WO2006029689A1 - Festoxid-brennstoffzelle mit einer metallischen tragstruktur - Google Patents

Festoxid-brennstoffzelle mit einer metallischen tragstruktur Download PDF

Info

Publication number
WO2006029689A1
WO2006029689A1 PCT/EP2005/009022 EP2005009022W WO2006029689A1 WO 2006029689 A1 WO2006029689 A1 WO 2006029689A1 EP 2005009022 W EP2005009022 W EP 2005009022W WO 2006029689 A1 WO2006029689 A1 WO 2006029689A1
Authority
WO
WIPO (PCT)
Prior art keywords
support structure
fuel cell
gas
bearing structure
metal
Prior art date
Application number
PCT/EP2005/009022
Other languages
English (en)
French (fr)
Inventor
Thomas HÖFLER
Peter Lamp
Marco Brandner
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to JP2007531627A priority Critical patent/JP5060956B2/ja
Priority to CA2577596A priority patent/CA2577596C/en
Priority to EP05789364.6A priority patent/EP1794832B1/de
Publication of WO2006029689A1 publication Critical patent/WO2006029689A1/de
Priority to US11/686,593 priority patent/US7662497B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a solid oxide fuel cell with a für Stammsöff ⁇ openings for a gas-containing metallic support structure for a cathode-electrolyte-anode unit and provided on the other side of the support structure bipolar plate or the like .
  • the technical environment is in addition to DE 102 38 860 A1 to EP 1 271 684 A1.
  • Solid oxide fuel cells are used to convert the chemical energy of a fuel gas electrochemically into electrical energy together with an oxidant, eg air-oxygen, in a direct way.
  • the conversion of fuel gas and atmospheric oxygen to electrical energy takes place on and in ceramic layers (cathode, electrolyte, anode).
  • a cell consists of a planar arrangement of the ceramic layers.
  • Stacks serve so-called.
  • Bipolar plates the ceramic layers may well be part of these bipolar plates.
  • the bipolar plate together with the ceramic layers can form a cassette which encloses a type of gas, in particular the fuel gas.
  • the operating temperature of solid oxide fuel cells is between 600 0 C and 900 0 C. Solid oxide fuel cells are usually brought relatively slowly to their operating temperature to avoid damage by the occurrence of thermo-mechanical stress between the ceramic layers underereinandej or the ceramic composite and the bipolar plates.
  • Thermo-mechanical stresses between the ceramic layers with one another or with the ceramic composite and the bipolar plates can lead to microcracks in the ceramic layers as well as to the ceramic-ceramic interfaces and between the ceramic-metal interfaces and thus to the destruction of the SOFC.
  • the solution to this problem is for a solid oxide fuel cell according to the preamble of claim 1, characterized in that the support structure consists of a metal which forms an electrically insulating protective oxide and acts as electrical resistance heating for temperature control of the fuel cell, including by the support structure between the protective oxide can be passed through electrical current, and that in at least some of the passage openings of the support structure, an electrically conductive material for electrical connection between the bipolar plate or the like. And the associated cathode-electrolyte-anode unit is introduced in such a way that a gas passage through these openings possible is.
  • a SOFC fuel cell which eliminates the essential disadvantages of the known prior art and thus makes it possible to realize a fast-startable solid oxide fuel cell.
  • the basis of a fuel cell according to the invention is a thin metallic support structure (eg a metal foil in the thickness range of 30 to 500 .mu.m as a carrier of the ceramic functional layers of a SOFC fuel cell, which is either perforated in the region of the ceramic functional layer or suitable füreries ⁇ otherwise
  • this metallic support structure extends over the entire surface of the bipolar plate including the provided in the edge region gas guides for fuel gas and air.
  • a feature of the proposed metallic support structure is that it consists of a material or metal, which itself forms an electrically insulating protective oxide layer, in the sense of a self-passivation.
  • Preferred such materials are so-called alumina formers, for example aluchrom Y Hf, or silicon oxide formers.
  • this support structure itself as electrical resistance heating, without having to fear the risk of electrical short circuits.
  • the corresponding electrical contacting, for the introduction of electrical current into or out of the electrical current from the support structure, can take place, for example, by means of corresponding electrical contacts on the outer circumference of the support structure. With passage of electrical current through the support structure, this thus heats up with a suitable design, which will be discussed in more detail later, so that the support structure itself can thus act as an electrical resistance heating element.
  • the electrically conductive connection between the bipolar plate and the cathode-electrolyte-anode unit can now no longer easily (as hitherto customary) be produced via the metallic support structure of the cathode-electrolyte-anode unit, since these are not electrically forms conductive oxide layer.
  • a porous gas or gas-permeable and electrically conductive material for supplying the electrode with the respective gaseous reactant is now proposed in a first embodiment of the present invention in the passage openings in the support structure which may, for example, be a suitably processed metal or else anode material or cathode material (the cathode-electrolyte-anode unit) or, in general, an electrically conductive ceramic.
  • the "filling" of the passage openings in the support structure with electrically conductive and at the same time gas-permeable material can be carried out in order to present the electrical contact
  • the passage openings can be produced here, for example, by etching, punching, slitting, stinging or similar methods.
  • the hole structure ie the shape of the passage opening
  • the electrical resistance and thus the heating power achievable with a predetermined electrical voltage on the support structure can be adapted to the respective requirements, for example, by appropriate choice of the thickness of the support structure and the structuring.
  • the electrical resistance can be increased, so that locally differing amounts of heat can also be introduced into the individual cell by specific locally different perforations, ie by different design of the passage openings.
  • the total electrical resistance to the desired heat output and the available Supply voltage can be adjusted.
  • the lifetime of an SOFC according to the invention is increased compared with the known prior art, since the protective oxide layer forming on the support structure is not only electrically insulating, but is also chemically substantially more resistant than metal substrates used today which have a high inherent electrical conductivity are oxidation-related and have a shorter life.
  • chemical resistance is understood as meaning the corrosion resistance to the gases occurring in the SOFC and the corrosion resistance to interdiffusion elements influencing the material properties.
  • the SOFC according to the invention presented here is independent of the special arrangement of the ceramic functional layers on the described support structure.
  • the presented inventive Permitted SOFC is also independent of the exact execution of the gas guide and further electrical contact in the stack, ie in the field of bipolar plates or the like., The function, for example, can also be taken over by a metallic knit.
  • FIG. 1 shows a greatly enlarged cross-section of an inventive fuel cell
  • FIG. 2 shows the plan view of a support structure (without ceramic functional layers).
  • Reference numeral 1 denotes the ceramic functional layers of a single fuel cell in the form of a cathode-electrolyte-anode unit, the anode layer bearing the reference numeral 1a, the applied electrolyte the reference numeral 1b and the cathode applied thereto the reference numeral 1c ,
  • This cathode-electrolyte-anode unit 1 is applied to a support structure 2, but here with the interposition of a so-called anode substrate 3.
  • the support structure 2 is a thin metallic foil or the like, into which passage openings 4 are introduced. In these passages 4, a gas-permeable, electrically conductive material 5 is introduced.
  • Figure 1 below the support structure 2, a network structure 6 or the like.
  • a gaseous reactant fuel gas
  • a gaseous reactant fuel gas
  • a gas-permeable material 5 passages 4 passing through the porous anode substrate 3 can go to the anode 1 a of the cathode-electrolyte-anode unit 1.
  • a bipolar plate 8 connects. Below this, then - as usual - the next fuel cell with its Katho ⁇ den-layer (1c) connect (not shown), as well as to the cathode layer 1 c of the figuratively shown single fuel cell, the subsequent single cell with their Bipolar plate (8) can connect (also not shown).
  • the foil-like metallic support structure 2 consists of a metal which itself forms an electrically insulating protective layer, which is identified in FIG. 1 by the reference numeral 2a.
  • This support structure 2 can therefore - as was explained in detail before the description of the figures - act as elektri ⁇ cal resistance heating, for which - as shown in Figure 2 - in each diagonally opposite corner regions of the flat support structure suitable power connection lugs 9a, 9b are provided on the support structure 2 ,
  • Figure 2 also shows the planar shape of the support structure 2, which extends over the entire surface of a single fuel cell and also includes their edge portions, in which Brenngas screen trecs- openings 10a and air passage openings 10b provided with respect to a integrated gas stack in the fuel cell stack are.
  • 2 clearly shows the perforated region 2b of the support structure with a multiplicity of passage openings 4 which, as explained with reference to FIG. 1, are filled with gas-permeable, electrically conductive material.
  • a fuel cell according to the invention allows a targeted introduction of heat to start the fuel cell and is thus characterized by a significantly reduced start time with simultaneous efficient heating.
  • only low thermo-mechanical stresses occur, u.a. also by the thin, lightweight support structure, which allows a cell structure in thin-film technology.
  • the edges that are virtually automatically insulating on the basis of the protective oxide layer that forms form the stack structure, whereby a large number of details can be deviating from the above explanations without departing from the content of the patent claims.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Die Erfindung betrifft einen Stack von Festoxid-Brennstoffzellen, von denen jede eine Durchtrittsöffnungen für ein Gas aufweisende metallische Tragstruktur (2) für eine Kathoden-Elektrolyt-Anoden-Einheit (1) und eine auf der anderen Seite der Tragstruktur vorgesehene Bipolarplatte (8) oder dgl. aufweist. Die Tragstruktur (2) besteht aus einem Metall, das eine elektrisch isolierende Schutzoxidschicht (2a) bildet und als elektrische Widerstandsheizung zur Temperierung der Brennstoffzelle fungiert, wozu durch die Tragstruktur (2) zwischen deren Schutzoxidschichten (2a) hindurch elektrischer Strom geleitet werden kann, und wobei in zumindest einige der Durchtrittsöffnungen (4) der Tragstruktur ein elektrisch leitfähiges Material (5) zur elektrischen Verbindung zwischen der Bipolarplatte (8) oder dgl. und der zugeordneten Kathoden-Elektrolyt-Anoden-Einheit (1) solchermaßen eingebracht ist, dass ein Gasdurchlass durch diese Durchtrittsöffnungen (4) möglich ist. Bevorzugt ist das Metall der Tragstruktur ein Aluminiumoxidbildner oder ein Siliziumoxid-Bildner. Zur Herstellung der elektrischen Leitfähigkeit im Bereich der Durchtrittsöffnungen (4) kann in diese ein gasdurchlässiges und elektrisch leitfähiges Material bspw. in Form eines geeignet bearbeiteten Metalls eingebracht sein oder es kann auf die Schutzoxidschicht (2a) der Tragstruktur (2) zumindest im Bereich einiger Durchtrittsöffnungen (4) eine elektrisch leitfähige Beschichtung aufgebracht sein.

Description

22
Festoxid-Brennstoffzelle mit einer metallischen Tragstruktur
Die Erfindung betrifft eine Festoxid-Brennstoffzelle mit einer Durchtrittsöff¬ nungen für ein Gas aufweisenden metallischen Tragstruktur für eine Kathoden-Elektrolyt-Anoden-Einheit und einer auf der anderen Seite der Tragstruktur vorgesehenen Bipolarplatte oder dgl.. Zum technischen Umfeld wird neben der DE 102 38 860 A1 auf die EP 1 271 684 A1 verwiesen.
Festoxid-Brennstoffzellen (Solid Oxide Fuel Cell, SOFC) dienen dazu, die chemische Energie eines Brenngases zusammen mit einem Oxidationsmit- tel, z.B. Luft-Sauerstoff, auf direktem Weg elektrochemisch in elektrische Energie umzuwandeln. Die Umsetzung von Brenngas und Luftsauerstoff zu elektrischer Energie erfolgt an und in keramischen Schichten (Kathode, Elektrolyt, Anode). Bei planaren Brennstoffzellenkonzepten besteht eine Zelle aus einer flächigen Anordnung der keramischen Schichten. Zur Versorgung mit Brenngas und Luft, der Abfuhr der Restgase sowie zur elektrischen Verbindung von übereinander gestapelten Brennstoff- Einzelzellen in einer seriellen Anordnung, nämlich in sog. Stacks, dienen sog. Bipolarplatten, wobei die keramischen Schichten durchaus auch Teil dieser Bipolarplatten sein können. Dabei muss sichergestellt sein, dass an keiner Stelle eines Brennstoffzellen-Stacks Brenngas und Luft direkt miteinander in Kontakt kommen. Insbesondere kann die Bipolarplatte zusammen mit den keramischen Schichten eine Kassette bilden, die eine Gassorte, insbesondere das Brenngas, einschließt. Die Betriebstemperatur von Festoxid-Brennstoffzellen liegt zwischen 6000C und 9000C. Festoxid-Brennstoffzellen werden üblicherweise relativ langsam auf ihre Betriebstemperatur gebracht, um eine Schädigung durch Auftreten von thermomechanischen Spannung zwischen den Keramikschichten untereinandej bzw. dem Keramikverbund und den Bipolarplatten zu vermeiden. Thermomechanischen Spannungen zwischen den Keramik¬ schichten untereinander bzw. dem Keramikverbund und den Bipolarplatten können nämlich zu Mikrorissen in den Keramikschichten sowie an den Keramik-Keramik-Grenzflächen und zwischen den Keramik-Metall- Grenzflächen und somit zu einer Zerstörung der SOFC führen.
Für den Einsatz in Kraftfahrzeugen sind Brennstoffzellen mit sehr kurzen Startzeiten erforderlich. Eine Entwicklung, die diesem Anspruch teilweise Rechnung trägt, ist, die keramischen Funktionsschichten nicht selbsttragend (z.B. Elektrolyt oder Anode als Substrat) sondern auf ein Metallsubstrat (z.B. Sintermetall oder eine perforierte Folie, siehe bspw. DE 102 38 860 A1) als dünne Schichten aufzubringen. Neben der thermomechanischen Festigkeit ist jedoch ein weiterer begrenzender Faktor die Einbringung der notwendigen Wärmemenge. In der EP 1 271 684 A2 ist eine Möglichkeit beschrieben, eine Festoxid-Brennstoffzelle mit Hilfe einer elektrischen Widerstandshei¬ zung auf Betriebstemperatur zu bringen, indem zwischen den keramischen Schichten vorgesehene Metallfolien unter elektrische Spannung gesetzt werden und somit durch den resultierenden Stromfluss Wärme erzeugt wird. Diese vorbeschriebene Lösung erfordert jedoch ein zusätzliches Bauteil, dessen Integration und Kontaktierung im Stack eine erhebliche Steigerung der Komplexität einer solchen SOFC bedeutet. So besteht bei der so beschriebenen Methode die Gefahr, dass, wenn die Metallfolie oder sonstige Metallbauteile auf ihren Außenseiten nicht elektrisch isoliert sind, elektrische Kurzschlüsse über die Bipolarplatten oder die Elektroden der SOFC entstehen und somit die „Heizfolie" elektrisch überbrückt und damit unwirk¬ sam wird. Hiermit soll nun eine Festoxid-Brennstoffzelle mit einer Durchtrittsöffnungen für ein Gas aufweisenden metallischen Tragstruktur für eine Kathoden- Elektrolyt-Anoden-Einheit und einer auf der anderen Seite der Tragstruktur vorgesehenen Bipolarplatte oder dgl. aufgezeigt werden, die im Hinblick auf eine Aufheizung elektrisch beheizbar ist und die sich dennoch durch einen einfachen und funktionssicheren Aufbau auszeichnet (= Aufgabe der vorliegenden Erfindung.
Die Lösung dieser Aufgabe ist für eine Festoxid-Brennstoffzelle nach dem Oberbegriff des Anspruchs 1 dadurch gekennzeichnet, dass die Tragstruktur aus einem Metall besteht, das eine elektrisch isolierende Schutzoxidschicht bildet und als elektrische Widerstandsheizung zur Temperierung der Brennstoffzelle fungiert, wozu durch die Tragstruktur zwischen deren Schutzoxidschichten hindurch elektrischer Strom geleitet werden kann, und dass in zumindest einige der Durchtrittsöffnungen der Tragstruktur ein elektrisch leitfähiges Material zur elektrischen Verbindung zwischen der Bipolarplatte oder dgl. und der zugeordneten Kathoden-Elektrolyt-Anoden- Einheit solchermaßen eingebracht ist, dass ein Gasdurchlass durch diese Durchtrittsöffnungen möglich ist. Vorteilhafte Aus- und Weiterbildungen sind Inhalt der Unteransprüche.
Vorgeschlagen wird somit eine Ausführungsform einer SOFC-Brennstoff- zelle, die wesentliche Nachteile des bekannten Standes der Technik beseitigt und damit die Verwirklichung einer schnellstartfähigen Festoxid¬ brennstoffzelle ermöglicht. Basis einer erfindungsgemäßen Brennstoffzelle ist eine dünne metallische Tragstruktur (bspw. eine Metallfolie im Dickenbe¬ reich von 30 bis 500 μm als Träger der keramischen Funktionsschichten einer SOFC-Brennstoffzelle, die im Bereich der keramischen Funktions¬ schicht entweder perforiert ist oder sonstwie geartete geeignete Durchtritts¬ öffnungen aufweist, um den Zutritt von Reaktionsgasen zur jeweiligen Elektrode zu ermöglichen. Bevorzugt erstreckt sich diese metallische Tragstruktur über die gesamte Fläche der Bipolarplatte inklusive der im Randbereich vorgesehenen Gasführungen für Brenngas und Luft. Ein Merkmal der vorgeschlagenen metallischen Tragstruktur ist, dass diese aus einem Material bzw. Metall besteht, das selbst eine elektrisch isolierende Schutzoxidschicht bildet, im Sinne einer Selbstpassivierung. Bevorzugte derartige Materialien sind sog. Aluminiumoxidbildner, bspw. Aluchrom Y Hf, oder Siliziumoxid-Bildner. Erstreckt sich nun die eine Schutzoxidschicht bildende Metallfolie oder dgl. als Tragstruktur für die keramischen Funktions¬ schichten über die gesamte Querschnittsfläche eines Brennstoffzellen- Stacks, wird vorteilhafterweise ohne jeglichen Zusatzaufwand ermöglicht, zwischen den übereinander gestapelten Brennstoff-Einzelzellen als Dichtungsmaterial zur gasdichten Abdichtung der Reaktanden gegeneinan¬ der auch ein elektrisch leitendes Dichtungsmaterial einzusetzen, da die erforderliche elektrische Isolierung zwischen den Einzelzellen bereits durch die Schutzoxidschicht der genannten Tragstruktur sichergestellt ist. Weiterhin wird damit ermöglicht, diese Tragstruktur selbst als elektrische Widerstandsheizung einzusetzen, ohne die Gefahr elektrischer Kurzschlüsse befürchten zu müssen. Die entsprechende elektrische Kontaktierung, zur Einleitung von elektrischem Strom in die bzw. Ableitung des elektrischen Stromes aus der Tragstruktur kann bspw. durch entsprechende elektrische Kontakte am äußeren Umfang der Tragstruktur erfolgen. Mit Hindurchleiten von elektrischem Strom durch die Tragstruktur erwärmt sich diese somit bei geeigneter Auslegung, worauf an späterer Stelle noch näher eingegangen wird, so dass die Tragstruktur selbst somit als elektrisches Widerstands- Heizelement fungieren kann.
Für die Funktion der Brennstoffzelle bzw. eines entsprechenden SOFC- Stacks ist jedoch eine elektrische Leitfähigkeit von einer Einzelzelle zur nächsten benachbarten Einzelzelle erforderlich, die üblicherweise über die sog. Bipolarplatte oder dgl. hergestellt wird. Innerhalb einer Einzelzelle muss somit eine elektrische Verbindung zwischen der Bipolarplatte (oder dgl.) und der dieser zugewandten Seite der Kathoden-Elektrolyt-Anoden-Einheit bestehen, nachdem zwischen der Bipolarplatte einer ersten Einzelzelle und der dieser zugewandten Seite der Kathoden-Elektrolyt-Anoden-Einheit einer benachbarten zweiten Einzelzelle eine elektrischen Verbindung besteht. Innerhalb einer Einzelzelle kann nun die elektrisch leitende Verbindung zwischen der Bipolarplatte und der Kathoden-Elektrolyt-Anoden-Einheit nicht weiter einfach (wie bislang üblich) über die metallische Tragstruktur der Kathoden-Elektrolyt-Anoden-Einheit hergestellt werden, da diese ja eine elektrisch nicht leitende Oxidschicht bildet. Für diese beschriebene Funktion der elektrischen Leitfähigkeit innerhalb einer Brennstoff-Einzelzelle wird nunmehr in einer ersten Ausführungsform der vorliegenden Erfindung ein in die Durchtrittsöffnungen in der Tragstruktur eingebrachtes, poröses bzw. zur Versorgung der Elektrode mit dem jeweiligen gasförmigen Reaktanden gasdurchlässiges und elektrisch leitfähiges Material vorgeschlagen, bei dem es sich bspw. um ein geeignet bearbeitetes Metall oder auch um Anodenma¬ terial oder Kathodenmaterial (der Kathoden-Elektrolyt-Anoden-Einheit) oder allgemein um eine elektrisch leitfähige Keramik handeln kann. Dabei kann die zur Darstellung des elektrischen Kontaktes notwendige „Füllung" der Durchtrittsöffnungen in der Tragstruktur mit elektrisch leitfähigem und gleichzeitig gasdurchlässigem Material bspw. durch Rakeln, Siebdruck, Walzen oder ähnliches erfolgen. Nach einer alternativen Ausführungsform ist es auch möglich, zur Herstellung der elektrischen Leitfähigkeit über die eine Schutzoxidschicht bildende Tragstruktur eine Beschichtung der Schutzoxid¬ schicht zumindest im Bereich einiger Durchtrittsöffnungen vorzunehmen. Wird bzw. ist also zumindest im Bereich einiger Durchtrittsöffnungen auf die Schutzoxidschicht der Tragstruktur eine elktrisch leitfähiges Material aufgebracht, was bspw. durch Galvanik, Physikal Vapour Deposition oder ähnliches erfolgen kann, so ist eine elektrische Leitfähigkeit bei gleichzeitiger Gasdurchlässigkeit der Durchtrittsöffnungen sicher und einfach gewährleis¬ tet.
Was die metallische Tragstruktur betrifft, so können die Durchtrittsöffnungen hierin bspw. durch Ätzen, Stanzen, Schlitzen, Stechen oder ähnliche Verfahren erzeugt werden. Die Lochstruktur, d.h. die Form der Durchtrittsöff- nungen kann bspw. durch konische, elliptische, quadratische, wabenförmige oder ähnliche Löcher gekennzeichnet sein. Der elektrische Widerstand und somit die mit vorgegebener elektrischer Spannung an der Tragstruktur erzielbare Heizleistung kann bspw. durch entsprechende Wahl der Dicke der Tragstruktur sowie der Strukturierung den jeweiligen Erfordernissen entsprechend angepasst werden. So lässt sich mit einem überproportional hohen Anteil von Durchtrittsöffnungen der elektrische Widerstand erhöhen, so dass durch gezielte lokal unterschiedliche Perforationen, d.h. durch unterschiedliche Gestaltung der Durchtrittsöffnungen auch lokal unterschied¬ liche Wärmemengen in die Einzelzelle eingebracht werden können. Darüber hinaus kann durch die Wahl und Kombination der elektrischen Verschaltung, nämlich Reihenschaltung oder Parallelschaltung der einzelnen „Heizfolien" im Brennstoffzellen-Stack, die durch die einzelnen Tragstrukturen der übereinander gestapelten Einzelzellen gebildet werden, der elektrische Gesamtwiderstand an die gewünschte Heizleistung und die zur Verfügung stehende Versorgungsspannung angepasst werden.
Vorteilhafterweise wird die Lebensdauer einer erfindungsgemäßen SOFC gegenüber dem bekannten Stand der Technik erhöht, da die sich auf der Tragstruktur bildende Schutzoxidschicht nicht nur elektrisch isolierend ist, sondern auch chemisch wesentlich beständiger ist als heute eingesetzte Metallsubstrate, die auf eine hohe eigene elektrische Leitfähigkeit angewie¬ sen sind und oxidationsbedingt eine geringere Lebensdauer aufweisen. Unter chemischer Beständigkeit wird in diesem Zusammenhang die Korrosionsbeständigkeit gegenüber den in der SOFC vorkommenden Gasen und die Korrosionsbeständigkeit gegenüber die Materialeigenschaften beeinflussenden interdiffundierenden Elemente verstanden. Im übrigen ist die hier vorgestellte erfindungsgemäße SOFC unabhängig von der speziel¬ len Anordnung der keramischen Funktionsschichten auf der beschriebenen Trägerstruktur. Es ist möglich, sowohl eine entsprechende Einheit in der Reihenfolge Anode-Elektrolyt-Kathode als auch umgekehrt in der Reihenfol¬ ge Kathode-Elektrolyt-Anode aufzubringen. Die vorgestellte erfindungsge- mäße SOFC ist ebenfalls unabhängig von der genauen Ausführung der Gasführung und weiteren elektrischen Kontaktierung im Stack, d.h. im Bereich der Bipolarplatten oder dgl., deren Funktion bspw. auch von einem metallischen Gestrick übernommen werden kann.
Die beigefügten Prinzipskizzen zeigen ein bevorzugtes Ausführungsbeispiel, wobei in Figur 1 ein stark vergrößerter Querschnitt einer erfindungsgemä¬ ßen Brennstoff-Einzelzelle gezeigt ist, während in Figur 2 die Aufsicht auf eine Tragstruktur (ohne keramische Funktionsschichten) dargestellt ist.
Mit der Bezugsziffer 1 ist sind die keramischen Funktionsschichten einer Brennstoff-Einzelzelle in Form einer Kathoden-Elektrolyt-Anoden-Einheit bezeichnet, wobei die Anoden-Schicht die Bezugsziffer 1a trägt, der aufgebrachte Elektrolyt die Bezugsziffer 1 b und die darauf aufgebrachte Kathode die Bezugsziffer 1c. Diese Kathoden-Elektrolyt-Anoden-Einheit 1 ist auf eine Tragstruktur 2 aufgebracht, hier jedoch unter Zwischenlage eines sog. Anodensubstrats 3. Bei der Tragstruktur 2 handelt es sich um eine dünne metallische Folie oder dgl., in die Durchtrittsöffnungen 4 eingebracht sind. In diese Durchtrittsöffnungen 4 ist ein gasdurchlässiges, elektrisch leitfähiges Material 5 eingebracht. In Figur 1 unterhalb der Tragstruktur 2 ist eine Netzstruktur 6 oder dgl. vorgesehen, über das von seitlich ein gasförmi¬ ger Reaktand (Brenngas) an die Unterseite der Tragstruktur 2 und durch deren mit gasdurchlässigem Material 5 ausgefüllten Durchtrittsöffnungen 4 hindurch unter Passieren des porösen Anodensubstrates 3 zur Anode 1 a der Kathoden-Elektrolyt-Anoden-Einheit 1 gelangen kann. An die Unterseite dieser Netzstruktur 6 schließt sich eine Bipolarplatte 8 an. Unterhalb dieser kann sich dann - wie üblich - die nächste Brennstoffzelle mit ihrer Katho¬ den-Schicht (1c) anschließen (nicht dargestellt), ebenso wie sich an die Kathoden-Schicht 1 c der figürlich dargestellten Brennstoff-Einzelzelle die darauf folgende Einzelzelle mit ihrer Bipolarplatte (8) anschließen kann (ebenfalls nicht dargestellt). Die folienartige metallische Tragstruktur 2 besteht aus einem Metall, das selbst eine elektrisch isolierende Schutzschicht bildet, die in Fig.1 mit der Bezugsziffer 2a gekennzeichnet ist. Diese Tragstruktur 2 kann daher - wie vor der Beschreibung der Figuren ausführlich erläutert wurde - als elektri¬ sche Widerstandsheizung fungieren, wofür - wie aus Figur 2 hervorgeht - in einander diagonal gegenüberliegenden Eckbereichen der flächigen Tragstruktur geeignete Stromanschlussfahnen 9a, 9b an der Tragstruktur 2 vorgesehen sind. Figur 2 zeigt weiterhin die flächige Gestalt der Tragstruktur 2, die sich über die gesamte Fläche einer Brennstoff-Einzelzelle erstreckt und auch deren Randabschnitte mit umfasst, in denen Brenngasdurchtritts- öffnungen 10a bzw. Luftdurchtrittsöffnungen 10b im Hinblick auf eine im Brennstoffzellen-Stack integrierte Gasführung vorgesehen sind. Deutlich erkennt man in Figur 2 den perforierten Bereich 2b der Tragstruktur mit einer Vielzahl von Durchtrittsöffnungen 4, die - wie anhand von Fig.1 erläutert wurde - mit gasdurchlässigem, elektrisch leitfähigen Material ausgefüllt sind.
Eine erfindungsgemäße Brennstoffzelle erlaubt ein gezieltes Einbringen von Wärme zum Starten der Brennstoffzelle und zeichnet sich somit durch eine deutlich verkürzte Startzeit bei gleichzeitig effizientem Aufheizen aus. Dabei stellen sich nur geringe thermomechanische Spannungen ein, u.a. auch durch die dünne, leichte Tragstruktur, die einen Zellenaufbau in Dünnschichttechnik ermöglicht. Schließlich erleichtern die aufgrund der sich bildenden Schutzoxidschicht quasi selbsttätig isolierenden Ränder den Stackaufbau, wobei durchaus eine Vielzahl von Details abweichend von obigen Erläuterungen gestaltet sein kann, ohne den Inhalt der Patentansprü¬ che zu verlassen.

Claims

Patentansprüche
1. Festoxid-Brennstoffzelle mit einer Durchtrittsöffnungen (4) für ein Gas aufweisenden metallischen Tragstruktur (2) für eine Kathoden- Elektrolyt-Anoden-Einheit (1) und einer auf der anderen Seite der Tragstruktur (2) vorgesehenen Bipolarplatte (8) oder dgl., dadurch gekennzeichnet, dass die Tragstruktur (2) aus einem Metall besteht, das eine elektrisch isolierende Schutzoxidschicht bildet und als elektrische Widerstandsheizung zur Temperierung der Brennstoff¬ zelle fungiert, wozu durch die Tragstruktur (2) zwischen deren Schutz¬ oxidschichten (2a) hindurch elektrischer Strom geleitet werden kann, und dass in zumindest einige der Durchtrittsöffnungen (4) der Trag¬ struktur (2) ein elektrisch leitfähiges Material (5) zur elektrischen Ver¬ bindung zwischen der Bipolarplatte (8) oder dgl. und der zugeordne¬ ten Kathoden-Elektrolyt-Anoden-Einheit (1) solchermaßen eingebracht ist, dass ein Gasdurchlass durch diese Durchtrittsöffnungen (4) mög¬ lich ist.
2. Festoxid-Brennstoffzelle nach Anspruch 1 , dadurch gekennzeichnet, dass das Metall der Tragstruktur (2) ein Aluminiumoxidbildner oder ein Siliziumoxid-Bildner ist.
3. Festoxid-Brennstoffzelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in zumindest einige der Durchtrittsöff- nungen (4) der Tragstruktur (2) ein gasdurchlässiges und elektrisch leitfähiges Material (5) in Form eines geeignet bearbeiteten Metalls oder einer elektrisch leitfähigen Keramik oder in Form von Elektro¬ denmaterial eingebracht ist.
4. Festoxid-Brennstoffzelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass auf die Schutzoxidschicht (2a) der Tragstruktur (2) zumindest im Bereich einiger Durchtrittsöffnungen (4) eine elektrisch leitfähige Beschichtung aufgebracht ist.
5. SOFC-Stack mit mehreren übereinander gestapelten Festoxid- Brennstoffzellen nach einem der vorangegangenen Ansprüche.
PCT/EP2005/009022 2004-09-18 2005-08-20 Festoxid-brennstoffzelle mit einer metallischen tragstruktur WO2006029689A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007531627A JP5060956B2 (ja) 2004-09-18 2005-08-20 金属製支持構造を有する固体酸化物燃料電池
CA2577596A CA2577596C (en) 2004-09-18 2005-08-20 Solid oxide fuel cell with a metal bearing structure
EP05789364.6A EP1794832B1 (de) 2004-09-18 2005-08-20 Festoxid-Brennstoffzellenstapel mit einer Tragstruktur beinhaltend Heizvorrichtung und gasdurchlässige mit elektrisch leitendem Material gefüllte Durchtrittsöffnungen
US11/686,593 US7662497B2 (en) 2004-09-18 2007-03-15 Solid oxide fuel cell with a metal bearing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045375A DE102004045375A1 (de) 2004-09-18 2004-09-18 Festoxid-Brennstoffzelle mit einer metallischen Tragstruktur
DE102004045375.6 2004-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/686,593 Continuation US7662497B2 (en) 2004-09-18 2007-03-15 Solid oxide fuel cell with a metal bearing structure

Publications (1)

Publication Number Publication Date
WO2006029689A1 true WO2006029689A1 (de) 2006-03-23

Family

ID=35240858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/009022 WO2006029689A1 (de) 2004-09-18 2005-08-20 Festoxid-brennstoffzelle mit einer metallischen tragstruktur

Country Status (6)

Country Link
US (1) US7662497B2 (de)
EP (1) EP1794832B1 (de)
JP (1) JP5060956B2 (de)
CA (1) CA2577596C (de)
DE (1) DE102004045375A1 (de)
WO (1) WO2006029689A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842251A2 (de) * 2004-12-21 2007-10-10 United Technologies Corporation Hochspezifischer leistungs-festoxid-brennstoffzellenstapel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216738B2 (en) * 2006-05-25 2012-07-10 Versa Power Systems, Ltd. Deactivation of SOFC anode substrate for direct internal reforming
DE102007034967A1 (de) 2007-07-26 2009-01-29 Plansee Se Brennstoffzelle und Verfahren zu deren Herstellung
EA201591627A1 (ru) * 2013-03-11 2016-03-31 Хальдор Топсёэ А/С Батарея тоэ с встроенным нагревательным устройством
FR3012472B1 (fr) * 2013-10-25 2017-03-31 Electricite De France Pilotage d'un electrolyseur a haute temperature
DE112017005364T5 (de) * 2016-10-24 2019-07-18 Precision Combustion, Inc. Regenerativer festoxidstapel
CN109904465A (zh) * 2019-03-01 2019-06-18 徐州华清京昆能源有限公司 一种固体氧化物燃料电池电极结构
JP6882614B2 (ja) * 2019-04-24 2021-06-02 京セラ株式会社 セル、セルスタック装置、モジュール及びモジュール収容装置
AT523315B1 (de) * 2019-12-19 2022-05-15 Avl List Gmbh Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271684A2 (de) 2001-06-18 2003-01-02 Delphi Technologies, Inc. Heizbarer Interkonnektor für Festoxidbrennstoffzellen
US20040018406A1 (en) 2002-07-23 2004-01-29 Herman Gregory S. Fuel cell with integrated heater and robust construction
DE10238860A1 (de) 2002-08-24 2004-03-04 Bayerische Motoren Werke Ag Brennstoff-Zelle mit einer das Brenngas über der Elektroden-Oberfläche verteilenden perforierten Folie
US6703153B1 (en) * 1998-02-06 2004-03-09 Igr Enterprises Ceramic composite electrolytic device
US20040048128A1 (en) 1999-02-01 2004-03-11 The Regents Of The University Of California Solid polymer mems-based fuel cells

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US606190A (en) * 1898-06-28 Steam-separator
US4109063A (en) * 1977-06-17 1978-08-22 General Electric Company Composite body
US6296963B1 (en) * 1997-11-14 2001-10-02 Mitsubishi Heavy Industries, Ltd. Solid oxide electrolyte fuel cell
DE19757318C1 (de) * 1997-12-23 1999-02-25 Forschungszentrum Juelich Gmbh Schnellheizung für Brennstoffzellen
US6061190A (en) * 1999-03-11 2000-05-09 Optics For Research Devices for holding optical components at fixed positions
US6777126B1 (en) * 1999-11-16 2004-08-17 Gencell Corporation Fuel cell bipolar separator plate and current collector assembly and method of manufacture
JP4412808B2 (ja) 2000-05-12 2010-02-10 パナソニック株式会社 リチウムポリマー二次電池
DE10040499C2 (de) * 2000-08-18 2002-06-27 Forschungszentrum Juelich Gmbh Kontaktschicht sowie eine solche Kontaktschicht umfassende Brennstoffzelle
AT410716B (de) 2001-02-23 2003-07-25 Vaillant Gmbh Adsorber/desorber für ein zeolith-heizgerät
EP1396039A2 (de) * 2001-06-13 2004-03-10 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzelle und verfahren zur herstellung einer solchen brennstoffzelle
US6828055B2 (en) * 2001-07-27 2004-12-07 Hewlett-Packard Development Company, L.P. Bipolar plates and end plates for fuel cells and methods for making the same
JP2003086204A (ja) * 2001-09-12 2003-03-20 Toyota Motor Corp 固体電解質型燃料電池
JP2003243000A (ja) * 2002-02-19 2003-08-29 Aisin Seiki Co Ltd 固体酸化物形燃料電池システムおよびその制御方法
WO2005029618A2 (en) * 2003-09-17 2005-03-31 Tiax Llc Electrochemical devices and components thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703153B1 (en) * 1998-02-06 2004-03-09 Igr Enterprises Ceramic composite electrolytic device
US20040048128A1 (en) 1999-02-01 2004-03-11 The Regents Of The University Of California Solid polymer mems-based fuel cells
EP1271684A2 (de) 2001-06-18 2003-01-02 Delphi Technologies, Inc. Heizbarer Interkonnektor für Festoxidbrennstoffzellen
US20040018406A1 (en) 2002-07-23 2004-01-29 Herman Gregory S. Fuel cell with integrated heater and robust construction
DE10238860A1 (de) 2002-08-24 2004-03-04 Bayerische Motoren Werke Ag Brennstoff-Zelle mit einer das Brenngas über der Elektroden-Oberfläche verteilenden perforierten Folie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842251A2 (de) * 2004-12-21 2007-10-10 United Technologies Corporation Hochspezifischer leistungs-festoxid-brennstoffzellenstapel
EP1842251A4 (de) * 2004-12-21 2010-09-29 United Technologies Corp Hochspezifischer leistungs-festoxid-brennstoffzellenstapel

Also Published As

Publication number Publication date
CA2577596A1 (en) 2006-03-23
EP1794832B1 (de) 2015-07-01
US7662497B2 (en) 2010-02-16
CA2577596C (en) 2012-12-04
JP2008513938A (ja) 2008-05-01
EP1794832A1 (de) 2007-06-13
US20080057363A1 (en) 2008-03-06
DE102004045375A1 (de) 2006-03-23
JP5060956B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
EP1794832B1 (de) Festoxid-Brennstoffzellenstapel mit einer Tragstruktur beinhaltend Heizvorrichtung und gasdurchlässige mit elektrisch leitendem Material gefüllte Durchtrittsöffnungen
EP1453133B1 (de) Brennstoffzelle bzw. Elektrolyseur sowie zugehöriges Verfahren zu deren Herstellung
EP3884535B1 (de) Brennstoffzellenplatte, bipolarplatte und brennstoffzellenvorrichtung
DE60221281T2 (de) Brennstoffzelle und verfahren zur herstellung einer solchen mit grosser aktiver oberfläche und mit verringertem volumen
EP1314217B1 (de) Hochtemperaturbrennstoffzelle
EP2130256B1 (de) Brennstoffzellenstack in leichtbauweise
WO1998025316A1 (de) Werkstoff für brennstoffzellen-interkonnektoren
EP1440489A1 (de) Mikrobrennstoffzellensystem
DE10220183A1 (de) Brennstoffzelle
EP2054964B1 (de) Wiederholeinheit für einen stapel elektrochemischer zellen, sowie stapelanordnung
DE19958405A1 (de) Elektrochemische Zelle
EP3014685B1 (de) Hochtemperaturzelle mit poröser gasführungskanalschicht
EP0503526B1 (de) Keramisches Festelektrolyt enthaltendes Brennstoffzellenmodul und Verfahren zu seiner Herstellung
DE10048423A1 (de) Betriebsverfahren für eine Brennstoffzelle, damit arbeitende Polymer-Elektrolyt-Membran-Brennstoffzelle und Verfahren zu deren Herstellung
EP1665431B1 (de) Interkonnektor für hochtemperatur-brennstoffzelleneinheit
DE102005009307A1 (de) Herstellverfahren für eine Festoxid-Brennstoffzelle
DE10350478B4 (de) Brennstoffzelleneinheit
EP3278390B1 (de) Anordnung elektrochemischer zellen sowie deren verwendung
EP3327848B1 (de) Verfahren zur herstellung einer festoxidbrennstoffzelle
EP1665443B1 (de) Brennstoffzelle und zugehöriges brennstoffzellenmodul
EP1301957B1 (de) Aluminiumhaltiger interkonnektor für brennstoffzellen
DE102005059708A1 (de) Reoxidationsstabile Hochtemperatur-Brennstoffzelle
DE102022113662A1 (de) Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel
DE102021131474A1 (de) Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel
DE102020128436A1 (de) Gewebestruktur mit integrierter Be- und Entfeuchtungsfunktion für eine Bipolarplatte und für einen Brennstoffzellenstapel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005789364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2577596

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11686593

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007531627

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005789364

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11686593

Country of ref document: US