WO2006038420A1 - ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法 - Google Patents

ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法

Info

Publication number
WO2006038420A1
WO2006038420A1 PCT/JP2005/016487 JP2005016487W WO2006038420A1 WO 2006038420 A1 WO2006038420 A1 WO 2006038420A1 JP 2005016487 W JP2005016487 W JP 2005016487W WO 2006038420 A1 WO2006038420 A1 WO 2006038420A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
nanoparticles
modified
metal
Prior art date
Application number
PCT/JP2005/016487
Other languages
English (en)
French (fr)
Inventor
Ryotaro Tsuji
Yoshiharu Yonemushi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006539198A priority Critical patent/JP5014796B2/ja
Publication of WO2006038420A1 publication Critical patent/WO2006038420A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a method for producing metal chalcogenide nanoparticles modified with a polymer.
  • the present invention also relates to polymer-modified metal chalcogenide nanoparticles produced by the method.
  • Metal chalcogenide nanoparticles with a particle size of lOOnm or less are used for many applications such as catalysts, UV shielding materials, fluorescent materials, luminescent materials, paints, and magnetic materials by utilizing the size and quantum properties of their surface areas. Development is being considered. However, since such metal chalcogenide nanoparticles have high surface activity, it is difficult to produce agglomerated or immediately in a stable dispersed form, and it is also difficult to separate and purify the raw material power. Conventionally, modification of nanoparticles with a protective agent has been proposed as a technique for preventing such aggregation of nanoparticles and isolating them stably.
  • the protective agent examples include low-molecular thiols such as dodecanethiol and mercaptoacetic acid, long-chain alkylcarboxylic acids such as oleic acid and stearic acid, long-chain alkylamines such as oleylamine and dodecylamine, trioctylphosphine oxide, and tributylphosphine oxide. And long-chain alkyl phosphine oxides, and coordination polymers such as polyvinyl bidonidone and polyvinyl pyridine.
  • Patent Document 1 proposes a metal chalcogenide nanoparticle whose surface is complex-modified with a low molecular thiol and a low molecular amine, but it cannot be stored for a long time exceeding 1 month.
  • Patent Document 2 describes a method for extracting semiconductor nanoparticles into an organic solvent using a fat-soluble surface modifying molecule. However, since the molecular weight of the fat-soluble surface modifying molecule is small, The dispersion stability was insufficient.
  • Patent Document 3 stabilizes with a surface stabilizer
  • a method is described in which the surface stabilizer of the formed semiconductor nanoparticles is replaced to perform interconversion between hydrophilicity and lipophilicity, and the semiconductor nanoparticles are transferred to the water layer and the organic layer to be recovered.
  • this method is a method for producing multi-layered semiconductor nanoparticles, and when a polymer is used as a surface stabilizer, it becomes impossible to form an outer shell layer. Therefore, a low molecular compound is used as the surface stabilizer. Therefore, there was a drawback that the stability of the nanoparticles was poor.
  • Non-Patent Document 1 when a coordination polymer such as carboxyl group-containing polystyrene is used, there is a problem in long-term stability due to weak adhesion to nanoparticles. . Further, when a coordination polymer is used, it is difficult to purify the nanoparticles because the raw material for nanoparticle synthesis is also taken in. As a polymer capable of strongly modifying semiconductor nanoparticles, Patent Document 4 and Patent Document 5 describe a technique using polyalkylene glycol having an SH group at the terminal.
  • Patent Document 6 describes the power of semiconductor nanoparticles surface-modified with a polymer having a phosphorus atom-containing ligand. Since the synthesis of the polymer is complicated and the productivity is low, it is not practical. Patent Document 1: JP 2003-89522
  • Patent Document 2 JP 2003-73126 A
  • Patent Document 3 JP 2003-226521
  • Patent Document 4 JP 2002-121548
  • Patent Document 5 JP 2002-121549
  • Patent Document 6 JP-A-2002-105325
  • Non-Patent Document 1 X. Yang et al., Langmuir 2004, 20, 6071
  • the problem to be solved by the present invention is to provide a simple and economical method for producing and purifying polymer-modified metal chalcogenide nanoparticles that are stable for a long period of time by preventing aggregation.
  • the method for producing polymer-modified metal chalcogenide nanoparticles of the present invention comprises a metal chalcogenide nanoparticles synthesized in a hydrophilic solvent and having a number average particle diameter of lOOnm or less as a functional group-containing hydrophobic low molecular weight compound. Extracting into a hydrophobic solvent by modification, and then substituting the hydrophobic low molecular compound with a functional group-containing hydrophobic polymer
  • the metal chalcogenide nanoparticles are obtained by mixing a metal compound and a chalcogenizing agent in a hydrophilic solvent.
  • the metal compound comprises a metal halide, a metal organic acid salt, a metal nitrate, a metal sulfate, a metal perchlorate, or a metal acetylyl acetate.
  • a metal halide a metal organic acid salt
  • a metal nitrate a metal nitrate
  • a metal sulfate a metal perchlorate
  • a metal acetylyl acetate a metal acetylyl acetate.
  • a preferred embodiment of the present invention is that the chalcogenating agent power MOH, MS, MSH, HS,
  • a preferred embodiment of the present invention is that the metal forces in the metal chalcogenide nanoparticles are Zn, Ti, Zr, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, Ir, and Ni ⁇ Pd.
  • Cu Ag, Cd, Al, Ga, In, Si, Ge, Sn, Pb, lanthanoids, actinoids, one or more elements selected from the group consisting of actinoid forces.
  • the number average particle diameter of the metal chalcogenide nanoparticles is Inn! It is in the range of ⁇ 20nm.
  • a preferred embodiment of the present invention is that the functional group in the functional group-containing hydrophobic low molecular compound and the functional group-containing hydrophobic polymer compound is a hydroxyl group, a carboxyl group, a mercapto group, an amino group, a force.
  • Metal salt power One or more groups selected from the group consisting of:
  • the functional group-containing hydrophobic polymer is a (meth) alkyl. It has a structure obtained by polymerizing one or more types of monomers selected from the group consisting of lauric acid ester, styrene, acrylonitrile, and salt bubu force.
  • the functional group-containing hydrophobic polymer compound is synthesized by reversible addition / elimination chain transfer polymerization using a thiocarbonylthio compound as a chain transfer agent.
  • the functional group-containing hydrophobic polymer compound is obtained by converting a terminal to a mercapto group after reversible addition / elimination chain transfer polymerization.
  • the present invention also includes polymer-modified metal chalcogenide nanoparticles obtained by the production method described above.
  • metal chalcogenide nanoparticles can be easily and economically modified with a polymer, and aggregation can be prevented and stably stored for a long period of time. Furthermore, according to the method of the present invention, metal chalcogenide nanoparticles can be easily separated and purified from unreacted raw materials, and high-purity metal chalcogenide nanoparticles can be produced. Since the polymer-modified metal chalcogenide nanoparticles obtained by the method of the present invention are excellent in optical, electronic, and quantum properties, they are excellent as ultraviolet shielding materials, fluorescent materials, light emitting materials, magnetic materials, and the like.
  • FIG. 1 ZnO nanoparticles extracted into a hexane layer with oleic acid.
  • the right side does not contain oleic acid and the left side contains oleic acid.
  • the upper layer is the hexane layer and the lower layer is the methanol layer. Taken under UV lamp (365nm) irradiation.
  • the method of the present invention extracts metal chalcogenide nanoparticles synthesized in a hydrophilic solvent and having a number average particle diameter of lOOnm or less with a functional group-containing hydrophobic low molecular weight compound into a hydrophobic solvent. Then, the hydrophobic low molecular weight compound is substituted with a functional group-containing hydrophobic high molecular weight compound in the next step.
  • hydrophilicity is defined as a property that the solubility in water is twice or more than the solubility in toluene.
  • the hydrophilic solvent used in the above is not particularly limited as long as this condition is satisfied, but water, methanol, ethanol, 2-propanol, acetone, dimethylformamide (in terms of availability and suitability for the synthesis of metal chalcogenide ( DMF) and dimethyl sulfoxide (DMSO) are preferred. These may be used alone or in combination. It is also possible to add a small amount of hydrophobic solvent within the range without impairing hydrophilicity.
  • the metal chalcogenide nanoparticles of the present invention have a number average particle diameter of lOOnm or less. When the particle diameter exceeds lOOnm, the properties unique to nanoparticles disappear and become close to the properties of Balta.
  • the number average particle diameter of the metal chalcogenide nanoparticles is preferably in the range of 1 to 50 nm, more preferably in the range of 1 to 20 nm, in that the characteristic expression due to the size effect becomes remarkable.
  • the number average particle size of metal chalcogenide nanoparticles can be determined by transmission electron microscope (TEM) analysis or by dynamic light scattering (DLS) analysis. In the present invention, when the metal chalcogenide nanoparticles are not spherical, for example, in the case of a rod or football type, the shorter diameter is selected and calculated.
  • the method for synthesizing the metal chalcogenide nanoparticles of the present invention is not particularly limited, but there is a method of mixing the metal compound and the chalcogenizing agent in a hydrophilic solvent in that the reaction is simple and the yield is high. preferable.
  • the metal compound used in the present invention is not particularly limited, but in terms of availability, metal halide, metal organic acid salt, metal nitrate, metal sulfate, metal perchlorate Among metal organic acid salts in terms of reactivity, metal acetylate is preferred, metal carboxylate, metal dithiocarbamate, Xanthate is more preferred.
  • the carboxylate is not particularly limited, but acetate, citrate, formate, and salicylate are particularly preferable from the viewpoint of availability.
  • the dithiocarbamate is not particularly limited, but dimethyldithiocarbamate, jetyldithiocarnomate, dibutyldithiocarnomate, N-ethyl-N-phenyldithiocarnomate Salts, N-pentamethylene dithiocarnomate, and dibenzyl dithiocarbamate are particularly preferred because of their availability.
  • the xanthate is not particularly limited, but butyl xanthate and isopropyl xanthate are preferred. It is particularly preferable in terms of availability. These may contain crystal water. These may be used alone or in combination.
  • the metal element in the above metal compound is not particularly limited, but Zn—Ti, Zr, Cr—Mo, W, Mn—Fe—Ru, Co, Rh are excellent in terms of optical and electronic properties.
  • An element selected from the group consisting of Co, Cu, Cd, Ga, In, Si, Ge, Sn, Pb, La, Eu, and Tb force is more preferable. These may be used alone or in combination.
  • the ratio of each component is not particularly limited, but it is preferable to contain 90% by mole or more of one metal as the main component in terms of excellent quantum characteristics. It is more preferable to contain at least mol%.
  • the metal element as the main component is not particularly limited, but Zn, Ti and Cd are particularly preferable because Zn, Ti, and Cd are preferable because they are easy to synthesize and have excellent quantitative characteristics.
  • metal compound examples are not particularly limited! However, in terms of availability, zinc acetate, zinc acetate dihydrate, zinc benzoate, zinc citrate, zinc formate, zinc formate dihydrate Japanese hydrate, zinc laurate, zinc salicylate trihydrate, zinc chloride, zinc dimethyldithiocarbamate, zinc jetyldithiocarbamate, zinc dibutyldithiocarbamate, N-ethyl-N-phenyldithio Zinc carbamate, zinc N-pentamethylenedithiocarbamate, zinc dibenzyldithiocarbamate, zinc butylxanthate, zinc isopropylxanthate, zinc acetylacetonate, titanium chloride ( ⁇ ) , Titanium chloride (IV), Titanium (IV) cresylate, Titanium oxide ( ⁇ ) acetyl cetate, Cobalt acetate ( ⁇ ) Tetrahydrate, Acetyl acetonate cobalt ( ⁇ ),
  • the chalcogenating agent used in the present invention is not particularly limited, and a compound that reacts with the metal compound to give 0, S, Se, or Te atoms can be used.
  • chalcogenizing agents in terms of reactivity, MOH, M S, MSH, H S, M Se,
  • LiOH, KOH, NaOH, Na S, NaS in terms of safety, H S, thiourea is more preferred
  • H and thiourea More preferred are H and thiourea.
  • the conditions for reacting the metal compound and the chalcogenizing agent in the hydrophilic solvent are not particularly limited, and any reaction conditions can be adopted.
  • a reaction method for example, a metal compound and a chalcogenizing agent are contained alone in a hydrophilic solvent. One can be added simultaneously as a solution. One can be dissolved in a hydrophilic solvent and the other can be used alone or in a solution. Can be added as ⁇ .
  • the reaction is more preferably performed under ultrasonic irradiation, which is preferably performed with stirring.
  • the reaction temperature is not limited, but the range of 0 ° C to 150 ° C is preferable in terms of reactivity, and the range of 20 ° C to 100 ° C is preferable.
  • the concentration is not limited and is arbitrary, but in terms of reactivity and productivity, the range of 0.001 molZL to lmolZL is preferred for both metal compounds and chalcogenizing agents, and the range of 0.01 molZL to 0.7 molZL is more preferred. .
  • the reaction time is not limited, but 5 minutes to 20 hours is preferable in terms of productivity, and 20 minutes to 10 hours is more preferable.
  • the particle size of the metal chalcogenide nanoparticles can be controlled by adjusting the concentration / reaction time, it is preferable to set the reaction conditions so that nanoparticles having a desired particle size can be obtained.
  • the particle size of nanoparticles obtained by increasing the temperature, increasing the concentration, and increasing the reaction time tends to increase.
  • the functional group means a functional group capable of coordinating or binding to the surface of the metal-powered rucogenite nanoparticles.
  • Such functional groups are not particularly limited, but examples thereof include hydroxyl groups, carboxyl groups, mercapto groups, amino groups, strong rubamoyl groups, formyl groups, thioformyl groups, thiocarboxyl groups, dithiocarboxyl groups, trialkoxysilyl groups, hydroxyl groups.
  • Al metal group alkali metal salt of carboxyl group, alkali metal salt of mercapto group, alkali metal salt of dithiocarboxyl group, imino group, nitro group, nitroso group, sulfo group, alkali metal salt of sulfo group, haloformyl Group, cyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, phosphino group, phosphier group and the like.
  • Alkali metal salts, strong ruboxyl group alkali metal salts, mercapto group alkali metal salts, dithiocarboxyl group alkali metal salts are preferred hydroxyl group, carboxyl group, mercapto group, amino group, strong rubamoyl group, More preferred are thiocarboxyl, dithiocarboxyl, trialkoxysilyl, alkali metal salt of hydroxyl group, alkali metal salt of carboxyl group, alkali metal salt of mercapto group, alkali metal salt of dithiocarboxyl group.
  • the functional group-containing hydrophobic low molecular weight compound is a compound having a molecular weight of 600 or less. Hydrophobicity is defined as the property that one of the solubility in toluene or n-hexane as a hydrophobic solvent is at least twice the solubility in water as a hydrophilic solvent.
  • Such functional group-containing hydrophobic low molecular weight compounds are not particularly limited, but are 3, 3, 5-trimethyl-1-hexanol, 3-methyl-1-butanol in terms of availability and modification ability.
  • Hydroxyl group-containing compounds such as isodecyl alcohol and oleyl alcohol and alkali metal salts thereof; carbohydrates such as isononanoic acid, oleic acid and stearic acid Xyl group-containing compounds and alkali metal salts thereof; 1-octanethiol, 1-decanethiol, 1-dodecanethiol, 1-hexadecanethiol, thiophenol-containing compounds and their compounds Alkali metal salts; amino group-containing compounds such as diisobutylamine, 3- (dodecyloxy) propylamine, 2-ethylhexylamine, n-octylamine, oleylamine; powerful rubamoyl groups such as oleamide and stearylamide Compounds; compounds containing thiocarboxyl groups such as thiobenzoic acid and alkali metal salts thereof; dithiobenzoic acid, dimethyldithiocarbamic acid,
  • the functional group-containing hydrophobic polymer compound of the present invention is a compound having a molecular weight of 1000 or more. Hydrophobic and functional groups have the same definitions as the above functional group-containing hydrophobic low molecular weight compounds.
  • the main chain structure of the functional group-containing hydrophobic polymer compound of the present invention is not particularly limited, and (meth) acrylic acid ester, styrene, ⁇ -methylstyrene, (meth) acrylonitrile, butyl chloride, butadiene, isoprene, black mouth
  • Polyethylene such as polyethylene and terephthalate, polybutylene terephthalate, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6 and nylon 66, polyvinyl butyral, and the like can be used.
  • those having a structure obtained by polymerizing vinyl monomers are preferred because they control the properties of the polymer, and are selected from the group consisting of (meth) acrylic acid esters, styrene, acrylonitrile, and salt-bull force. Those having a structure obtained by polymerizing one or more monomers are more preferred.
  • (meth) acrylic acid ester (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid ⁇ -butyl, (meth) acrylic acid t-butyl, (meth) 2-Ethylhexyl acrylate, 2-methoxyethyl acrylate, (meth) acrylate And (meth) acrylic acid file.
  • the structure is not particularly limited, and any structure such as a random copolymer, a block copolymer, or a gradient copolymer can be used.
  • the molecular weight and molecular weight distribution of the functional group-containing hydrophobic polymer compound of the present invention are not particularly limited.
  • the functional group-containing hydrophobic polymer compound is highly efficient in modifying metal chalcogenide nanoparticles by substituting a low-molecular compound.
  • the number average molecular weight is preferably in the range of 2000 to 50000.
  • the molecular weight distribution is preferably 1.5 or less, more preferably 1.2 or less, from the viewpoint of uniform physical properties of the resulting polymer-modified metal chalcogenide nanoparticles.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) are values determined by gel permeation chromatography (GPC) analysis, and the molecular weight distribution is a value calculated as MwZMn.
  • the functional group in the functional group-containing hydrophobic polymer compound of the present invention is the same as the above functional group-containing hydrophobic low molecular compound.
  • the functional group-containing hydrophobic polymer compound modifies the metal chalcogenide nanoparticles by substituting the functional group-containing hydrophobic low molecular weight compound
  • the functional group is a functional group in the functional group-containing hydrophobic low molecular weight compound. Higher ability to modify metal chalcogenide nanoparticles than group is preferred.
  • mercapto groups are preferred as functional groups in the functional group-containing water-phobic polymer compounds, since those having the highest modifying ability are mercapto groups.
  • a hydrophobic polymer compound having a mercapto group as a functional group the monomer is radically polymerized in the presence of mercaptoacetic acid, and then converted to a mercapto group by decomposing the sulfide moiety at the polymer end.
  • Method examples include a method of synthesis by reversible addition / elimination chain transfer polymerization using a thiocarbonylthio compound as a chain transfer agent. From the viewpoint of productivity, simplicity, and functional group introduction rate, a method of synthesis by reversible addition / desorption chain transfer polymerization using a thiothio compound as a chain transfer agent is preferred.
  • the reversible addition / elimination chain transfer polymerization using the thiocarbonylthio compound as a chain transfer agent is not particularly limited.
  • “HANDBOOK OF RADICAL POLY MERIZATION”, K. Matyjaszewski and TP Davis Ed., Wiley, 2002 The method described on page 661 or the method described in the bibliography described in this document can be applied. However, it is preferable to react at a temperature of 70 ° C or higher in terms of reactivity. 80 ° C or higher It is preferable.
  • the type of polymerization is not limited to bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization and the like! /, But bulk polymerization or solution polymerization is preferable, and solution polymerization is more preferable in that post-treatment after polymerization is easy.
  • the thiocarbonyl compound used in the present invention is not particularly limited! Spear
  • thiocarbothio compounds More preferred examples thereof include compounds having a trithiocarbonate structure.
  • a compound having a trithiocarbonate structure is generally highly reactive in reversible addition / desorption chain transfer polymerization.
  • the end is converted to a mercapto group for the purpose of improving the modification efficiency.
  • Examples of the method for converting the terminal to a mercapto group include a method of treating with a treating agent.
  • the treating agent is not particularly limited, but a compound selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent is preferred because of its high efficiency of conversion to an SH group.
  • the hydrogen-nitrogen bond-containing compound is not particularly limited, but ammonia, hydrazine, primary amine, secondary amine, amido compound, amine hydrochloride, hydrogen-nitrogen Examples thereof include a bond-containing polymer and a hindered amine light stabilizer (HALS).
  • HALS hindered amine light stabilizer
  • Examples of the primary amines include methylamine, ethylamine, isopropylamine, n-propylamine, n-butylamine, t-butylamine, 2-ethylhexylamine, 2-aminoethanol, ethylenediamine, diethylenetriamine, 1 1,2-diaminopropane, 1,4-diaminobutane, cyclohexylamine, errin, phenethylamine and the like.
  • Examples of secondary amines include dimethylamine, jetylamine, diisobutylamine, di-2-ethylhexylamine, iminodiacetic acid, bis (hydroxyethyl) amine, di- ⁇ -butylamine, di-butylamine, diphenyl- Examples include lumine, N-methylaline, imidazole, and piperidine.
  • Examples of the amide compound include adipic acid hydrazide, N-isopropylacrylamide, oleamide, thioacetamide, formamide, acetate, phthalimide, and succinimide.
  • Examples of the amine hydrochloride include acetamidine hydrochloride, monomethylamine hydrochloride, dimethylamine hydrochloride, monoethylamine hydrochloride, jetylamine hydrochloride, and guanidine hydrochloride.
  • Examples of the hydrogen-nitrogen bond-containing polymer include polyethyleneimine, polyallylamine, polybulamine and the like.
  • Examples of the above HALS include ADK STAB LA-77 (Asahi Denka Kogyo Co., Ltd.), Tinuvin 144 (Ciba 'Specialty Chemicals Co., Ltd.), ADK STAB LA-67 (Asahi Denka Kogyo Co., Ltd.), etc. Can do.
  • Examples of basic compounds among the above-mentioned treatment agents are not particularly limited, but include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium methoxide, sodium ethoxy. And magnesium methoxide, sodium carbonate, potassium carbonate, sodium sulfate, sodium sulfate.
  • examples of the reducing agent are not particularly limited, but sodium hydride, hydrogenated lithium, calcium hydride, LiAlH, NaBH, LiBEt H (super hydride
  • the above treatment agents may be used alone or in combination!
  • primary amines such as n-butylamine, sodium hydroxide, potassium hydroxide, sodium hydroxide, sodium sulfide, LiAlH, NaBH, and LiBEt H (super hydride) are preferred.
  • the amount of the treatment agent used is not particularly limited, but from the viewpoint of reactivity and economy, 0.01 to 100 parts by weight of LOO is preferable with respect to 100 parts by weight of the polymer, and 0.1 to 50 parts by weight is more preferable.
  • Reaction conditions such as temperature, the presence or absence of a solvent, and mixing conditions are not particularly limited. However, a method in which a treatment agent is directly added to the solution after polymerization is preferable in terms of easy operation, and the reaction temperature is 0 ° C to A range of 150 ° C is preferred.
  • hydrophilic solvent used when the metal chalcogenide nanoparticles synthesized in the hydrophilic solvent in the present invention are modified with a functional group-containing hydrophobic low molecular weight compound and extracted into the hydrophobic solvent.
  • a hydrophobic solvent and a hydrophobic solvent it is necessary to use a solvent that does not mix with each other.
  • examples of such combinations of hydrophilic solvent Z hydrophobic solvent include water z toluene, water Z xylene, water Z benzene, water z chloroform, water z dichloromethane, water Z carbon tetrachloride, water Zi, 2-dichloroethane.
  • the amount of the functional group-containing hydrophobic low molecular weight compound used for the metal chalcogenide nanoparticles is not particularly limited, but the metal chalcogen is excellent in terms of the balance between modification efficiency and cost.
  • 1 mol% to 500 mol 0/0 is rather preferably, 10 Monore 0 / 0-300 Monore 0/0 preferable than force! / ⁇ .
  • the operation for modifying the metal chalcogenide nanoparticles with the functional group-containing hydrophobic low molecular weight compound is not particularly limited, and the hydrophilic solvent and the hydrophobic solvent may be in contact with each other. From the viewpoint of efficiency and productivity, it is more preferable to irradiate with ultrasonic waves, which is preferably vigorously mixed and stirred.
  • the temperature is not particularly limited, but is preferably 0 ° C to 150 ° C in terms of efficiency, and more preferably 15 ° C to 100 ° C.
  • the operation is not particularly limited.
  • the hydrophobic solvent The functional group-containing hydrophobic polymer compound may be added alone or as a solution, and the hydrophobic solvent is distilled off to isolate the metal chalcogenide nanoparticles modified with the low molecular weight compound. Thereafter, it may be added to the solution of the functional group-containing hydrophobic polymer compound.
  • both the functional group-containing hydrophobic polymer compound and the metal chalcogenide nanoparticles are dissolved in the hydrophobic solvent.
  • the temperature is not particularly limited, but is preferably 0 ° C to 150 ° C in terms of efficiency, and more preferably 15 ° C to 100 ° C.
  • the amount of the functional group-containing hydrophobic polymer compound is not particularly limited, but it is 1 mol% with respect to the number of moles of metal atoms in the metal chalcogenide nanoparticles in terms of excellent balance between modification efficiency and cost. preferably 500 mol 0/0, 10 Monore 0 / 0-300 Monore 0/0 preferable than force! / ⁇ .
  • the solubility in a hydrophobic solvent is high.
  • a hydrophilic solvent for example, t-butyl poly (meth) acrylate is used as a functional group-containing hydrophobic polymer compound to form a metal chalcogenide. This can be achieved by modifying the nanoparticles and then decomposing the t-butyl group as isoprene using a widely known method such as thermal decomposition or acid-catalyzed decomposition and converting it to poly (meth) acrylic acid.
  • the acid catalyst is not particularly limited, and for example, hydrochloric acid, sulfuric acid, nitric acid, P-toluenesulfonic acid and the like can be used.
  • the polymer-modified metal chalcogenide nanoparticles thus obtained can be used in a state of being dispersed or dissolved in the hydrophobic solvent, or can be isolated and used. It may be used after being dispersed.
  • a general method for isolating a solution-neutral polymer can be applied. For example, a method of distilling off the solvent or adding a poor solvent to precipitate the polymer.
  • the resin may be added once as a single substance or as a solution in a state of being dispersed or dissolved in the hydrophobic solvent.
  • the polymer-modified chalcogenide nanoparticles may be mixed with a solution or a molten resin.
  • the resin in the case where the polymer-modified chalcogenide nanoparticles are dispersed in the resin is not particularly limited, and is generally known as a thermosetting resin or thermoplastic resin.
  • Thermoplastic elastomers, rubbers, etc. can be used.
  • epoxy resin, silicone resin, urethane resin, polystyrene, poly salt resin, acrylic resin, nylon, polycarbonate, polyethylene terephthalate, polyimide are useful in terms of the usefulness of the obtained resin composition.
  • Styrene-butadiene copolymer Styrene-butadiene copolymer, urethane-based thermoplastic elastomer (TPU), ester-based thermoplastic elastomer (TPEE), polybutyl butyral thermoplastic elastomer, acrylic rubber, butyl rubber, ethylene-propylene-gen copolymer (EPDM) is preferred. These may be used alone or in combination. There are no particular limitations on the amount of these fats used, but 20-100,000 parts by weight are preferred with respect to 100 parts by weight of the polymer-modified chalcogenide nanoparticles because the characteristics of the nanoparticles are well expressed. More preferred is 50000 parts by weight.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer were determined by gel permeation chromatography (GPC) analysis.
  • GPC gel permeation chromatography
  • a Waters system was used, and Shodex K-806 and K-805 (manufactured by Showa Denko Co., Ltd.) were connected to the column, using black mouth form as an eluent and analyzed with polystyrene standards.
  • the reaction rate of the monomer was determined by gas chromatography (GC) analysis.
  • GC analysis Dissolve the pulling solution in ethyl acetate, and then use the first strength ram DB-17 (J & W SCIENTIFIC
  • the emission spectrum was measured using a spectrofluorometer FP-6500DS (manufactured by JASCO Corporation) with excitation light of 290 to 320 nm on a solution or film sample, and a photoluminescence spectrum in the range of 350 to 700 nm. It was measured. Ultrasonic irradiation was performed using an ultrasonic homogenizer UH-600 (manufactured by MEST Co., Ltd.). The thiocarbonylthioy compound used as a chain transfer agent is disclosed in JP 2000-515181! / Molecular Macromolecules 2002, 35, 4123.
  • the reaction solution was concentrated to 400 mL and poured into methanol (2 L) to isolate PMMA having a mercapto group.
  • t-butyl polyacrylate (PtBA) by reversible addition-elimination chain transfer polymerization 50-ml L3-necked flask with t-butyl acrylate (18.0 g), dibenzyltrithiocarbonate (0.25 g), azobisisobuty -Tolyl (0. 023g) and toluene (17.4g) were added. Replaced with nitrogen. The solution was stirred at 90 ° C. for 3 hours with stirring to obtain PtBA at a reaction rate of 95%. Next, n-butylamine (3 g) was added and the mixture was stirred at 70 ° C. for 5 hours to modify the end of PtBA to a mercapto group.
  • PtBA t-butyl polyacrylate
  • PtBA having a mercapto group was isolated by pouring the reaction solution into methanol (lOOmL).
  • the reaction solution was poured into methanol (500 mL) to precipitate a PSt having a mercapto group.
  • Zinc acetate dihydrate (220 mg) was dissolved in methanol (80 mL), stirred at 50 ° C. for 30 minutes, methanol was added to make a total volume of 920 mL, and the mixture was cooled to 0 ° C. To this, 0.02M NaO HZ methanol solution (80 mL) was added at once, and the mixture was stirred at 65 ° C. for 2 hours. The resulting colloid solution was transparent. It was confirmed by TEM analysis that ZnO nanoparticles with a number average particle size of 5. lnm were formed. The ZnO nanoparticles exhibited a 559 nm emission spectrum when excited with 320 nm light in methanol.
  • Zinc acetate dihydrate (2.5 g) was dissolved in dimethylformamide-water (1: 1 (volume)) (250 mL), and sodium sulfate nonahydrate (2.7 g) was added while stirring at room temperature. Added. After stirring at room temperature for 1 hour, the mixture was stirred at 65 ° C for 10 hours. Since some precipitate was formed, it was removed by filtration to obtain a transparent colloidal solution. It was confirmed by TEM analysis that ZnS nanoparticles with a number average particle size of 4.7 nm were formed. The ZnS nanoparticles exhibited an emission spectrum at 401 nm when excited with 290 nm light in dimethylformamide-water (1: 1 (volume)).
  • ZnO nanoparticles obtained in Production Example 5 in methanol (lOOmL) and oleic acid (28 mg) in hexane (50 mL) are vigorously mixed at room temperature for 5 minutes to modify the ZnO nanoparticles with oleic acid. This was extracted into a hexane layer. The two layers were separated and the emission spectra of each solution were measured, and the extraction efficiency was 99%.
  • Figure 1 A photograph of ZnO nanoparticles extracted in the sun layer is shown. The right side contains no oleic acid and the left side contains oleic acid. In each case, the upper layer is a hexane layer and the lower layer is a methanol layer.
  • PMMA (0. lg) having a mercapto group obtained in Production Example 1 was dissolved in toluene (20 mL), and a hexane solution (3 mL) of the oleic acid-modified ZnO nanoparticles was prepared. Ultrasonic irradiation was performed at ° C for 15 minutes. After cooling to room temperature, the polymer was precipitated by pouring the solution into hexane (50 mL). NMR analysis power A force that confirmed the presence of oleic acid in the supernatant liquid. The supernatant liquid showed no emission spectrum. The deposited polymer was dried under reduced pressure, dissolved in chloroform, and the emission spectrum was measured. When excited with 320 nm light, the emission spectrum was shown at 563 nm. It was confirmed that the PMMA strength nO nanoparticles could be modified by substituting oleic acid.
  • Example 1 The same experiment as in Example 1 was performed by using commercially available PMMA (Mw: about 15,000, manufactured by Aldrich, product number 20, 033-6) instead of PMMA having a mercapto group in Example 1.
  • PMMA Mw: about 15,000, manufactured by Aldrich, product number 20, 033-6
  • ZnO nanoparticles could not be modified with commercial PMMA, and the emission spectrum could not be confirmed from the isolated PMMA.
  • the supernatant showed an emission spectrum, but when stored for 2 weeks at room temperature, it became cloudy and the emission spectrum disappeared.
  • the ZnO nanoparticles are considered to be unstable and aggregated.
  • Example 2 Using PtBA having a mercapto group obtained in Production Example 2 instead of PMMA having a mercapto group in Example 1, the same experiment as in Example 1 was performed to obtain PtBA-modified Z ⁇ nanoparticles.
  • This black mouth form solution of PtBA modified ZnO nanoparticles is 6 months at room temperature. Even when stored above, no turbidity was produced, and the emission spectrum was stable with no change. Also, when the dried PtBA-modified ZnO nanoparticles were stored for 6 months at room temperature and then dissolved in black mouth form, turbidity did not occur and the emission spectrum was stable with no change.
  • Example 2 Using PBA having a mercapto group obtained in Production Example 3 instead of PMMA having a mercapto group in Example 1, the same experiment as in Example 1 was performed to obtain PBA-modified ZnO nanoparticles.
  • This PBA-modified ZnO nanoparticle solution was not turbid even when stored at room temperature for more than 6 months, and its emission spectrum was stable and stable. Also, when the dried PBA-modified ZnO nanoparticles were stored at room temperature for 6 months and then dissolved in black mouth form, turbidity did not occur and the emission spectrum remained stable.
  • Example 3 The same experiment as in Example 3 was performed using commercially available PBA (Mn: about 20000, manufactured by Aldrich, product number 18, 141-2) instead of PBA having a mercapto group in Example 3.
  • PBA PBA having a mercapto group
  • the ZnO nanoparticles could not be modified with PBA, and the emission spectrum could not be confirmed from the isolated PBA.
  • the supernatant liquid showed an emission spectrum. When it was stored at room temperature for 10 days, it became cloudy and the emission spectrum disappeared. It is thought that the ZnO nanoparticles were unstable and aggregated.
  • PSt having a mercapto group obtained in Production Example 4 instead of PMMA having a mercapto group in Example 1, the same experiment as in Example 1 was performed to obtain PSt-modified ZnO nanoparticles.
  • This PSt-modified ZnO nanoparticle form solution did not become turbid even when stored at room temperature for more than 6 months, and its emission spectrum was stable.
  • the dried PSt-modified ZnO nanoparticles were stored at room temperature for 6 months and then dissolved in black mouth form, turbidity did not occur and the emission spectrum remained stable.
  • Example 4 The same experiment as in Example 4 was performed using commercially available PSt (Mw: about 4000, product number 32, 772-7) instead of PSt having a mercapto group in Example 4.
  • PSt commercially available PSt
  • I could't confirm the vector.
  • the supernatant liquid showed an emission spectrum. When stored for 11 days at room temperature, it became cloudy and the emission spectrum disappeared. It is thought that the ZnO nanoparticles were unstable and aggregated.
  • PMMA (lg) having a mercapto group obtained in Production Example 1 was dissolved in black mouth form (30 mL), and the above hexane solution (3 mL) of 1-dodecanethiol-modified ZnS nanoparticles was prepared. Ultrasonic irradiation was performed at room temperature for 15 minutes. The solution was concentrated to 15 mL and then poured into hexane (80 mL) to precipitate the polymer. NMR analysis confirmed the presence of 1-dodecanethiol in the supernatant. The supernatant liquid showed no emission spectrum. The precipitated polymer was dried under reduced pressure, dissolved in black mouth form, and the emission spectrum was measured. The emission spectrum was shown at 396 nm by excitation with 29 Onm light. From this, it was confirmed that 1-dodecanethiol was substituted to modify the PMMA force nS nanoparticles.
  • Example 6 The same experiment as in Example 5 was performed by using commercially available PMMA (Mw: about 15,000, manufactured by Aldrich, product number 20, 033-6) instead of PMMA having a mercapto group in Example 5.
  • PMMA Mw: about 15,000, manufactured by Aldrich, product number 20, 033-6
  • ZnS nanoparticles were not possible to modify ZnS nanoparticles with commercially available PMMA, and the isolated PMM A was unable to confirm the emission spectrum.
  • the supernatant showed an emission spectrum, but when stored at room temperature for 7 days, it became cloudy and the emission spectrum disappeared. It is thought that the ZnS nanoparticles were unstable and aggregated.
  • Example 5 Using PtBA having a mercapto group obtained in Production Example 2 instead of PMMA having a mercapto group in Example 5, the same experiment as in Example 5 was performed to obtain PtBA-modified ZnS nanoparticles.
  • This PtBA-modified ZnS nanoparticle form solution did not become turbid even when stored for more than 6 months at room temperature, and its emission spectrum was stable and stable. Also, when the dried PtBA-modified ZnS nanoparticles were dissolved in black mouth form after storage at room temperature for 6 months, no turbidity was produced and the emission spectrum was stable and unchanged.
  • Example 5 Using PBA having a mercapto group obtained in Production Example 3 instead of PMMA having a mercapto group in Example 5, the same experiment as in Example 5 was performed to obtain PBA-modified ZnS nanoparticles.
  • the black mouth form solution of PBA-modified ZnS nanoparticles produced no turbidity even when stored at room temperature for more than 6 months, and was stable with no change in emission spectrum. Also, when the dried PBA-modified ZnS nanoparticles were stored at room temperature for 6 months and then dissolved in black mouth form, the turbidity did not occur and the emission spectrum remained stable.
  • Example 7 The same experiment as in Example 7 was performed using commercially available PBA (Mn: about 20000, manufactured by Aldrich, product number 18, 141-2) instead of the PBA having a mercapto group in Example 7.
  • PBA Mn: about 20000, manufactured by Aldrich, product number 18, 141-2
  • ZnS nanoparticles could not be modified with commercial PBA, and the emission spectrum could not be confirmed from the isolated PBA.
  • the supernatant liquid showed an emission spectrum. When stored for 11 days at room temperature, it became cloudy and the emission spectrum disappeared. It is thought that the ZnS nanoparticles were unstable and agglomerated.
  • PSt having a mercapto group obtained in Production Example 4 instead of PMMA having a mercapto group in Example 5, the same experiment as in Example 5 was performed to obtain PSt-modified ZnS nanoparticle.
  • This PSt-modified ZnS nanoparticle form solution did not become turbid even when stored for more than 6 months at room temperature, and its emission spectrum was stable and stable.
  • the dried PS t-modified ZnS nanoparticles were stored at room temperature for 6 months and then dissolved in black mouth form, turbidity did not occur and the emission spectrum was stable with no change.
  • Example 8 The same experiment as in Example 8 was performed using commercially available PSt (Mw: about 4000, manufactured by Aldrich, product number 32, 772-7) instead of PSt having a mercapto group in Example 8.
  • PSt commercially available PSt
  • the ZnS nanoparticles could not be modified with PSt, and the emission spectrum could not be confirmed from the isolated PSt.
  • the supernatant liquid showed an emission spectrum. When stored for 11 days at room temperature, it became cloudy and the emission spectrum disappeared. It is thought that the ZnS nanoparticles were unstable and aggregated.
  • ZnS: Mn nanoparticles obtained in Production Example 7 were added to pure water (lOOmL) and dispersed by ultrasonic irradiation, and mixed with oleamide (60mg) in hexane solution (50mL). did. The mixture was vigorously stirred at room temperature for 15 minutes while irradiating with ultrasonic waves, and the ZnS: Mn nanoparticle was modified with oleamide to extract it into the hexane layer. The two layers were separated and the emission spectra of each solution were measured. The extraction efficiency determined from the intensity ratio was 93%.
  • PMMA (0.2 g) having a mercapto group obtained in Production Example 1 was dissolved in toluene (20 mL), and the above amide-modified ZnS: Mn nanoparticle solution in hexane (5 mL) was prepared. Ultrasonic irradiation was performed at room temperature for 20 minutes. The polymer was precipitated by pouring the solution into hexane (80 mL). NMR Analytical Force A force that confirmed the presence of oleamide in the supernatant liquid. The supernatant liquid showed no emission spectrum. The precipitated polymer was dried under reduced pressure, dissolved in black mouth form, and the emission spectrum was measured. Excitation with 320 nm light showed an emission spectrum at 560 nm. This confirmed that the substitution of oleamide could modify the PMMA force 3 ⁇ 4nS: Mn nanoparticles.
  • Example 9 Selling instead of PMMA having a mercapto group in Example 9 PMMA (Mw about 15
  • the same experiment as in Example 9 was performed using 000, manufactured by Aldrich, product number 20, 033-6).
  • ZnS: Mn nanoparticles could not be modified with commercially available PMMA, and the emission spectrum could not be confirmed from the isolated PMMA.
  • the supernatant showed an emission spectrum, but when stored for 2 weeks at room temperature, it became turbid and the intensity of the emission spectrum decreased over time. It is thought that ZnS: Mn nanoparticles were unstable and aggregated.
  • Example 9 Using PtBA having a mercapto group obtained in Production Example 2 instead of PMMA having a mercapto group in Example 9, the same experiment as in Example 9 was performed to obtain PtBA-modified Zn S: Mn nanoparticles. It was.
  • This PtBA-modified ZnS: Mn nanoparticle form solution did not cause turbidity even when stored at room temperature for more than 6 months, and its emission spectrum was stable and stable. Also, when the dried PtBA-modified ZnS: Mn nanoparticles were stored at room temperature for 6 months and then dissolved in black mouth form, no turbidity was produced and the emission spectrum was stable with no change.
  • Example 9 Using PBA having a mercapto group obtained in Production Example 3 instead of PMMA having a mercapto group in Example 9, the same experiment as in Example 9 was performed to obtain PBA-modified ZnS: Mn nanoparticles. .
  • This PBA-modified ZnS: Mn nanoparticle form solution did not become turbid even when stored for more than 6 months at room temperature, and the emission spectrum was stable without change.
  • the dried PBA-modified ZnS: Mn nanoparticles were stored in toluene after being stored for 6 months at room temperature, no turbidity was produced and the emission spectrum was stable with no change.
  • Example 11 The same experiment as in Example 11 was performed using commercially available PBA (Mn: about 20000, manufactured by Aldrich, product number 18, 141-2) instead of PBA having a mercapto group in Example 11.
  • PBA PBA having a mercapto group
  • ZnS: Mn nanoparticles could not be modified with commercial PBA, and the isolated PBA force was also unable to confirm the emission spectrum.
  • the supernatant liquid became turbid when stored for 7 days at a chamber temperature where the emission spectrum was shown, and the intensity of the emission spectrum decreased over time. It is thought that the ZnS: Mn nanoparticles were unstable and aggregated.
  • Example 9 the mel obtained in Production Example 4
  • PSt having a capto group PSt-modified ZnS: Mn nanoparticles were obtained.
  • This PSt-modified ZnS: Mn nanoparticle form solution did not become turbid even when stored for more than 6 months at room temperature, and its emission spectrum was stable and stable.
  • the dried PSt-modified ZnS: Mn nanoparticles were dissolved in black mouth form after being stored at room temperature for 6 months, no turbidity was produced and the emission spectrum was stable with no change.
  • Example 12 The same experiment as in Example 12 was performed by using commercially available PSt (Mw: about 4000, product number 32, 772-7) instead of PSt having a mercapto group in Example 12.
  • PSt commercially available PSt
  • ZnS: Mn nanoparticles could not be modified with commercial PSt, and the emission spectrum could not be confirmed from the isolated PSt.
  • the supernatant liquid became turbid when stored for 10 days at a chamber temperature where the emission spectrum was shown, and the intensity of the emission spectrum decreased over time. It is thought that the ZnS: Mn nanoparticles were unstable and aggregated.
  • the polymer-modified nanoparticles obtained by the method of the present invention are phosphors for display, photoelectric conversion elements, light-emitting diodes, wavelength conversion materials, ultraviolet rays as materials that stably exhibit a quantum effect without aggregation. Shielding materials, dye-sensitized solar cells, fluorescent paints, fluorescent films, luminescent paints, luminescent films, diagnostic agents, trace component detection reagents, analytical reagents, drug-delivery systems, quantum transistors, quantum dot lasers, and light emission for displays It is useful for applications such as body, noristor and catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 凝集を防止して長期間安定に存在するポリマー修飾金属カルコゲン化物ナノ粒子を、簡便かつ経済的に製造・精製する方法を提供すること。親水性溶媒中で合成された数平均粒子径100nm以下の金属カルコゲン化物ナノ粒子を、官能基含有疎水性低分子化合物で修飾することにより疎水性溶媒中へ抽出し、次いで該疎水性低分子化合物を官能基含有疎水性高分子化合物で置換することにより、ポリマーで表面修飾された金属カルコゲン化物ナノ粒子を製造する。                                                                               

Description

明 細 書
ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法 技術分野
[0001] 本発明は、ポリマーで修飾された金属カルコゲンィ匕物ナノ粒子の製造方法に関す る。また本発明は、該方法により製造されるポリマー修飾金属カルコゲンィ匕物ナノ粒 子に関する。
背景技術
[0002] 粒子径 lOOnm以下の金属カルコゲン化物ナノ粒子は、その表面積の大きさや量 子特性を利用して、触媒、紫外線遮蔽材料、蛍光材料、発光材料、塗料、磁性材料 など多くの用途への展開が検討されている。ところがこのような金属カルコゲンィ匕物 ナノ粒子は表面活性が高いため凝集しやすぐ安定した分散形態で製造することが 困難であり、また原料力も分離精製することが困難であった。従来このようなナノ粒子 の凝集を防止し、安定に単離するための技術として保護剤によるナノ粒子の修飾が 提案されている。保護剤としては例えば、ドデカンチオールやメルカプト酢酸などの 低分子チオール、ォレイン酸ゃステアリン酸などの長鎖アルキルカルボン酸、ォレイ ルアミンゃドデシルァミンなどの長鎖アルキルァミン、トリオクチルホスフィンォキシド やトリブチルホスフィンォキシドなどの長鎖アルキルホスフィンォキシド、ポリビニルビ 口リドンやポリビニルピリジンなどの配位性ポリマーなどを挙げることができる。
[0003] し力しドデカンチオールを始めとする低分子化合物はナノ粒子安定ィ匕の効果が不 十分であり、得られるナノ粒子は室温で 1週間以内に凝集してしまうと 、う問題があつ た。例えば特許文献 1では、低分子チオールと低分子ァミンで表面を複合修飾され た金属カルコゲンィ匕物ナノ粒子が提案されているが、 1ヶ月を超えるような長期保存 はできない。特許文献 2には、半導体ナノ粒子を脂溶性表面修飾分子を用いて有機 溶媒中へ抽出する方法が記載されているが、該脂溶性表面修飾分子の分子量が小 έ 、ために有機溶媒中における分散安定性が不十分であった。脂溶性表面修飾分 子として分子量の大きなものを用いた場合には、有機溶媒への抽出に時間が力かる ため生産性が低く実用的ではな力つた。特許文献 3には、表面安定化剤により安定 化された半導体ナノ粒子の表面安定化剤を置換して親水性と親油性の相互変換を 行い、半導体ナノ粒子を水層と有機層に相互移動させて回収する方法が記載されて いる。しかし該方法は複層半導体ナノ粒子を製造するための方法であり、表面安定 ィ匕剤としてポリマーを利用すると外殻層を形成できなくなるために、表面安定化剤と しては低分子化合物を使用せざるを得ず、したがってナノ粒子の安定性が乏 、と いう欠点があった。
[0004] また非特許文献 1に記載されて 、るようにカルボキシル基含有ポリスチレンのような 配位性ポリマーを用いた場合も、ナノ粒子への付着力が弱いため長期安定性に問題 があった。さらに配位性ポリマーを用いた場合、ナノ粒子合成の原料をも取り込んで しまうため、ナノ粒子を精製することが困難であった。半導体ナノ粒子を強固に修飾 できるポリマーとして、特許文献 4と特許文献 5に末端に SH基を有するポリアルキレ ングリコールを利用する技術が記載されて 、る。しかし該ポリマーは親水性であるた め、親水性溶媒中で合成された半導体ナノ粒子を疎水性溶媒中へ抽出することがで きず、半導体ナノ粒子を単離精製することができな力 た。特許文献 6には、リン原子 含有配位子を有するポリマーで表面修飾された半導体ナノ粒子について記載されて いる力 該ポリマーの合成が煩雑であり生産性も低いため実用的ではな力つた。 特許文献 1 :特開 2003-89522
特許文献 2:特開 2003 - 73126
特許文献 3 :特開 2003-226521
特許文献 4:特開 2002 - 121548
特許文献 5 :特開 2002- 121549
特許文献 6:特開 2002- 105325
非特許文献 1 :X. Yangら、 Langmuir 2004, 20, 6071
発明の開示
発明が解決しょうとする課題
[0005] 本発明が解決しょうとする課題は、凝集を防止して長期間安定に存在するポリマー 修飾金属カルコゲン化物ナノ粒子を、簡便かつ経済的に製造'精製する方法を提供 することである。 課題を解決するための手段
[0006] 上記課題を解決するための手段として、本発明者は以下の方法を提案する。
[0007] 本発明のポリマー修飾金属カルコゲン化物ナノ粒子の製造方法は、親水性溶媒中 で合成された数平均粒子径 lOOnm以下の金属カルコゲンィ匕物ナノ粒子を、官能基 含有疎水性低分子化合物で修飾することにより疎水性溶媒中へ抽出し、次いで該疎 水性低分子化合物を官能基含有疎水性高分子化合物で置換することを特徴とする
[0008] 本発明の好適な実施態様は、上記金属カルコゲンィ匕物ナノ粒子が、親水性溶媒中 で金属化合物とカルコゲン化剤とを混合することにより得られるものである。
[0009] 本発明の好適な実施態様は、上記金属化合物が、金属のハロゲンィ匕物、金属の有 機酸塩、金属の硝酸塩、金属の硫酸塩、金属の過塩素酸塩、金属のァセチルァセト ナートからなる群より選ばれる 1種以上の化合物である。
[0010] 本発明の好適な実施態様は、上記カルコゲン化剤力 MOH、 M S、 MSH、 H S、
2 2
M Se、 MSeH、 H Se、 M Te、 MTeH、 H Te、チォ尿素(Mはアルカリ金属)からな
2 2 2 2
る群より選ばれる 1種以上の化合物である。
[0011] 本発明の好適な実施態様は、上記金属カルコゲンィ匕物ナノ粒子中の金属力 Zn、 Ti、 Zr、 Cr、 Mo、 W、 Mn、 Fe、 Ru、 Co、 Rh、 Ir、 Niゝ Pd、 Cu、 Ag、 Cd、 Al、 Ga、 I n、 Si、 Ge、 Sn、 Pb、ランタノイド、ァクチノイド力 なる群より選ばれる 1種以上の元 素からなるものである。
[0012] 本発明の好適な実施態様は、上記金属カルコゲン化物ナノ粒子の数平均粒子径 が Inn!〜 20nmの範囲である。
[0013] 本発明の好適な実施態様は、上記官能基含有疎水性低分子化合物および上記官 能基含有疎水性高分子化合物における官能基が、ヒドロキシル基、カルボキシル基 、メルカプト基、アミノ基、力ルバモイル基、ホルミル基、チォホルミル基、チォカルボ キシル基、ジチォカルボキシル基、トリアルコキシシリル基、ヒドロキシル基のアルカリ 金属塩、カルボキシル基のアルカリ金属塩、メルカプト基のアルカリ金属塩、ジチォ力 ルポキシル基のアルカリ金属塩力 なる群より選ばれる 1種以上の基である。
[0014] 本発明の好適な実施態様は、上記官能基含有疎水性高分子化合物が、(メタ)ァク リル酸エステル、スチレン、アクリロニトリル、塩ィ匕ビュル力 なる群より選ばれる 1種以 上のモノマーを重合させて得られる構造を有するものである。
[0015] 本発明の好適な実施態様は、上記官能基含有疎水性高分子化合物が、チォカル ボニルチオ化合物を連鎖移動剤とする可逆的付加脱離連鎖移動重合により合成さ れたものである。
[0016] 本発明の好適な実施態様は、上記官能基含有疎水性高分子化合物が、可逆的付 加脱離連鎖移動重合の後に末端をメルカプト基に変換されたものである。
[0017] また本発明は、上記記載の製造方法により得られるポリマー修飾金属カルコゲンィ匕 物ナノ粒子も含有する。
発明の効果
[0018] 本発明の方法により、金属カルコゲン化物ナノ粒子を簡便かつ経済的にポリマーで 修飾することができ、凝集を防止して長期間安定に保存することが可能となる。また 本発明の方法によれば、金属カルコゲン化物ナノ粒子を未反応原料から容易に分 離精製することが可能となり、純度の高い金属カルコゲンィ匕物ナノ粒子を製造するこ とが可能となる。本発明の方法により得られるポリマー修飾金属カルコゲンィ匕物ナノ 粒子は光学的、電子的、量子的特性に優れるため、紫外線遮蔽材料、蛍光材料、発 光材料、磁性材料などとして優れる。
図面の簡単な説明
[0019] [図 1]ォレイン酸によりへキサン層に抽出された ZnOナノ粒子。右側がォレイン酸を含 まない場合で、左側がォレイン酸を含む場合。それぞれ上層がへキサン層、下層がメ タノール層。 UVランプ(365nm)照射下に撮影。
発明を実施するための最良の形態
[0020] 本発明の方法は、親水性溶媒中で合成された数平均粒子径 lOOnm以下の金属 カルコゲン化物ナノ粒子を、官能基含有疎水性低分子化合物で修飾することにより 疎水性溶媒中へ抽出し、次!ヽで該疎水性低分子化合物を官能基含有疎水性高分 子化合物で置換することを特徴とする。
[0021] 本発明において親水性とは、水に対する溶解度がトルエンに対する溶解度の 2倍 以上となる性質と定義する。本発明にお 、て金属カルコゲンィ匕物ナノ粒子の合成時 に使用する親水性溶媒としてはこの条件を満たしていれば特に限定されないが、入 手性および金属カルコゲンィ匕物の合成に適する点で、水、メタノール、エタノール、 2 -プロパノール、アセトン、ジメチルホルムアミド(DMF)、ジメチルスルフォキシド(DM SO)が好ましい。これらは単独で用いてもよぐ複数を組み合わせて用いてもよい。ま た親水性を損なわな 、範囲で少量の疎水性溶媒を添加して用いてもょ ヽ。
[0022] 本発明の金属カルコゲン化物ナノ粒子は、数平均粒子径 lOOnm以下のものであ る。粒子径が lOOnmを超えるとナノ粒子特有の性質が消失してバルタとしての性質 に近いものとなってしまう。サイズ効果による特性発現が顕著となる点で、金属カルコ ゲン化物ナノ粒子の数平均粒子径は l〜50nmの範囲にあることが好ましぐ 1〜20 nmの範囲にあることがより好ましい。金属カルコゲン化物ナノ粒子の数平均粒子径 は、透過型電子顕微鏡 (TEM)分析ある ヽは動的光散乱 (DLS)分析により求めるこ とができる。なお本発明において、金属カルコゲン化物ナノ粒子が球形でない場合、 たとえば棒状やフットボール型の場合には、短い方の径を選んで計算するものとする
[0023] 本発明の金属カルコゲン化物ナノ粒子の合成方法としては特に限定されないが、 反応が簡便で高収率である点で、親水性溶媒中で金属化合物とカルコゲン化剤とを 混合する方法が好ましい。
[0024] 本発明で使用する上記金属化合物としては特に限定されないが、入手性の点で金 属のハロゲン化物、金属の有機酸塩、金属の硝酸塩、金属の硫酸塩、金属の過塩素 酸塩、金属のァセチルァセトナートが好ましぐ金属の有機酸塩がより好ましぐ反応 性の点で金属の有機酸塩のうち金属のカルボン酸塩、金属のジチォ力ルバミン酸塩 、金属のキサントゲン酸塩がさらに好ましい。上記カルボン酸塩としては特に限定さ れないが、酢酸塩、クェン酸塩、ギ酸塩、サリチル酸塩が入手性の点で特に好ましい 。上記ジチォ力ルバミン酸塩としては特に限定されないが、ジメチルジチォカルバミン 酸塩、ジェチルジチォカルノ ミン酸塩、ジブチルジチォカルノ ミン酸塩、 N-ェチル- N-フエ-ルジチォカルノミン酸塩、 N-ペンタメチレンジチォカルノミン酸塩、ジベン ジルジチォカルバミン酸塩が入手性の点で特に好ま ヽ。上記キサントゲン酸塩とし ては特に限定されないが、ブチルキサントゲン酸塩、イソプロピルキサントゲン酸塩が 入手性の点で特に好ましい。これらは結晶水を含んでいてもよい。これらは単独で用 いてもよぐ複数を組み合わせて用いてもよい。
[0025] 上記金属化合物における金属元素としては特に限定されないが、光学的,電子的 特'性に優れる点で、 Znゝ Ti、 Zr、 Crゝ Mo、 W、 Mnゝ Feゝ Ru、 Co、 Rh、 Ir、 Niゝ Pdゝ Cu、 Ag、 Cd、 Al、 Ga、 In、 Si、 Ge、 Sn、 Pb、ランタノイド、ァクチノイドからなる群より 選ば、れる元素力 S好ましく、 Zn、 Tiゝ Mn、 Ni、 Co、 Cuゝ Cdゝ Gaゝ In, Si、 Geゝ Sn、 Pb 、 La、 Eu、 Tb力 なる群より選ばれる元素がより好ましい。これらは単独で用いてもよ ぐ複数を組み合わせて用いてもよい。複数を組み合わせて用いる場合には、それぞ れの成分比については特に限定されないが、量子的特性に優れる点で 1種類の金 属を主成分として 90モル%以上含有することが好ましぐ 95モル%以上含有すること 力 り好ましい。主成分としての金属元素は特に限定されないが、合成の容易さと量 子的特性に優れる点で Zn、 Ti、 Cdが好ましぐ安全性の点で Zn、 Tiが特に好ましい
[0026] 上記金属化合物の具体例としては特に限定されな!、が、入手性の点で、酢酸亜鉛 、酢酸亜鉛二水和物、安息香酸亜鉛、クェン酸亜鉛、ギ酸亜鉛、ギ酸亜鉛二水和物 、ラウリン酸亜鉛、サリチル酸亜鉛三水和物、塩化亜鉛、ジメチルジチォカルバミン酸 亜鉛、ジェチルジチォカルバミン酸亜鉛、ジブチルジチォカルバミン酸亜鉛、 N-ェ チル -N-フエニルジチォカルバミン酸亜鉛、 N-ペンタメチレンジチォ力ルバミン酸亜 鉛、ジベンジルジチォカルバミン酸亜鉛、ブチルキサントゲン酸亜鉛、イソプロピルキ サントゲン酸亜鉛、ァセチルァセトナト亜鉛水和物、塩化チタン(ΠΙ)、塩化チタン (IV )、クレシル酸チタン(IV)、酸化チタン(Π)ァセチルァセトナート、酢酸コバルト (Π)四 水和物、ァセチルァセトナトコバルト(Π)、安息香酸コバルト(Π)、塩化コバルト(Π)、 クェン酸コバルト(Π)二水和物、シユウ酸コバルト(Π)二水和物、ステアリン酸コバルト (Π)、酢酸ニッケル(II)四水和物、ァセチルァセトナトニッケル(II)二水和物、ビス( ジブチルジチォカルバミン酸)ニッケル (II)、塩化ニッケル (II)、ギ酸ニッケル (II)二 水和物、乳酸ニッケル (Π)四水和物、ステアリン酸ニッケル (Π)、酢酸銅(Π)—水和 物、硫酸銅 (II)、臭化銅 (II)、塩化銅 (II)、クェン酸銅 (II) 2. 5水和物、ギ酸銅 (II) 四水和物、ダルコン酸銅 (II)、ォレイン酸銅 (II)、フタル酸銅 (II)、ジメチノレジチォカ ルバミン酸銅、酢酸カドミウム二水和物、臭化カドミウム四水和物、塩ィ匕カドミウム、ギ 酸カドミウム二水和物、ステアリン酸カドミウム、酢酸マンガン (Π)四水和物、ギ酸マン ガン (Π)二水和物、マンガン (ΠΙ)ァセチルァセトナートが好ましぐ反応性の点で酢 酸亜鉛、酢酸亜鉛二水和物、クェン酸亜鉛、ギ酸亜鉛、ギ酸亜鉛二水和物、ジメチ ルジチォカルバミン酸亜鉛、ジェチルジチォカルバミン酸亜鉛、 N-ェチル -N-フエ- ルジチォカルバミン酸亜鉛、 N-ペンタメチレンジチォ力ルバミン酸亜鉛、ジベンジル ジチォ力ルバミン酸亜鉛、ブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜 鉛、ァセチルァセトナト亜鉛水和物、塩ィ匕チタン (111)、塩ィ匕チタン (IV)、酢酸マンガ ン(Π)四水和物、ギ酸マンガン(Π)二水和物、マンガン(ΠΙ)ァセチルァセトナートが より好まし 、。
[0027] 本発明で使用する上記カルコゲン化剤としては特に限定されず、上記金属化合物 と反応して 0、 S、 Se、あるいは Te原子を与える化合物を使用することができる。この ようなカルコゲン化剤としては、反応性の点で、 MOH、 M S、 MSH、 H S、 M Se、
2 2 2
MSeH、 H Se、 M Te、 MTeH、 H Te、チォ尿素が好ましい(式中、 Mはアルカリ金
2 2 2
属を表す)。これらのうち入手性の点で LiOH、 KOH、 NaOH、 Na S、 Li S、 NaSH
2 2
、 H S、チォ尿素がより好ましぐ安全性の点で LiOH、 KOH、 NaOH、 Na S、 NaS
2 2
H、チォ尿素がさらに好ましい。
[0028] 本発明において親水性溶媒中で金属化合物とカルコゲン化剤とを反応させるとき の条件については特に限定されず、任意の反応条件を採用可能である。反応の方 式としては例えば親水性溶媒中に金属化合物とカルコゲン化剤とを単体ある ヽは溶 液として同時に加えてもよぐ一方を親水性溶媒中に溶解させておいて他方を単体 あるいは溶液として添加してもよ ヽ。均一なナノ粒子が得られる点で反応は攪拌下に 行うことが好ましぐ超音波照射下に行うことがより好ましい。反応温度についても限 定されないが、反応性の点で 0°C〜150°Cの範囲が好ましぐ 20°C〜100°Cの範囲 力 り好ましい。濃度についても限定されず任意であるが、反応性と生産性の点で、 金属化合物とカルコゲン化剤ともに 0. 001molZL〜lmolZLの範囲が好ましぐ 0 . 01molZL〜0. 7molZLの範囲がより好ましい。反応時間についても限定されな いが、生産性の点で 5分〜 20時間が好ましぐ 20分〜 10時間がより好ましい。温度' 濃度 ·反応時間を調節することにより金属カルコゲンィ匕物ナノ粒子の粒子径を制御す ることが可能であるため、所望の粒子径のナノ粒子が得られるように反応条件を設定 することが好ましい。一般的に温度を高くし、濃度を大きくし、反応時間を長くすること により得られるナノ粒子の粒子径は大きくなる傾向にある。
[0029] 本発明で使用する官能基含有疎水性低分子化合物において、官能基とは金属力 ルコゲンィ匕物ナノ粒子の表面に配位または結合することのできる官能基を意味する。 このような官能基としては特に限定されないが、例えばヒドロキシル基、カルボキシル 基、メルカプト基、アミノ基、力ルバモイル基、ホルミル基、チォホルミル基、チォカル ボキシル基、ジチォカルボキシル基、トリアルコキシシリル基、ヒドロキシル基のアル力 リ金属塩、カルボキシル基のアルカリ金属塩、メルカプト基のアルカリ金属塩、ジチォ カルボキシル基のアルカリ金属塩、イミノ基、ニトロ基、ニトロソ基、スルホ基、スルホ基 のアルカリ金属塩、ハロホルミル基、シァノ基、シアナト基、イソシアナト基、チオシァ ナト基、イソチオシアナト基、ホスフイノ基、ホスフィエル基などを挙げることができる。 これらのうち安定性および修飾能力の点でヒドロキシル基、カルボキシル基、メルカプ ト基、アミノ基、力ルバモイル基、ホルミル基、チォホルミル基、チォカルボキシル基、 ジチォカルボキシル基、トリアルコキシシリル基、ヒドロキシル基のアルカリ金属塩、力 ルボキシル基のアルカリ金属塩、メルカプト基のアルカリ金属塩、ジチォカルボキシ ル基のアルカリ金属塩が好ましぐヒドロキシル基、カルボキシル基、メルカプト基、ァ ミノ基、力ルバモイル基、チォカルボキシル基、ジチォカルボキシル基、トリアルコキシ シリル基、ヒドロキシル基のアルカリ金属塩、カルボキシル基のアルカリ金属塩、メル カプト基のアルカリ金属塩、ジチォカルボキシル基のアルカリ金属塩がより好まし 、。
[0030] 上記官能基含有疎水性低分子化合物は分子量が 600以下の化合物である。また 疎水性とは、疎水性溶媒としてのトルエンまたは n-へキサンに対する溶解度の 、ず れかが、親水性溶媒としての水に対する溶解度に対して 2倍以上となる性質と定義 する。このような官能基含有疎水性低分子化合物しては特に限定されないが、入手 性および修飾能力の点で、 3, 3, 5-トリメチル - 1 -へキサノール、 3-メチル - 1 -ブタノ ール、イソデシルアルコール、ォレイルアルコールなどのヒドロキシル基含有化合物 およびこれらのアルカリ金属塩;イソノナン酸、ォレイン酸、ステアリン酸などのカルボ キシル基含有ィヒ合物およびこれらのアルカリ金属塩; 1 -オクタンチオール、 1 -デカン チオール、 1 -ドデカンチオール、 1 -へキサデカンチオール、チオフヱノールなどのメ ルカプト基含有ィ匕合物およびこれらのアルカリ金属塩;ジイソブチルァミン、 3- (ドデ シルォキシ)プロピルァミン、 2-ェチルへキシルァミン、 n-ォクチルァミン、ォレイルァ ミンなどのアミノ基含有ィ匕合物;ォレアミド、ステアリルアミドなどの力ルバモイル基含 有化合物;チォ安息香酸などのチォカルボキシル基含有ィ匕合物およびこれらのアル カリ金属塩;ジチォ安息香酸、ジメチルジチォカルバミン酸、ジェチルジチォカルバミ ン酸、ジブチルジチォカルバミン酸、ジベンジルジチォカルバミン酸、 N-ェチル -N- フエ-ルジチォカルバミン酸、ェチルキサントゲン酸、イソプロピルキサントゲン酸、ブ チルキサントゲン酸などのジチォカルボキシル基含有化合物およびこれらのアルカリ 金属塩;トリメトキシォクチルシラン、トリエトキシォクチルシラン、トリメトキシフエ-ルシ ラン、トリエトキシフエ-ルシランなどのトリアルコキシシリル基含有ィ匕合物が好まし 、。 また上記官能基を 1分子中に 2種以上含有する化合物を用いることもできる。上記ァ ルカリ金属塩中のアルカリ金属としては、入手性の点で Li、 Na、 Kが好ましい。
本発明の官能基含有疎水性高分子化合物は分子量が 1000以上の化合物である 。疎水性および官能基につ!、ては上記官能基含有疎水性低分子化合物と同じ定義 である。本発明の官能基含有疎水性高分子化合物の主鎖構造としては特に限定さ れず、(メタ)アクリル酸エステル、スチレン、 α -メチルスチレン、(メタ)アクリロニトリル 、塩化ビュル、ブタジエン、イソプレン、クロ口プレン、塩化ビ-リデンなどのビュル系 モノマーを重合させたもの;ポリエチレンテレフタレート、ポリブチレンテレフタレートな どのポリエステル;ポリカーボネート;ナイロン 6、ナイロン 66などのポリアミド;ポリビ- ルブチラールなどを使用することができる。これらのうち高分子の性質をコントロール しゃす 、点でビニル系モノマーを重合させて得られる構造を有するものが好ましぐ ( メタ)アクリル酸エステル、スチレン、アクリロニトリル、塩ィ匕ビュル力 なる群より選ば れる 1種以上のモノマーを重合させて得られる構造を有するものがより好ましい。 (メタ )アクリル酸エステルの例としては特に限定されないが、(メタ)アクリル酸メチル、(メタ )アクリル酸ェチル、(メタ)アクリル酸 η-ブチル、(メタ)アクリル酸 t-ブチル、(メタ)ァク リル酸 2-ェチルへキシル、(メタ)アクリル酸 2-メトキシェチル、(メタ)アクリル酸ァリル 、(メタ)アクリル酸フエ-ルなどを挙げることができる。複数のモノマーを重合させて共 重合体とする場合には、その構造は特に限定されず、ランダム共重合体、ブロック共 重合体、傾斜共重合体など任意である。
[0032] 本発明の官能基含有疎水性高分子化合物の分子量や分子量分布については特 に限定されな ヽが、低分子化合物を置換して金属カルコゲン化物ナノ粒子を修飾す る効率が高い点で、数平均分子量は 2000〜50000の範囲にあることが好ましい。ま た得られるポリマー修飾金属カルコゲンィ匕物ナノ粒子の物性が均一となる点で、分子 量分布は 1. 5以下であることが好ましぐ 1. 2以下であることがより好ましい。ここで数 平均分子量(Mn)と重量平均分子量(Mw)はゲル浸透クロマトグラフィー(GPC)分 析により決定される値であり、分子量分布は MwZMnとして計算される値である。
[0033] 本発明の官能基含有疎水性高分子化合物における官能基については、上記官能 基含有疎水性低分子化合物と同じである。ただし該官能基含有疎水性高分子化合 物は、官能基含有疎水性低分子化合物を置換して金属カルコゲンィ匕物ナノ粒子を 修飾するため、その官能基は官能基含有疎水性低分子化合物における官能基より も金属カルコゲンィ匕物ナノ粒子に対する修飾能力の高 、ものが好ま 、。上記記載 の官能基のうち、最も修飾能力の高いものがメルカプト基であるため、官能基含有疎 水性高分子化合物における官能基としてはメルカプト基が好まし 、。メルカプト基を 官能基として有する疎水性高分子化合物を得るための方法としては、メルカプト酢酸 の存在下にモノマーをラジカル重合させた後、高分子末端のスルフイド部分を分解 することによりメルカプト基に変換する方法;チォカルボ二ルチオ化合物を連鎖移動 剤とする可逆的付加脱離連鎖移動重合により合成する方法などが挙げられる。生産 性、簡便性、官能基導入率の点で、チォカルボ二ルチオ化合物を連鎖移動剤とする 可逆的付加脱離連鎖移動重合により合成する方法が好ましい。
[0034] 上記チォカルボ二ルチオ化合物を連鎖移動剤とする可逆的付加脱離連鎖移動重 合に関しては特に限定はなぐ例えば" HANDBOOK OF RADICAL POLY MERIZATION", K. Matyjaszewski and T. P. Davis Ed. , Wiley, 2002, 661ページに記載の方法、あるいは同書記載の参考文献記載の方法を適用可能で ある。ただし反応性の点で 70°C以上の温度で反応させることが好ましぐ 80°C以上 力 り好ましい。重合の形式は塊状重合、溶液重合、乳化重合、懸濁重合など限定 されな!/、が、重合後の後処理が容易である点で塊状重合または溶液重合が好ましく 、溶液重合がより好ましい。
[0035] 本発明に SNお SN 、て使用するチォカルボ二ルチオィ匕合物としては特に限定されな!ヽが
、入手性、反応性の点で以下の化合物が好ましい;
[0036] [化 1]
S Me
Ph— C— S CH2Ph Ph-C-S-CHPh
Me S Me
Ph— C— S— CPh Ph-C-S-CHOAc
e H2CH2COOH
Figure imgf000013_0001
S CN
Ph-C-S-CCH2CH2COO-fCH2CH2o)-Me
Me
Figure imgf000013_0002
Me
PhO-C-S-CCN EtO-C-S-CH2CN
Me
Figure imgf000013_0003
Me Me Me S Me
PhCH-S-C-S-CHPh PhC-S-C-S-CPh
Me Me
[0037] (式中、 Meはメチル基、 Etはェチル基、 Phはフエ-ル基、 Acはァセチル基を表し、 r は 1以上の整数である)。これらのチォカルボ-ルチオ化合物のうちより好ましいもの としてはトリチォカーボネート構造を有する化合物を挙げることができる。トリチォカー ボネート構造を有する化合物は一般に可逆的付加脱離連鎖移動重合の反応性が高 い。
[0038] 上記可逆的付加脱離連鎖移動重合により得られたポリマーを用いて金属カルコゲ ン化物ナノ粒子の表面を修飾する際、修飾効率が高くする目的で末端をメルカプト 基に変換しておくことが好まし ヽ。末端をメルカプト基に変換する方法としては処理剤 により処理する方法が挙げられる。処理剤としては特に限定されないが、 SH基に変 換する効率が高い点で、水素-窒素結合含有化合物、塩基性化合物、還元剤からな る群より選ばれる化合物が好ま 、。
[0039] 上記処理剤のうち、水素-窒素結合含有ィ匕合物としては特に限定されないが、アン モユア、ヒドラジン、 1級ァミン、 2級ァミン、アミドィ匕合物、ァミン塩酸塩、水素-窒素結 合含有高分子、ヒンダードアミン系光安定剤 (HALS)などを挙げることができる。上 記 1級ァミンの例としては、メチルァミン、ェチルァミン、イソプロピルァミン、 n-プロピ ルァミン、 n-ブチルァミン、 t-ブチルァミン、 2-ェチルへキシルァミン、 2-アミノエタノ ール、エチレンジァミン、ジエチレントリァミン、 1, 2-ジァミノプロパン、 1, 4-ジァミノ ブタン、シクロへキシルァミン、ァ-リン、フエネチルァミンなどを挙げることができる。 上記 2級ァミンの例としては、ジメチルァミン、ジェチルァミン、ジイソブチルァミン、ジ -2-ェチルへキシルァミン、イミノジ酢酸、ビス(ヒドロキシェチル)ァミン、ジ -η-ブチル ァミン、ジ- -ブチルァミン、ジフエ-ルァミン、 N-メチルァ-リン、イミダゾール、ピペリ ジンなどを挙げることができる。上記アミド化合物の例としては、アジピン酸ヒドラジド、 N-イソプロピルアクリルアミド、ォレアミド、チオアセトアミド、ホルムアミド、ァセトァ-リ ド、フタルイミド、コハク酸イミドなどを挙げることができる。上記アミン塩酸塩の例とし ては、ァセトアミジン塩酸塩、モノメチルァミン塩酸塩、ジメチルァミン塩酸塩、モノエ チルァミン塩酸塩、ジェチルァミン塩酸塩、塩酸グァ-ジンなどを挙げることができる 。上記水素-窒素結合含有高分子の例としては、ポリエチレンィミン、ポリアリルアミン 、ポリビュルァミンなどを挙げることができる。上記 HALSの例としては、アデカスタブ LA-77 (旭電化工業 (株)製)、チヌビン 144 (チバ 'スペシャルティ ·ケミカルズ社製) 、アデカスタブ LA-67 (旭電化工業 (株)製)などを挙げることができる。 [0040] 上記処理剤のうち塩基性ィ匕合物の例としては特に限定されないが、水酸化ナトリウ ム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、 ナトリウムメトキシド、ナトリウムエトキシド、マグネシウムメトキシド、炭酸ナトリウム、炭 酸カリウム、水硫ィ匕ナトリウム、硫ィ匕ナトリウムなどを挙げることができる。
[0041] 上記処理剤のうち還元剤の例としては特に限定されないが、水素化ナトリウム、水 素ィ匕リチウム、水素化カルシウム、 LiAlH、 NaBH、 LiBEt H (スーパーハイドライド
4 4 3
)、水素などを挙げることができる。
[0042] 上記処理剤は単独で用いてもよぐ組み合わせて用いてもよ!、。反応性の点で n- ブチルァミンなどの 1級ァミン、水酸化ナトリウム、水酸ィ匕カリウム、水硫ィ匕ナトリウム、 硫化ナトリウム、 LiAlH、 NaBH、 LiBEt H (スーパーハイドライド)が好ましい。上記
4 4 3
処理剤の使用量は特に限定されないが、反応性と経済性の点で、ポリマー 100重量 部に対して 0. 01〜: LOO重量部が好ましぐ 0. 1〜50重量部がより好ましい。温度や 溶媒の有無、混合条件などの反応条件は特に限定されないが、操作が簡便である 点で重合後の溶液に処理剤を直接添加して処理する方法が好ましく、反応温度は 0 °C〜 150°Cの範囲が好ましい。
[0043] 本発明にお ヽて親水性溶媒中で合成された金属カルコゲン化物ナノ粒子を、官能 基含有疎水性低分子化合物で修飾して疎水性溶媒中へ抽出する際、使用する親水 性溶媒と疎水性溶媒の組み合わせとしては、両者が互いに混ざり合わな 、ものを用 V、る必要がある。このような親水性溶媒 Z疎水性溶媒の組み合わせとしては例えば、 水 zトルエン、水 Zキシレン、水 Zベンゼン、水 zクロ口ホルム、水 zジクロロメタン、 水 Z四塩化炭素、水 Zi, 2-ジクロロエタン、水 Zペンタン、水 Zへキサン、水 Zへ プタン、水 Zオクタン、水 Zシクロへキサン、水 Zシクロオクタン、水 Zジェチルエー テル、水/メチルイソブチルケトン、メタノール/ヘプタン、メタノール/へキサン、メタ ノール Zヘプタン、メタノール Zオクタンなどを挙げることができる。これらのうち入手 性、安全性、溶解性の点で、水 Zトルエン、水 Zクロ口ホルム、水 Zへキサン、メタノ ール Zへキサンの組み合わせが好まし 、。
[0044] 金属カルコゲン化物ナノ粒子に対する官能基含有疎水性低分子化合物の使用量 としては特に限定されないが、修飾効率とコストのバランスに優れる点で、金属カルコ ゲン化物ナノ粒子中の金属原子のモル数に対して、 1モル%〜500モル0 /0が好まし く、 10モノレ0/ 0〜300モノレ0 /0力より好まし!/ヽ。
[0045] 官能基含有疎水性低分子化合物で金属カルコゲン化物ナノ粒子を修飾する際の 操作としては特に限定されず、親水性溶媒と疎水性溶媒が互いに接触しあうようにす ればよい。効率と生産性の点で、激しく混合攪拌することが好ましぐ超音波照射す ることがより好ましい。温度についても特に限定されないが、効率の点で 0°C〜150°C が好ましぐ 15°C〜100°Cがより好ましい。
[0046] 金属カルコゲン化物ナノ粒子を疎水性溶媒に抽出後、官能基含有疎水性高分子 化合物で官能基含有疎水性低分子化合物を置換する際、操作としては特に限定さ れず、例えば疎水性溶媒中に官能基含有疎水性高分子化合物を単体であるいは溶 液として添加してもよぐ一旦疎水性溶媒を留去して低分子化合物で修飾された金 属カルコゲンィ匕物ナノ粒子を単離した後、官能基含有疎水性高分子化合物の溶液 に添加してもよい。いずれの場合においても効率の点で、官能基含有疎水性高分子 化合物と金属カルコゲンィ匕物ナノ粒子の両方が疎水性溶媒中に溶解して 、ることが 好ましい。また効率の点で溶液を激しく攪拌することが好ましぐ超音波照射すること 力 り好ましい。温度については特に限定されないが、効率の点で 0°C〜150°Cが好 ましぐ 15°C〜100°Cがより好ましい。官能基含有疎水性高分子化合物の使用量と しては特に限定されないが、修飾効率とコストのバランスに優れる点で、金属カルコ ゲン化物ナノ粒子中の金属原子のモル数に対して 1モル%〜500モル0 /0が好ましく 、 10モノレ0/ 0〜300モノレ0 /0力より好まし!/ヽ。
[0047] 本発明のポリマー修飾金属カルコゲン化物ナノ粒子は疎水性高分子化合物により 修飾されているため、疎水性溶媒に対する溶解度が高い。本発明のポリマー修飾金 属カルコゲンィ匕物ナノ粒子を親水性溶媒に溶解させる場合には、例えばポリ(メタ)ァ クリル酸 t-ブチルを官能基含有疎水性高分子化合物として使用して金属カルコゲン 化物ナノ粒子を修飾し、次に熱分解あるいは酸触媒による分解など一般に広く知ら れている方法を用いて t-ブチル基をイソプチレンとして分解し、ポリ(メタ)アクリル酸 に変換することにより達成できる。酸触媒としては特に限定されず、例えば塩酸、硫 酸、硝酸、 P-トルエンスルホン酸などを使用できる。 [0048] このようにして得られたポリマー修飾金属カルコゲン化物ナノ粒子は、上記疎水性 溶媒中に分散または溶解させた状態で使用してもよぐ単離して使用してもよぐ榭 脂中に分散させて使用してもよい。本発明のポリマー修飾カルコゲンィ匕物ナノ粒子を 単離する場合には、溶液中力 ポリマーを単離する一般的な方法を適用可能であり 、例えば溶媒を留去する方法、貧溶媒を加えて析出させる方法などを採用できる。本 発明のポリマー修飾カルコゲンィ匕物ナノ粒子を榭脂中に分散させる場合には、上記 疎水性溶媒中に分散または溶解させた状態で榭脂を単体または溶液として添加して もよぐ一旦単離したポリマー修飾カルコゲンィ匕物ナノ粒子を溶液または溶融状態の 榭脂と混合してもよい。
[0049] 本発明にお 、てポリマー修飾カルコゲンィ匕物ナノ粒子を榭脂中に分散させる場合 の榭脂としては特に限定されず、一般に広く知られている熱硬化性榭脂、熱可塑性 榭脂、熱可塑性エラストマ一、ゴムなどを使用可能である。なかでも得られる榭脂組 成物の有用性の点で、エポキシ榭脂、シリコーン榭脂、ウレタン榭脂、ポリスチレン、 ポリ塩ィ匕ビュル、アクリル榭脂、ナイロン、ポリカーボネート、ポリエチレンテレフタレー ト、ポリイミド、スチレン-ブタジエン共重合体、ウレタン系熱可塑性エラストマ一(TPU )、エステル系熱可塑性エラストマ一(TPEE)、ポリビュルブチラール系熱可塑性ェ ラストマー、アクリルゴム、ブチルゴム、エチレン-プロピレン-ジェン共重合体(EPDM )が好ましい。これらは単独で用いてもよぐ複数を組み合わせて用いてもよい。これ らの榭脂の使用量としては特に限定されないが、ナノ粒子の特性がよく発現される点 で、ポリマー修飾カルコゲン化物ナノ粒子 100重量部に対して 20〜100000重量部 が好ましぐ 50〜50000重量部がより好ましい。
実施例
[0050] 以下に本発明の実施例を示すが、これらに限定されるものではない。
[0051] 本発明にお!/、てポリマーの重量平均分子量(Mw)と数平均分子量(Mn)は、ゲル パーミエーシヨンクロマトグラフィー(GPC)分析により求めた。 Waters社製システムを 使用し、カラムは Shodex K— 806と K— 805 (昭和電工 (株)製)を連結して用い、 クロ口ホルムを溶出液とし、ポリスチレン標準で解析した。ポリマーを重合する際、モノ マーの反応率はガスクロマトグラフィー(GC)分析により決定した。 GC分析は、サン プリング液を酢酸ェチルに溶解し、キヤビラリ一力ラム DB- 17 (J&W SCIENTIFIC
INC.製)を使用し、ガスクロマトグラフ GC- 14B ( (株)島津製作所製)で実施した。 核磁気共鳴 (NMR)分析は重水素化クロ口ホルムを溶媒として使用し、 ASX-400 ( ブルッカ一社製)を用いて実施した。金属カルコゲンィ匕物ナノ粒子の粒径は、透過型 電子顕微鏡 (TEM)JEM - 1200EX (日本電子 (株)製)を使用し、加速電圧 80kVで 観察した。コロイド溶液試料の場合はコロジオン膜を貼り付けたメッシュ上に乾燥固 定して観察した。ナノ粒子の数平均粒子径は、 TEM写真において 100個以上のナ ノ粒子をノギスを用いて計測して計算した。発光スペクトルは、分光蛍光光度計 FP- 6500DS (日本分光 (株)製)を用いて溶液またはフィルム試料に対して 290〜320n mの励起光を使用し、 350〜700nmの範囲でフォトルミネッセンススペクトルを測定 した。超音波照射は超音波ホモジナイザー UH-600 ( (株)ェムエステ一製)を使用し て実施した。連鎖移動剤として使用したチォカルボ二ルチオィ匕合物は、特表 2000- 515181ある!/ヽ ίま Macromolecules 2002, 35, 4123【こ記載の方法【こ従って合成 した。
[0052] (製造例 1)
可逆的付加脱離連鎖移動重合によるポリメタクリル酸メチル (PMMA)の合成 1L3 口フラスコにメタクリル酸メチル(501g)、 2- (2-フエ-ルプロピル)ジチォベンゾエー ト(8. 0g)、ァゾビスイソブチ口-トリル(1. lg)、トルエン(260g)を入れ、反応器内を 窒素置換した。溶液を攪拌しながら 90°Cで 1時間加熱することにより、反応率 42%で PMMAを得た。次に n -プチルァミン(25g)を添加し、 80°Cで 4時間攪拌することに より、 PMMAの末端をメルカプト基に変性した。反応溶液を 400mLまで濃縮し、メタ ノール(2L)に注ぐことによってメルカプト基を有する PMMAを単離した。得られたメ ルカプト基を有する PMMAの分子量および分子量分布は、 Mw= 13500、 Mn= l 1300、 Mw/Mn= l. 19であった。
[0053] (製造例 2)
可逆的付加脱離連鎖移動重合によるポリアクリル酸 t-ブチル (PtBA)の合成 50m L3口フラスコにアクリル酸 t-ブチル(18. 0g)、ジベンジルトリチォカーボネート(0. 2 05g)、ァゾビスイソブチ口-トリル (0. 023g)、トルエン(17. 4g)を入れ、反応器内を 窒素置換した。溶液を攪拌しながら 90°Cで 3時間攪拌することにより、反応率 95%で PtBAを得た。次に n-プチルァミン(3g)を添加し、 70°Cで 5時間攪拌することにより、 PtBAの末端をメルカプト基に変性した。反応溶液をメタノール(lOOmL)に注ぐこと によってメルカプト基を有する PtBAを単離した。得られたメルカプト基を有する PtB Aの分子量および分子量分布は、 Mw= 11200、 Mn= 9500、 Mw/Mn= l. 18 であった。
[0054] (製造例 3)
可逆的付加脱離連鎖移動重合によるポリアクリル酸 n-ブチル (PBA)の合成 100m L3口フラスコにアクリル酸 n-ブチル(49. 8g)、ジベンジルトリチォカーボネート(0. 5 04g)、ァゾビスイソプチ口-トリル (0. 072g)を入れ、反応器内を窒素置換した。溶 液を攪拌しながら 90°Cで 1時間攪拌することにより、反応率 65%で PBAを得た。未 反応のアクリル酸 n-ブチルを留去し、 PBAを単離した。この PBAを酢酸ェチル(30 mL)に溶解し、 n-プチルァミン (4g)をカ卩えて 50°Cで 6時間攪拌することにより、 PBA の末端をメルカプト基に変性した。この溶液をメタノール(200mL)に注ぐことにより、 メルカプト基を有する PBAを単離した。得られたメルカプト基を有する PBAの分子量 および分子量分布は、 Mw=8100、 Mn= 7000、 Mw/Mn= l. 16であった。
[0055] (製造例 4)
可逆的付加脱離連鎖移動重合によるポリスチレン (PSt)の合成
500mL4口フラスコに、スチレン(100g)、 2- (2-フエ-ルプロピル)ジチォベンゾェ ート(3. 22g)、ァゾビスイソブチ口-トリル (0. 61g)、トルエン(98g)を入れ、反応器 内を窒素置換した。溶液を攪拌しながら 70°Cで 14時間攪拌することにより、反応率 4 2%で PStを得た。反応溶液を 50°Cに保ち、ジェチルァミン(25g)を加えて 8時間攪 拌することにより、 PStの末端をメルカプト基に変性した。室温まで冷却後、反応溶液 をメタノール(500mL)に注いでメルカプト基を有する PStを析出させた。得られたメ ルカプト基を有する PStの分子量および分子量分布は、 Mw=4300、 Mn= 3700、 Mw/Mn= l. 16であった。
[0056] (製造例 5)
ZnOナノ粒子の合成 酢酸亜鉛二水和物(220mg)をメタノール(80mL)に溶解し、 50°Cで 30分間攪拌 した後メタノールを加えて全量を 920mLとし、 0°Cに冷却した。ここに 0. 02M NaO HZメタノール溶液 (80mL)を一度にカ卩え、 65°Cで 2時間攪拌した。得られたコロイ ド溶液は透明であった。 TEM分析より数平均粒子径 5. lnmの ZnOナノ粒子が生成 していることを確認した。この ZnOナノ粒子はメタノール中 320nmの光で励起するこ とにより、 559nm〖こ発光スぺクトノレを示した。
[0057] (製造例 6)
ZnSナノ粒子の合成
酢酸亜鉛二水和物(2. 5g)をジメチルホルムアミド-水(1: 1 (体積) ) (250mL)に 溶解させ、室温で攪拌しながら硫ィ匕ナトリウム九水和物(2. 7g)を添加した。室温で 1 時間攪拌後、 65°Cで 10時間攪拌した。若干沈殿が生成したためろ過して取り除き、 透明なコロイド溶液を得た。 TEM分析より数平均粒子径 4. 7nmの ZnSナノ粒子が 生成していることを確認した。この ZnSナノ粒子はジメチルホルムアミド-水(1: 1 (体 積))中 290nmの光で励起することにより、 401nmに発光スペクトルを示した。
[0058] (製造例 7)
Mnドープ ZnS (ZnS: Mn)ナノ粒子の合成
ポリリン酸(10. 2g)を純水(60mL)に溶解させ、室温で攪拌しながら酢酸亜鉛二 水和物の 1M水溶液(10mL)と酢酸マンガン四水和物の 0. 1M水溶液(10mL)を 同時に添カ卩した。次に硫ィ匕ナトリウム九水和物の 0. 85M水溶液(20mL)をカ卩えた。 生成した沈殿を遠心分離により単離し、純水とエタノールで洗浄することにより、 ZnS : Mnナノ粒子を得た。得られた ZnS : Mnナノ粒子の数平均粒子径が 5. Onmである ことを TEM観察により確認した。この ZnS : Mnナノ粒子の水分散液は 3 lOnmの光 で励起することにより、 590nmに発光スペクトルを示した。
[0059] (実施例 1)
製造例 5で得られた ZnOナノ粒子のメタノール溶液(lOOmL)と、ォレイン酸(28m g)のへキサン溶液(50mL)とを室温で 5分間激しく混合し、 ZnOナノ粒子をォレイン 酸で修飾することによりへキサン層に抽出した。二層を分離してそれぞれの溶液の発 光スペクトルを測定し、その強度比力も求めた抽出効率は 99%であった。図 1にへキ サン層に抽出された ZnOナノ粒子の写真を示す。右側がォレイン酸を含まな 、場合 で、左側がォレイン酸を含む場合である。それぞれ上層がへキサン層、下層がメタノ ール層である。ォレイン酸を含む場合には ZnOナノ粒子がへキサン層に抽出された 結果、メタノール層は発光せずにへキサン層のみが発光している。なお写真は 365η mの UVランプ照射下に撮影されたものである。
[0060] 製造例 1で得られたメルカプト基を有する PMMA (0. lg)をトルエン(20mL)に溶 解し、上記ォレイン酸修飾 ZnOナノ粒子のへキサン溶液(3mL)をカ卩え、 80°Cで 15 分間超音波照射を行った。室温まで冷却後、溶液をへキサン (50mL)に注ぐことに よってポリマーを析出させた。 NMR分析力 上澄み液にはォレイン酸が存在するこ とを確認した力 上澄み液は発光スペクトルを示さなカゝつた。析出したポリマーを減圧 乾燥し、クロ口ホルムに溶解させて発光スペクトルを測定したところ、 320nmの光で 励起することにより 563nmに発光スペクトルを示した。このことカもォレイン酸を置換 して PMMA力 ¾nOナノ粒子を修飾できたことを確認した。
[0061] 得られた PMMA修飾 ZnOナノ粒子のクロ口ホルム溶液は室温で 6ヶ月以上保存し ても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥させて固化し た PMMA修飾 ZnOナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させ た場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0062] (比較例 1)
実施例 1におけるメルカプト基を有する PMMAの代わりに巿販 PMMA (Mw約 15 000、アルドリッチ製、製品番号 20, 033-6)を用いて、実施例 1と全く同様の実験を 行った。しかし巿販 PMMAで ZnOナノ粒子を修飾することはできず、単離した PMM Aからは発光スペクトルを確認できな力 た。上澄み液は発光スペクトルを示したが、 室温で 2週間保存すると濁りが生じ、発光スペクトルが消失した。 ZnOナノ粒子が不 安定で凝集してしまったものと考えられる。
[0063] (実施例 2)
実施例 1におけるメルカプト基を有する PMMAの代わりに製造例 2で得られたメル カプト基を有する PtBAを用いて、実施例 1と全く同様の実験を行ない、 PtBA修飾 Z ηθナノ粒子を得た。この PtBA修飾 ZnOナノ粒子のクロ口ホルム溶液は室温で 6ヶ月 以上保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥さ せた PtBA修飾 ZnOナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させ た場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0064] (実施例 3)
実施例 1におけるメルカプト基を有する PMMAの代わりに製造例 3で得られたメル カプト基を有する PBAを用いて、実施例 1と全く同様の実験を行ない、 PBA修飾 Zn Oナノ粒子を得た。この PBA修飾 ZnOナノ粒子のクロ口ホルム溶液は室温で 6ヶ月以 上保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥させ た PBA修飾 ZnOナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させた 場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0065] (比較例 2)
実施例 3におけるメルカプト基を有する PBAの代わりに巿販 PBA(Mn約 20000、 アルドリッチ製、製品番号 18, 141 -2)を用いて、実施例 3と全く同様の実験を行った 。しカゝし巿販 PBAで ZnOナノ粒子を修飾することはできず、単離した PBAからは発 光スペクトルを確認できなカゝつた。上澄み液は発光スペクトルを示した力 室温で 10 日間保存すると濁りが生じ、発光スペクトルが消失した。 ZnOナノ粒子が不安定で凝 集してしまったものと考えられる。
[0066] (実施例 4)
実施例 1におけるメルカプト基を有する PMMAの代わりに製造例 4で得られたメル カプト基を有する PStを用いて、実施例 1と全く同様の実験を行ない、 PSt修飾 ZnO ナノ粒子を得た。この PSt修飾 ZnOナノ粒子のクロ口ホルム溶液は室温で 6ヶ月以上 保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥させた PSt修飾 ZnOナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させた場合 も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0067] (比較例 3)
実施例 4におけるメルカプト基を有する PStの代わりに巿販 PSt (Mw約 4000、ァ ルドリッチ製、製品番号 32, 772-7)を用いて、実施例 4と全く同様の実験を行った。 しかし巿販 PStで ZnOナノ粒子を修飾することはできず、単離した PStからは発光ス ベクトルを確認できな力つた。上澄み液は発光スペクトルを示した力 室温で 11日間 保存すると濁りが生じ、発光スペクトルが消失した。 ZnOナノ粒子が不安定で凝集し てしまったものと考えられる。
[0068] (実施例 5)
製造例 6で得られた ZnSナノ粒子のジメチルホルムアミド-水(1: 1 (体積) )溶液(10 OmL)と、 1 -ドデカンチオール(0. 93g)のへキサン溶液(150mL)とを室温で 10分 間激しく混合し、 ZnSナノ粒子を 1 -ドデカンチオールで修飾することによりへキサン 層に抽出した。へキサン層と水層を分離してそれぞれの溶液の発光スペクトルを測 定し、その強度比から求めた抽出効率は 96%であった。
[0069] 製造例 1で得られたメルカプト基を有する PMMA (lg)をクロ口ホルム(30mL)に溶 解し、上記 1 -ドデカンチオール修飾 ZnSナノ粒子のへキサン溶液(3mL)をカ卩え、室 温で 15分間超音波照射を行った。溶液を 15mLまで濃縮後、へキサン (80mL)に 注ぐことによりポリマーを析出させた。 NMR分析から上澄みには 1 -ドデカンチオール が存在することを確認した力 上澄み液は発光スペクトルを示さなカゝつた。析出したポ リマーを減圧乾燥し、クロ口ホルムに溶解させて発光スペクトルを測定したところ、 29 Onmの光で励起することにより 396nmに発光スペクトルを示した。このことから 1 -ドデ カンチオールを置換して PMMA力 ¾nSナノ粒子を修飾できたことを確認した。
[0070] 得られた PMMA修飾 ZnSナノ粒子のクロ口ホルム溶液は室温で 6ヶ月以上保存し ても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥させて固化し た PMMA修飾 ZnSナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させ た場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0071] (比較例 4)
実施例 5におけるメルカプト基を有する PMMAの代わりに巿販 PMMA (Mw約 15 000、アルドリッチ製、製品番号 20, 033-6)を用いて、実施例 5と全く同様の実験を 行った。しかし巿販 PMMAで ZnSナノ粒子を修飾することはできず、単離した PMM Aからは発光スペクトルを確認できな力 た。上澄み液は発光スペクトルを示したが、 室温で 7日間保存すると濁りが生じ、発光スペクトルが消失した。 ZnSナノ粒子が不 安定で凝集してしまったものと考えられる。 [0072] (実施例 6)
実施例 5におけるメルカプト基を有する PMMAの代わりに製造例 2で得られたメル カプト基を有する PtBAを用いて、実施例 5と全く同様の実験を行ない、 PtBA修飾 Z nSナノ粒子を得た。この PtBA修飾 ZnSナノ粒子のクロ口ホルム溶液は室温で 6ヶ月 以上保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥さ せた PtBA修飾 ZnSナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させ た場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0073] (実施例 7)
実施例 5におけるメルカプト基を有する PMMAの代わりに製造例 3で得られたメル カプト基を有する PBAを用いて、実施例 5と全く同様の実験を行い、 PBA修飾 ZnS ナノ粒子を得た。この PBA修飾 ZnSナノ粒子のクロ口ホルム溶液は室温で 6ヶ月以上 保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥させた PBA修飾 ZnSナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させた場合 も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0074] (比較例 5)
実施例 7におけるメルカプト基を有する PBAの代わりに巿販 PBA(Mn約 20000、ァ ルドリッチ製、製品番号 18, 141 -2)を用いて、実施例 7と全く同様の実験を行った。 しかし巿販 PBAで ZnSナノ粒子を修飾することはできず、単離した PBAからは発光 スペクトルを確認できなカゝつた。上澄み液は発光スペクトルを示した力 室温で 11日 間保存すると濁りが生じ、発光スペクトルが消失した。 ZnSナノ粒子が不安定で凝集 してしまったものと考えられる。
[0075] (実施例 8)
実施例 5におけるメルカプト基を有する PMMAの代わりに製造例 4で得られたメル カプト基を有する PStを用いて、実施例 5と全く同様の実験を行い、 PSt修飾 ZnSナ ノ粒子を得た。この PSt修飾 ZnSナノ粒子のクロ口ホルム溶液は室温で 6ヶ月以上保 存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥させた PS t修飾 ZnSナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解させた場合も、 濁りは生じず発光スペクトルにも変化なく安定であった。 [0076] (比較例 6)
実施例 8におけるメルカプト基を有する PStの代わりに巿販 PSt (Mw約 4000、ァ ルドリッチ製、製品番号 32, 772-7)を用いて、実施例 8とまったく同様の実験を行つ た。しカゝし巿販 PStで ZnSナノ粒子を修飾することはできず、単離した PStからは発 光スペクトルを確認できなカゝつた。上澄み液は発光スペクトルを示した力 室温で 11 日間保存すると濁りが生じ、発光スペクトルが消失した。 ZnSナノ粒子が不安定で凝 集してしまったものと考えられる。
[0077] (実施例 9)
製造例 7で得られた ZnS: Mnナノ粒子(lOOmg)を純水(lOOmL)に添カ卩して超音 波照射することにより分散させ、ォレアミド(60mg)のへキサン溶液(50mL)と混合し た。この混合液を超音波照射しながら室温で 15分間激しく攪拌し、 ZnS : Mnナノ粒 子をォレアミドで修飾することによりへキサン層に抽出した。二層を分離してそれぞれ の溶液の発光スペクトルを測定し、その強度比から求めた抽出効率は 93%であった
[0078] 製造例 1で得られたメルカプト基を有する PMMA (0. 2g)をトルエン(20mL)に溶 解し、上記ォレアミド修飾 ZnS : Mnナノ粒子のへキサン溶液(5mL)をカ卩え、室温で 20分間超音波照射を行った。溶液をへキサン(80mL)に注ぐことによってポリマーを 析出させた。 NMR分析力 上澄み液にはォレアミドが存在することを確認した力 上 澄み液は発光スペクトルを示さな力つた。析出したポリマーを減圧乾燥し、クロ口ホル ムに溶解させて発光スペクトルを測定したところ、 320nmの光で励起することにより 5 60nmに発光スペクトルを示した。このことからォレアミドを置換して PMMA力 ¾nS: Mnナノ粒子を修飾できたことを確認した。
[0079] 得られた PMMA修飾 ZnS: Mnナノ粒子のクロ口ホルム溶液は室温で 6ヶ月以上保 存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥させて固 化した PMMA修飾 ZnS: Mnナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに 溶解させた場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0080] (比較例 7)
実施例 9におけるメルカプト基を有する PMMAの代わりに巿販 PMMA (Mw約 15 000、アルドリッチ製、製品番号 20, 033-6)を用いて、実施例 9と全く同様の実験を 行った。しかし巿販 PMMAで ZnS : Mnナノ粒子を修飾することはできず、単離した P MMAからは発光スペクトルを確認できなかった。上澄み液は発光スペクトルを示し たが、室温で 2週間保存すると濁りが生じ、経時で発光スペクトルの強度が減少した。 ZnS: Mnナノ粒子が不安定で凝集してしまったものと考えられる。
[0081] (実施例 10)
実施例 9におけるメルカプト基を有する PMMAの代わりに製造例 2で得られたメル カプト基を有する PtBAを用いて、実施例 9と全く同様の実験を行い、 PtBA修飾 Zn S: Mnナノ粒子を得た。この PtBA修飾 ZnS: Mnナノ粒子のクロ口ホルム溶液は室温 で 6ヶ月以上保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。ま た乾燥させた PtBA修飾 ZnS: Mnナノ粒子を、室温で 6ヶ月保存した後にクロ口ホル ムに溶解させた場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0082] (実施例 11)
実施例 9におけるメルカプト基を有する PMMAの代わりに製造例 3で得られたメル カプト基を有する PBAを用いて、実施例 9と全く同様の実験を行い、 PBA修飾 ZnS : Mnナノ粒子を得た。この PBA修飾 ZnS: Mnナノ粒子のクロ口ホルム溶液は室温で 6 ヶ月以上保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾 燥させた PBA修飾 ZnS: Mnナノ粒子を、室温で 6ヶ月保存した後にトルエンに溶解 させた場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0083] (比較例 8)
実施例 11におけるメルカプト基を有する PBAの代わりに巿販 PBA (Mn約 20000 、アルドリッチ製、製品番号 18, 141 -2)を用いて、実施例 11と全く同様の実験を行 つた。しかし巿販 PBAで ZnS : Mnナノ粒子を修飾することはできず、単離した PBA 力もは発光スペクトルを確認できな力 た。上澄み液は発光スペクトルを示した力 室 温で 7日間保存すると濁りが生じ、経時で発光スペクトルの強度が減少した。 ZnS : M nナノ粒子が不安定で凝集してしまったものと考えられる。
[0084] (実施例 12)
実施例 9におけるメルカプト基を有する PMMAの代わりに製造例 4で得られたメル カプト基を有する PStを用いて、実施例 9と全く同様の実験を行い、 PSt修飾 ZnS : M nナノ粒子を得た。この PSt修飾 ZnS: Mnナノ粒子のクロ口ホルム溶液は室温で 6ケ 月以上保存しても濁りを生じず、発光スペクトルにも変化なく安定であった。また乾燥 させた PSt修飾 ZnS: Mnナノ粒子を、室温で 6ヶ月保存した後にクロ口ホルムに溶解 させた場合も、濁りは生じず発光スペクトルにも変化なく安定であった。
[0085] (比較例 9)
実施例 12におけるメルカプト基を有する PStの代わりに巿販 PSt (Mw約 4000、ァ ルドリッチ製、製品番号 32, 772-7)を用いて、実施例 12とまったく同様の実験を行 つた。しかし巿販 PStで ZnS : Mnナノ粒子を修飾することはできず、単離した PStか らは発光スペクトルを確認できな力つた。上澄み液は発光スペクトルを示した力 室 温で 10日間保存すると濁りが生じ、経時で発光スペクトルの強度が減少した。 ZnS : Mnナノ粒子が不安定で凝集してしまったものと考えられる。
産業上の利用可能性
[0086] 本発明の方法により得られるポリマー修飾ナノ粒子は、凝集することなく安定的に 量子効果を発現する材料として、ディスプレイ用蛍光体、光電変換素子、発光ダイォ ード、波長変換材料、紫外線遮蔽材料、色素増感太陽電池、蛍光塗料、蛍光フィル ム、発光塗料、発光フィルム、診断薬、微量成分検出試薬、分析用試薬、ドラッグデリ ノ リーシステム、量子トランジスタ、量子ドットレーザー、ディスプレイ用発光体、ノ リス ター、触媒などの用途に有用である。

Claims

請求の範囲
[1] 親水性溶媒中で合成された数平均粒子径 lOOnm以下の金属カルコゲンィ匕物ナノ 粒子を、官能基含有疎水性低分子化合物で修飾することにより疎水性溶媒中へ抽 出し、次 、で該疎水性低分子化合物を官能基含有疎水性高分子化合物で置換する ことを特徴とする、ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法。
[2] 金属カルコゲンィ匕物ナノ粒子が、親水性溶媒中で金属化合物とカルコゲン化剤と を混合することにより得られるものであることを特徴とする、請求項 1に記載のポリマー 修飾カルコゲン化物ナノ粒子の製造方法。
[3] 金属化合物が、金属のハロゲン化物、金属の有機酸塩、金属の硝酸塩、金属の硫 酸塩、金属の過塩素酸塩、金属のァセチルァセトナートからなる群より選ばれる 1種 以上の化合物であることを特徴とする、請求項 2に記載のポリマー修飾金属カルコゲ ン化物ナノ粒子。
[4] カルコゲン化剤が、 MOH、 M S、 MSH、 H S、 M Se、 MSeH、 H Se、 M Te、 M
2 2 2 2 2
TeH、 H Te、チォ尿素(Mはアルカリ金属)からなる群より選ばれる 1種以上の化合
2
物であることを特徴とする、請求項 2または 3に記載のポリマー修飾金属カルコゲンィ匕 物ナノ粒子。
[5] 金属カルコゲン化物ナノ粒子中の金属が、 Zn、 Ti、 Zr、 Cr、 Mo、 W、 Mn、 Fe、 Ru
、 Co、 Rh、 Ir、 Ni、 Pd、 Cu、 Ag、 Cd、 Al、 Ga、 In、 Si、 Ge、 Sn、 Pb、ランタノイド、了 クチノイドからなる群より選ばれる 1種以上の元素力もなることを特徴とする、請求項 1 力 4のいずれかに記載のポリマー修飾金属カルコゲンィ匕物ナノ粒子の製造方法。
[6] 金属カルコゲン化物ナノ粒子の数平均粒子径が Inn!〜 20nmの範囲であることを 特徴とする、請求項 1から 5のいずれかに記載のポリマー修飾カルコゲンィ匕物ナノ粒 子の製造方法。
[7] 官能基含有疎水性低分子化合物および官能基含有疎水性高分子化合物におけ る官能基が、ヒドロキシル基、カルボキシル基、メルカプト基、アミノ基、力ルバモイル 基、ホルミル基、チォホルミル基、チォカルボキシル基、ジチォカルボキシル基、トリ アルコキシシリル基、ヒドロキシル基のアルカリ金属塩、カルボキシル基のアルカリ金 属塩、メルカプト基のアルカリ金属塩、ジチォカルボキシル基のアルカリ金属塩から なる群より選ばれる 1種以上の基であることを特徴とする、請求項 1から 6のいずれか に記載のポリマー修飾金属カルコゲンィ匕物ナノ粒子の製造方法。
[8] 官能基含有疎水性高分子化合物が、(メタ)アクリル酸エステル、スチレン、アタリ口 二トリル、塩ィ匕ビ二ルカ なる群より選ばれる 1種以上のモノマーを重合させて得られ る構造を有することを特徴とする、請求項 1から 7のいずれかに記載のポリマー修飾 金属カルコゲンィ匕物ナノ粒子の製造方法。
[9] 官能基含有疎水性高分子化合物が、チォカルボ二ルチオ化合物を連鎖移動剤と する可逆的付加脱離連鎖移動重合により合成されたものであることを特徴とする、請 求項 1から 8のいずれかに記載のポリマー修飾金属カルコゲンィ匕物ナノ粒子の製造 方法。
[10] 官能基含有疎水性高分子化合物が、可逆的付加脱離連鎖移動重合の後に末端 をメルカプト基に変換されたものであることを特徴とする、請求項 9に記載のポリマー 修飾金属カルコゲン化物ナノ粒子の製造方法。
[11] 請求項 1から 10のいずれかに記載の製造方法により得られる、ポリマー修飾金属力 ルコゲン化物ナノ粒子。
PCT/JP2005/016487 2004-09-30 2005-09-08 ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法 WO2006038420A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006539198A JP5014796B2 (ja) 2004-09-30 2005-09-08 ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-286273 2004-09-30
JP2004286273 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006038420A1 true WO2006038420A1 (ja) 2006-04-13

Family

ID=36142502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016487 WO2006038420A1 (ja) 2004-09-30 2005-09-08 ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法

Country Status (2)

Country Link
JP (1) JP5014796B2 (ja)
WO (1) WO2006038420A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510953A (ja) * 2006-12-01 2010-04-08 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング 高い比表面積を有する透明な硫化亜鉛
JP2012501941A (ja) * 2008-09-04 2012-01-26 ビーエーエスエフ ソシエタス・ヨーロピア 変性された粒子、及びこれらを含む分散液
US8425803B2 (en) 2004-01-15 2013-04-23 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
US8749130B2 (en) 2004-01-15 2014-06-10 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
JP2018507835A (ja) * 2014-12-08 2018-03-22 レイセオン カンパニー 亜鉛硫化物カップリング剤
CN111363385A (zh) * 2020-04-10 2020-07-03 Tcl华星光电技术有限公司 一种有机改性钛酸钡纳米颗粒的制备方法及量子点光学膜的制备方法
WO2022032811A1 (zh) * 2020-08-13 2022-02-17 深圳市华星光电半导体显示技术有限公司 钡钛复合物及其制备方法与显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531830A (ja) * 1998-11-30 2002-09-24 ナノスフェアー インコーポレイテッド ポリマー殻を有するナノ粒子
JP2003064278A (ja) * 2001-08-23 2003-03-05 Mitsubishi Chemicals Corp コアシェル型半導体ナノ粒子
JP2003073126A (ja) * 2001-09-03 2003-03-12 Mitsubishi Chemicals Corp 半導体ナノ粒子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531830A (ja) * 1998-11-30 2002-09-24 ナノスフェアー インコーポレイテッド ポリマー殻を有するナノ粒子
JP2003064278A (ja) * 2001-08-23 2003-03-05 Mitsubishi Chemicals Corp コアシェル型半導体ナノ粒子
JP2003073126A (ja) * 2001-09-03 2003-03-12 Mitsubishi Chemicals Corp 半導体ナノ粒子の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425803B2 (en) 2004-01-15 2013-04-23 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
US8749130B2 (en) 2004-01-15 2014-06-10 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
JP2010510953A (ja) * 2006-12-01 2010-04-08 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング 高い比表面積を有する透明な硫化亜鉛
JP2012501941A (ja) * 2008-09-04 2012-01-26 ビーエーエスエフ ソシエタス・ヨーロピア 変性された粒子、及びこれらを含む分散液
JP2018507835A (ja) * 2014-12-08 2018-03-22 レイセオン カンパニー 亜鉛硫化物カップリング剤
CN111363385A (zh) * 2020-04-10 2020-07-03 Tcl华星光电技术有限公司 一种有机改性钛酸钡纳米颗粒的制备方法及量子点光学膜的制备方法
CN111363385B (zh) * 2020-04-10 2021-06-01 Tcl华星光电技术有限公司 一种有机改性钛酸钡纳米颗粒的制备方法及量子点光学膜的制备方法
WO2022032811A1 (zh) * 2020-08-13 2022-02-17 深圳市华星光电半导体显示技术有限公司 钡钛复合物及其制备方法与显示面板

Also Published As

Publication number Publication date
JPWO2006038420A1 (ja) 2008-05-15
JP5014796B2 (ja) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2006038420A1 (ja) ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法
US20070249747A1 (en) Process for Producing Polymer-Modified Nanoparticle
Wang et al. Synthesis and applications of ZnO/polymer nanohybrids
US7785392B2 (en) Method for manufacturing metal nanoparticles
US7160525B1 (en) Monodisperse noble metal nanocrystals
Hu et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission
EP3473692B1 (en) Quantum dot nanoparticles having enhanced stability and luminescence efficiency
US20060211152A1 (en) Synthetic control of metal oxide nanocrystal sizes and shapes
EP1648622A2 (en) Stabilized and chemically functionalized nanoparticles
IL207721A (en) Semiconductor nanoparticle coverage factors
WO2007026746A1 (ja) 半導体ナノ粒子及びその製造方法
US20100286323A1 (en) Metal fine particle-dispersing agent composed of polymer compound having dithiocarbamate group
US20060199900A1 (en) Resin composition containing ultrafine particles
Yu et al. Silver sulfide nanocrystals as a biocompatible and full-spectrum photocatalyst for efficient light-driven polymerization under aqueous and ambient conditions
WO2006019008A1 (ja) ポリマー修飾ナノ粒子
JP2020204756A (ja) 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
US10752514B2 (en) Metal chalcogenide synthesis method and applications
Wang et al. Preparation and characterization of the ZnS nanospheres with narrow size distribution
JP4766854B2 (ja) ポリマー修飾ナノ粒子
JP2006076831A (ja) ポリマー修飾金属硫化物ナノ粒子
JPWO2006080318A1 (ja) 金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法
CN114127229B (zh) 半导体纳米粒子复合体、半导体纳米粒子复合体分散液、半导体纳米粒子复合体组合物和半导体纳米粒子复合体固化膜
CN101338196B (zh) 一种发光纳米复合材料及其制备
JP2003089522A (ja) 複合修飾金属カルコゲン化物超微粒子
JP2008081814A (ja) 金属微粒子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539198

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05778562

Country of ref document: EP

Kind code of ref document: A1