WO2006033382A1 - ルーバーフィンおよびコルゲートカッター - Google Patents

ルーバーフィンおよびコルゲートカッター Download PDF

Info

Publication number
WO2006033382A1
WO2006033382A1 PCT/JP2005/017455 JP2005017455W WO2006033382A1 WO 2006033382 A1 WO2006033382 A1 WO 2006033382A1 JP 2005017455 W JP2005017455 W JP 2005017455W WO 2006033382 A1 WO2006033382 A1 WO 2006033382A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
tooth
blade
raising
louver
Prior art date
Application number
PCT/JP2005/017455
Other languages
English (en)
French (fr)
Inventor
Hirokazu Yaezawa
Kenji Tochigi
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Priority to JP2006536407A priority Critical patent/JPWO2006033382A1/ja
Priority to EP05785742A priority patent/EP1795849A4/en
Priority to US11/663,448 priority patent/US20080179048A1/en
Publication of WO2006033382A1 publication Critical patent/WO2006033382A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/04Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • B21D31/04Expanding other than provided for in groups B21D1/00 - B21D28/00, e.g. for making expanded metal
    • B21D31/046Expanding other than provided for in groups B21D1/00 - B21D28/00, e.g. for making expanded metal making use of rotating cutters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Definitions

  • the present invention relates to a radiating louver fin used for heat exchange and a corrugated cutter for forming the louver fin.
  • Heat exchangers such as radiators, heater cores, condensers, and evaporators are used in cooling devices and air conditioning devices mounted on vehicles such as automobiles. These heat exchangers are configured to exchange heat with air through corrugated fins that are formed in a wave shape.
  • a corrugated fin with a louver hereinafter referred to as a louver fin
  • a plurality of louvers are formed obliquely in the flat portion of the fin (the section between the bent portion).
  • FIG. 1 is a perspective view showing the appearance of a general louver fin.
  • the louver fin 1 is formed in a corrugated shape so that the bent thin plates 3 are alternately connected with the bent portions 3a and the flat portions 3b, and each flat portion 3b has a plurality of louvers 5 whose opening directions are oblique. It is formed in the width direction.
  • the louver fin 1 is divided into a two-way louver fin and a one-way louver fin according to the arrangement of the louvers 5 in the flat portion 3b.
  • Figure 2 shows the louver arrangement in the two-way louver fin.
  • FIG. 2 is a cross-sectional view of the two-way louver fin shown in FIG. 1 when cut in the width direction.
  • the louvers 5 (5a, 5b) formed in one flat part 3b are mutually opposite so that the opening direction (cutting and raising direction) is opposite on both sides of the central part C1. It is formed symmetrically.
  • Figure 3 shows the louver arrangement in a unidirectional louver fin.
  • FIG. 3 is a cross-sectional view of a unidirectional louver fin (not shown) cut in the width direction.
  • the unidirectional louver fin 1B all the opening directions of the louvers 5 are formed in the same direction on the entire surface of one flat portion 3b.
  • This one-way louver fin 1B has advantages such as higher heat dissipation performance and lower ventilation resistance than the two-way louver fin 1A.
  • the corrugated fin is formed such that the edge of the belt-shaped metal plate is bent to increase rigidity and the fin is not bent after forming V.
  • the corrugated fin shown in the prior art requires a step of bending the edge of the belt-shaped metal plate, and the fin width must be increased by the amount of bending, resulting in a high material yield. There was a problem of getting worse.
  • louver fin having a shape in which the fin does not bend after corrugating without increasing the number of steps and reducing the material yield, and such a louver fin.
  • Development of corrugated cutters to be formed is required.
  • An object of the present invention is to provide a louver fin and a corrugated cutter in which the fin is not bent after corrugated molding.
  • FIG. 1 is a perspective view showing the appearance of a general louver fin.
  • FIG. 2 is a cross-sectional view of the two-way louver fin cut in the width direction.
  • FIG. 3 is a cross-sectional view of a unidirectional louver fin cut in the width direction.
  • FIG. 4 is a perspective view showing a bent state of the one-way louver fin.
  • FIG. 5 is a perspective view showing a part of the louver fin according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line 6-6 in FIG.
  • FIG. 7 is an overall configuration diagram showing the manufacturing process of the louver fins.
  • FIG. 8 is a perspective view showing the arrangement of the corrugated cutter according to the first embodiment.
  • FIG. 9 is a partially enlarged view showing a plurality of teeth shown in FIG.
  • FIG. 10 is an exploded perspective view of the corrugated cutter according to the first embodiment of the present invention.
  • Fig. 11 is an enlarged side view of a tooth portion (for one blade) of the corrugated cutter according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view taken along lines 12A-12A, 12B-12B, and 12C-12C in FIG. 11 (a) to (c).
  • FIG. 13 is a partial cross-sectional view showing a squeezed portion of the corrugated cutter according to the first embodiment of the present invention.
  • FIG. 14 is an enlarged side view of a tooth portion (for one blade) of a corrugated cutter according to a second embodiment of the present invention.
  • FIG. 15 is a cross-sectional view taken along lines 15A-15A, 15B-15B, and 15C-15C in FIG. 14 (a) to (c).
  • FIG. 16 is a perspective view showing the arrangement of the corrugated cutter according to the second embodiment of the present invention.
  • FIG. 17 is a partially enlarged view showing a plurality of teeth shown in FIG.
  • FIG. 18 is an exploded perspective view of a corrugated cutter according to a second embodiment of the present invention.
  • FIG. 19 is a perspective view showing a part of a louver fin according to a second embodiment of the present invention.
  • FIG. 20 is a perspective view showing the arrangement of the corrugated cutter according to the third embodiment of the present invention.
  • FIG. 21 is a partially enlarged view showing a plurality of teeth shown in FIG.
  • FIG. 22 is an exploded perspective view of a corrugated cutter according to a third embodiment of the present invention. It is.
  • FIG. 23 is a perspective view showing a part of a louver fin according to a third embodiment of the present invention.
  • FIG. 24 is an enlarged side view of a tooth portion (one blade) of a corrugated cutter according to a third embodiment of the present invention.
  • FIG. 25 is a sectional view taken along lines 25-8-25, 25B-25B, 25C-25C in FIG.
  • FIG. 26 is an explanatory diagram showing the arrangement of the upper and lower cutters corresponding to FIG. 25 (a), and FIG. 26 (b) is an explanation showing the arrangement of the upper and lower cutters corresponding to FIG. 25 (b).
  • FIG. 26 (c) is an explanatory view showing the arrangement of the upper and lower cutters corresponding to FIG. 25 (c).
  • FIG. 27 is a cross-sectional explanatory view showing the cut and raised state of the upper and lower cutters and louvers corresponding to FIG. 25 (a), and FIG. 27 (b) is the upper and lower corresponding to FIG. 25 (b).
  • FIG. 26 is a cross-sectional explanatory view showing the cut and raised state of the cutter and the louver, and (c) is a cross-sectional explanatory view showing the cut and raised state of the upper and lower cutters and the louver corresponding to FIG. 25 (c).
  • louver fin and the corrugated cutter according to the embodiment of the present invention will be described below with reference to the drawings.
  • Fig. 5 shows a part of the louver fin according to the first embodiment
  • FIG. 6 is a cross-sectional view taken along line 6-6 of FIG.
  • the louver fin 11 shown in the present embodiment has a continuous corrugated shape by alternately forming bent portions 15 and flat portions 17 with respect to a strip-like thin plate 13 that is also an aluminum member, for example, and a flat portion.
  • the louvers 18 and 19 are formed such that their cut-and-raised directions are aligned in one direction.
  • the cut and raised angles of the louvers 18 and 19 are formed so as to be substantially the same angle ⁇ along the length direction Y of the strip-like thin plate 13.
  • FIG. 7 shows the louver It is a whole block diagram which shows the manufacturing process of a fin.
  • the belt-like thin plate 13 fed out from the roll 13A passes between a pair of corrugated cutters 21A and 21B (corrugated cutter 21) arranged vertically in the traveling direction, the bent portion 15 is formed by corrugating and the louver is formed.
  • the louvers 18 and 19 are cut and raised to the flat part 17 almost simultaneously.
  • the pitch is adjusted to the next cutting blade 25 and sent to the next cutting blade 25.
  • the louver fin 11 having a length corresponding to the dimensions of the heat exchanger core to be assembled is completed.
  • FIG. 8 is a perspective view showing the arrangement of the corrugated cutter 21 shown in FIG.
  • a corrugated cutter 21 consisting of a pair of (first and second) corrugated cutters 21A, 21B is installed so that one is a male cutter and the other is a female cutter. Is driven to rotate.
  • the structure will be described mainly using the corrugated cutter 21A as an example.
  • each tooth portion 31A has a plurality of cutting and raising blades 39 formed on one side surface 37 and a plurality of cutting and raising blades 41 formed on the other side surface 37, respectively. Yes.
  • the bent portion 15 is continuously formed at a predetermined interval on the belt-like thin plate 13 by the top portion 33 and the bottom portion 35 of each tooth portion 31A, and the raising and lowering blade 39 formed on the side surface 37 of the tooth portion 31A, The plurality of louvers 18 and 19 as shown in FIG.
  • FIG. 10 is an exploded perspective view of the corrugated cutter 21A.
  • the corrugated cutter 21A has a structure in which a predetermined number of thin blades 29 each having a plurality of tooth portions 31A formed radially along the circumferential direction are stacked. In each blade 29, cut and raised blades 39 and 41 are alternately formed at predetermined intervals along the circumferential direction. Note that the corrugated cutter 21A may be integrally molded. [0021] Also in the corrugated cutter 21B, a plurality of tooth portions 31B are formed radially at a predetermined interval along the circumferential direction, and a plurality of cutting and raising blades are provided on one side surface of each tooth portion 31B. A plurality of cutting and raising blades are formed on the other side surface (reference numerals omitted).
  • the corrugated cutter 21A configured as described above and the corrugated cutter 21B that is paired with the corrugated cutter 21A are arranged so that the tooth portions 31A, 31B are alternately held together, and the corrugated force cutter 21A, One top 33 of 21B is engaged with the other bottom 35, so that the bent portion 15 and the flat portion 17 are alternately formed on the strip 13 and at the same time one cutting and raising blade 39 (41) is formed on the other.
  • the louvers 18 and 19 are cut and raised by rubbing with the cutting and raising blade 41 (39).
  • Fig. 11 is an enlarged side view of the tooth 31B (for one blade)
  • Figs. 12 (a) to 12 (c) are cross-sectional views taken along lines 12A-12A, 12B-12B, 12C-12C in Fig. 11. It is.
  • the blade angles of the cutting and raising blades 39 and 41 are changed so that the angle is small at the cutting start portion of the louvers 18 and 19 and the angle is large at the cutting end portion. ing.
  • the cut-and-raised portion 19a becomes the cut start portion of the louver 19 and is cut and raised.
  • Part 19b is the end of the cut.
  • the cut-and-raised portion 18c is a cut start portion of the louver 18, and the cut-raised portion 18d is a cut end portion.
  • the blade angle of the cutting and raising blade 41 on the side where the louver 19 is raised is changed to the blade portion 4 lh for forming the cutting and raising portion 19a.
  • the blade angle is ⁇ ! ⁇
  • the blade angle is ⁇ ! ⁇ in the middle
  • the blade angle 41i for forming the cut-and-raised part 19b is gradually increased so that the blade angle becomes H (where the blade angle ( ⁇ > ⁇ ! ⁇ > ⁇ ⁇ , and the blade angle is changed steplessly between the blade angle ⁇ h and ⁇ .
  • the blade angle of the cut and raised blade 39 on the side that cuts the louver 18 is changed to the blade angle 3 mm for the blade portion 33 ⁇ 4 for forming the raised portion 18c, and the blade angle d) jk for the intermediate raised portion 18d.
  • the blade part to be molded is gradually increased so that the blade angle becomes ⁇ .
  • the blade angle d) k>jk> ⁇ ] The blade angle is changed steplessly between blade angle ⁇ i) k and.
  • the cutting and raising blades 39 and 41 are formed in directions opposite to each other on the side surfaces 37 located on both sides with the top portion 33 of one tooth portion 31B as a boundary. It is formed so that
  • the corrugated cutter 21A that forms a pair with the corrugated cutter 21B is also formed in substantially the same shape, and the angle of the cutting and raising blade is small at the beginning of the louvers 18 and 19, and the angle at the end of the cutting is small. Is changed to become larger.
  • FIG. 13 is a partial cross-sectional view showing a portion where the corrugate cutters 21A and 21B meet. The corrugated cutter 21B's cutting and raising blades are combined so that the direction and angle of the blades are mirror-symmetric when mated with the cutting and raising blade 39 (41) of corrugated cutter 21A. .
  • the blade angle ⁇ of the cut and raised blades 39 and 41 determines the cut and raised angle of the louvers 18 and 19. That is, the cut-and-raised angle is increased at the portion where the blade angle ⁇ is increased, and the cut-and-raised angle is decreased at the portion where the blade angle ⁇ is decreased.
  • the part that is cut and raised first (cut start part) and the force that is cut and raised and then the part that is cut and raised after that (the end part of the cut) is the part that is raised and raised. Therefore, the cut-and-raise angle at the cut-and-raised portions at both ends is different for one louver, and the louver is distorted.
  • the angle of the cutting and raising blades 39 and 41 is set so that the angle becomes small at the start portion of the louver and the angle at the end portion of the cut. Therefore, it is shaped so that the angle of cut and raising does not increase at the beginning of the cut, which is formed by cutting and raising with force, and it is raised and raised at the end of the cut where the firm raising and shaping is not performed. It will be molded to increase the angle. Therefore, as shown in FIG. 5, the cut-and-raised portions 18c and 18d at both ends of the louvers 18 and 19 can be formed so that the cut-and-raised angles at 19a and 19b are substantially the same.
  • the corrugated cutter 21 shown in the present embodiment twisting is prevented. Therefore, the step of bending the edge of the strip 13 is not necessary, and the fin width is not increased by the amount of bending, so corrugating without increasing the number of steps and reducing the material yield. You can get a one-way louver fin that won't bend later.
  • the blade angle of the cutting and raising blades 39, 41 is individually determined as an optimum numerical value according to the fin shape and material. These numbers can be determined by conducting experiments and simulations.
  • the louver fin according to the first embodiment described above has the same function as the corrugated cutter in which the blade angle gradually changes, and can be manufactured by grinding. Is to provide a corrugated cutter.
  • FIGS. Fig. 16 is a perspective view showing the arrangement of the corrugated cutter
  • Fig. 17 is a partially enlarged view of the tooth portion
  • Fig. 18 is an exploded perspective view of the corrugated cutter
  • Fig. 19 is a part of the louver fin (one corrugated shape). It is a perspective view.
  • the corrugated cutter 121 includes a pair of (first and second) corrugated cutters 121A and 121B.
  • This corrugated cutter 121A, 121B One is a male cutter and the other is a female cutter.
  • the corrugated cutter 121A will be described as an example.
  • a plurality of teeth 131A are formed in a radial shape at predetermined intervals along the circumferential direction, and the top 133 and the bottom 135 of the teeth 131A are alternately formed on the circumference. ing.
  • the tooth portion 131A has a plurality of cutting and raising blades (blade shape not shown) 139 on one side 137a, and a plurality of cutting and raising blades (blade shape) on the other side 137b. (Not shown) 141 are formed.
  • the corrugated cutter 121A has a structure in which a predetermined number of thin blades 129 each having a plurality of tooth portions 131A formed in a radial pattern along the circumferential direction are stacked. In each blade 129, cutting blades 139, 141 are alternately formed at a predetermined interval along the circumferential direction.
  • the structure of the corrugated cutter is not limited to a structure in which a plurality of members are stacked, and may be integrally formed.
  • a plurality of tooth portions 131B are formed radially at predetermined intervals along the circumferential direction, and a plurality of cut-ups are formed on one side surface of each tooth portion 131B.
  • a blade and a plurality of cutting and raising blades are formed on the other side surface (not shown).
  • the corrugated cutter 121A on which such cutting and raising blades 139 and 141 are formed and the corrugated cutter 121B on which cutting and raising blades of the same configuration are combined are rotationally driven.
  • the top portion 133 of one corrugated cutter meshes with the bottom portion 135 of the other corrugated cutter, so that the belt-like thin plate 113 as shown in FIG. And flat portions 117 are alternately formed.
  • the cutting and raising blade 139 (141) of one corrugated cutter meshes with the cutting and raising blade 139 (141) of the other corrugated cutter, so that a plurality of louvers 118, 119 Force S cut up and becomes louver fin 111.
  • FIG. 14 is a partially enlarged view showing the side shape of the adjacent tooth portion 131B, and FIGS. 15 (&) to (.) Are the 15-8-15 line, 15B-15B line, and 15C-15C line in FIG.
  • FIG. 6 is a cross-sectional view showing the squeezing and raising blades that are engaged with each other, and shows a virtual cross-section when the corrugated cutters 121A and 121B are squeezed together.
  • corrugated cutter 121B of the present embodiment uses cutting and raising blade 139 provided on one side surface 137a of tooth portion 131B to force the louver 118 to start cutting.
  • the tooth height hi is the smallest in the tooth top part 139a on the top side, and the tooth top part 139b on the bottom side that processes the end of the cut of the louver 118, so that the tooth height h2 is the largest.
  • the bottom of the tooth tip portion 139b is shaped (shaved off) so as to continuously increase the tooth height.
  • the louver 118 is cut and raised in the direction of the arrow from the cutting start point 118a to the cutting end point 118b, and the louver 119 is moved from the cutting start point 119c to the cutting end point 119d.
  • Fin forming direction is the direction of arrow a).
  • the tooth heights hl and h2 are indicated by the height from the alternate long and short dash line indicating the shape of the original gear. Note that the alternate long and two short dashes line indicates the tooth height before providing the tooth heights hl and h2 in the present embodiment. That is, the two-dot chain line is the original gear shape with teeth.
  • the cross-section of the cutting and raising blade 139 is the same force from the tooth tip portion 139a on the top side to the tooth tip portion 139b on the bottom side.
  • the positional force of the two-dot chain line is also the tooth of the cutting blade 139.
  • the slant blade 140 is formed with the same blade angle ⁇ from the top portion 139a to the bottom portion 139b.
  • a two-dot chain line shown in FIG. 14 shows a line when the tooth tip portion 139a on the top side is formed with the blade angle ⁇ from the tooth tip portion 139b on the bottom side.
  • the tooth height is continuously scraped off from the tooth tip portion 139a on the top side toward the tooth tip portion 139b on the bottom side, so the range outside the solid line of the cutting and raising blade 139 is In practice, the bevel 140 is not machined to show the area.
  • the cutting and raising blade 141 provided on the other side surface 137b of the tooth portion 131B has a tooth height at the tooth tip portion 141a on the bottom side that covers the cutting start location 119c of the rubber bar 119 shown in FIG. hi
  • the smallest tip of the louver 119, the top tip portion 141b that covers the cut end 119d, is directed from the top tip portion 141a to the bottom tip portion 141b so that the tooth height h2 is the largest. It is molded (scraped off) so that the tooth height increases continuously.
  • the cross-section of the cutting and raising blade 141 is the same force from the tooth tip portion 141a on the bottom side to the tooth tip portion 141b on the top side.
  • the positional force of the two-dot chain line is also the tooth of the cutting and raising blade 141.
  • the thickness t (land width) of the cutting and raising blade 141 is gradually narrowed from the bottom tip portion 141a to the top tip portion 141b. .
  • the slant blade 142 is formed at the same blade angle ⁇ from the bottom side tooth tip portion 141a to the top side tooth tip portion 141b.
  • a two-dot chain line shown in FIG. 14 shows a line formed from a tooth tip portion 141a on the bottom side to a tooth tip portion 141b on the top side with a blade angle ⁇ .
  • the tooth height is continuously scraped from the bottom tip portion 141a to the top tip portion 141b, so the range outside the solid line of the cutting blade 141 is Actually, the bevel blade 142 is not machined to show the area.
  • a cutting and raising blade similar to that of the tooth portion 131B is also formed on the tooth portion 131A of the corrugated cutter 121A paired with the corrugated cutter 121B (hereinafter referred to as 139A and 141A). Then, when the corrugated cutters 121A and 121B are squeezed together, the cutting and raising blade 139 provided on the side surface 137a of the tooth portion 131B of the corrugating force cutter 121B and the cutting surface provided on the side surface 137a of the tooth portion 131A of the corrugated cutter 121A.
  • the raising blade 139A faces the cutting blade 141 provided on the side surface 137b of the tooth portion 131B of the corrugated cutter 121B, and the cutting and raising blade 141A provided on the side surface 137b of the tooth portion 131A of the corrugated cutter 121A. Will face each other.
  • the corrugated cutter 121B's cutting and raising blade 139 (141) is mated with the corrugating cutter 121A's cutting and raising blade 139A (141A)
  • the direction and angle of the blades are mirror-symmetric. Are combined.
  • FIG. 19 shows a case where the first 119 is cut and the cylinder 119c is turned to the end and the end 119d is turned toward the end 119d to raise it in the direction of the arrow.
  • the processing of 119c at the start of cutting louver 119c is a cross-sectional view taken along the line 15A-15A in FIG.
  • the flat portion 117 of the strip-shaped thin plate 113 is the tooth tip portion 141a on the bottom side of the corrugating cutter 121B and the tooth tip portion 141a of the corrugating cutter 121A, and the tooth tip on the top side of the corrugating cutter 121A. It is cut and raised between the part 141b.
  • the flat portion 117 is a line connecting the corner 142b of the corrugated cutter 121A (hereinafter referred to as the upper oblique blade) 142 and the corner 142b of the corrugated cutter 121B (hereinafter referred to as the lower oblique blade) 142. Along with, it is cut and raised at an angle ⁇ a.
  • the processing of the middle portion 119cd of the louver 119 is performed by cutting the flat portion 117 of the strip-shaped thin plate 113 into the corrugated cutter 121B as shown in FIG. 15 (b), which is a cross section taken along the line 15B-15B in FIG. It is cut and raised between the tooth tip portion 141ab in the middle portion of the blade 141 and the tooth tip portion 141a in the middle portion of the corrugated cutter 121A.
  • the flat portion 117 is cut and raised at a cutting and raising angle ⁇ ⁇ ) along a line connecting the corner 142ab of the upper oblique blade 142 and the corner 142ab of the lower oblique blade 142.
  • the end of cutting of Luno 119 119d is a cross section taken along the line 15C-15C in Fig. 14.
  • the flat portion 117 of the strip 113 is cut by the corrugated cutter 121B. It is cut and raised between the tooth tip portion 141b on the top side of the raising blade 141 and the tooth tip portion 141a on the bottom side of the corrugating cutter 121A.
  • the flat portion 117 has a cutting and raising angle ⁇ along a line connecting the corner portion 141a of the upper oblique blade 142 and the corner portion 142b of the lower oblique blade 142. It is cut and raised.
  • the thickness t in the width direction is gradually changed from tl to t3 while keeping the blade angle ⁇ of the cutting and raising blades 13 and 141 constant. For this reason (tl> t2> t3), the angle at which the slanting blades 140 and 142 are raised changes continuously. Therefore, the louver formed on the strip-shaped thin plate 113 is formed such that the cut-and-raised angle ⁇ is small ( ⁇ a) at the start of cutting and the cut-and-raised angle ⁇ is large ( ⁇ c) at the end of cutting.
  • the blade angle ⁇ of the cut and raised blades 139 and 141 determines the cut and raised angle of the louver.
  • the cutting and raising angle ⁇ increases when machining at a portion with a larger blade angle ⁇
  • the cutting angle ⁇ decreases when machining at a portion with a smaller blade angle ⁇ .
  • the part that is cut and raised first At the start of cutting), the part is cut and raised, but at the end of cutting (at the end of cutting), it is not pressed and raised, so the cut angle at both ends is different for one louver. The louver will be distorted.
  • the cut-and-raised angle ⁇ is small ( ⁇ a) at the start of the louver and the cut-up at the end of the cut. Since the angle ⁇ is large ( ⁇ c), it is molded so that the angle of cut and raised does not increase at the beginning of the cut where it is originally cut and raised as in the case of the gradual change corrugated cutter. At the end of cutting, where the firm cutting and raising is not performed, the cutting and raising angle is increased. Therefore, as shown in FIG.
  • the cut-and-raised angle ⁇ at the cut start point 118a and cut end point 118b of the louver 118 and the cut start point 119c and cut end point 119d of the louver 119 can be made substantially the same after molding. it can.
  • the louver 118 and 119 formed in one direction have the same cut-and-raised angle at both ends, so that the distortion of the louver is eliminated and the distortion of the entire fin due to the distortion is suppressed. 111 bends can be prevented.
  • the corrugated corrugated cutters 121A and 121B of the present embodiment since the blade angle ⁇ can be made constant, the corrugated corrugated cutter has a function equivalent to that of the gradually changing corrugated cutter according to the first embodiment. A cutter can be manufactured. According to the second embodiment, since the inclined blades 140 and 142 are covered not by cutting but by grinding, it is possible to make the surface roughness of the caloric surface equivalent to the current state. Adverse effects on fin forming can be avoided. Further, since a long processing time is not required unlike an electric discharge cabinet, an increase in cost can be avoided.
  • the tooth height and blade angle of the cutting and raising blades 139, 141 are individually determined as optimum values according to the fin shape and material. These numbers can be determined based on the results of experiments and simulations.
  • the bevel blade is used only at a fixed blade angle. Since it cannot be processed, it has been technically difficult to manufacture a corrugate cutter (gradual change corrugated cutter) according to the first embodiment described above in which the blade angle gradually changes. In addition, it is possible to cover a gradually changing corrugated cutter by machining a slant blade other than grinding with a mortar, such as cutting and electric discharge. However, the cutting process is inferior to the grinding process because the surface roughness of the cutting surface is inferior, which may adversely affect the fin forming. In addition, since the discharge power takes more time than grinding, the cost increases.
  • a corrugated cutter that has a function equivalent to that of the corrugated cutter in which the blade angle gradually changes according to the first embodiment and can be manufactured by grinding. It is in.
  • FIG. 20 is a perspective view showing the arrangement of the corrugated cutter
  • FIG. 21 is a partially enlarged view of the tooth portion
  • FIG. 22 is an exploded perspective view of the corrugated cutter
  • FIG. 23 is a part of the louver fin (one corrugated shape). It is a perspective view.
  • the corrugated cutter 221 is composed of a pair of (first and second) corrugated cutters 221A and 221B.
  • the corrugated cutters 221A and 221B are installed so that one of them is a male cutter and the other is a female cutter, and is driven to rotate in the direction of an arrow by a drive mechanism (not shown).
  • a drive mechanism not shown.
  • the corrugated cutter 221A will be described as an example.
  • a plurality of tooth portions 231A are formed radially at predetermined intervals along the circumferential direction, and the top portion 233 and the bottom portion 235 of the tooth portion 231A are alternately formed on the circumference. ing.
  • the tooth portion 231A has a plurality of cutting and raising blades (blade shape not shown) 239 on one side 237a, and a plurality of cutting and raising blades (blade shape) on the other side 237b. (Not shown) 241 is formed.
  • the corrugated cutter 221A has a structure in which a predetermined number of thin plate blades 229 each having a plurality of tooth portions 231A formed radially along the circumferential direction are stacked.
  • the blades 239 and 241 are alternately formed at predetermined intervals on each blade 229 along the circumferential direction.
  • the corrugated cutter has a structure in which multiple members are stacked. However, it may be integrally formed without being limited to the above.
  • a plurality of tooth portions 231B are formed radially at a predetermined interval along the circumferential direction, and a plurality of cuts are raised on one side surface of each tooth portion 231B.
  • a blade and a plurality of cutting and raising blades are formed on the other side surface (not shown).
  • corrugated cutter 221A in which the cut and raised blades 239 and 241 are formed and the corrugated cutter 221B in which the same configuration of the raised and raised blade is formed are driven to rotate and are shown in FIG.
  • the top 233 of one corrugated cutter is mated with the bottom 235 of the other corrugated cutter to form the belt-like thin plate 213, and a bent portion 215 as shown in FIG.
  • flat portions 217 are alternately formed.
  • the cutting and raising blade 239 (241) of one corrugated cutter meshes with the cutting and raising blade 239 (241) of the other corrugated cutter, so that a plurality of louvers 218, 219 Force S cut up and becomes louver fin 211.
  • FIG. 24 is a partially enlarged view showing the side shape of the adjacent tooth portion 231B, and Fig. 25 (&) to (.) Are the 25-8 line, 25B-25B line, 25C-25C line in Fig.24.
  • FIG. 6 is a cross-sectional view showing the squeezing between the cutting and raising blades, and shows a virtual cross section when the corrugated cutters 221A and 221B are squeezed together.
  • FIG. 26 (a) shows a state in which the cutting and raising blades start to cut the louver 219, and the cross section thereof corresponds to Fig. 25 (a).
  • FIG. 26 (b) shows a state in which the cut and raised blades cut the middle portion 219cd of the louver 219, and the cross section thereof corresponds to FIG. 25 (b).
  • Fig. 26 (c) shows a state in which the cutting and raising blades cut the cutting and raising end position 219d of the louver 219, and the cross section thereof corresponds to Fig. 25 (c).
  • FIGS. 27 (a) to (c) show a state in which the corrugated cutters 221A and 221B actually cut and raise the flat portion 217 at the meshing positions corresponding to FIGS. 25 (a) to (c), respectively.
  • corrugated cutter 221B of the present embodiment uses cutting and raising blade 239 provided on one side surface 237a of tooth portion 231B to start cutting louver 218 shown in FIG.
  • the width of the blade in the width direction (land width) is the same at the top end tooth portion 239a that covers the portion 218a and the bottom end tooth portion 239b that covers the louver 218. It is set to be.
  • the cutting and raising blades 239 and 241 are formed so that the angle of the slant blade and the land width are constant up to the tooth tip portion on the top side, and the slant blade is indicated by a one-dot chain line.
  • the length of the protruding part force is also different (the part indicated by ha, hb, he).
  • louver 218 is raised from the cutting start point 218a toward the cutting end point 218b in the direction of the arrow, and the louver 219 is moved from the cutting start point 219c to the cutting end point 219d.
  • Fin forming direction is the direction of arrow a).
  • the corrugated cutters 221A and 221B have the same tooth angles 231A and 231B, and the blade angles 239 and 241 of the corrugating cutters 221A and 221B are the same over the length direction of the blade.
  • Slope blades 240 and 242 are formed at an angle of 0.
  • the oblique blades 240 and 242 are formed by scraping. Then, the blades with the same sign of the slanting blades 240, 242 of the cutting and raising blades 239, 241 are set so as to be parallel to each other with a predetermined clearance c in a state where they are held together.
  • This clearance c is a position where the louver 219 starts to be cut (see Fig. 26 (a)).
  • the clearance between the inclined blades 240 and 240 is set to a large clearance cl. Yes.
  • the flat part 217 that is cut and raised is a line that connects the angled part 242a of the corrugated cutter 221A (hereinafter referred to as the upper angled blade) 242 with the angled edge 242a of the corrugated cutter 221B (hereinafter referred to as the lower angled blade) 242 Is cut and raised at a cutting angle ⁇ a.
  • Fig. 25 (b) which is a cross-section taken along line 25B-25B at position 241ab in Fig. 24, the intermediate clearance c2 is set in the process of cutting and raising the middle portion 219cd of louver 219. Yes.
  • the flat portion 217 of the strip-shaped thin plate 213 is cut and raised between the tooth tip portion 241ab of the intermediate portion of the corrugating cutter 221B and the tooth tip portion 241ab of the intermediate portion of the corrugated cutter 221A.
  • the flat portion 217 is cut and raised at a cutting angle ⁇ b along a line connecting the corner portion 24 2ab of the upper inclined blade 242 and the corner portion 242ab of the lower inclined blade 242. Is done.
  • FIG. 25 (c) which is a cross section taken along line 25C-25C at position 241b in FIG. 24, the processing of the louver 219 cut-and-raise end point position 219d is small! /, And clearance c3 is set. Be done! Then, as shown in FIG. 25, the flat portion 217 of the strip-shaped thin plate 213 is cut between the tooth tip portion 241b on the end point side of the cutting and raising blade 241 of the corrugated cutter 222B and the tooth tip portion 241a of the corrugated cutter 221A. woken up.
  • the flat portion 217 is cut and raised at a cutting angle ⁇ c along a line connecting the corner portion 242a of the upper oblique blade 242 and the corner portion 242b of the lower oblique blade 242.
  • the clearances cl, c2, and c3 are determined by the protruding amounts (ha, hb, he) of the oblique blades.
  • FIG. 23 shows how to start cutting the cylinder 219 and turn it up in the direction of the arrow by turning the cylinder 219c and ending the cylinder 219d.
  • FIG. 25 (a) which is a cross section taken along line 25A-25A in FIG. 24, the flat portion 217 of the strip-shaped thin plate 213 is cut and raised by the corrugated cutter 221B. Is cut and raised between the tooth tip portion 241a on the bottom side and the tooth tip portion 24 lb of the corrugated cutter 221A. At this time, the flat portion 217 of the strip-shaped thin plate 213 is cut and raised by the clearance cl along the line connecting the corner portion 242b of the upper oblique blade 242 and the corner portion 242a of the lower oblique blade 242 with an angle ⁇ a.
  • the processing of the middle portion 219cd of the louver 219 shown in Fig. 23 is performed by the flat portion 217 of the strip 213 as shown in Fig. 25 (b), which is a cross section taken along line 25B-25B in Fig. 24. Is cut and raised between the tooth tip portion 241ab of the middle portion of the cutting and raising blade 241 and the tooth tip portion 241ab of the middle portion of the corrugated cutter 221A. At this time, the flat portion 217 is cut and raised by the clearance lance c2 at an angle ⁇ b along a line connecting the corner portion 242ab of the upper oblique blade 242 and the corner portion 242ab of the lower oblique blade 242.
  • the carroter at 219d at the end of cutting of Luno 219 is a cross section taken along the line 25C-25C in Fig. 24.
  • the flat part 217 of the strip 213 is cut by the corrugated cutter 221B. It is cut and raised between the tip portion 241b on the top side of the raising blade 241 and the tip portion 2 41a of the corrugated cutter 221A.
  • the flat part 217 and the corner part 242a of the upper oblique blade 242 Cut along the line connecting the corner 242b of the slant blade 242 with the clearance c3 and with the angle ⁇ c.
  • the blade angle ⁇ of the cut and raised blades 239 and 241 determines the cut and raised angle of the louver.
  • the cutting and raising angle ⁇ increases when machining at a portion with a larger blade angle ⁇
  • the cutting angle ⁇ decreases when machining at a portion with a smaller blade angle ⁇ .
  • the part that is cut and raised first is firmly cut and raised, but the part that is cut and raised last (cutting end part) is not pushed and raised and molded. For this reason, the cut-and-raft angle at both ends is different for one louver, and the louver is distorted.
  • the cut-and-raised angle ⁇ is small ( ⁇ a) at the start of the louver cut and the cut-up at the end of the cut. Since the angle ⁇ is large ( ⁇ c), it is molded so that the angle of cut and raised does not increase at the beginning of the cut where it is originally cut and raised as in the case of the gradual change corrugated cutter. At the end of cutting, where the firm cutting and raising is not performed, the cutting and raising angle is increased. Therefore, as shown in Fig.
  • the cut-and-raised angle ⁇ at the start point 218a and end point 218b of the louver 218 and the start point 219c and end point 219d of the louver 219 should be substantially the same after molding. Can do.
  • the louvers formed in one direction have the same cut-and-raised angle at both ends of the louvers 218 and 219, so that distortion of the louver is eliminated and distortion of the entire fin due to distortion can be suppressed.
  • the curvature of fin 211 can be prevented.
  • the blade angle ⁇ is constant. Therefore, a corrugated cutter having a function equivalent to that of the corrugated cutter according to the first embodiment can be easily manufactured.
  • the inclined blades 240 and 242 can be covered by grinding instead of cutting, the surface roughness of the machined surface can be made equal to the current level. The adverse effect on the fin forming can be avoided.
  • the tooth height and blade angle of the cutting and raising blades 239 and 241 are individually determined as optimum values according to the fin shape and material. These numbers can be determined based on the results of experiments and simulations.
  • the corrugated cutter according to the present invention can be applied to heat exchangers such as heater cores, condensers, and evaporators used in radiator air conditioners mounted on vehicles such as automobiles. It is useful for the production of unidirectional louver fins suitable for the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)
  • Punching Or Piercing (AREA)

Abstract

 帯状薄板(13)に屈曲部(15)と平坦部(17)とを交互に形成してコルゲート形状とし、且つ平坦部(17)に帯状薄板(13)の長さ方向Yに沿って切り起こした複数のルーバー(19、21)を帯状薄板(13)の幅方向Xに並設したルーバーフィン(11)において、ルーバー(18、19)の切り起こし角度が帯状薄板(13)の長さ方向Yに沿って略同一となるように成形する。

Description

明 細 書
ノレーバーフィンおよびコノレゲートカッター 技術分野
[0001] この発明は、熱交^^に用いられる放熱用のルーバーフィン、およびこのルーバー フィンを成形するためのコルゲートカッターに関する。
背景技術
[0002] 自動車等の車両に搭載される冷却装置、空調装置においては、ラジェータ、ヒータ コア、コンデンサ、エバポレータ等の熱交換器が用いられている。これらの熱交換器 では、波状に成形されたコルゲートフィンを介して空気との間で熱交換を行うように構 成されている。近年では、放熱性能を向上させることを目的として、フィンの平坦部( 屈曲部と屈曲部との間の区間)に斜めに開口した複数のルーバーを形成したルーバ 一付きコルゲートフィン(以下、ルーバーフィンと 、う)が開発されて 、る。
[0003] 図 1は、一般的なルーバーフィンの外観を示す斜視図である。ルーバーフィン 1は、 帯状薄板 3を屈曲部 3aと平坦部 3bとが交互に連続するようにコルゲート形状に形成 されるとともに、それぞれの平坦部 3bに、開口方向が斜めとなる複数のルーバー 5が 幅方向に形成されている。
[0004] このルーバーフィン 1は、平坦部 3bにおけるルーバー 5の配列により、二方向ルー バーフィンと一方向ルーバーフィンとに分けられる。二方向ルーバーフィンにおける ルーバー配列を図 2に示す。図 2は図 1に示す二方向ルーバーフィンを幅方向に切 断したときの断面図である。二方向ルーバーフィン 1Aでは、 1つの平坦部 3bに形成 されるルーバー 5 (5a、 5b)が、中央部 C1を挟んでその両側に開口方向(切り起こし 方向)が逆向きになるように相互に対称に形成されている。また、一方向ルーバーフ インにおけるルーバー配列を図 3に示す。図 3は図示しない一方向ルーバーフィンを 幅方向に切断したときの断面図である。一方向ルーバーフィン 1Bでは、一つの平坦 部 3bの全面において、ルーバー 5の開口方向がすべて同一方向となるように形成さ れている。この一方向ルーバーフィン 1Bは、二方向ルーバーフィン 1Aに比べて放熱 性能が高ぐまた通気抵抗が低!、などの利点を備えて 、る。 [0005] ところで、ルーバー 5を切り起こした際にルーバーの根本部分では材料が内側と外 側に伸ばされ、このとき発生した歪みは屈曲部 3aの側縁付近に蓄積される。一方向 ルーバーフィン 1Bでは、切り起こしにより発生したルーバー 5の歪みが側縁全体で同 一方向に分布することになるため、図 4に示すように、歪みによりフィン全体にねじれ が発生してフィンが曲がってしまう。このように、コルゲート成形後にフィンが曲がって しまうと、熱交 コアへの組み付けを自動化することができなくなってしまう。
[0006] ちなみに、二方向ルーバーフィン 1Aでは、ルーバーの切り起こし時に発生する歪 みが中央部 C1で釣り合うため、コルゲート成形後にフィンが曲がることはな!/、。
[0007] このような一方向ルーバーフィンにおけるコルゲート成形後の湾曲を防止する従来 技術として、帯状金属板の縁部を折り曲げて剛性を高め、成形後にフィンが湾曲しな V、ようにしたコルゲートフィンが知られて!/、る(特開 2003— 83691号公報)。
発明の開示
[0008] し力しながら、従来技術に示されたコルゲートフィンでは、帯状金属板の縁部を折り 曲げる工程が必要となるうえ、折り曲げ分だけフィン幅を広くしなければならず、材料 歩留まりが悪くなるという課題があった。
[0009] このような課題に対して、工程数を増やすことなぐ且つ材料歩留まりを悪くすること なしに、コルゲート成形後にフィンが曲がることのない形状を備えたルーバーフィン、 およびこのようなルーバーフィンを形成するコルゲートカッターの開発が求められてい る。
[0010] 本発明の目的は、コルゲート成形後にフィンが曲がることのないルーバーフィンおよ びコルゲートカッターを提供することにある。 図面の簡単な説明
[0011] [図 1]図 1は、一般的なルーバーフィンの外観を示す斜視図。
[図 2]図 2は、二方向ルーバーフィンを幅方向に切断したときの断面図。
[図 3]図 3は、一方向ルーバーフィンを幅方向に切断したときの断面図。
[図 4]図 4は、一方向ルーバーフィンの曲がり状態を示す斜視図。
[図 5]図 5は、本発明の第 1の実施の形態に係るルーバーフィンの一部を示す斜視図 である。 [図 6]図 6は、図 5の 6— 6線に沿った断面図である。
圆 7]図 7は、ルーバーフィンの製造工程を示す全体構成図である。
[図 8]図 8は、第 1の実施の形態に係るコルゲートカッターの配置を示す斜視図である
[図 9]図 9は、図 8に示した複数の歯部を示す部分拡大図である。
[図 10]図 10は、本発明の第 1の実施の形態に係るコルゲートカッターの分解斜視図 である。
[図 11]図 11は、本発明の第 1の実施の形態に係るコルゲートカッターの歯部(ブレー ド 1枚分)の拡大側面図である。
[図 12]図 12は、(a)〜(c)が図 11の 12A— 12A線、 12B— 12B線、 12C— 12C線 に沿った断面図である。
[図 13]図 13は、本発明の第 1の実施の形態に係るコルゲートカッターの嚙み合い部 分を示す部分断面図である。
[図 14]図 14は、本発明の第 2の実施の形態にコルゲートカッターの歯部(ブレード 1 枚分)の拡大側面図である。
[図 15]図 15は、(a)〜(c)が図 14の 15A— 15A線、 15B— 15B線、 15C— 15C線 に沿った断面図である。
[図 16]図 16は、本発明の第 2の実施の形態に係るコルゲートカッターの配置を示す 斜視図である。
[図 17]図 17は、図 16に示した複数の歯部を示す部分拡大図である。
[図 18]図 18は、本発明の第 2の実施の形態に係るコルゲートカッターの分解斜視図 である。
[図 19]図 19は、本発明の第 2の実施の形態に係るルーバーフィンの一部を示す斜視 図である。
[図 20]図 20は、本発明の第 3の実施の形態に係るコルゲートカッターの配置を示す 斜視図である。
[図 21]図 21は、図 20に示した複数の歯部を示す部分拡大図である。
[図 22]図 22は、本発明の第 3の実施の形態に係るコルゲートカッターの分解斜視図 である。
[図 23]図 23は、本発明の第 3の実施の形態に係るルーバーフィンの一部を示す斜視 図である。
[図 24]図 24は、本発明の第 3の実施の形態にコルゲートカッターの歯部(ブレード 1 枚分)の拡大側面図である。
[図 25]図 25は、(&)〜(じ)が図24の25八ー25八線、 25B—25B線、 25C— 25C線 に沿った断面図である。
[図 26]図 26は、(a)が図 25 (a)に相当する上下のカッターの配置を示す説明図、(b) が図 25 (b)に相当する上下のカッターの配置を示す説明図、(c)が図 25 (c)に相当 する上下のカッターの配置を示す説明図である。
[図 27]図 27は、(a)が図 25 (a)に相当する上下のカッターとルーバーの切り起こし状 態を示す断面説明図、(b)が図 25 (b)に相当する上下のカッターとルーバーの切り 起こし状態を示す断面説明図、(c)が図 25 (c)に相当する上下のカッターとルーバ 一の切り起こし状態を示す断面説明図である。
発明を実施するための最良の形態
[0012] 以下、本発明の実施の形態に係るルーバーフィンおよびコルゲートカッターの詳細 を図面を参照しながら説明する。
[0013] (第 1の実施の形態)
図 5は第 1の実施の形態に係わるルーバーフィンの一部(コルゲート形状の一山分
)を示す斜視図、図 6は図 5の 6— 6線に沿った断面図である。
[0014] 本実施の形態に示すルーバーフィン 11は、例えばアルミ部材カもなる帯状薄板 13 に対して屈曲部 15と平坦部 17とを交互に形成して連続するコルゲート形状とし、且 つ平坦部 17に帯状薄板 13の長さ方向 Yに沿って切り起こした複数のルーバー 18、
19を帯状薄板 13の幅方向 Xに並設したものである。
[0015] このルーバー 18、 19は、図 6に示すように、それぞれの切り起こし方向が一方向に 揃うように形成されている。そして、各ルーバー 18、 19の切り起こし角度は、帯状薄 板 13の長さ方向 Yに沿ってほぼ同じ角度 Θとなるように成形されている。
[0016] ここで、ルーバーフィン 11の製造工程について簡単に説明する。図 7は、ルーバー フィンの製造工程を示す全体構成図である。ロール 13Aから繰り出される帯状薄板 1 3は、進行方向の上下に配置された一対のコルゲートカッター 21A、 21B (コルゲート カッター 21)間を通過すると、コルゲート成形による屈曲部 15の形成と、ルーバー成 形による平坦部 17へのルーバー 18、 19の切り起こしがほぼ同時に行われる。この後 、ピッチ調整ロール 23A、 23Bによってコルゲート成形された部分の送りに抵抗を与 えて長さ方向に縮めつつ、隣接する屈曲部 15間のピッチを整えた後、次の切断刃 2 5まで送って所定の長さに切断することにより、組み付ける熱交 コアの寸法に合 わせた長さのルーバーフィン 11が完成する。
[0017] 次に、図 5に示すようなルーバーフィン 11を成形するコルゲートカッター 21の構造 について説明する。
[0018] 図 8は、図 7に示すコルゲートカッター 21の配置を示す斜視図である。一対の(第 1 及び第 2の)コルゲートカッター 21A、 21Bからなるコルゲートカッター 21は、一方が 雄型、他方が雌型のカッターとして互いに嚙み合うように設置され、図示しない駆動 機構により矢印方向に回転駆動される。以下、主にコルゲートカッター 21Aを例とし て構造を説明する。
[0019] コルゲートカッター 21Aは、円周方向に沿って複数の歯部 31Aが所定間隔で放射 状に形成され、円周上には歯部 31Aの頂部 33および底部 35が交互に形作られて いる。各歯部 31Aは、図 9の部分拡大図に示すように、一方の側面 37には複数の切 り起こし刃 39が、また他方の側面 37には複数の切り起こし刃 41がそれぞれ形成され ている。このように、各歯部 31 Aの頂部 33および底部 35によって、帯状薄板 13に所 定間隔で屈曲部 15を連続して形成するとともに、歯部 31Aの側面 37に形成した切り 起こし刃 39、 41によって、帯状薄板 13の平坦部 17に図 5に示すような複数のルー バー 18、 19を切り起こすように構成されている。
[0020] 図 10はコルゲートカッター 21Aの分解斜視図である。コルゲートカッター 21Aは、 円周方向に沿って複数の歯部 31Aを放射状に形成した薄板状のブレード 29を所定 枚数積層した構造となっている。各ブレード 29には、円周方向に沿って切り起こし刃 39、 41が所定間隔で交互に形成されている。なお、コルゲートカッター 21Aは一体 成形されたものであってもょ 、。 [0021] コルゲートカッター 21Bについても、円周方向に沿って複数の歯部 31Bが所定間 隔で放射状に形成されており、各歯部 31Bの一方の側面には複数の切り起こし刃が 、また他方の側面には複数の切り起こし刃がそれぞれ形成されている(符号省略)。
[0022] 上記のように構成されたコルゲートカッター 21Aと、これと対をなすコルゲートカツタ 一 21Bとは、互いの歯部 31A、 31Bが交互に嚙み合うように配置され、コルゲート力 ッター 21A、 21Bのうちの一方の頂部 33が他方の底部 35と嚙み合うことで帯状薄板 13に屈曲部 15と平坦部 17とが交互に形成され、同時に一方の切り起こし刃 39 (41) が他方の切り起こし刃 41 (39)と嚙み合うことでルーバー 18、 19が切り起こされる。
[0023] 次に、歯部 31Bの側面 37に形成された切り起こし刃 39、 41の形状について説明 する。図 11は歯部 31B (ブレード 1枚分)の拡大側面図、図 12 (a)〜(c)は図 11の 1 2A— 12A線、 12B— 12B線、 12C— 12C線に沿った断面図である。
[0024] 本実施の形態のコルゲートカッター 21Bでは、切り起こし刃 39、 41の刃角を、ルー バー 18、 19の切り始め部分では角度が小さぐ切り終わり部分では角度が大きくなる ように変化させている。
[0025] 例えば、図 5に示すようにフィンの成形方向を矢印 Zの方向とすると、ルーバー 18、
19は太線の矢印 a→b、 c→dの順に切り起こされる。ここで、ルーバー 19の両端部に おける切り起こし部を 19a、 19b、同じくルーバー 18の両端部における切り起こし部を 18c、 18dとすると、切り起こし部 19aはルーバー 19の切り始め部分となり、切り起こし 部 19bは切り終わり部分となる。また、切り起こし部 18cはルーバー 18の切り始め部 分となり、切り起こし部 18dは切り終わり部分となる。
[0026] これに対してコルゲートカッター 21Bでは、図 11および図 12に示すように、ルーバ 一 19を切り起こす側の切り起こし刃 41の刃角を、切り起こし部 19aを成形する刃部 4 lhでは刃角 φ !ι、中間では刃角 φ !ή、切り起こし部 19bを成形する刃部 41iでは刃 角 (Hとなるように徐々に大きくしている。ここで、刃角 (Η> φ !ΰ> φ ΐιの関係となり、 刃角 φ hから φほでの間は無段階に刃角を変化させている。
[0027] また、ルーバー 18を切り起こす側の切り起こし刃 39の刃角を、切り起こし部 18cを 成形する刃部 3¾では刃角 φ ΐ、中間では刃角 d) jk、切り起こし部 18dを成形する刃 部 39kでは刃角 φ ΐίとなるように徐々に大きくしている。ここで、刃角 d) k> jk> φ ] の関係となり、刃角 <i) kから までの間は無段階に刃角を変化させている。
[0028] なお、切り起こし刃 39、 41の形成方向は、図 12に示すように、一つの歯部 31Bの 頂部 33を境として、両側に位置する側面 37において互いに刃の切削面が逆方向と なるように形成される。
[0029] 一方、コルゲートカッター 21Bと対をなすコルゲートカッター 21Aについても略同一 の形状に作られ、切り起こし刃の刃角をルーバー 18、 19の切り始め部分では角度が 小さぐ切り終わり部分では角度が大きくなるように変化させている。図 13は、コルゲ ートカッター 21Aと 21Bの嚙み合い部分を示す部分断面図である。コルゲートカツタ 一 21Bの切り起こし刃は、コルゲートカッター 21Aの切り起こし刃 39 (41)と嚙み合せ たときに、互 、の刃の向きと刃角が鏡面対称となるように組み合わされて 、る。
[0030] 一般に、コルゲートカッターによるルーバー成形では、切り起こし刃 39、 41の刃角 φがルーバー 18、 19の切り起こし角度を決定している。すなわち、刃角 φを大きくし た部分では切り起こし角度は大きくなり、刃角 φを小さくした部分では切り起こし角度 は小さくなる。通常のルーバー成形では、先に切り起こされる部分 (切り始め部分)で はしつ力りと切り起こし成形される力 後に切り起こされる部分 (切り終わり部分)では しつ力りとした切り起こし成形がされないため、一つのルーバーで両端の切り起こし部 における切り起こし角度が異なり、ルーバーに歪みが発生してしまう。
[0031] これに対して本実施の形態のコルゲートカッター 21Α(21Β)では、切り起こし刃 39 、 41の刃角を、ルーバーの切り始め部分では角度が小さくなるようにし、切り終わり部 分では角度が大きくなるようにしているため、しつ力りと切り起こし成形される切り始め 部分では切り起こし角度が大きくならないように成形され、しっかりとした切り起こし成 形がなされない切り終わり部分では切り起こし角度が大きくなるように成形されること になる。したがって、図 5に示すように、ルーバー 18、 19の両端の切り起こし部 18c、 18d、および 19a、 19bにおける切り起こし角度が略同一となるように成形することが できる。このように、ルーバーの両端の切り起こし部における切り起こし角度がほぼ同 一となることによりルーバーの歪みがなくなり、歪みによるフィン全体のねじれが抑え られるため、成形後のルーバーフィン 11の曲がりを防ぐことができる。
[0032] したがって、本実施の形態に示すコルゲートカッター 21によれば、ねじれを防止す るために帯状薄板 13の縁部を折り曲げる工程が不要となり、また折り曲げ分だけフィ ン幅を広くすることもないため、工程数を増やすことなぐ且つ材料歩留まりを悪くす ることなしに、コルゲート成形後に曲がることのない一方向ルーバーフィンを得ること ができる。
[0033] なお、切り起こし刃 39、 41の刃角は、フィン形状や材質に応じて最適な数値が個 々に求められる。これらの数値は、実験やシミュレーションを実施することにより決定 することができる。
[0034] (第 2の実施の形態)
次に、本発明の第 2の実施の形態に係るコルゲートカッターについて説明する。
[0035] 上記第 1の実施の形態に示したようなコルゲートカッターの加工に関する技術として 、砲石の研磨面に合わせてカッターの斜刃面を傾けて研磨する方法が知られている (特開平 1— 2833号公報)。しかし、特開平 1— 2833号公報に示されたカ卩ェ方法で は、一定の刃角でしか斜刃を加工できないため、上記第 1の実施の形態に係る刃角 が徐々に変化するコルゲートカッター (徐変コルゲートカッター)を製作することは技 術的に困難であった。また、切削加工や放電カ卩ェなど、砲石による研削加工以外で 斜刃をカ卩ェすることにより徐変コルゲートカッターをカ卩ェすることは可能である。ところ 力 切削加工は研削加工に比べて加工面の表面粗さが劣るため、フィン成形に悪影 響を及ぼすおそれがある。また、放電加工は研削加工に比べて加工時間が多くかか るため、コスト増を招くことになる。
[0036] そこで、第 2の実施の形態では、上記した第 1の実施の形態に係るルーバーフィン を形成できる刃角が徐々に変化するコルゲートカッターと同等の機能を備え、研削加 ェにより製作可能なコルゲートカッターを提供することにある。
[0037] まず、第 2の実施の形態に係るコルゲートカッターの基本的な構造を、図 16〜図 18 を用いて説明する。図 16はコルゲートカッターの配置を示す斜視図、図 17は歯部の 部分拡大図、図 18はコルゲートカッターの分解斜視図、図 19はルーバーフィンの一 部 (コルゲート形状の 1山分)を示す斜視図である。
[0038] 図 16に示すように、コルゲートカッター 121は、一対の(第 1及び第 2の)コルゲート カッター 121A, 121Bで構成されている。このコルゲートカッター 121A, 121Bは、 一方が雄型、他方が雌型のカッターとして互いに嚙み合うように設置され、図示しな い駆動機構により矢印方向に回転駆動される。以下、コルゲートカッター 121Aを例 として説明する。
[0039] コルゲートカッター 121Aは、円周方向に沿って複数の歯部 131Aが所定間隔で放 射状に形成され、円周上には歯部 131Aの頂部 133および底部 135が交互に形作 られている。歯部 131Aには、図 17に示すように、一方の側面 137aには複数の切り 起こし刃(刃形状は図示せず) 139が、また他方の側面 137bには複数の切り起こし 刃(刃形状は図示せず) 141がそれぞれ形成されている。
[0040] このコルゲートカッター 121Aは、図 18に示すように、円周方向に沿って複数の歯 部 131 Aを放射線状に形成した薄板状のブレード 129を所定枚数積層した構造とな つている。各ブレード 129には、円周方向に沿って切り起こし刃 139, 141が所定間 隔で交互に形成されている。ただし、コルゲートカッターの構造は複数の部材を積層 したものに限定されるものではなぐ一体成形されたものであってもよい。
[0041] 同様に、コルゲートカッター 121Bについても、円周方向に沿って複数の歯部 131 Bが所定間隔で放射状に形成されており、各歯部 131Bの一方の側面には複数の切 り起こし刃が、また他方の側面には複数の切り起こし刃がそれぞれ形成されている( 符号の図示を省略)。
[0042] 図 16に示すように、このような切り起こし刃 139, 141が形成されたコルゲートカツタ 一 121Aと、同一構成の切り起こし刃が形成されたコルゲートカッター 121Bとを嚙み 合わせて回転駆動するとともに、この両カッター間に帯状薄板 113を供給すると、一 方のコルゲートカッターの頂部 133が他方のコルゲートカッターの底部 135と嚙み合 つて、図 19に示すような帯状薄板 113に屈曲部 115と平坦部 117とが交互に形成さ れる。また同時に、一方のコルゲートカッターの切り起こし刃 139 (141)が他方のコル ゲートカッターの切り起こし刃 139 (141)と嚙み合うことで帯状薄板 113の平坦部 11 7に複数のルーバー 118, 119力 S切り起こされ、ルーバーフィン 111となる。
[0043] 次に、歯部 131A (131B)の佃 J面 137a, 137bに形成された切り起こし刃 139, 14 1の形状について説明する。図 14は隣接する歯部 131Bの側面形状を示す部分拡 大図、図 15 (&)〜(。)は図14の15八—15八線、 15B— 15B線、 15C— 15C線にお ける切り起こし刃同士の嚙み合いを示す断面図であり、コルゲートカッター 121A, 1 21 Bが嚙み合つて 、るときの仮想的な断面を示して 、る。
[0044] 本実施の形態のコルゲートカッター 121Bは、図 14に示すように、歯部 131Bの一 方の側面 137aに設けた切り起こし刃 139を、ルーバー 118の切り始め箇所を力卩ェす る頂部側の歯先部分 139aでは歯高 hiが最も小さぐまたルーバー 118の切り終わり 箇所を加工する底部側の歯先部分 139bでは歯高 h2が最も大きくなるように頂部側 の歯先部分 139aから底部側の歯先部分 139bに向力つて歯高が連続的に大きくな るように成形 (削り落とし)して 、る。
[0045] ここで、図 19に示すように、ルーバー 118は切り始め箇所 118aから切り終わり箇所 118bに向力つて矢印方向に切り起こされ、ルーバー 119は切り始め箇所 119cから 切り終わり箇所 119dに向かって矢印方向に切り起こされる(フィンの成形方向は矢 印 a方向とする)。歯高 hl、 h2は元となる歯車の形を示す一点鎖線からの高さで示さ れている。なお、二点鎖線は本実施の形態において歯高 hl、 h2を設ける前の歯高 を示すものである。すなわち、元となる歯車の形に歯を付けたものが二点鎖線である
[0046] したがって、切り起こし刃 139の断面は頂部側の歯先部分 139aから底部側の歯先 部分 139bまで同一である力 本実施の形態では二点鎖線の位置力もこの切り起こし 刃 139の歯高を連続的に削り落とすことにより、切り起こし刃 139の幅方向の厚み t ( ランド幅)は頂部側の歯先部分 139aから底部側の歯先部分 139bに向力つて徐々に 狭くなつている。
[0047] さらに、頂部側の歯先部分 139aから底部側の歯先部分 139bに至るまでの間は同 じ刃角 Θで斜刃 140が成形されている。図 14に示す二点鎖線は、頂部側の歯先部 分 139aから底部側の歯先部分 139bまで刃角 Θで成形したときのラインを示してい る。本実施の形態では、頂部側の歯先部分 139aから底部側の歯先部分 139bに向 力つて歯高が連続的に削り落とされているため、切り起こし刃 139の実線よりも外側 の範囲は実際には斜刃 140が加工されな 、領域を示して 、る。
[0048] また、歯部 131Bの他方の側面 137bに設けた切り起こし刃 141は、図 19に示すル 一バー 119の切り始め箇所 119cをカ卩ェする底部側の歯先部分 141aでは歯高 hiが 最も小さぐまたルーバー 119の切り終わり箇所 119dをカ卩ェする頂部側の歯先部分 141bでは歯高 h2が最も大きくなるように頂部側の歯先部分 141aから底部側の歯先 部分 141bに向力つて歯高が連続的に大きくなるように成形(削り落とし)している。
[0049] したがって、切り起こし刃 141の断面は底部側の歯先部分 141aから頂部側の歯先 部分 141bまで同一である力 本実施の形態では二点鎖線の位置力もこの切り起こし 刃 141の歯高を連続的に削り落とすことにより、切り起こし刃 141の幅方向の厚み t ( ランド幅)は底部側の歯先部分 141aから頂部側の歯先部分 141bに向力つて徐々に 狭くなつている。
[0050] さらに、底部側の歯先部分 141aから頂部側の歯先部分 141bに至るまでの間は同 じ刃角 Θで斜刃 142が成形されている。図 14に示す二点鎖線は、底部側の歯先部 分 141aから頂部側の歯先部分 141bまで刃角 Θで成形したときのラインを示してい る。本実施の形態では、底部側の歯先部分 141aから頂部側の歯先部分 141bに向 力つて歯高が連続的に削り落とされているため、切り起こし刃 141の実線よりも外側 の範囲は実際には斜刃 142が加工されな 、領域を示して 、る。
[0051] 上記コルゲートカッター 121Bと対をなすコルゲートカッター 121 Aの歯部 131 Aに ついても、歯部 131Bと同様の切り起こし刃が形成されている(以下、 139A, 141Aと する)。そして、コルゲートカッター 121A, 121Bを嚙み合わせたときに、コルゲート力 ッター 121Bの歯部 131Bの側面 137aに設けた切り起こし刃 139と、コルゲートカツタ 一 121Aの歯部 131Aの側面 137aに設けた切り起こし刃 139Aとが対向し、また、コ ルゲートカッター 121Bの歯部 131Bの側面 137bに設けた切り起こし刃 141と、コル ゲートカッター 121Aの歯部 131Aの側面 137bに設けた切り起こし刃 141Aとが対向 することになる。これにより、コルゲートカッター 121Bの切り起こし刃 139 (141)は、コ ルゲートカッター 121Aの切り起こし刃 139A(141A)と嚙み合わせたときに、互いの 刃の向きと刃角が鏡面対称となるように組み合わされる。
[0052] 次に、本実施の形態によるコルゲートカッター 121の作用について説明する。ここ で ίま、図 19にお!/、て、ノレ一ノ ー 119を切り始め筒所 119c力ら切り終わり筒所 119d に向力つて矢印方向に切り起こす場合にっ 、て説明する。
[0053] ルーバー 119の切り始め箇所 119cの加工は、図 14の 15A— 15A線断面である図 15 (a)に示すように、帯状薄板 113の平坦部 117がコルゲートカッター 121 Bの切り 起こし刃 141の底部側の歯先部分 141aと、コルゲートカッター 121Aの切り起こし刃 141Aの頂部側の歯先部分 141bとの間で切り起こされる。このとき、平坦部 117は、 コルゲートカッター 121Aの斜刃(以下、上斜刃) 142の角部 142bとコルゲートカツタ 一 121Bの斜刃(以下、下斜刃) 142の角部 142aとをつなぐ線に沿って、切り起こし 角度 Φ aで切り起こされる。
[0054] ルーバー 119の切り起こし中間箇所 119cdの加工は、図 14の 15B— 15B線断面 である図 15 (b)に示すように、帯状薄板 113の平坦部 117がコルゲートカッター 121 Bの切り起こし刃 141の中間部の歯先部分 141abと、コルゲートカッター 121Aの中 間部の歯先部分 141aとの間で切り起こされる。このとき、平坦部 117は、上斜刃 142 の角部 142abと下斜刃 142の角部 142abとをつなぐ線に沿って、切り起こし角度 φ ΐ) で切り起こされる。
[0055] ルーノ ー 119の切り終わり箇所 119dのカロ工は、図 14の 15C— 15C線断面である 図 15 (c)に示すように、帯状薄板 113の平坦部 117がコルゲートカッター 121 Bの切 り起こし刃 141の頂部側の歯先部分 141bと、コルゲートカッター 121Aの切り起こし 刃 141Aの底部側の歯先部分 141aとの間で切り起こされる。このとき、平坦部 117は 、上斜刃 142の角部 141aと下斜刃 142の角部 142bとをつなぐ線に沿って、切り起こ し角度 φ。で切り起こされる。
[0056] このように、本実施の形態のコルゲートカッター 121A, 121Bでは、切り起こし刃 13 9, 141の刃角 Θを一定としながら、幅方向の厚み tは tlから t3へ徐々に変化してい るため(tl >t2>t3)、斜刃 140, 142による切り起こし角度も連続的に変化している 。したがって、帯状薄板 113に成形されるルーバーは、切り始め箇所では切り起こし 角度 φが小さく( φ a)、切り終わり箇所では切り起こし角度 φが大きく( φ c)なるように 成形される。
[0057] 一般に、コルゲートカッターによるルーバー成形では、切り起こし刃 139, 141の刃 角 Θがルーバーの切り起こし角度を決定している。すなわち、刃角 Θを大きくした部 分で加工すると切り起こし角度 φは大きくなり、刃角 Θを小さくした部分で加工すると 切り起こし角度 Φは小さくなる。通常のルーバー成形では、先に切り起こされる箇所( 切り始め箇所)ではしつかりと切り起こし成形されるが、最後に切り起こされる箇所 (切 り終わり箇所)ではしつ力りと切り起こし成形されないため、 1つのルーバーで両端の 切り起こし角度が異なり、ルーバーに歪みが生じてしまう。
[0058] これに対して本実施の形態のコルゲートカッター 121A, 121Bでは、図 15に示す ように、ルーバーの切り始め箇所では切り起こし角度 φが小さく( φ a)、切り終わり箇 所では切り起こし角度 φが大きく( φ c)なるため、徐変コルゲートカッターで成形した 場合と同じように、元々しつ力りと切り起こし成形される切り始め箇所では切り起こし角 度が大きくならないように成形され、しっかりとした切り起こし成形がなされない切り終 わり箇所では切り起こし角度が大きくなるように成形されることになる。したがって、図 19に示すように、ルーバー 118の切り始め箇所 118aと切り終わり箇所 118b、および ルーバー 119の切り始め箇所 119cと切り終わり箇所 119dにおける切り起こし角度 φ を、成形後にほぼ同一とすることができる。このように、一方向に成形されたルーバー 118, 119の両端部の切り起こし角度をほぼ同一とすることによりルーバーの歪みが なくなり、歪みによるフィン全体のねじれが抑えられるため、成形後のルーバーフィン 111の曲がりを防ぐことができる。
[0059] また、本実施の形態のコルゲートカッター 121A, 121Bでは、刃角 Θを一定とする ことができるため、上記第 1の実施の形態に係る徐変コルゲートカッターと同等の機 能を有するコルゲートカッターを製作することができる。この第 2の実施の形態によれ ば、切削加工ではなく研削加工により斜刃 140, 142をカ卩ェすることになるため、カロ 工面の表面粗さを現行と同等とすることが可能となり、フィン成形への悪影響を回避 することができる。また、放電カ卩ェのように多くの加工時間を要することがないため、コ スト増を回避することができる。
[0060] なお、切り起こし刃 139, 141の歯高、刃角は、フィン形状や材質に応じて最適な数 値が個々に求められる。これらの数値は実験やシミュレーションの実施結果により決 定することができる。
[0061] (第 3の実施の形態)
次に、本発明の第 3の実施の形態に係るコルゲートカッターについて説明する。
[0062] 上記特開平 1— 2833号公報に示されたカ卩ェ方法では、一定の刃角でしか斜刃を 加工できないため、上述した第 1の実施の形態に係る刃角が徐々に変化するコルゲ ートカッター (徐変コルゲートカッター)を製作することは技術的に困難であった。また 、切削加工や放電カ卩ェなど、砲石による研削加工以外で斜刃を加工することにより 徐変コルゲートカッターをカ卩ェすることは可能である。ところが、切削加工は研削加工 に比べてカ卩工面の表面粗さが劣るため、フィン成形に悪影響を及ぼすおそれがある 。また、放電力卩ェは研削加工に比べてカ卩ェ時間が多くかかるため、コスト増を招くこと になる。
[0063] そこで、第 3の実施の形態では、上記第 1の実施の形態に係る刃角が徐々に変化 するコルゲートカッターと同等の機能を備え、研削加工により製作可能なコルゲート カッターを提供することにある。
[0064] まず、第 3の実施の形態に係るコルゲートカッターの基本的な構造を、図 20〜図 23 を用いて説明する。図 20はコルゲートカッターの配置を示す斜視図、図 21は歯部の 部分拡大図、図 22はコルゲートカッターの分解斜視図、図 23はルーバーフィンの一 部 (コルゲート形状の 1山分)を示す斜視図である。
[0065] 図 20に示すように、コルゲートカッター 221は、一対の(第 1及び第 2の)コルゲート カッター 221A, 221Bで構成されている。このコルゲートカッター 221A, 221Bは、 一方が雄型、他方が雌型のカッターとして互いに嚙み合うように設置され、図示しな い駆動機構により矢印方向に回転駆動される。以下、コルゲートカッター 221Aを例 として説明する。
[0066] コルゲートカッター 221Aは、円周方向に沿って複数の歯部 231Aが所定間隔で放 射状に形成され、円周上には歯部 231Aの頂部 233および底部 235が交互に形作 られている。歯部 231Aには、図 21に示すように、一方の側面 237aには複数の切り 起こし刃(刃形状は図示せず) 239が、また他方の側面 237bには複数の切り起こし 刃(刃形状は図示せず) 241がそれぞれ形成されている。
[0067] このコルゲートカッター 221Aは、図 22に示すように、円周方向に沿って複数の歯 部 231Aを放射状に形成した薄板状のブレード 229を所定枚数積層した構造となつ ている。各ブレード 229には、円周方向に沿って切り起こし刃 239, 241が所定間隔 で交互に形成されている。ただし、コルゲートカッターの構造は複数の部材を積層し たものに限定されるものではなぐ一体成形されたものであってもよい。
[0068] 同様に、コルゲートカッター 221Bについても、円周方向に沿って複数の歯部 231 Bが所定間隔で放射状に形成されており、各歯部 231Bの一方の側面には複数の切 り起こし刃が、また他方の側面には複数の切り起こし刃がそれぞれ形成されている( 符号の図示を省略)。
[0069] このような切り起こし刃 239, 241が形成されたコルゲートカッター 221Aと、同一構 成の切り起こし刃が形成されたコルゲートカッター 221Bとを嚙み合わせて回転駆動 するとともに、図 20に示すように、この両カッター間に帯状薄板 213を供給すると、一 方のコルゲートカッターの頂部 233が他方のコルゲートカッターの底部 235と嚙み合 つて帯状薄板 213に、図 23に示すような屈曲部 215と平坦部 217とが交互に形成さ れる。また同時に、一方のコルゲートカッターの切り起こし刃 239 (241)が他方のコル ゲートカッターの切り起こし刃 239 (241)と嚙み合うことで帯状薄板 213の平坦部 21 7に複数のルーバー 218, 219力 S切り起こされ、ルーバーフィン 211となる。
[0070] 次【こ、歯咅 231A (231B)のィ則面 237a, 237b【こ形成された切り起こし刃 239, 24 1の形状について説明する。図 24は隣接する歯部 231Bの側面形状を示す部分拡 大図、図 25 (&)〜(。)は図24の25八一25八線、 25B— 25B線、 25C— 25C線にお ける切り起こし刃同士の嚙み合いを示す断面図であり、コルゲートカッター 221A, 2 21 Bが嚙み合つて 、るときの仮想的な断面を示して 、る。
[0071] なお、図 26 (a)は、切り起こし刃同士がルーバー 219を切り始めた状態を示すもの であり、その嚙み合い断面は図 25 (a)に相当する。図 26 (b)は、切り起こし刃同士が ルーバー 219の中間箇所 219cdを切る状態を示すものであり、その嚙み合い断面は 図 25 (b)に相当する。図 26 (c)は切り起こし刃同士がルーバー 219の切り起こし終 点位置 219dを切る切る状態を示すものであり、その嚙み合い断面は図 25 (c)に相 当する。また、図 27 (a)〜(c)は、それぞれ図 25 (a)〜(c)に相当する嚙み合い位置 で、コルゲートカッター 221A、 221Bが実際に平坦部 217を切り起こした状態を示す 図である。
[0072] 本実施の形態のコルゲートカッター 221Bは、図 24に示すように、歯部 231Bの一 方の側面 237aに設けた切り起こし刃 239を、図 23に示すルーバー 218の切り始め 箇所 218aをカ卩ェする頂部側の歯先部分 239aと、ルーバー 218の切り終わり箇所 2 18bをカ卩ェする底部側の歯先部分 239bとで刃の幅方向の厚み (ランド幅)が同じに なるように設定されている。切り起こし刃 239、 241は図 24に示すように、頂部側の歯 先部分力 底部側の歯先部分まで斜刃の角度及びランド幅は一定に形成されており 、斜刃が一点鎖線で示した部位力も突出している長さが異なっている(ha、 hb、 heで 示した部分)。
[0073] ここで、図 23に示すように、ルーバー 218は切り始め箇所 218aから切り終わり箇所 218bに向力つて矢印方向に切り起こされ、ルーバー 219は切り始め箇所 219cから 切り終わり箇所 219dに向かって矢印方向に切り起こされる(フィンの成形方向は矢 印 a方向とする)。
[0074] 本実施の形態では、図 25に示すように、コルゲートカッター 221A, 221Bの互いに 対応する歯部 231A, 231Bの切り起こし刃 239, 241の刃角は刃の長さ方向に亘っ て同じ角度 0で斜刃 240, 242が形成されている。この斜刃 240, 242は削り落とし により形成されている。そして、切り起こし刃 239, 241の斜刃 240, 242の同じ符号 の刃同士は互いに嚙み合った状態で所定のクリアランス cを介して平行をなすように 設定されている。
[0075] 以下、クリアランス cについて図 24乃至図 27に基づいて説明する。
[0076] このクリアランス cは、ルーバー 219を切り始める位置(図 26 (a)参照) 241aでは図 25 (a)に示すように斜刃 240, 240間が大きなクリアランス clとなるように設定されて いる。切り起こされる平坦部 217は、コルゲートカッター 221Aの斜刃(以下、上斜刃) 242の角部 242aとコルゲートカッター 221Bの斜刃(以下、下斜刃) 242の角部 242 aとをつなぐ線に沿って、切り起こし角度 φ aで切り起こされる。
[0077] 次に、ルーバー 219の切り起こし中間箇所 219cdの加工は、図 24の位置 241abの 25B— 25B線断面である図 25 (b)に示すように、中程度のクリアランス c2が設定され ている。そして、帯状薄板 213の平坦部 217は、コルゲートカッター 221Bの切り起こ し刃 241の中間部の歯先部分 241abと、コルゲートカッター 221Aの中間部の歯先 部分 241abとの間で切り起こされる。このとき、平坦部 217は、上斜刃 242の角部 24 2abと下斜刃 242の角部 242abとをつなぐ線に沿って、切り起こし角度 φ bで切り起こ される。
[0078] 次に、ルーバー 219の切り起こし終点位置 219dの加工は、図 24の位置 241bの 2 5C - 25C線断面である図 25 (c)に示すように、小さ!/、クリアランス c3が設定されて!ヽ る。そして、図 25に示すように、帯状薄板 213の平坦部 217は、コルゲートカッター 2 21Bの切り起こし刃 241の終点側の歯先部分 241bと、コルゲートカッター 221Aの歯 先部分 241aとの間で切り起こされる。このとき、平坦部 217は、上斜刃 242の角部 2 42aと下斜刃 242の角部 242bとをつなぐ線に沿って、切り起こし角度 φ cで切り起こ される。このように、本実施の形態のコルゲートカッターの切り起こし刃は、斜刃の突 出量(ha、 hb、 he)によってクリアランス cl、 c2、 c3を決めている。
[0079] 次に、本実施の形態によるコルゲートカッター 221の作用について説明する。ここ で ίま、図 23にお!/、て、ノレ一ノ ー 219を切り始め筒所 219c力ら切り終わり筒所 219d に向力つて矢印方向に切り起こす場合にっ 、て説明する。
[0080] ルーバー 219の切り始め箇所 219cの加工は、図 24の 25A— 25A線断面である図 25 (a)に示すように、帯状薄板 213の平坦部 217がコルゲートカッター 221Bの切り 起こし刃 241の底部側の歯先部分 241aと、コルゲートカッター 221Aの歯先部分 24 lbとの間で切り起こされる。このとき、帯状薄板 213の平坦部 217は、上斜刃 242の 角部 242bと下斜刃 242の角部 242aとをつなぐ線に沿って、クリアランス clにより切り 起こし角度 φ aで切り起こされる。
[0081] 図 23に示すルーバー 219の切り起こし中間箇所 219cdの加工は、図 24の 25B— 25B線断面である図 25 (b)に示すように、帯状薄板 213の平坦部 217がコルゲート カッター 221Bの切り起こし刃 241の中間部の歯先部分 241abと、コルゲートカッター 221Aの中間部の歯先部分 241abとの間で切り起こされる。このとき、平坦部 217は 、上斜刃 242の角部 242abと下斜刃 242の角部 242abとをつなぐ線に沿って、クリア ランス c2により切り起こし角度 φ bで切り起こされる。
[0082] ルーノ ー 219の切り終わり箇所 219dのカロ工は、図 24の 25C— 25C線断面である 図 25 (c)に示すように、帯状薄板 213の平坦部 217がコルゲートカッター 221Bの切 り起こし刃 241の頂部側の歯先部分 241bと、コルゲートカッター 221Aの歯先部分 2 41aとの間で切り起こされる。このとき、平坦部 217は、上斜刃 242の角部 242aと下 斜刃 242の角部 242bとをつなぐ線に沿って、クリアランス c3により切り起こし角度 φ c で切り起こされる。
[0083] このように、本実施の形態のコルゲートカッター 221A, 221Bでは、図 25に示すよ うに、切り起こし刃 239, 241の刃角 Θを一定としながら、クリアランス cのみを徐々に 変化しているため(c3く c2く cl)、斜刃 240, 242による切り起こし角度も連続的に 変化している。したがって、帯状薄板 213に成形されるルーバーは、切り始め箇所で は切り起こし角度 φが小さく( φ a)、切り終わり箇所では切り起こし角度 φが大きく( φ c)なるように成形される。
[0084] 一般に、コルゲートカッターによるルーバー成形では、切り起こし刃 239, 241の刃 角 Θがルーバーの切り起こし角度を決定している。すなわち、刃角 Θを大きくした部 分で加工すると切り起こし角度 φは大きくなり、刃角 Θを小さくした部分で加工すると 切り起こし角度 Φは小さくなる。通常のルーバー成形では、先に切り起こされる箇所( 切り始め箇所)ではしつかりと切り起こし成形されるが、最後に切り起こされる箇所 (切 り終わり箇所)ではしつ力りと切り起こし成形されないため、 1つのルーバーで両端の 切り起こし角度が異なり、ルーバーに歪みが生じてしまう。
[0085] これに対して本実施の形態のコルゲートカッター 221A, 221Bでは、図 25に示す ように、ルーバーの切り始め箇所では切り起こし角度 φが小さく( φ a)、切り終わり箇 所では切り起こし角度 φが大きく( φ c)なるため、徐変コルゲートカッターで成形した 場合と同じように、元々しつ力りと切り起こし成形される切り始め箇所では切り起こし角 度が大きくならないように成形され、しっかりとした切り起こし成形がなされない切り終 わり箇所では切り起こし角度が大きくなるように成形されることになる。したがって、図 23に示すように、ルーバー 218の切り始め箇所 218aと切り終わり箇所 218b、および ルーバー 219の切り始め箇所 219cと切り終わり箇所 219dにおける切り起こし角度 φ を、成形後に、ほぼ同一とすることができる。このように、一方向に成形されたルーバ 一 218, 219の両端部の切り起こし角度をほぼ同一とすることによりルーバーの歪み がなくなり、歪みによるフィン全体のねじれが抑えられるため、成形後のルーバーフィ ン 211の曲力^を防ぐことができる。
[0086] また、本実施の形態のコルゲートカッター 221A, 221Bでは、刃角 Θを一定とする ことができるため、上記第 1の実施の形態に係るコルゲートカッターと同等の機能を有 するコルゲートカッターを容易に製作することができる。この第 3の実施の形態によれ ば、切削加工ではなく研削加工により斜刃 240, 242をカ卩ェすることができるため、 加工面の表面粗さを現行と同等とすることが可能となり、フィン成形への悪影響を回 避することができる。また、放電カ卩ェのように多くの加工時間を要することがないため 、コスト増を回避することができる。
[0087] なお、切り起こし刃 239, 241の歯高、刃角は、フィン形状や材質に応じて最適な数 値が個々に求められる。これらの数値は実験やシミュレーションの実施結果により決 定することができる。
産業上の利用の可能性
[0088] 本発明に係わるコルゲートカッターは、自動車等の車両に搭載されるラジェータゃ 空調装置に用いられるヒータコア、コンデンサ、エバポレータ等の熱交換器に適用す ることができ、とくにこれら熱交^^に適した一方向ルーバーフィンの製造に有用なも のである。

Claims

請求の範囲
[1] 帯状薄板でなり、前記帯状薄板の長さ方向に沿って切り起こした複数のルーバー が前記帯状薄板の幅方向に並設され、前記ルーバーの切り起こし角度が前記帯状 薄板の長さ方向に沿って略同一となるように成形されて 、る、複数の平坦部と、 前記平坦部同士の境界となり、複数の前記平坦部がコルゲート形状となるように前 記平坦部同士の連結箇所である屈曲部と、
を備えることを特徴とするルーバーフィン。
[2] 円周方向に沿って複数の歯部が形成されて、互いに嚙み合うように組み付けられ た一対のカッターを含んでなり、
前記一対のカッター間に供給された帯状薄板に対して、対向する前記歯部の頂部 および底部によって前記帯状薄板に所定間隔で屈曲部と平坦部とを交互に成形す るとともに、前記歯部の側面に設けた複数の切り起こし刃によって前記帯状薄板の平 坦部に複数のルーバーを切り起こしてルーバー付きコルゲートフィンを成形すると共 に、
前記歯部の側面に設けた切り起こし刃の刃角を、前記ルーバーの切り始め部分で は角度が小さぐ切り終わり部分では角度が大きくなるように前記帯状薄板の長さ方 向に沿って変化させたことを特徴とするコルゲートカッター。
[3] 円周方向に沿って三角形状の複数の第 1歯部が形成され、前記第 1歯部の円周方 向の側面に、帯状薄板にルーバーを切り起こす複数の第 1切り起こし刃が設けられる と共に、前記第 1切り起こし刃の刃角が、前記ルーバーの切り始め部分では角度が 小さぐ切り終わり部分で角度が大きくなるように前記第 1切り起こし刃の長さ方向に 沿って刃角を漸次変化させた第 1のカッターと、
前記第 1のカッターに嚙み合うように前記第 1のカッターと同期して回転駆動され、 円周方向に沿って複数の第 2歯部が形成され、前記第 2歯部は前記第 1歯部と共に 前記帯状薄板を屈曲部と平坦部とを交互に成形してコルゲート形状に加工すると共 に、前記第 2歯部の円周方向の側面に、前記第 1歯部と協働して前記帯状薄板にル 一バーを切り起こす複数の第 2切り起こし刃が設けられると共に、前記第 2切り起こし 刃の刃角が、前記ルーバーの切り始め部分では角度が小さぐ切り終わり部分で角 度が大きくなるように前記切り起こし刃の長さ方向に沿って刃角を漸次変化させた第
2のカッターと、
を含むことを特徴とするコルゲートカッター。
[4] 複数の歯部が放射状に形成された一対のカッターを所定間隔で対向配置してなり この一対のカッター間に供給された帯状薄板に対して、対向する前記歯部の頂部 および底部によって前記帯状薄板に屈曲部と平坦部とを交互に成形すると共に、前 記歯部の側面に設けた複数の切り起こし刃によって前記帯状薄板の平坦部に複数 のルーバーを同一方向に切り起こしてルーバー付きコルゲートフィンを成形し、 前記歯部の一方の側面に設けた切り起こし刃は、前記ルーバーの切り始め箇所を 加工する頂部側の歯先部分では歯高が最も小さぐ切り終わり箇所を加工する底部 側の歯先部分では歯高が最も大きくなるように前記頂部側の歯先部分力 底部側の 歯先部分に向力つて歯高が連続的に大きくなるように成形されると共に、前記頂部側 の歯先部分から底部側の歯先部分に至るまでの間は刃角 Θの斜刃が成形され、 前記歯部の他方の側面に設けた切り起こし刃は、前記ルーバーの切り始め箇所を 加工する底部側の歯先部分では歯高が最も小さぐ切り終わり箇所を加工する頂部 側の歯先部分では歯高が最も大きくなるように前記底部側の歯先部分力 頂部側の 歯先部分に向力つて歯高が連続的に大きくなるように成形されるとともに、前記底部 側の歯先部分から頂部側の歯先部分に至るまでの間は刃角 Θの斜刃が成形されて いる、
ことを特徴とするコルゲートカッター。
[5] 円周方向に沿って複数の第 1歯部が形成され、前記第 1歯部の円周方向の側面に 、帯状薄板にルーバーを切り起こす複数の第 1切り起こし刃が設けられると共に、前 記第 1切り起こし刃の高さが、前記ルーバーの切り始め部分では最も低ぐ切り終わり 部分で最も高くなるように前記第 1切り起こし刃の長さ方向に沿って歯高を漸次変化 させた第 1のカッターと、
前記第 1のカッターに嚙み合うように前記第 1のカッターと同期して回転駆動され、 円周方向に沿って複数の第 2歯部が形成され、前記第 2歯部は前記第 1歯部と共に 前記帯状薄板を屈曲部と平坦部とを交互に成形してコルゲート形状に加工すると共 に、前記第 2歯部の円周方向の側面に、前記第 1歯部と協働して前記帯状薄板にル 一バーを切り起こす複数の第 2切り起こし刃が設けられると共に、前記第 2切り起こし 刃の高さが、前記ルーバーの切り始め部分では最も低ぐ切り終わり部分で最も大き くなるように前記第 2切り起こし刃の長さ方向に沿って歯高を漸次変化させた第 2の力 ッターと、
を含むことを特徴とするコルゲートカッター。
円周方向に沿って複数の第 1歯部が形成され、前記第 1歯部の円周方向の側面に、 帯状薄板にルーバーを切り起こす複数の第 1切り起こし刃が設けられると共に、前記 第 1切り起こし刃の長さ方向に沿って刃角 Θが一定の第 1のカッターと、
前記第 1のカッターに嚙み合うように前記第 1のカッターと同期して回転駆動され、 円周方向に沿って複数の第 2歯部が形成され、前記第 2歯部は前記第 1歯部と共に 前記帯状薄板を屈曲部と平坦部とを交互に成形してコルゲート形状に加工すると共 に、前記第 2歯部の円周方向の側面に、前記第 1歯部と協働して前記帯状薄板にル 一バーを切り起こす複数の第 2切り起こし刃が設けられると共に、前記第 2切り起こし 刃は、当該第 2切り起こし刃の長さ方向に刃角 Θが一定であり、前記第 2切り起こし刃 は前記第 1切り起こし刃とのクリアランスが、相対的に、前記ルーバーの切り始め部分 で最も長ぐ切り終わり部分で最も短くなるように、前記クリアランスが漸次変化する第 2のカッターと、
を含むことを特徴とするコルゲートカッター。
PCT/JP2005/017455 2004-09-22 2005-09-22 ルーバーフィンおよびコルゲートカッター WO2006033382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006536407A JPWO2006033382A1 (ja) 2004-09-22 2005-09-22 ルーバーフィンおよびコルゲートカッター
EP05785742A EP1795849A4 (en) 2004-09-22 2005-09-22 SLOTTED RIB AND DEVICE FOR CUTTING WAVES
US11/663,448 US20080179048A1 (en) 2004-09-22 2005-09-22 Louver Fin and Corrugation Cutter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004274877 2004-09-22
JP2004-274877 2004-09-22
JP2004-325485 2004-11-09
JP2004325485 2004-11-09

Publications (1)

Publication Number Publication Date
WO2006033382A1 true WO2006033382A1 (ja) 2006-03-30

Family

ID=36090137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017455 WO2006033382A1 (ja) 2004-09-22 2005-09-22 ルーバーフィンおよびコルゲートカッター

Country Status (4)

Country Link
US (1) US20080179048A1 (ja)
EP (1) EP1795849A4 (ja)
JP (1) JPWO2006033382A1 (ja)
WO (1) WO2006033382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103418A (ja) * 2008-10-27 2010-05-06 Furukawa-Sky Aluminum Corp ルーバー付きヒートシンクおよびその組立方法
JP2010118497A (ja) * 2008-11-13 2010-05-27 Furukawa-Sky Aluminum Corp ルーバー付きフィンを備えた熱交換器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499957B2 (ja) * 2009-07-24 2014-05-21 株式会社デンソー 熱交換器
US20110048688A1 (en) * 2009-09-02 2011-03-03 Delphi Technologies, Inc. Heat Exchanger Assembly
US20110139414A1 (en) * 2009-12-14 2011-06-16 Delphi Technologies, Inc. Low Pressure Drop Fin with Selective Micro Surface Enhancement
WO2013177942A1 (zh) * 2012-05-15 2013-12-05 Zhao Wenzhi 一种空调及自动控制技术
CN103537519B (zh) * 2013-11-06 2015-12-09 株洲南方航鑫机械装备有限责任公司 一种双向波浪带翅片的轧制成型模具
CN103551450B (zh) * 2013-11-06 2016-06-15 中国南方航空工业(集团)有限公司 轧制波浪带翅片的模具
JP5716820B1 (ja) * 2013-12-25 2015-05-13 ダイキン工業株式会社 フィン製造装置
WO2015182782A1 (ja) * 2014-05-27 2015-12-03 株式会社ティラド 熱交換器コア
PL440466A1 (pl) * 2022-02-24 2023-08-28 Andrzej Krupa Obrotowy metalowy zespół przekazywania ciepła dla obrotowego powietrznego wymiennika ciepła

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112015U (ja) * 1980-01-31 1981-08-29
JPS6074807U (ja) * 1983-10-25 1985-05-25 カルソニックカンセイ株式会社 コルゲ−トフイン成形ロ−ル
JP2003262484A (ja) * 2002-03-07 2003-09-19 Calsonic Kansei Corp ルーバーフィンおよびルーバーフィンを形成するコルゲートカッター

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2063757A (en) * 1934-12-29 1936-12-08 Gen Motors Corp Radiator core
US2703700A (en) * 1950-11-22 1955-03-08 Modine Mfg Co Heat interchanger
US3214954A (en) * 1963-02-19 1965-11-02 Ford Motor Co Roll die
JPS5022751B1 (ja) * 1970-12-27 1975-08-01
US4067219A (en) * 1977-03-23 1978-01-10 Bernard J. Wallis Heat exchanger fin roll
JPH0716741B2 (ja) * 1990-11-02 1995-03-01 日本電装株式会社 コルゲートフィンの製造装置
US5669438A (en) * 1996-08-30 1997-09-23 General Motors Corporation Corrugated cooling fin with louvers
US5787972A (en) * 1997-08-22 1998-08-04 General Motors Corporation Compression tolerant louvered heat exchanger fin
US6874345B2 (en) * 2003-01-02 2005-04-05 Outokumpu Livernois Engineering Llc Serpentine fin with extended louvers for heat exchanger and roll forming tool for manufacturing same
US7350387B1 (en) * 2004-01-23 2008-04-01 Lisk Rodger A Tooling assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112015U (ja) * 1980-01-31 1981-08-29
JPS6074807U (ja) * 1983-10-25 1985-05-25 カルソニックカンセイ株式会社 コルゲ−トフイン成形ロ−ル
JP2003262484A (ja) * 2002-03-07 2003-09-19 Calsonic Kansei Corp ルーバーフィンおよびルーバーフィンを形成するコルゲートカッター

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795849A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103418A (ja) * 2008-10-27 2010-05-06 Furukawa-Sky Aluminum Corp ルーバー付きヒートシンクおよびその組立方法
JP2010118497A (ja) * 2008-11-13 2010-05-27 Furukawa-Sky Aluminum Corp ルーバー付きフィンを備えた熱交換器

Also Published As

Publication number Publication date
EP1795849A4 (en) 2007-11-14
US20080179048A1 (en) 2008-07-31
JPWO2006033382A1 (ja) 2008-05-15
EP1795849A1 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
WO2006033382A1 (ja) ルーバーフィンおよびコルゲートカッター
JP3784735B2 (ja) ルーバーフィン
JP2742529B2 (ja) 熱交換器用プレートフィン
JP3814846B2 (ja) コルゲートフィン用成形ローラ及びコルゲートフィン成形方法
JP4037241B2 (ja) コルゲートフィン
EP0641615B1 (en) Forming roller for corrugated fin
KR20080021298A (ko) 열교환기용 루버 핀
JP7113015B2 (ja) 伝熱表面
WO2004003453A2 (en) Fin array for heat transfer assemblies and method of making same
JP4098547B2 (ja) 熱交換器用フィンおよび熱交換器用フィン製造装置
JPH11159987A (ja) 複合型熱交換器用コルゲートフィンおよびその製造方法
JPH03184645A (ja) 熱交換器用フィン及びその製造法
CA2672218A1 (en) Heat exchanger fin
JP2011513066A (ja) フィンの製造方法、及びこの方法を実施するための装置
JP2008292110A (ja) 放熱フィン及び該放熱フィンを備えた熱交換器
JPS5917448Y2 (ja) 熱交換器用フィンの製造用金型
JPH02242092A (ja) 熱交換器
JP3816182B2 (ja) 熱交換器、その製造方法
JPS6229136Y2 (ja)
JPH0674669A (ja) 熱交換器
JPH0814784A (ja) 熱交換器
JP4616458B2 (ja) 半導体素子用放熱器
JPS60226696A (ja) フイン付伝熱管及びその製造方法
JPH06194080A (ja) 熱交換器用伝熱フィン及びその製造方法
JPS5941427Y2 (ja) 熱交換器用フイン

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11663448

Country of ref document: US

Ref document number: 2006536407

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005785742

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005785742

Country of ref document: EP