Global user input management
US10055013B2 (en) 2013-09-17 2018-08-21 Amazon Technologies, Inc. Dynamic object tracking for user interfaces
US9367203B1 (en) 2013-10-04 2016-06-14 Amazon Technologies, Inc. User interface techniques for simulating three-dimensional depth
US20150362733A1 (en) * 2014-06-13 2015-12-17 Zambala Lllp Wearable head-mounted display and camera system with multiple modes
US9507066B2 (en) 2014-06-30 2016-11-29 Microsoft Technology Licensing, Llc Eyepiece for near eye display system
EP4173550A1 (en) 2015-03-16 2023-05-03 Magic Leap, Inc. Diagnosing and treating health ailments
AU2017246901B2 (en) 2016-04-08 2022-06-02 Magic Leap, Inc. Augmented reality systems and methods with variable focus lens elements
KR102483970B1 (ko) 2017-02-23 2022-12-30 매직 립, 인코포레이티드 편광 변환에 기초한 가변-포커스 가상 이미지 디바이스들
US11385464B2 (en) * 2020-04-09 2022-07-12 Nvidia Corporation Wide angle augmented reality display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277822A (ja) * 2001-03-21 2002-09-25 Japan Science & Technology Corp 網膜投影表示方法及びそのための装置
JP2002318365A (ja) * 2001-04-20 2002-10-31 Sanyo Electric Co Ltd 網膜投影型ディスプレイ
JP2004157173A (ja) * 2002-11-01 2004-06-03 Japan Science & Technology Agency 広視域網膜投影型表示システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3159477B2 (ja) * 1990-07-31 2001-04-23 キヤノン株式会社 眼科装置
US5648871A (en) * 1991-06-28 1997-07-15 Canon Kabushiki Kaisha Projection apparatus utilizing an anamorphic optical system
US5467104A (en) * 1992-10-22 1995-11-14 Board Of Regents Of The University Of Washington Virtual retinal display
US5596339A (en) * 1992-10-22 1997-01-21 University Of Washington Virtual retinal display with fiber optic point source
US6008781A (en) * 1992-10-22 1999-12-28 Board Of Regents Of The University Of Washington Virtual retinal display
US5923399A (en) * 1996-11-22 1999-07-13 Jozef F. Van de Velde Scanning laser ophthalmoscope optimized for retinal microphotocoagulation
US6593957B1 (en) * 1998-09-02 2003-07-15 Massachusetts Institute Of Technology Multiple-viewer auto-stereoscopic display systems
US7374287B2 (en) * 1999-11-01 2008-05-20 Jozef F. Van de Velde Relaxed confocal catadioptric scanning laser ophthalmoscope
JP2002287079A (ja) * 2001-03-26 2002-10-03 Eiji Shimizu 映像付与装置
JP3998464B2 (ja) * 2001-11-30 2007-10-24 三洋電機株式会社 映像付与装置
WO2003079272A1 (en) * 2002-03-15 2003-09-25 University Of Washington Materials and methods for simulating focal shifts in viewers using large depth of focus displays
JP3899000B2 (ja) * 2002-08-30 2007-03-28 三菱電機株式会社 画像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277822A (ja) * 2001-03-21 2002-09-25 Japan Science & Technology Corp 網膜投影表示方法及びそのための装置
JP2002318365A (ja) * 2001-04-20 2002-10-31 Sanyo Electric Co Ltd 網膜投影型ディスプレイ
JP2004157173A (ja) * 2002-11-01 2004-06-03 Japan Science & Technology Agency 広視域網膜投影型表示システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294605A (ja) * 2008-06-09 2009-12-17 Canon Inc 走査型表示装置
WO2015136850A1 (ja) * 2014-03-12 2015-09-17 オリンパス株式会社 表示装置
KR20190097675A (ko) * 2018-02-13 2019-08-21 전자부품연구원 시공간 다중화 방법을 적용한 맥스웰리안 디스플레이
KR102026015B1 (ko) * 2018-02-13 2019-09-26 전자부품연구원 시공간 다중화 방법을 적용한 맥스웰리안 디스플레이
US11852847B2 (en) 2018-02-13 2023-12-26 Korea Electronics Technology Institute Maxwellian view display applying space-time multiplexing method
US11156896B2 (en) 2019-10-31 2021-10-26 Samsung Electronics Co., Ltd. Augmented reality device
US11586091B2 (en) 2019-10-31 2023-02-21 Samsung Electronics Co., Ltd. Augmented reality device
CN113916502A (zh) * 2021-09-29 2022-01-11 歌尔光学科技有限公司 智能眼镜红外led测试方法、系统及其定位方法
CN113916502B (zh) * 2021-09-29 2024-03-15 歌尔科技有限公司 智能眼镜红外led测试方法、系统及其定位方法

Also Published As

Publication number Publication date
US20080266530A1 (en) 2008-10-30
EP1798589A1 (en) 2007-06-20
JPWO2006038662A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006038662A1 (ja) 画像表示装置および電子眼鏡
CN107407812B (zh) 图像显示装置
CN104254800B (zh) 图像生成系统及图像生成方法
KR100484174B1 (ko) 머리장착형 표시장치
CN117055231A (zh) 眼睛投影系统和方法
JPH03214872A (ja) 眼鏡型網膜直接表示装置
JP2009128565A (ja) 表示装置、表示方法及びヘッドアップディスプレイ
CN114207501A (zh) 用于利用扩展光束近眼观看的可穿戴显示器
JP7275124B2 (ja) 映像投射システム、映像投射装置、映像表示光回折用光学素子、器具、及び映像投射方法
JP4945691B2 (ja) 表示装置、表示方法及びヘッドアップディスプレイ
KR101941880B1 (ko) 자유 초점 디스플레이 장치
JP2013148609A (ja) 網膜投影表示装置
JP3698582B2 (ja) 画像表示装置
JP5267256B2 (ja) ヘッドマウントディスプレイ
CN216485801U (zh) 一种光学成像系统、图像显示装置及增强现实显示设备
WO2021256313A1 (ja) 表示装置
JP7282437B2 (ja) ヘッドマウントディスプレイ
JPH11109279A (ja) 映像表示装置
JPH11109278A (ja) 映像表示装置
JP4590916B2 (ja) 画像表示装置
JPH1164781A (ja) 網膜直接描画装置
JP3709921B2 (ja) 眼疾患者への映像付与方法及び映像付与装置
JP3373265B2 (ja) 頭部装着型映像表示装置
WO2023157481A1 (ja) 表示装置及び表示システム
TWI294528B (en) System and method for channeling images within a head mounted display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005790488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006539324

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005790488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576830

Country of ref document: US