WO2006027935A1 - 側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びその製造方法 - Google Patents

側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びその製造方法 Download PDF

Info

Publication number
WO2006027935A1
WO2006027935A1 PCT/JP2005/014847 JP2005014847W WO2006027935A1 WO 2006027935 A1 WO2006027935 A1 WO 2006027935A1 JP 2005014847 W JP2005014847 W JP 2005014847W WO 2006027935 A1 WO2006027935 A1 WO 2006027935A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
side chain
compound
group
organic
Prior art date
Application number
PCT/JP2005/014847
Other languages
English (en)
French (fr)
Inventor
Masatoshi Nakagawa
Hiroyuki Hanato
Toshihiro Tamura
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/658,168 priority Critical patent/US20080303019A1/en
Publication of WO2006027935A1 publication Critical patent/WO2006027935A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]

Definitions

  • the present invention relates to a side chain-containing organosilane compound, an organic thin film transistor, and a method for producing them. More specifically, the present invention relates to a side chain-containing organosilane compound, an organic thin film transistor, and a method for producing them, which are novel conductive or semiconductive materials useful as electrical materials.
  • organic semiconductors are easier to manufacture than semiconductors using inorganic materials, can be processed easily, and can respond to the enlargement of devices, and can be expected to reduce costs due to mass production.
  • organic compounds having various functions than inorganic materials can be synthesized. Therefore, in recent years, research and development of organic semiconductors has been conducted and the results have been reported.
  • a TFT having a large mobility can be produced by using an organic compound containing a ⁇ -electron conjugated molecule.
  • organic semiconductor films have been mainly formed by vapor deposition.
  • organic compound development is mainly focused on the development of skeletons of ⁇ -electron conjugated molecules, and a typical example of the skeleton is pentacene (for example, IEEE Electron Device Lett., 18, 606-608 (1997) : Non-patent literature 1).
  • pentacene for example, IEEE Electron Device Lett., 18, 606-608 (1997) : Non-patent literature 1.
  • This document describes that when an organic semiconductor film is formed using pentacene and a TFT is formed using this organic semiconductor film, the field-effect mobility is 1.5 cm 2 / Vs. Therefore, in this document, it has been reported that it is possible to construct a TFT having a higher ft degree than amorphous silicon.
  • the production of the organic semiconductor film requires a vacuum process such as resistance heating vapor deposition or molecular beam vapor deposition. Therefore, the manufacturing process becomes complicated and a film having crystallinity can be obtained only under certain specific conditions. Moreover, since the adsorption of the organic semiconductor film onto the substrate is physical adsorption, there is a problem that the adsorption strength of the film onto the substrate is low and the film is easily peeled off. Furthermore, to control the molecular orientation of organic compounds in the film to some extent
  • a self-assembled film is a film in which a part of an organic compound is bonded to a functional group on a substrate surface.
  • This film has a high degree of order (crystallinity) with very few defects. Since this self-assembled film has a very simple manufacturing method, it can be easily formed on a substrate.
  • a thiol film formed on a gold substrate or a silane compound film formed on a substrate (for example, a silicon substrate) capable of protruding a hydroxyl group on the surface by a hydrophilic treatment is known. Yes.
  • silane compound films are attracting attention because of their high durability.
  • the silane compound film has been conventionally used as a water-repellent coating, and is formed using a silane coupling agent having an alkyl group having a high water-repellent effect or an fluorinated alkyl group as an organic functional group. It was.
  • the conductivity of the self-assembled film is determined by the organic functional group in the silane compound contained in the film.
  • commercially available silane coupling agents do not include compounds containing ⁇ -electron conjugated molecules in the organic functional group, and therefore it is difficult to impart conductivity to the self-assembled film. Therefore, there is a need for silane compounds suitable for devices such as TFTs that contain ⁇ -electron conjugated molecules as organic functional groups! /
  • Non-Patent Document 1 IEEE Electron Device Lett., 18, 606—608 (1997)
  • Patent Document 1 Japanese Patent No. 2889768
  • the intermolecular force is composed of an attractive term and a repulsive term.
  • the former is inversely proportional to the 6th power of the intermolecular distance
  • the latter is inversely proportional to the 12th power of the intermolecular distance. Therefore, the intermolecular force obtained by adding the attractive and repulsive terms has the relationship shown in Fig. 1.
  • the minimum point in Fig. 1 (arrow part in the figure) is the intermolecular distance when the most attractive force acts between molecules due to the balance between the attractive term and the repulsive term.
  • the above compound may form a two-dimensional network of Si-O-Si to chemically bond to the substrate and obtain ordering due to intermolecular interaction between specific long-chain alkyls.
  • one thiophene molecule which is a functional group
  • long-chain alkyl alone weakens the interaction between molecules, and the spread of the ⁇ -electron conjugated molecule, which is essential for electrical conductivity, is extremely high. There was a problem of being small.
  • one thiophene molecule that is a functional group has a large HOMO-LUMO energy gap as an electric conduction property. For this reason, there is a problem that sufficient carrier mobility cannot be obtained even when the above compound is used as an organic semiconductor layer for TFT or the like.
  • the present invention has been made in view of the above problems, and can be easily crystallized by a simple manufacturing method to form an organic thin film. It is possible to form an organic thin film that does not peel off, and is highly ordered (crystalline) and electrically conductive It aims at providing the compound which can produce the organic thin film which has a characteristic. Furthermore, an object of the present invention is to provide a novel organosilane compound capable of ensuring sufficient carrier mobility when used as an electronic device such as a TFT, and a method for producing the same.
  • R is a unit derived from a monocyclic aromatic hydrocarbon, a unit derived from a monocyclic heterocyclic compound, and 3 to LO units bonded together.
  • R is a unit derived from a monocyclic aromatic hydrocarbon, a unit derived from a monocyclic heterocyclic compound, and 3 to LO units bonded together.
  • R is a unit derived from a monocyclic aromatic hydrocarbon, a unit derived from a monocyclic heterocyclic compound, and 3 to LO units bonded together.
  • X 1 , X 2 and X 3 are the same or different and are a group which gives a hydroxyl group by hydrolysis, and Y is a hydrogen atom, a halogen atom or a lower alkoxy group
  • a substrate, an organic thin film, a gate electrode formed on one surface of the organic thin film via a gate insulating film, and both sides of the gate electrode, the organic thin film A source Z drain electrode formed in contact with one surface or the other surface, and the organic thin film comprises:
  • R is a unit derived from a monocyclic aromatic hydrocarbon, a unit derived from a monocyclic heterocyclic compound, and 3 to LO units bonded together.
  • the organic thin film transistor is characterized in that it is a film derived from a side chain-containing organic silan compound represented by the following formula.
  • a substrate, an organic thin film, a gate electrode formed on one surface of the organic thin film via a gate insulating film, and both sides of the gate electrode, the organic thin film A method for producing an organic thin film transistor comprising a source Z drain electrode formed in contact with one surface or the other surface of
  • R is a unit derived from a monocyclic aromatic hydrocarbon, a unit derived from a monocyclic heterocyclic compound, and 3 to LO units bonded together.
  • the manufacturing method of the organic thin-film transistor characterized by including a process is provided.
  • the compound of the present invention contains a side chain in the organic residue, the compound of the present invention has high solubility in an organic solvent, and therefore a film can be easily formed by a solution process. Further, it can be chemically bonded to the substrate by a network structure composed of a silicon atom and an oxygen atom formed between adjacent compounds by a silyl group contained in the organosilane compound. Since the intermolecular force acting between ⁇ -electron conjugated molecules works efficiently, it can be expected to form a highly crystallized organic thin film with very high stability.
  • the compound of the present invention exerts an intermolecular force not only between the main chains of organic residues but also between the side chains, it can be expected to obtain higher crystallinity by forming a film.
  • the compound of the present invention can be formed into a film, so that it has a particularly high conductivity in the direction perpendicular to the molecular plane of the main chain of the organic residue and two different conductivities in the other direction. It is possible to have sex. Therefore, wide application not only to organic thin film transistor materials but also to solar cells, fuel cells, sensors, etc. can be expected as conductive materials.
  • FIG. 1 is a diagram for explaining the relationship between intermolecular distance and intermolecular force.
  • FIG. 2 is a conceptual diagram of an example of an organic TFT of the present invention.
  • the side chain-containing organosilane compound of the present invention (hereinafter simply referred to as a silane compound) is represented by the formula (1), that is, R—SiX ⁇ 3 .
  • R represents a unit that is a group derived from a monocyclic aromatic hydrocarbon, a unit that is a group derived from a monocyclic heterocyclic compound, and both of these units are 3 to:
  • LO An organic residue or an organic residue of a condensed polycyclic compound in which a 5-membered ring or a 6-membered ring is condensed by 2 to 10 and has at least one side chain in the organic residue. is doing.
  • Examples of the monocyclic aromatic hydrocarbon constituting the unit include benzene, toluene, xylene, mesitylene, tamen, cymene, styrene, dibutenebenzene, and the like. Of these, benzene is particularly preferred.
  • Examples of the hetero atom contained in the monocyclic heterocyclic compound include oxygen, nitrogen, and sulfur.
  • Specific examples of the heterocyclic compound include oxygen atom-containing compounds such as furan, nitrogen atom-containing compounds such as pyrrole, pyridine, pyrimidine, pyrroline, imidazoline, and pyrazoline, and sulfur atom-containing compounds such as thiophene.
  • Compounds, nitrogen and oxygen atom-containing compounds such as oxazole and isoxazole, sulfur and nitrogen atom-containing compounds such as thiazole and isothiazole, and the like, among which thiophene is particularly preferable.
  • a plurality of these units may be connected in a branched manner, but are preferably connected in a linear manner.
  • the organic residues may be bonded to the same unit, all different units may be bonded, or multiple types of units may be bonded regularly or in a random order.
  • the position of the bond is when the component molecule of the unit is a 5-membered ring, such as 2, 5-position, 3, 4-first position, 2, 3-position, 2, 4-first position, etc. But! / Repulsive force is preferable at 2,5-position.
  • a 6-membered ring it may be in the 1,4 1-position, 1,2-position, 1,3-position, etc., among which the 1,4-position 1 is preferred.
  • a beylene group may be located between the units.
  • the carbon and hydrogen that gives a beylene group include alkenes, alkadienes, and alkatrienes.
  • alkene include compounds having 2 to 4 carbon atoms, such as ethylene, propylene, butylene and the like. Of these, ethylene is preferable.
  • alkadienes include compounds having 4 to 6 carbon atoms, butagen, pentagen, hexagen and the like.
  • the alcatrienes include compounds having 6 to 8 carbon atoms, such as hexatriene, heptatriene, otatriene and the like.
  • R for example, as specific examples of R, as shown in the following structural formula, biphenyl, bitophenyl, terfenyl (compound of formula (1)), tarcenyl (compound of formula (2)), quarter Ferrule, quarterthiophene, quinquephele, quinquethiophene, hexifere, hexiophene, chaeloligophenol (see compounds of formula (3)), phelo-oligo-oligochelene (formula ( Examples include groups derived from compounds of 4), block co-oligomers (see compounds of formula (5) or (6)), and bi (dithiodivinyl) phenyl (see compounds of formula (7)).
  • R may have a line symmetry with respect to the molecular axis as a whole, or may have a point symmetry with respect to the center as a whole.
  • (1) has line symmetry
  • (2) to (4) have point symmetry.
  • the condensed polycyclic compound is not particularly limited as long as it is a compound having a ⁇ -electron conjugated molecular structure, and is preferably a compound having symmetry, particularly line symmetry, from the viewpoint of conductivity.
  • a condensed polycyclic compound having a 5-membered ring or a 6-membered ring having a condensation number of 2 to 10 is preferable.
  • Specific examples of the skeleton of such a preferable compound include, for example, an acene skeleton that is a linear condensed ring system, an aphene skeleton that is a winged condensed ring system, and a condensed ring system in which two identical rings are aligned.
  • a phenylene skeleton which is a condensed ring in which benzene rings are concentrated around one ring.
  • a benzene skeleton in which a benzene ring is bonded in a straight line is preferable.
  • Specific examples of the acene skeleton include, for example, naphthalene, anthracene, tetracene (naphthacene), pentacene, hexacene, heptacene, octacene, etc. Is mentioned.
  • R when R is a condensed polycyclic compound, R may be bonded to Si via an aryl group R2 bonded to an organic residue.
  • aryl groups include phenyl groups derived from benzene, biphenyl, etc., thiol groups derived from thiophene, bithiophene, etc., and groups composed of combinations thereof, including beylene groups in between.
  • the organic residue may have a functional group at its terminal.
  • Specific functional groups include a hydroxyl group, a substituted or unsubstituted amino group, a nitro group, a cyano group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group.
  • substituted or unsubstituted alkoxy group substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted aryloxy group, substituted or Examples thereof include an unsubstituted alkoxycarbo group, a carboxyl group, an ester group, a trialkoxysilyl group, and the like.
  • the group that gives a hydroxyl group by hydrolysis in X 1 , X 2, and X 3 contained in the above formula (I) is not particularly limited, and examples thereof include a halogen atom or a lower alkoxy group. It is done.
  • halogen atoms include fluorine, chlorine, iodine and bromine atoms.
  • the lower alkoxy group include an alkoxy group having 1 to 4 carbon atoms. Examples include methoxy group, ethoxy group, n-propoxy group, 2-propoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, etc., some of which are further functional groups (triallylsilyl group).
  • X 1 , X 2 and X 3 may be the same, but not all of them are the same, and two or all of them are different. You may go on. Especially, it is preferable that all are the same.
  • R in the above formula (I) also has a side chain in the V deviation.
  • the side chain is preferably a group imparting lipophilicity to improve solubility in an organic solvent.
  • a group that does not react with an adjacent molecule is preferable.
  • Side chains include substituted or unsubstituted alkyl groups, halogenated alkyl groups, cycloalkyl groups, aryl groups, dialyl amino groups, di- or triaryl alkyl groups, alkoxy groups, oxyaryl groups, nitrile groups, nitro groups, esters. Group, trialkylsilyl group, triarylsilyl group, phenol group, and acene group.
  • the molecular occupied volume of is preferably 100% or less and more preferably 60% or less of the molecular occupied volume of the main skeleton of the organic residue other than the side chain. This is because when the molecular occupation volume is larger than 100% of the main skeleton, the intermolecular interaction between the main skeletons becomes smaller than that of the side chain, and the crystallinity may be significantly lowered.
  • Examples of such side chains include linear alkyl groups having 1 to 4 carbon atoms, di- or trialkylsilyl groups having 1 to 4 carbon atoms, secondary and tertiary hydrocarbons, and 1 to 4 carbon atoms.
  • a di- or triarylamino group having an aryl group of 5 to 18 is preferred.
  • aryl groups having 1 to 3 benzene rings for example, phenyl groups, groups derived from naphthalene and anthracene
  • tertiary alkyl groups containing 1 to 4 carbon atoms and benzene rings.
  • triarylalkyl and triarylsilyl groups containing 1 to 3 aryl groups for example, a phenyl group or a group derived from naphthalene and anthracene.
  • Specific examples of the silane compound of the present invention include those shown below.
  • silane compound of the present invention is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl silane compound of the present invention.
  • the compound of the formula ( ⁇ ) or (IV) is obtained, for example, by reacting a compound represented by RH with alkyllithium, or a compound represented by R—X (X is a halogen atom). It can be obtained by reacting with alkyl magnesium halide or metallic magnesium.
  • the reaction temperature during the reaction of the compounds (II) and ( ⁇ ) and the reaction temperature during the reaction of the compounds (IV) and ( ⁇ ) are, for example, preferably from ⁇ 100 to 150 ° C. Preferably, it is 20-100 ° C.
  • the reaction time is, for example, about 0.1 to 48 hours.
  • the reaction is usually performed in an organic solvent that does not affect the reaction. Examples of the organic solvent that does not adversely influence the reaction include aliphatic solvents such as hexane, pentane, benzene, and toluene, or ether solvents such as jetyl ether, dipropyl ether, dioxane, and tetrahydrofuran (THF).
  • the reaction may optionally use a catalyst.
  • a known catalyst such as a platinum catalyst, a noradium catalyst, or a nickel catalyst can be used.
  • reaction temperature and reaction time in the following synthesis method are the same as those described above, for example, ⁇ 100 to 150 ° C. and 0.1 to 48 hours.
  • a precursor of an organic residue composed of a unit derived from benzene which is an example of a monocyclic aromatic hydrocarbon and a unit derived from thiophene which is an example of a monocyclic heterocyclic compound A synthesis example is shown. However, precursors can also be formed for heterocyclic compounds containing nitrogen and oxygen atoms in the same manner as nitrogen-containing heterocyclic compounds such as thiophene.
  • side chains are not described below, but by using a raw material having a halogen atom at a desired position and using a Grignard reagent, a side chain is introduced at a desired position of R. it can.
  • a method for synthesizing a precursor composed of units derived from benzene or thiophene it is effective to first use a Grignard reaction after halogenating the reaction site of benzene or thiophene. .
  • precursors with a controlled number of benzene or thiophene can be synthesized.
  • Grignard reagent In addition to the method to be applied, it can also be synthesized by coupling using an appropriate metal catalyst (Cu, Al, Zn, Zr, Sn, etc.).
  • the 2-position or 5-position of thiophene is halogenated (for example, bromination or chlorination).
  • halogenation method include 1 equivalent of N-chlorosuccinimide (NCS) or N-bromosuccinimide (NBS) treatment or phosphorous oxychloride (POC1) treatment.
  • divinyl sulfone is added to the halogenated thiophene and coupled to form a 1,4-diketone body. Then, in the dry toluene solution, add Lawesson Reagent (LR) or P S, and in the former case, ⁇ , the latter
  • the ring closure reaction is caused by refluxing for about 3 hours.
  • the number of thiophene rings can be increased by using the above reaction of thiophene, which can synthesize a precursor having one thiophene more than the total number of coupled thiophenes.
  • the precursor can be halogenated at the same end as the raw material used for the synthesis. Therefore, after halogenating the precursor, for example by reacting with SiCl
  • silane compound simple benzene or simple thiophene compound having an organic residue having a silyl group at the terminal and having only a unit derived from benzene or thiophene.
  • the following (A) to (D) show an example of a method for synthesizing a precursor of an organic residue that only has benzene or thiophene and a method for silylation of the precursor.
  • the thiophene trimer is changed to the 6 or 7 mer. Only the reaction was shown. However, by reacting with thiophene having a different number of units, precursors other than the 6 or 7-mer can be formed.
  • thiophene tetramer or pentamer can be formed by reacting 2-chlorothiophene coupled with 2-chlorothiophene and then chlorinated by NCS in the same manner as described below.
  • thiophene 8 or 9-mer can be formed by clophenization of thiophene tetramer with NCS [Chem. 7]
  • a method of obtaining a precursor of a block-type organic residue by directly bonding a unit in which a predetermined number of thiophene and benzene-derived units are bonded to each other for example, a method using a Grignard reaction is used. is there.
  • the precursor can be reacted with SiCl or HSi (OEt).
  • the desired silanic compound can be obtained.
  • compounds having a terminal alkoxy group silyl group are relatively low in reactivity, and therefore can be synthesized in a state of being bonded to a raw material in advance.
  • the following method can be applied.
  • the solvent at this time is preferably ether.
  • the reaction for boronation is a two-step process. To stabilize the reaction in the initial stage, the first step is carried out at -78 ° C, and the second step is gradually performed at -78 ° C. It is preferable to increase the temperature.
  • an intermediate of a block compound having a Grignard reaction force is prepared using benzene or thiophene having halogen groups (for example, bromo groups) at both ends.
  • silane compound having a silyl group at the terminal of the block type compound can be synthesized.
  • a compound having a norogen group (for example, a bromo group) and a trichlorosilyl group at both ends of a unit derived from benzene or thiophene is p-fluoro-lene or 2,5-thiopheneyl and a halogenating agent ( For example, by reacting with NBS, both ends are halogenated, then reacted with SiCl, and one is trichlorosilylated.
  • [Chemical 8] As a method for synthesizing a precursor in which units derived from benzene or thiophene and vinyl groups are alternately bonded, for example, the following method can be applied. That is, benzene is Alternatively, after preparing a raw material having a methyl group at the reaction site of thiophene, both ends thereof are brominated using 2,2′-azobisisobutyryl-tolyl (AIBN) and NBS. After this, PO (OEt) is reacted with the bromo form to form an intermediate. Next, Ardehi at the end
  • the above precursor can be formed by reacting a compound having a sulfido group with an intermediate using, for example, NaH in a DMF solvent.
  • the obtained precursor has a methyl group at the terminal, for example, if this methyl group is further brominated and the above synthetic route is applied again, the precursor having a larger number of units can be formed.
  • the obtained precursor is brominated using, for example, NBS, the portion is reacted with SiCl.
  • the raw materials used in the above synthesis examples are general-purpose reagents that can be obtained and used from reagent manufacturers.
  • the raw material CAS number and the purity of the reagent when it is obtained from Kishida Chemical as a reagent manufacturer are shown below.
  • a synthesis example of a precursor of an organic residue composed of a unit derived from acene skeleton which is an example of a condensed ring composed of a 5-membered ring or a 6-membered ring, is shown.
  • the side chain can be introduced at a desired position by using a raw material having a halogen atom at a desired position of R and using a Grignard reagent.
  • a synthesis method of the acene skeleton for example, (1) a step of substituting a ethynyl group for a hydrogen atom bonded to two carbon atoms at a predetermined position of a raw material compound, followed by a ring-closing reaction between the ethynyl groups (2) A method in which a hydrogen atom bonded to a carbon atom at a predetermined position of a raw material compound is substituted with a triflate group, reacted with furan or a derivative thereof, and subsequently oxidized is repeated.
  • An example of the synthesis method of the acene skeleton using these methods is shown below.
  • n 1-In addition, since the method (2) is a method of increasing the benzene ring of the acene skeleton one by one, using a raw material having a side chain in advance, as in the following synthesis example, the number of condensed rings You can also guide ⁇ j chain by increasing. [0070] [Chemical 11]
  • Ra and Rb mean side chains.
  • the starting compound having two acetonitrile groups and a trimethylsilyl group may be changed to a compound in which these groups are all trimethylsilyl groups.
  • the reaction product is refluxed under lithium iodide and DBU (1,8 diazabicyclo [5.4.0] undece 7).
  • DBU 1,8 diazabicyclo [5.4.0] undece 7
  • a compound having one benzene ring and two hydroxyl groups substituted from the compound can be obtained.
  • a hydrophobic group can be introduced at the position of the bromo group.
  • the raw materials used in the above synthesis examples are general-purpose reagents that can be obtained and used from reagent manufacturers.
  • tetracene is available from Tokyo Kasei at a purity of 97% or higher.
  • silanic compound can be isolated and purified by a known means such as transfer dissolution, concentration, solvent extraction, fractional distillation, crystallization, recrystallization, chromatography and the like.
  • the Silane compound can be formed into an organic thin film as follows, for example.
  • the silicon compound is dissolved in a non-aqueous organic solvent such as hexane, black mouth form, or carbon tetrachloride.
  • a coating film is obtained by immersing and pulling up a substrate (preferably a substrate having an active hydrogen such as a hydroxyl group or a carboxyl group) on which an organic thin film is to be formed in the obtained solution. Or you may obtain a coating film by apply
  • This organic thin film may be used directly as an electric material, or may be subjected to a treatment such as electrolytic polymerization.
  • this Silane compound By using this Silane compound, it is possible to obtain a highly ordered (crystallized) organic thin film with a Si—O—Si network and a small distance between adjacent ⁇ -electron conjugated molecules.
  • the units when the units are arranged in a straight chain, the units of adjacent silane compounds are not bonded to each other, and further, the distance force S between adjacent units can be reduced, so that it is highly crystallized.
  • An organic thin film can be obtained.
  • Such an organic thin film is particularly useful as an organic thin film transistor.
  • organic thin film transistor organic TFT
  • FIG. 2 is a conceptual diagram of an example of the organic TFT of the present invention.
  • the organic TFT in Fig. 2 has a bottom gate and bottom contact structure.
  • 1 is a substrate
  • 2 is a gate electrode
  • 3 is a gate insulating film
  • 4 is an organic thin film
  • 5 and 6 are source and drain electrodes.
  • Fig. 2 shows an example in which the bottom surface of the organic thin film is one surface, and the source and drain electrodes are formed on one surface side.
  • the structure of the organic TFT is not limited to the structure of FIG.
  • Other structures include, for example,
  • the material of the gate and source Z drain electrodes is not particularly limited, and any material known in the art can be used. Specifically, metals such as gold, platinum, silver, copper and aluminum; refractory metals such as titanium, tantalum and tungsten; silicides and polycides with refractory metals; p-type or n-type highly doped silicon; ITO, Conductive metal oxides such as NESA; conductive polymers such as PEDOT.
  • the film thickness is not particularly limited, and can be appropriately adjusted to a film thickness (for example, 30 to 60 nm) used for a normal transistor.
  • the manufacturing method of these electrodes can be appropriately selected according to the electrode material. For example, vapor deposition, sputtering, coating, etc. can be mentioned.
  • the gate insulating film is not particularly limited, and any film known in the art can be used. Specifically, silicon oxide film (thermal acid film, low-temperature acid film: LTO film, etc., high-temperature oxide film: HTO film), silicon nitride film, SOG film, PSG film, BSG film, BPSG Insulating films such as films; PZT, PLZ IV, ferroelectric or antiferroelectric films; SiOF-based films, SiOC-based films or CF-based films, or HSQ (hydrogen silsesquioxane) -based films (inorganic) that are formed by coating, Examples thereof include low dielectric films such as MSQ (methyl sil sesquioxane) film, PAE (polyarylene ether) film, BCB film, porous film, CF film and porous film.
  • MSQ methyl sil sesquioxane
  • PAE polyarylene ether
  • the film thickness is not particularly limited, and can be appropriately adjusted to a film thickness (for example, 100 to 500 nm) used for a normal transistor.
  • the manufacturing method of a gate insulating film can be suitably selected according to the kind. For example, vapor deposition, notching, coating, etc.
  • the material of the organic thin film is the formula (1)
  • R is a ⁇ -electron conjugated organic residue in which 3 to 10 units selected from a group derived from a monocyclic aromatic hydrocarbon and a monocyclic heterocyclic compound are bonded, and at least One X 1 , X 2 and X 3 are the same or different, and are groups which give a hydroxyl group by hydrolysis.
  • any general technique capable of forming an organic thin film such as a SAM method (for example, LB method, vapor deposition, dipping, dipping, casting, CVD method, etc.) can be applied.
  • the material is set appropriately in consideration of the cost of mass production.
  • the SAM method is an abbreviation for Self-Assembled Monolayer, and refers to a method of forming a film using a material that can be self-assembled.
  • the LB method is an abbreviation of the Langmuir-Blodgett method.
  • An amphiphilic substance with a balance of hydrophobic and hydrophilic groups is developed on the water surface, and a single layer of a molecule called a monolayer is developed. This is a technique for producing a film and then transferring it to a substrate.
  • the vapor deposition method is a method in which a raw material is heated to be vaporized and deposited in a desired region.
  • a resistance heating vapor deposition method can be used.
  • the dipping method means a method of forming a film by simply dipping a substrate in a solution and taking it out.
  • the casting method means a method of forming a film by dropping and drying a solution containing a raw material in a desired region, and includes ink jetting.
  • the CVD method means a method in which a solution is heated and evaporated in a sealed container or space, and vaporized molecules are adsorbed on the substrate surface in the gas phase.
  • silanic compound of the present invention and the method for producing the same will be described in detail with reference to examples.
  • silanic compounds of the present invention having a phenol group and a thiophene group are used.
  • silane compounds of the present invention having a residue derived from naphthacene and pentacene are used.
  • combination method of a thing is described, it is not limited to the compound of a following example.
  • the title compound was synthesized by the following method. First, 2-Bromo-2-methyl group mouth pan 1M was dissolved in tetrasalt carbon, 1M metal magnesium was added, and then reacted at 60 ° C. for 1 hour to form a Grignard reagent.
  • the 2,6 ', 2 ", 6, -tetra-tert-butyl- [1,1,; 4,4, ;; 1,, 1,1,”] quarterfile is set to 0.1M.
  • a Grignard reagent was formed by adding 0.1 M NBS and 0.1 M AIBN to the carbon tetrachloride solution contained, reacting at 60 ° C for 1.5 hours, and then catching magnesium metal. This reagent was added to a THF solution containing 0.1M chlorotrimethoxysilane and reacted at 45 ° C for 2 hours to synthesize the title compound.
  • t Bu means tert butyl
  • Me means methyl
  • Table 2 shows the molecular occupied volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupied volume of the side chain to the molecular occupied volume of the main skeleton.
  • Side chains and main The molecular occupation volume of the skeleton was calculated as follows.
  • the entire main skeleton was approximated to be a cylinder, and the volume of the cylinder was defined as the molecular occupancy volume of the main skeleton.
  • the main axis of the structural formula of the molecule that constitutes the main skeleton is the central axis.
  • the volume of the cylinder obtained by rotating 360 degrees was defined as the molecular occupied volume of the main skeleton.
  • the entire side chain was approximated as a cone, and the volume of the cone was defined as the molecular occupation volume of the side chain.
  • the volume of the cone obtained by rotating 360 degrees around the straight line passing through the two points of the main skeleton atom bonded to the side chain and the atom directly bonded to the main skeleton is the side chain molecule. Occupied volume.
  • the interatomic distance was calculated after optimizing the cylindrical and conical structures by molecular orbital calculation (AMI).
  • the title compound was synthesized by the following method. First, 0.5M of m-dichlorobenzene was dissolved in carbon tetrachloride, 0.5M of metallic magnesium was added, and then reacted at 60 ° C for 1 hour to form a Grignard reagent.
  • the nuclear magnetic resonance (NMR) measurement of the CCI4 THF compound was performed.
  • Table 2 shows the molecular occupied volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupied volume of the side chain to the molecular occupied volume of the main skeleton.
  • the title compound was synthesized by the following method. First, 3-promotiophene and metal magnesium were also synthesized with Grignard reagent, and chloroethane was added and reacted to synthesize 3-ethylthiophene.
  • Et means ethyl.
  • NMR nuclear magnetic resonance
  • Table 2 shows the molecular occupied volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupied volume of the side chain to the molecular occupied volume of the main skeleton.
  • the title compound was synthesized by the following method. First, 2 ′, 6 ′, 2 ′′, 6, one-tetra tert-butyl [1, 1 ′; 4, 4 ”; 1”, 1,. After adding 50 mM NBS and 50 mM AIBN in a carbon tetrachloride solution containing 20 mM of sodium chloride, reacting at 60 ° C for 1.5 hours, and forming magnesium reagent by forming metallic magnesium, 2 Bring 20 mM bromoterthiophene and react for 2 hours at 45 ° C to give 5- (2,6 ', 2 ", 6, -tetra-tert-butyl- [1,1,; 4,4,4, ,; 1,,, 1, "] quarter-fru 4 yl) [2, 2,; 5, 2, 2,] tertophene was synthesized.
  • Table 2 shows the molecular occupancy volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupancy volume of the side chain to the molecular occupancy volume of the main skeleton.
  • the title compound was synthesized by the following method. First, 0.5M of m-dichlorobenzene was dissolved in carbon tetrachloride, 0.5M of metal magnesium was added, and then reacted at 60 ° C for 1 hour to form a Grignard reagent.
  • Table 2 shows the molecular occupancy volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupancy volume of the side chain to the molecular occupancy volume of the main skeleton.
  • Me means methyl
  • the molecular occupancy volume of the main skeleton and side chain of the obtained compound, the molecular occupant of the main skeleton Table 2 shows the ratio of the volume occupied by the side chain molecules to the product (volume ratio).
  • Chlorotrimethylsilane 0.4M was added dropwise at a temperature of 80 ° C, stirred for 30 minutes, and then refluxed at 130 ° C for 4 days. From this, 1, 2, 4, 5-tetra (trimethylsilyl) benzene was added. Synthesized
  • 2, 3, 7, 8 except that 3,4-di (trimethylsilyl) furan is used in place of 2,5 tri (isopropyl) silyl-1,3,4 di (trimethylsilyl) furan.
  • Tetra (trimethylsilyl) 6,9 Synthesis of 2, 3, 8, 9-tetra (trimethylsilyl) 5, 7, 10, 12-tetra (triisoprovirsilyl) tetracene from di (triisopropylpropylsilyl) anthracene 2, 3, 9, 10-tetra (trimethylsilyl) by applying the same method -5, 7, 12, 14-tetra (triisopropylpropyl) pentacene was synthesized.
  • Me means methyl
  • i Pr means isopropyl
  • Ph means phenyl
  • Ac means acetyl
  • Bu means butyl.
  • Table 2 shows the molecular occupied volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupied volume of the side chain to the molecular occupied volume of the main skeleton.
  • Table 2 shows the molecular occupied volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupied volume of the side chain to the molecular occupied volume of the main skeleton.
  • the indicated compound was synthesized by the following method. First, by applying the same method as the reference example of Example 7 except that Ph—Si (CH 2) NH is used instead of i PrNH, 2
  • Table 2 shows the molecular occupancy volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupancy volume of the side chain to the molecular occupancy volume of the main skeleton.
  • the title compound was synthesized by the following method. First, a method similar to that of the reference example of Example 7 is applied except that Naphtale ne-C (CH) NH is used instead of i-PrNH.
  • Table 2 shows the molecular occupancy volume of the main skeleton and side chain of the obtained compound, and the ratio (volume ratio) of the molecular occupancy volume of the side chain to the molecular occupancy volume of the main skeleton.
  • chromium was vapor-deposited on a substrate 1 having a silicon force to form a gate electrode 2.
  • Vapor deposition is performed in the order of chromium, gold, and the source and drain electrodes using ordinary lithography techniques.
  • the obtained substrate is placed in a mixed solution of hydrogen peroxide and concentrated sulfuric acid (mixing ratio 3: 7)! /, Then, the surface of the gate insulating film 3 was hydrophilized. Then, the obtained substrate was subjected to anaerobic conditions under 2 ', 6', 2 ", 6,, -tetra-tert-butyl- [1, 1 '; 4, 4"; 1 ", 1,, By immersing trimethoxysilane (the compound of Example 1) in a 20 mM solution dissolved in a non-aqueous solvent (for example, n-xadecane) for 5 minutes, slowly lifting it up, washing the solvent, and forming the organic thin film 4, Organic TFT was formed.
  • a non-aqueous solvent for example, n-xadecane
  • the organic thin film transistor obtained above had a field effect mobility of 4.2 X 10 " 2 cm 2 / Vs, an on / off ratio of about 6 digits, and good performance was obtained.
  • Example 11 In the same manner as in Example 11, an organic thin film transistor formed by forming a compound shown in the following table was formed. Each characteristic was evaluated, and good performance shown in the following table was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

 式 R-SiX1X2X3   (I) (式中、Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化合物に由来する基であるユニット、及びこれら両ユニットが3~10個結合したπ電子共役系の有機残基又は5員環あるいは6員環が2~10縮合した縮合多環化合物の有機残基であり、少なくとも1つ以上の側鎖を有しており、X1、X2及びX3は、同一又は異なって、加水分解により水酸基を与える基である)で表される側鎖含有型有機シラン化合物。

Description

明 細 書
側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びその製造方法 技術分野
[0001] 本発明は、側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びそれらの製造 方法に関する。更に詳しくは、本発明は、電気材料として有用な、導電性又は半導電 性の新規物質である側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びそれ らの製造方法に関する。
背景技術
[0002] 有機化合物を用いた半導体 (有機半導体)は、無機材料を用いた半導体に対し、 製造が簡単で加工しやすぐデバイスの大型化にも対応でき、かつ量産によるコスト 低下が見込める。また、無機材料よりも多様な機能を有した有機化合物を合成できる 。そのため、近年、有機半導体の研究開発が行われ、その成果が報告されている。
[0003] なかでも、 π電子共役系分子を含有する有機化合物を利用することにより、大きな 移動度を有する TFTを作製することができることが知られている。従来、有機半導体 膜は主に蒸着法により形成されていた。そのため、有機化合物開発は、主に π電子 共役系分子の骨格の開発に注力されており、その骨格の代表例がペンタセンである (例えば、 IEEE Electron Device Lett. , 18, 606— 608 (1997):非特許文献 1)。この文献では、ペンタセンを用いて有機半導体膜を作製し、この有機半導体膜 で TFTを形成すると、電界効果移動度が 1. 5cm2/Vsとなると記載されている。従つ て、この文献では、アモルファスシリコンよりも大きな移 ft度を有する TFTを構築する ことが可能であるとの報告がなされている。
[0004] しかし、上記文献では、有機半導体膜の作製には、抵抗加熱蒸着法や分子線蒸着 法等の真空プロセスを必要とする。そのため、製造工程が煩雑となるとともに、ある特 定の条件下でしか結晶性を有する膜が得られない。また、基板上への有機半導体膜 の吸着が物理吸着であるため、膜の基板への吸着強度が低く、容易に剥がれるとい う問題がある。更に、膜中での有機化合物の分子の配向をある程度制御するために
差替え用紙(規則 26) 、通常、あら力じめ膜を形成する基板にラビング処理等による配向制御が行われてい る。しかし、物理吸着による成膜では、物理吸着した有機化合物と基板との界面での 化合物の分子の整合性や配向性を制御できるとの報告は未だなされて 、な 、。
[0005] 一方、膜の秩序性 (すなわち、規則性、結晶性)は、 TFTの特性の代表的な指針と なる電界効果移動度に大きな影響を及ぼす。近年、秩序性 (結晶性)の向上した膜 の製造が簡便なことから、有機化合物を用いた自己組織ィ匕膜が着目され、その膜を 利用する研究がなされて 、る。
[0006] 自己組織化膜とは、有機化合物の一部を、基板表面の官能基と結合させたもので ある。この膜は、きわめて欠陥が少なぐ高い秩序性 (結晶性)を有している。この自 己組織化膜は、製造方法がきわめて簡便であるため、基板への成膜を容易に行うこ とができる。通常、自己組織化膜として、金基板上に形成されたチオール膜や、親水 化処理により表面に水酸基を突出可能な基板 (例えば、シリコン基板)上に形成され たシラン系化合物膜が知られている。なかでも、耐久性が高い点で、シラン系化合物 膜が注目されている。シラン系化合物膜は、従来力 撥水コーティングとして使用さ れており、撥水効果の高いアルキル基や、フッ化アルキル基を有機官能基として有 するシランカップリング剤を用いて成膜されて 、た。
[0007] 自己組織ィ匕膜の導電性は、膜に含まれるシラン系化合物中の有機官能基によって 決定される。しかし、市販のシランカップリング剤には、有機官能基に π電子共役系 分子が含まれる化合物はなぐそのため自己組織ィ匕膜に導電性を付与することが困 難である。従って、 TFTのようなデバイスに適した、 π電子共役系分子が有機官能基 として含まれるシラン系化合物が求められて!/、る。
[0008] このようなシラン系化合物として、分子の末端に官能基としてチォフェン環を 1つ有 し、チオフ ン環が直鎖炭化水素基を介してケィ素原子と結合したィ匕合物が提案さ れて 、る(例えば、 日本国特許第 2889768号公報:特許文献 1)。
[0009] 非特許文献 1 :IEEE Electron Device Lett. , 18, 606— 608 (1997)
特許文献 1 :日本国特許第 2889768号公報
発明の開示
発明が解決しょうとする課題 [0010] し力しながら、上記に提案されている化合物では、基板との化学結合可能な自己組 織ィ匕膜は作製可能であるが、 TFT等の電子デバイスに使用できる高 ヽ秩序性 (結晶 性)、電気伝導特性を有する有機薄膜を必ずしも作製できなかった。
[0011] 高い秩序性 (結晶性)を得るためには、分子間に高い引力相互作用が働く必要が ある。分子間力とは、引力項と反発項により構成されており、前者は分子間距離の 6 乗に、後者は分子間距離の 12乗に反比例する。従って、引力項と反発項を足し合わ せた分子間力は図 1に示す関係を有する。ここで、図 1での極小点(図中の矢印部分 )が、引力項と反発項との兼ね合いから最も分子間に高い引力が作用するときの分 子間距離である。すなわち、より高い結晶性を得るためには、分子間距離を極小点 にできる限り近づけることが重要である。従って、本来、抵抗加熱蒸着法や分子線蒸 着法等の真空プロセスにおいては、ある特定の条件下においてのみ、 π電子共役系 分子同士の分子間相互作用をうまく制御することで、高い秩序性 (結晶性)が得られ ている。このように分子間相互作用により構築される結晶性でのみ、高い電気伝導特 性を発現することが可能となる。
[0012] 一方、上記化合物は、 Si— O— Siの 2次元ネットワークを形成することで基板と化学 結合し、かつ、特定の長鎖アルキル同士の分子間相互作用による秩序性が得られる 可能性はある。しかし、官能基である 1つのチォフェン分子が π電子共役系分子であ るため、長鎖アルキルだけでは分子間の相互作用が弱ぐまた電気伝導性に不可欠 な π電子共役系分子の広がりが非常に小さいという問題があった。仮に、上記官能 基であるチォフェン分子の分子数を増やすことができたとしても、膜の秩序性を決定 する因子力 長鎖アルキル部とチオフ ン部と 2つあり、それら因子が有する分子間 相互作用を秩序性が最適になるように整合一致させることは困難である。
[0013] 更に、官能基である 1つのチォフェン分子は、電気伝導特性としての HOMO— LU MOエネルギーギャップが大きい。そのため、上記化合物を有機半導体層として TF T等に使用しても、十分なキャリア移動度が得られな 、と 、う課題が存在して 、た。
[0014] 本発明は、上記課題に鑑みなされたものであり、簡便な製造方法により容易に結晶 ィ匕させて有機薄膜を形成することができ、基板表面に強固に吸着して、物理的な剥 がれのない有機薄膜を形成することができ、かつ、高い秩序性 (結晶性)、電気伝導 特性を有する有機薄膜を作製できる化合物を提供することを目的とする。更に、本発 明は、 TFTのような電子デバイスとして用いた場合に、十分なキャリア移動度を確保 することができる新規な有機シランィ匕合物及びその製造方法を提供することを目的と する。
課題を解決するための手段
[0015] 鋭意検討した結果、 TFTのような電子デバイスに適応可能な有機薄膜を作製しうる 有機シランィ匕合物には、
(1)基板と強固に化学結合しうる Si— O— Siの 2次元ネットワークを形成できる構造、
(2)有機薄膜の秩序性 (結晶性)を Si— O— Siの 2次元ネットワーク上の分子 (ここで は π電子共役系分子)の相互作用すなわち分子間力によって制御できる構造 が必要であることを本発明者等は見 、だし、これら構造を有する新規な有機シランィ匕 合物を発明するに至った。
[0016] すなわち、本発明によれば、式
Figure imgf000005_0001
(I)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有しており、 X1、 X2及び X3は、同一又は 異なって、加水分解により水酸基を与える基である)で表される側鎖含有型有機シラ ン化合物が提供される。
[0017] 更に、本発明によれば、式 R— Li (II)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有している基である)
で表される化合物と、
式 Υ - SiX^3 (III)
(式中、 X1、 X2及び X3は、同一又は異なって、加水分解により水酸基を与える基であ り、 Yは水素原子、ハロゲン原子又は低級アルコシキ基である) で表される化合物とを反応させて、
式 R-SiX'x'x3 (I)
(式中、 R、 X1、 X2、 X3は上記と同義である)
で表される側鎖含有型有機シラン化合物を得ることを特徴とする側鎖含有型有機シ ランィ匕合物の製造方法が提供される。
[0018] また、本発明によれば、式 R— MgX (IV)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有している基である)で表される化合物 と、
式 Υ - SiX^3 (III)
(式中、 X1、 X2及び X3は、同一又は異なって、加水分解により水酸基を与える基であ り、 Yは水素原子、ハロゲン原子又は低級アルコシキ基である)
で表される化合物とを、グリニャール反応に付して、
式 R-Six'x'x3 (I)
(式中、 R、 X1、 X2、 X3は上記と同義である)
で表される側鎖含有型有機シラン化合物を得ることを特徴とする側鎖含有型有機シ ランィ匕合物の製造方法が提供される。
[0019] 更に、本発明によれば、基板と、有機薄膜と、該有機薄膜の一表面にゲート絶縁膜 を介して形成されたゲート電極と、該ゲート電極の両側であって、前記有機薄膜の一 表面又は他表面に接触して形成されたソース Zドレイン電極とを備えており、かつ、 前記有機薄膜が、
式 R-SiX'x'x3 (I)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有しており、 X1、 X2及び X3は同一又は 異なって、加水分解により水酸基を与える基である)で表される側鎖含有型有機シラ ン化合物に由来する膜であることを特徴とする有機薄膜トランジスタが提供される。
[0020] また、本発明によれば、基板と、有機薄膜と、該有機薄膜の一表面にゲート絶縁膜 を介して形成されたゲート電極と、該ゲート電極の両側であって、前記有機薄膜の一 表面又は他表面に接触して形成されたソース Zドレイン電極とを備えた有機薄膜トラ ンジスタの製造方法であって、
式 R-Six'x'x3 (I)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有しており、 X1、 X2及び X3は同一又は 異なって、加水分解により水酸基を与える基である)で表される側鎖含有型有機シラ ン化合物を、単分子膜又は累積膜として積層することで有機薄膜を形成する工程を 含むことを特徴とする有機薄膜トランジスタの製造方法が提供される。
発明の効果
[0021] 本発明の化合物は、有機残基に側鎖が含まれるため、有機溶媒への溶解性が高く 、従って溶液系プロセスで容易に膜を形成できる。また、有機シランィ匕合物に含まれ るシリル基により隣接する化合物間に形成されるケィ素原子及び酸素原子から構成 される網目構造により、基板に化学結合できる。カロえて、 π電子共役系分子同士に 作用する分子間力が効率的に働くため、非常に高い安定性を有し、かつ、高度に結 晶化された有機薄膜を構成することが期待できる。
更に、本発明の化合物は、有機残基の主鎖間のみならず、側鎖間にも分子間力が 働くため、膜にすることによって更に高い結晶性を得ることが期待できる。
[0022] 更に本発明の化合物は、膜にすることによって、有機残基の主鎖の分子平面に対 して垂直方向への特に高い伝導性と、他方向への伝導性の異なる二つの伝導性を 持たせることが可能である。そのため、伝導性材料として、有機薄膜トランジスタ材料 のみならず、太陽電池、燃料電池、センサー等への広い応用が期待できる。
図面の簡単な説明 [0023] [図 1]分子間距離と分子間力との関係を説明するための図である。
[図 2]本発明の有機 TFTの一例の概念図である。
発明を実施するための最良の形態
[0024] 本発明の側鎖含有型有機シラン化合物(以下、単にシランィ匕合物と称する)は、式 ( 1)、すなわち R— SiX^3で表される。式 (I)中、 Rは、単環の芳香族炭化水素に由 来する基であるユニット、単環の複素環化合物に由来する基であるユニット、及びこ れら両ユニットが 3〜: LO個結合した π電子共役系の有機残基又は 5員環あるいは 6 員環が 2〜10縮合した縮合多環化合物の有機残基であり、有機残基中に少なくとも 1つ以上の側鎖を有している。
[0025] 上記ユニットを構成する単環の芳香族炭化水素としては、ベンゼン、トルエン、キシ レン、メシチレン、タメン、シメン、スチレン、ジビュルベンゼン等が挙げられる。なかで も、ベンゼンが特に好まし 、。
[0026] 単環の複素環化合物に含まれる複素原子としては、酸素、窒素及び硫黄が挙げら れる。具体的な複素環化合物としては、フランのような酸素原子含有化合物、ピロ一 ル、ピリジン、ピリミジン、ピロリン、イミダゾリン、ピラゾリン等の窒素原子含有ィ匕合物、 チォフェンのような硫黄原子含有ィ匕合物、ォキサゾール、イソキサゾール等の窒素及 び酸素原子含有化合物、チアゾール、イソチアゾール等の硫黄及び窒素原子含有 化合物等が挙げられ、なかでも、チォフェンが特に好ましい。
[0027] 上記ユニットは、 3〜10個結合して π電子共役系の有機残基となる。更に、上記ュ ニットは、収率、経済性、量産化を考慮すると、 3〜8個結合していることがより好まし い。
[0028] これらユニットは、複数個、分岐状に結合して 、てもよ 、が、直線状に結合して 、る ことが好ましい。また、有機残基は、同じユニットが結合していてもよいし、すべて異な るユニットが結合していてもよいし、複数種類のユニットが規則的に又はランダムな順 序で結合していてもよい。また、結合の位置は、ユニットの構成分子が 5員環の場合 に ίま、 2, 5—位、 3, 4一位、 2, 3—位、 2, 4一位等の!/ヽずれでもよ!/ヽ力 な力でも、 2, 5—位が好ましい。 6員環の場合には、 1, 4一位、 1, 2—位、 1, 3—位等のいず れでもよいが、なかでも、 1, 4一位が好ましい。 [0029] 更に、ユニット間には、ビ-レン基が位置していてもよい。ビ-レン基を与える炭ィ匕 水素としては、アルケン、アルカジエン、アルカトリェン等が挙げられる。アルケンとし ては、炭素数 2〜4の化合物、例えば、エチレン、プロピレン、ブチレン等が挙げられ る。なかでも、エチレンが好ましい。アルカジエンとしては、炭素数 4〜6の化合物、ブ タジェン、ペンタジェン、へキサジェン等が挙げられる。アルカトリェンとしては、炭素 数 6〜8の化合物、例えば、へキサトリェン、ヘプタトリエン、オタタトリエン等が挙げら れる。
[0030] 例えば、 Rの具体例としては、以下の構造式に示すように、ビフエ-ル、ビチォフエ ニル、ターフ ニル(式(1)の化合物)、ターチェニル(式(2)の化合物)、クォーター フエ-ル、クォーターチォフェン、クインケフエ-ル、クインケチォフェン、へキシフエ- ル、へキシチォフェン、チェ-ルーオリゴフエ-レン(式(3)の化合物参照)、フエ-ル オリゴオリゴチェ-レン (式 (4)の化合物参照)、ブロックコオリゴマー(式(5)又は( 6)の化合物参照)、ビ (ジチォフ 二ルビニル)フ ニル (式(7)の化合物参照)に由 来の基が挙げられる。
[0031] [化 1]
Figure imgf000010_0001
[0032] ここで、 Rは、全体として分子軸に対する線対称性を有していてもよぐ全体として中 心に対する点対称性を有していてもよい。例えば、上記式中(1)は線対称性、(2)〜 (4)は点対称性を有している。
[0033] 縮合多環化合物としては、 π電子共役系分子構造を有する化合物であれば特に 制限されず、導電性の観点力ゝらは対称性、特に線対称性を有するものが好ましい。 また、生産性を考慮すれば、 5員環あるいは 6員環の縮合数が 2〜10の縮合多環化 合物が好ましい。そのような好ましい化合物の骨格の具体例として、例えば一直線縮 合環系であるァセン (acene)骨格、翼状縮合環系であるァフェン (aphene)骨格、 2 個の同じ環が並んだ縮合環系であるアレン(arene)骨格、 1個の環を中心にベンゼ ン環が集中した縮合環であるフエ-レン (phenylene)骨格がある。この内、キャリア 移動度を考慮すると、特にベンゼン環が直線状に結合されてなるァセン骨格ある 、 はフエ-レン骨格が好ましい。ァセン骨格の具体例としては例えば、ナフタレン、アン トラセン、テトラセン(ナフタセン)、ペンタセン、へキサセン、ヘプタセン、ォクタセン等 が挙げられる。また、フエ-レン骨格としては例えばフエナレン、ペリレン、コロネン、ォ バレン等が挙げられる力 中でも特に下記構造式で示されるベンゼン環数が 2〜10 ( n=0〜8)のァセン骨格が好ましい。
[0034] [化 2]
Figure imgf000011_0001
[0035] 更に、 Rが縮合多環化合物の場合、 Rは、有機残基と結合するァリール基 R2を介し て Siと結合していてもよい。ァリール基としては、ベンゼン、ビフエ-ル等に由来する フエニル基、チォフェン、ビチォフェン等に由来するチェニル基、及びそれらの組み 合わせによって構成される基が挙げられ、間にビ-レン基が含まれて 、てもよ!/、。
[0036] 前記有機残基は、末端に官能基を有していてもよい。具体的な官能基としては、ヒ ドロキシル基、置換もしくは無置換のアミノ基、ニトロ基、シァノ基、置換もしくは無置 換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換の芳香族炭化 水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換のァラルキル 基、置換もしくは無置換のァリールォキシ基、置換もしくは無置換のアルコキシカルボ -ル基、又は、カルボキシル基、エステル基、トリアルコキシシリル基等が挙げられる
[0037] また、上記式 (I)に含まれる X1、 X2及び X3における加水分解により水酸基を与える 基としては、特に限定されるものではなぐ例えば、ハロゲン原子又は低級アルコキシ 基等が挙げられる。ハロゲン原子としては、フッ素、塩素、ヨウ素、臭素原子が挙げら れる。低級アルコキシ基としては、炭素数 1〜4のアルコキシ基が挙げられる。例えば 、メトキシ基、エトキシ基、 n—プロポキシ基、 2—プロポキシ基、 n—ブトキシ基、 sec— ブトキシ基、 tert—ブトキシ基等が挙げられ、その一部が更に別の官能基(トリアルキ ルシリル基、他のアルコキシ基等)で置換されたものでもよい。 X1、 X2及び X3は、同一 であってもよいが、必ずしも全てが同一でなくてもよぐその内の 2つ又は全てが異な つていてもよい。なかでも、全てが同一であることが好ましい。
[0038] また、上記式 (I)での Rは、 Vヽずれも側鎖を有する。ここで側鎖としては、有機溶剤 に対する溶解性を向上させる親油性を付与する基であることが望ましい。特に、隣接 分子と反応しない基が好ましい。側鎖としては、置換又は無置換のアルキル基、ハロ ゲン化アルキル基、シクロアルキル基、ァリール基、ジァリールアミノ基、ジ又はトリア リールアルキル基、アルコキシ基、ォキシァリール基、二トリル基、ニトロ基、エステル 基、トリアルキルシリル基、トリアリールシリル基、フエ-ル基、ァセン基があげられる。 中でも、有機薄膜材料として使用することを考え、隣接分子との分子間相互作用を大 きく作用させること、有機薄膜の結晶性を高め、高い導電性を付与することを考慮す ると、側鎖の分子占有体積が、側鎖以外の有機残基の主骨格の分子占有体積の 10 0%以下であることが好ましぐ 60%以下であることがより好ましい。これは分子占有 体積が主骨格の 100%よりも大きくなると、主骨格同士の分子間相互作用が側鎖の ものよりも小さくなるために、結晶性が著しく低下する場合があるためである。
[0039] このような側鎖としては、たとえば炭素数 1〜4の直鎖状アルキル基、炭素数 1〜4 のジまたはトリアルキルシリル基、 2級及び 3級炭化水素に炭素数 1〜4のアルキル基 が結合した分岐状アルキル基、炭素数 5〜18のァリール基を有するモ入ジまたはト リアリールアルキル基、炭素数 5〜18のァリール基を有するモ入ジまたはトリアリー ルシリル基、炭素数 5〜18のァリール基を有するジまたはトリアリールァミノ基が好ま しい。特に、ベンゼン環数が 1〜3のァリール基(例えば、フエ-ル基や、ナフタレン及 びアントラセンに由来する基)、炭素数 1〜4のアルキル基を含む 3級アルキル基、ベ ンゼン環数が 1〜3のァリール基(例えば、フエ-ル基や、ナフタレン及びアントラセン に由来する基)を含むトリアリールアルキルならびにトリアリールシリル基が好ましい。 本発明のシラン化合物の具体例としては、例えば、以下に示すものが挙げられる。
[0040] [化 3]
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0003
Figure imgf000013_0004
Z. 8M0/S00idf/X3d S£6Z.Z0/900i OAV
[ 00]
Figure imgf000014_0001
剛 [ΐ濯] /osaT/lud
Figure imgf000015_0001
: §0
Figure imgf000016_0001
以下に本発明のシラン化合物の合成方法を説明する。
本発明のシラン化合物は、
'式 R— Li (II)で表される化合物と、式 Y—SiXi x3 (ΙΠ) (式中、 X^X^X3及 ひ Ύは上記と同義である)で表される化合物とを反応させるか、又は、
'式 R— MgX (IV) (式中、 R及び Xは上記と同義である)で表される化合物と、上 記式 (m)で表される化合物とをグリニャール反応させることにより得ることができる。
[0045] 式 (Π)又は (IV)の化合物は、例えば、 RHで表される化合物を、アルキルリチウムと 反応させて得るか、あるいは R—X(Xはハロゲン原子)で表される化合物をアルキル マグネシウムハライド又は金属マグネシウム等と反応させて得ることができる。
[0046] (II)と (ΠΙ)の化合物の反応時の反応温度及び (IV)と (ΠΙ)の化合物の反応時の反 応温度は、例えば、— 100〜150°Cが好ましぐより好ましくは— 20〜100°Cである。 反応時間は、例えば、 0. 1〜48時間程度である。反応は、通常、反応に影響のない 有機溶媒中で行われる。反応に悪影響のない有機溶媒としては、例えば、へキサン 、ペンタン、ベンゼン、トルエン等脂肪族又は芳香族炭化水素、ジェチルエーテル、 ジプロピルエーテル、ジォキサン、テトラヒドロフラン (THF)等のエーテル系溶媒等 が挙げられ、これらは単独で又は混合液として用いることができる。なかでも、ジェチ ルエーテルと THFが好適である。反応は、任意に触媒を用いてもよい。触媒としては 、白金触媒、ノラジウム触媒、ニッケル触媒等、触媒として公知のものを用いることが できる。
[0047] 本発明のシラン化合物の合成方法をより具体的に以下に説明する。以下の合成方 法における反応温度や反応時間は上記内容と同様であり、例えば— 100〜150°C、 0. 1〜48時間である。
[0048] 以下では、単環の芳香族炭化水素の例であるベンゼンに由来するユニットと、単環 の複素環化合物の例であるチォフェンに由来するユニットから構成される有機残基 の前駆体の合成例を示す。ただし、チォフェンのような窒素含有複素環化合物と同 様の方法で、窒素原子、酸素原子を含む複素環化合物についても、前駆体を形成 することができる。なお、煩雑さを避けるために以下では側鎖は記載していないが、 所望の位置にハロゲン原子を有する原料を使用し、グリニャール試薬を利用すること で、 Rの所望の位置に側鎖を導入できる。
[0049] ベンゼン又はチォフェンに由来するユニットから構成される前駆体の合成方法とし ては、まず、ベンゼン又はチォフェンの反応部位をハロゲンィ匕させた後に、グリニャ ール反応を利用する方法が有効である。この方法を使用すれば、ベンゼンあるいは チォフェンの数を制御した前駆体を合成することができる。また、グリニャール試薬を 適用する方法以外にも、適当な金属触媒 (Cu、 Al、 Zn、 Zr、 Sn等)を利用したカップ リングによっても合成することができる。
[0050] 更に、チォフェンについては、グリニャール試薬を利用する方法以外に、下記合成 方法を利用することができる。
[0051] すなわち、まず、チォフェンの 2位あるいは 5位をハロゲン化(例えば、ブロモ化、ク ロロ化)させる。ハロゲン化させる方法としては、例えば、 1当量の N—クロロスクシンィ ミド(N— Chlorosuccinimide: NCS)又は N -ブロモスクシンイミド(N - Bromosuc cinimide: NBS)処理や、ォキシ塩化燐(phosphorus oxychloride: POC1 )処理
3 が挙げられる。このときの溶媒としては、例えばクロ口ホルム ·酢酸 (AcOH)混合液、 DMF、四塩ィ匕炭素が使用できる。又はハロゲンィ匕したチォフェン同士を、 DMF溶媒 中でトリス(トリフエ-ルホスフィン)ニッケル (tris (triphenylphosphine) Nickel: (P Ph ) 3Ni)を触媒として反応させることによって、結果的にハロゲンィ匕させた部分でチ
3
ォフェン同士を直接結合できる。
[0052] 更に、ハロゲン化したチォフェンに対して、ジビニルスルホンを加え、カップリングさ せることにより 1, 4—ジケトン体を形成させる。続いて、乾燥トルエン溶液中で、ローゥ エツソン剤(Lawesson Regent :LR)あるいは P S を加え、前者の場合ー晚、後者
4 10
の場合 3時間程度還流させることによって、閉環反応を起こさせる。その結果、カップ リングしたチォフェンの合計数よりもひとつチォフェンの数が多い前駆体を合成できる チォフェンの上記反応を利用して、チォフェン環の数を増加させることができる。
[0053] 上記前駆体は、その合成に使用した原料と同じぐ末端をハロゲン化させることがで きる。そのため、前駆体をハロゲンィ匕させた後、例えば SiClと反応させることによって
4
、末端にシリル基を有し、かつベンゼン又はチォフェンに由来するユニットのみ力もな る有機残基を備えたシラン化合物(単純ベンゼン又は単純チオフ ン化合物)を得る ことができる。
[0054] 一例として、ベンゼン又はチォフェンのみ力 なる有機残基の前駆体の合成方法と 、前駆体のシリルイ匕の方法の一例を以下の (A)〜(D)に示す。なお、下記チォフエ ンのみからなる前駆体の合成例では、チオフ ンの 3量体から 6あるいは 7量体への 反応のみを示した。しかし、ユニット数の異なるチォフェンと反応させれば、前記 6ある いは 7量体以外の前駆体を形成できる。例えば、 2—クロロチォフェンをカップリング した後に NCSによりクロ口化させた 2—クロロビチォフェンに下記と同様の反応をさせ ることによって、チォフェン 4あるいは 5量体を形成できる。更に、チォフェン 4量体を NCSによりクロ口化させれば更にチォフェン 8あるいは 9量体も形成することができる [化 7]
Figure imgf000019_0001
[0056] 所定数のチォフェンとベンゼン由来のユニットがそれぞれ結合した単位を直接結合 することにより、ブロック型の有機残基の前駆体を得る方法としては、例えば、グリニャ ール反応を使用する方法がある。なお、前駆体を SiClや HSi(OEt)と反応させれ
4 3
ば、 目的のシランィ匕合物を得ることができる。また、上記化合物のうち、末端アルコキ シ基のシリル基を有する化合物については、比較的反応性が低いため、あらかじめ 原料に結合された状態で合成できる。この場合の合成例としては、以下の方法が適 用できる。
[0057] まず、単純ベンゼン又は単純チォフェンィ匕合物のシリル基と逆末端をノヽロゲンィ匕( 例えば、ブロモ化)した後に、グリニャール反応によって、シリル基と結合する官能基 をハロゲンからアルコキシ基に変換させる。続いて、 n— BuLi、 B (O-iPr)を付与す
3 ることによって脱ブロモ化及びホウ素化できる。このときの溶媒は、エーテルが好まし い。また、ホウ素化させる場合の反応は、 2段階であり、初期は反応を安定化させるた めに、 1段階目は— 78°Cで行い、 2段階目は— 78°C力も室温に徐々に温度を上昇 させることが好ましい。一方で、両端にハロゲン基 (例えば、ブロモ基)を有するベン ゼンあるいはチォフェンを用いてグリニャール反応力もブロック型化合物の中間体を 作製しておく。
[0058] この状態で、未反応のブロモ基と上記のホウ素化されたィ匕合物を、例えばトルエン 溶媒中に展開させ、 Pd(PPh ) , Na COの存在下、 85°Cの反応温度にて、反応を
3 4 2 3
完全に進行させれば、カップリングを起こさせることが可能である。結果的に、ブロック 型化合物の末端にシリル基を有するシランィ匕合物を合成することができる。
[0059] このような反応を用いたシランィ匕合物 (E)及び (F)の合成ルートの一例を以下に示 す。なお、ベンゼンあるいはチォフェンに由来するユニットの両末端にそれぞれノヽロ ゲン基 (例えば、ブロモ基)及びトリクロロシリル基を有する化合物は、 p—フヱ-レン あるいは 2, 5—チォフェンジィルとハロゲン化剤(例えば、 NBS)との反応により両末 端をハロゲンィ匕させたのち、 SiClと反応させ、一方をトリクロロシリルイ匕させることによ
4
り形成することができる。
[0060] [化 8]
Figure imgf000021_0001
ベンゼンあるいはチォフェンに由来するユニットとビニル基が交互に結合される前 駆体の合成方法としては、例えば以下の方法が適用できる。すなわち、ベンゼンある いはチォフェンの反応部位にメチル基を有する原料を準備した後に、その両端を 2, 2'—ァゾビスイソブチ口-トリル (AIBN)及び NBSを用いてブロモ化させる。この後、 ブロモ体に PO (OEt)を反応させ、中間体を形成させる。つづいて、末端にアルデヒ
3
ド基を有する化合物と、中間体とを、例えば DMF溶媒中で NaHを用いて反応させる こと〖こよって、上記の前駆体は形成できる。なお、得られた前駆体は、末端にメチル 基を有するため、例えばこのメチル基を更にブロモ化させ、上記合成ルートを再度適 用すれば、更にユニット数の多 、前駆体を形成できる。
[0062] 得られた前駆体を、例えば NBSを用いてブロモ化すれば、その部分と SiClとを反
4 応させることが可能となる。よって、末端に SiClを有するシランィ匕合物を形成できる。
3
このような反応を用いて長さの異なる前駆体 (G)〜 (I)とシランィ匕合物 ωの合成ルー トの一例を以下に示す。
[0063] [化 9]
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0003
Figure imgf000023_0004
.t78M0/S00Zdf/X3d zz SC6.Z0/900Z OAV [0064] また、上記合成例で使用した原料は、汎用の試薬であり、試薬メーカーより入手、 利用できる。以下に原料の CASナンバー、及び、試薬メーカーとして例えばキシダ 化学より入手した場合の試薬の純度を示しておく。
[0065] [表 1]
Figure imgf000024_0001
[0066] 次に、 5員環あるいは 6員環で構成される縮合環の例であるァセン骨格に由来する ユニットから構成される有機残基の前駆体の合成例を示す。なお、側鎖は、 Rの所望 の位置にハロゲン原子を有する原料を使用し、グリニャール試薬を利用することで、 その所望の位置に導入できる。これらの合成方法は一例であり、他にも公知の合成 方法が適用できる。
[0067] ァセン骨格の合成方法としては、例えば(1)原料ィ匕合物の所定位置の 2つの炭素 原子に結合する水素原子をェチニル基で置換した後に、ェチニル基同士を閉環反 応させ工程を繰り返す方法、(2)原料化合物の所定位置の炭素原子に結合する水 素原子をトリフラート基で置換し、フラン又はその誘導体と反応させ、続いて酸化させ る工程を繰り返す方法等が挙げられる。これらの方法を用いたァセン骨格の合成法 の一例を以下に示す。
[0068] [化 10] 方法(1 )
M
Figure imgf000025_0001
C三 C一 CsHi i C三 C一 C5H11 方法(2)
Figure imgf000025_0002
SiMe3 SiMe3
Figure imgf000025_0003
n=1 - また、上記方法(2)では、ァセン骨格のベンゼン環を一つずつ増やす方法であるた め、予め側鎖を有する原料を使用して、下記合成例のように、縮合環数を増加させる ことで佃 j鎖を導人することもできる。 [0070] [化 11]
Figure imgf000026_0001
[0071] Ra、 Rbは、側鎖を意味する。
また、上記方法(2)の反応式中、 2つのァセトニトリル基及びトリメチルシリル基を有 する出発化合物を、これら基が全てトリメチルシリル基である化合物に変更してもよ 、 。また、上記反応式中、フラン誘導体を使用した反応後、反応物をヨウ化リチウム及 び DBU (1, 8 ジァザビシクロ [5. 4. 0]ゥンデセ 7 ェン)下で、還流させること で、出発化合物よりベンゼン環数が 1つ多ぐかつヒドロキシル基が 2つ置換した化合 物を得ることができる。更に、この化合物のヒドロキシル基を公知の方法でブロモ化し 、ブロモ基をグリニャール反応に付せば、ブロモ基の位置に疎水基を導入することが できる。
[0072] なお、上記合成例で使用した原料は、汎用の試薬であり、試薬メーカーより入手、 利用できる。例えばテトラセンは東京化成より純度 97%以上で入手できる。
このようにして得られるシランィ匕合物は、公知の手段、例えば転溶、濃縮、溶媒抽出 、分留、結晶化、再結晶、クロマトグラフィー等により反応溶液力 単離、精製すること ができる。
[0073] シランィ匕合物は、例えば、以下のように有機薄膜とすることができる。
まず、ケィ素化合物をへキサン、クロ口ホルム、四塩化炭素等の非水系有機溶媒に 溶解する。得られた溶液中に、有機薄膜を形成しょうとする基板 (好ましくは、水酸基 、カルボキシル基等の活性水素を有する基板)を浸漬して、引き上げることで塗膜を 得る。あるいは、得られた溶液を基板表面に塗布することで塗膜を得てもよい。その 後、得られた塗膜を非水系有機溶媒で洗浄し、水洗し、放置するか加熱することによ り乾燥して、塗膜を有機薄膜として定着させる。
[0074] この有機薄膜は、直接電気材料として用いてもよいし、更に電解重合等の処理を施 してもよい。このシランィ匕合物を用いることで、 Si— O— Siネットワーク化とともに、隣り 合う π電子共役系分子間距離が小さぐ高度に秩序化 (結晶化)した有機薄膜が得 られる。また、ユニットが、直鎖状に配置されている場合には、隣り合うシランィ匕合物 のユニット同士は結合せず、更に、隣り合うユニット間距離力 S小さくできるので、高度 に結晶化された有機薄膜を得ることができる。このような有機薄膜はとくに有機薄膜ト ランジスタとして有用である。
[0075] 続いて、本発明の有機薄膜トランジスタ (有機 TFT)を図に従って説明する。
図 2は本発明の有機 TFTの一例の概念図である。図 2の有機 TFTはボトムゲート 及びボトムコンタクト型の構造である。図 2中、 1は基板、 2はゲート電極、 3はゲート絶 縁膜、 4は有機薄膜、 5及び 6はソース Ζドレイン電極を意味する。なお、図 2は、有 機薄膜の下面を一表面とし、一表面側にソース Ζドレイン電極が形成された例である
[0076] なお、有機 TFTの構造は、図 2の構造に限定されない。他の構造としては、例えば
(1)基板上に有機薄膜とソース Ζドレイン電極をこの順で備え、ソース Ζドレイン電極 間の有機薄膜上にゲート絶縁膜及びゲート電極をこの順で備えた構成 (有機薄膜の 上面を一表面とし、一表面側にソース Ζドレイン電極が形成された例)
(2)基板上にゲート電極、ゲート絶縁膜、有機薄膜及びソース Ζドレイン電極をこの 順で備えた構成 (有機薄膜の下面を一表面とし、有機薄膜の上面である他表面側に ソース Ζドレイン電極が形成された例)
(3)基板上にソース Ζドレイン電極を備え、ソース Ζドレイン電極を覆うように有機薄 膜及びゲート絶縁膜をこの順で備え、ゲート絶縁膜上にゲート電極を備えた構成 (有 機薄膜の上面を一表面とし、有機薄膜の下面である他表面側にソース Ζドレイン電 極が形成された例)
が挙げられる。 [0077] 以下、本発明の有機 TFTの構成要素を具体的に説明する。
(ゲート、ソース Zドレイン電極)
ゲート、ソース Zドレイン電極材料は、特に限定されず、当該分野で公知の材料を いずれも使用できる。具体的には、金、白金、銀、銅、アルミニウム等の金属;チタン、 タンタル、タングステン等の高融点金属;高融点金属とのシリサイド、ポリサイド等; p型 又は n型ハイドープシリコン; ITO、 NESA等の導電性金属酸化物; PEDOTのような 導電性高分子が挙げられる。
[0078] 膜厚は、特に限定されるものではなぐ通常トランジスタに使用される膜厚 (例えば 3 0〜60nm)に適宜調整することができる。
これら電極の製造方法は、電極材料に応じて適宜選択できる。例えば、蒸着、スパ ッタ、塗布等が挙げられる。
[0079] (ゲート絶縁膜)
ゲート絶縁膜は、特に限定されず、当該分野で公知の膜をいずれも使用できる。具 体的には、シリコン酸ィ匕膜 (熱酸ィ匕膜、低温酸ィ匕膜: LTO膜等、高温酸化膜: HTO 膜)、シリコン窒化膜、 SOG膜、 PSG膜、 BSG膜、 BPSG膜等の絶縁膜; PZT、 PLZ Τ、強誘電体又は反強誘電体膜; SiOF系膜、 SiOC系膜もしくは CF系膜又は塗布 で开成する HSQ (hydrogen silsesquioxane)系膜(無機系)、 MSQ (methyl sil sesquioxane)系膜、 PAE (polyarylene ether)系膜、 BCB系膜、ポーラス系膜も しくは CF系膜又は多孔質膜等の低誘電体膜等が挙げられる。
[0080] 膜厚は、特に限定されるものではなぐ通常トランジスタに使用される膜厚 (例えば 1 00〜500nm)に適宜調整することができる。
ゲート絶縁膜の製造方法は、その種類に応じて適宜選択できる。例えば、蒸着、ス ノッタ、塗布等が挙げられる。
[0081] (有機薄膜)
有機薄膜の材料は式 (1)
式 R-SiX'x'x3 (I)
(式中、 Rは、単環の芳香族炭化水素及び単環の複素環化合物に由来する基から選 択されるユニットが 3〜10個結合した π電子共役系の有機残基であり、少なくとも 1つ 以上の側鎖を有しており、 X1、 X2及び X3は、同一又は異なって、加水分解により水酸 基を与える基である。 )で表される側鎖含有型有機シランィ匕合物を用いる。
[0082] 有機薄膜の製造方法としては、 SAM法 (例えば、 LB法、蒸着、ディップ、浸漬、キ ャスト、 CVD法等)のような有機薄膜を形成しうる一般的な手法がすべて適用できる 力 材料'量産のコストを勘案して適宜設定される。
[0083] なお、本明細書における、 SAM法、 LB法、蒸着、ディップ、浸漬、キャスト、 CVD 法の定義を下記する。
SAM法は、 Self—Assembled Monolayerの略であり、自己組織化可能な材料 を用いて膜を形成する手法を指しており、 LB法 Zディップ法 Z浸漬法 Zキャスト法
ZCVD法 、ずれの方法も含まれる。
[0084] LB法は、 Langmuir— Blodgett法の略であり、水面上に疎水基と親水基のバラン スのとれた両親媒性の物質を水面上に展開し、単分子膜といわれる分子一層の膜を 作製、さらにそれを基板に転写する手法である。
蒸着法は、原料を加熱することにより蒸気とし、それを所望の領域に堆積させる方 法であり、例えば有機半導体材料の場合には、抵抗加熱による蒸着法が使用できる
[0085] 浸漬法は、単に溶液に基板を漬け込み、取り出すことにより膜を形成する方法を意 味する。
キャスト法は、所望の領域に対して原料を含む溶液を滴下、乾燥することにより膜を 形成する方法を意味し、インクジェットも含まれる。
CVD法は、密閉容器や密閉空間内で、溶液を加熱 Z蒸発させ、気化された分子 を基板表面に気相で吸着させる方法を意味する。
[0086] また、有機 TFTの製造方法としては、例えば、
(1)基板上にゲート電極を形成する工程と、該ゲート電極上にゲート絶縁膜を形成す る工程と、該ゲート絶縁膜上に有機薄膜を形成する工程と、該有機薄膜を形成する 工程前もしくは後にソース Zドレイン電極を形成する工程とを含む
(2)基板上にソース Zドレイン電極を形成する工程と、該ソース Zドレイン電極を形成 する前もしくは後に有機薄膜を形成する工程と、該有機薄膜上にゲート絶縁膜を形 成する工程と、該ゲート絶縁膜上にゲート電極を形成する工程とを含む 方法が挙げられる。
[0087] 以下に、本発明のシランィ匕合物及びその製造方法を実施例により具体的に説明す る。以下実施例 1〜4にてフエ-ル基、チォフェン基を有する本発明のシランィ匕合物 の、実施例 5〜 7にてナフタセン及びペンタセンに由来する残基を有する本発明のシ ランィ匕合物の合成方法を記述するが、以下の実施例の化合物に限定されない。 実施例
[0088] 実施例 1 式 (a)にて表される有機シランィ匕合物の合成
[0089] [化 12]
Figure imgf000030_0001
[0090] 表記の化合物は以下の手法により合成した。まず、 2 ブロモー 2—メチループ口 パン 1Mを四塩ィ匕炭素に溶解させ、金属マグネシウム 1Mを加えた後、 60°Cで 1時間 反応させることによってグリニャール試薬を形成した。
[0091] 続いて、 m—ジクロ口ベンゼン 0. 5Mを加え、 20°Cで 1時間反応させることによって
、 m—ジ(tert ブチル) ベンゼンを形成した。
続いて、前記 m—ジ (tert ブチル) ベンゼンを 0. 5M含む四塩化炭素溶液に 1
Mの NBS及び 1Mの AIBNをカ卩え、 2, 5 ジブ口モー 1, 3 ジ tert ブチルーべ ンゼンを合成した。
[0092] 更に、前記 2, 5 ジブ口モー 1, 3 ジー tert—ブチルーベンゼン 0. 2Mを含む四 塩ィ匕炭素溶液に金属マグネシウムをカ卩え、 60°Cで 1時間反応させた後、 0. 2Mの 2, 5 ジブ口モー 1, 3 ジー tert—ブチルーベンゼンをカ卩え、 25°Cで 1時間反応させ ることで、 3, 5, 3', 5'—テトラ一 tert—ブチル一ビフエ-ルを合成した。
[0093] 続いて、前記 3, 5, 3', 5'—テトラー tert—ブチルーピフエ-ルを 0. 1M含む四塩 化炭素溶液中に 0. 25Mの NBS及び 0. 25Mの AIBNをカ卩え、 60°Cで 6時間反応さ せることによって、 3, 5, 3', 5'—テトラー tert—ブチルー 4, 4 '—ジブ口モービフエ二 ルを形成した。
[0094] 次いで、金属マグネシウムとブロモベンゼンから合成したグリニャール試薬を 0. 1 M含む THF溶液中に 3, 5, 3', 5'—テトラー tert—ブチルー 4, 4,—ジブ口モービフ ェ-ルを 0. 1M加え、 40°Cで 2時間反応させることで 2' , 6' , 2" , 6"—テトラー ter t ブチル [1, 1 ' ;4, 4" ; 1 " , 1,,,]クォーターフエ-ルを合成した。
[0095] 更に、前記 2,, 6' , 2" , 6,,ーテトラー tert—ブチルー [1, 1,;4, 4,,; 1,, , 1," ]クォーターフエ-ルを 0. 1M含む四塩化炭素溶液中に 0. 1Mの NBS及び 0. 1M の AIBNを加え、 60°Cで 1. 5時間反応させたのちに金属マグネシウムをカ卩えることに よってグリニャール試薬を形成した。この試薬をクロロトリメトキシシラン 0. 1Mを含む THF溶液にカ卩えて 45°Cで 2時間反応させることで表記の化合物を合成した。
上記合成法のスキームを下記する。
[0096] [化 13]
Figure imgf000032_0001
NBS.AIBN g SiCI(0Me)3
式 (a)
ecu THF
[0097] 上記スキーム中、 t Buは tert ブチルを、 Meはメチルを意味する。
得られたィ匕合物について、赤外吸収スペクトル測定を行ったところ、 1090cm 1に Si C由来の吸収が観測され、化合物が SiC結合を有することが確認できた。
[0098] 得られた化合物の核磁気共鳴 (NMR)測定を行った。
7. 5ppm (m) (4H 芳香族)
7. 3ppm (m) (8H 芳香族)
7. 2ppm (m) (1H 芳香族)
3. 6ppm (m) (9H エトキシ基メチレン基)
1. 5ppm (m) (36H エトキシ基メチル基)
更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。なお、側鎖及び主 骨格の分子占有体積は、以下の様に計算した。
[0099] まず、主骨格について、主骨格全体を円柱であると近似し、円柱の体積を主骨格 の分子占有体積とした。具体的には、主骨格を構成する分子の構造式の主軸(π電 子により形成される軸と垂直で、最も分子長が長い 2原子間 (水素を除く)を通る軸) を中心軸として、 360度回転させて得られる円柱の体積を主骨格の分子占有体積と した。
[0100] 側鎖について、側鎖全体を円錐であると近似し、円錐の体積を側鎖の分子占有体 積とした。具体的には、側鎖と結合する主骨格の原子と、主骨格と直接結合する原子 との 2点を通る直線を中心軸として、 360度回転させて得られる円錐の体積を側鎖の 分子占有体積とした。
[0101] なお、原子間距離は、分子軌道計算 (AMI)により円柱及び円錐の構造を最適化 した上で算出した。
[0102] 実施例 2 式 (b)にて表される有機シランィ匕合物の合成
[0103] [化 14]
SiMe3 SiMe3
Figure imgf000033_0001
SiMe3 SiMe3
[0104] 表記の化合物は以下の手法により合成した。まず、 m—ジクロ口ベンゼン 0. 5Mを 四塩化炭素に溶解させ、金属マグネシウム 0. 5Mをカ卩えた後、 60°Cで 1時間反応さ せることによってグリニャール試薬を形成した。
[0105] 続いて、クロロトリメチルシラン 1Mをカ卩え、 20°Cで 1時間反応させることによって、 m
—ジ(トリメチルシリル)一ベンゼンを形成した。
続いて、前記 m—ジ(トリメチルシリル) ベンゼンを 0. 5M含む四塩ィ匕炭素溶液に
1Mの NBS及び 1Mの AIBNをカ卩え、 5 ブロモー 1, 3 ジ—トリメチルシリルーベン ゼンを合成した。
[0106] 更に、前記 5 ブロモー 1, 3 ジートリメチルシリル ベンゼン 0. 2Mを含む四塩 化炭素溶液に金属マグネシウム 0. 2Mをカ卩え、 60°Cで 1時間反応させた後、 0. 2M ブロモベンゼンをカ卩え、 25°Cで 1時間反応させることで、 3, 5 ビス トリメチルシリ ル ビフヱ-ルを合成した。
[0107] 更に、前記 3, 5 ビス トリメチルシリルーピフエ-ルを 0. 5M含む四塩化炭素溶 液に 1Mの NBS及び 1Mの AIBNを加え、 50°Cで 1時間反応させることで、 4ーブロ モ— 3, 5—ビス—トリメチルシリル―ビフエニルを合成した。
[0108] その後、 0. 5Mの p ジブロモベンゼン及び 0. 5Mの金属マグネシウムより形成し たグリニャール試薬 0. 1Mを含む THF溶液中に前記 4ーブロモー 3, 5 ビスートリメ チルシリルービフエ-ル 0. 2Mの THF溶液をカ卩え、 25°Cで 1時間反応させることで、 2' , 6' , 2" ' , 6,,,一テトラキス一トリメチルシリル一 [1, 4,; , 1 " ;4" , 1 ",;4 " ' , 1,,,, ]クインケフエ-ルを合成した。
[0109] 更に、前記 2,, 6' , 2" ' , 6,,,—テトラキス—トリメチルシリル— [1, 4,;1,, 1 " ;4
" , 1,,,;4,,,, 1,,,,]クインケフエ-ルを 0. 1M含む四塩化炭素溶液中に 0. 1M の NBS及び 0. 1Mの AIBNをカ卩え、 60°Cで 1. 5時間反応させたのちに金属マグネ シゥムをカ卩えることによってグリニャール試薬を形成し、クロロトリメトキシシラン 0. 1M を含む THF溶液に加えて 45°Cで 2時間反応させることで表記の化合物を合成した。 上記合成法のスキームを下記する。
[0110] [化 15]
Figure imgf000035_0001
Figure imgf000035_0002
SiMe3 SiMe3
NBS'AIBN g SiCI(0Me)3
► ► ► 式(b)
CCI4 THF られた化合物の核磁気共鳴 (NMR)測定を行った。
7ppm (m) (4H 芳香族)
5ppm (m) (8H 芳香族)
dppm (m) (4H 芳香族)
2ppm (m) (1H 芳香族)
6ppm (m) (9H エトキシ基メチレン基)
lppm (m) (36H メチル基) この結果から、得られたィ匕合物が式 (b)に示すィ匕合物であることを確認した。
[0112] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0113] 実施例3 式 (c)にて表される有機シラン化合物の合成
[0114] [化 16]
Figure imgf000036_0001
[0115] 表記の化合物は以下の手法により合成した。まず、 3—プロモチォフェン及び金属 マグネシウム力もグリニャール試薬を合成し、クロロェタンを加え反応させることで 3 - ェチルチオフェンを合成した。
[0116] 続いて、前記 3 ェチルチオフェンを 0. 5M含む四塩化炭素溶液中に 1Mの NBS 及び 1Mの AIBNを加え、 55°Cで 2時間反応させることで 2 ブロモー 3 ェチルチ オフェンを、 55°Cで 6時間反応させることで 2, 5 ジブ口モー 3 ェチルチオフェン を別に合成した。
[0117] 前記 2 ブロモ 3 ェチルチオフェン及び金属マグネシウム力 グリニャール試 薬を形成し、前記 2, 5 ジブ口モー 3 ェチルチオフェンを 0. 2M含む THF溶液中 に、前記グリニャール試薬 0. 4Mをカ卩え、 30°Cで 4時間反応させることで 3, 4' , 4" トリェチルー [2, 2,;5, 2,,]ターチォフェンを合成した。
[0118] 更に、前記 3, 4,, 4,,—トリェチル—[2, 2,;5,2,,]ターチォフェン0. 1Mを四塩 化炭素に溶解させ、 0. 3Mの NBS及び 0. 3Mの AIBNをカ卩え、 55°Cで 2時間反応 させることで、 3, 4' , 4"—トリェチル 5, 5"—ジブ口モー [2, 2,;5' 2' ' ]ターチ ォフェンを合成した後、前記 2 ブロモ 3 ェチルチオフェン及び金属マグネシゥ ム力 形成したグリニャール試薬 0. 1Mを含む THF溶液中に、前記 3, 4' , 4"ート リエチノレー 5, 5,,一ジブ口モー [2, 2,;5,2,,]ターチォフェンを0. 1Mカロえ、 60°C で 5時間反応させることで、 3, 4' , 4" , 4" ' , 4,,,,—ペンタエチルー [2, 2,;5,, 2" ;5", 2'" ;5"', 2,,,,]クインケチォフェンを合成した。
[0119] 更に、前記 3, 4', 4", 4"', 4,,,,一ペンタエチル一 [2, 2,;5,, 2" ;5", 2"
' ;5"', 2",,]クインケチォフェン 50mMを含む四塩化炭素溶液中に、 200mMの NBS, 200mMの AIBNを加え、 60°Cで 1時間反応させたのち、金属マグネシウムと 反応させてグリニャール試薬を合成し、テトラクロロシランを 50mM含む THF溶液中 に前記グリニャール試薬 50mMをカ卩え、 50°Cで 2時間反応させることで表記の化合 物を合成した。
上記合成法のスキームを下記する。
[0120] [化 17]
Figure imgf000038_0001
Figure imgf000038_0002
Figure imgf000038_0003
Figure imgf000038_0004
NBS.AIBN Mg SiCU
* 式(c)
ecu THF 上記スキーム中、 Etはェチルを意味する。
得られたィ匕合物について、赤外吸収スペクトル測定を行ったところ、 1090cm 1に Si C由来の吸収が観測され、化合物が SiC結合を有することが確認できた。
[0122] 更に化合物の核磁気共鳴 (NMR)測定を行った。得られた化合物を直接 NMR測 定することは、化合物の反応性が高いことより不可能であるため、化合物をエタノー ルと反応させ (塩ィ匕水素の発生を確認した)、末端の塩素をエトキシ基に変換した後 、測定を行った。
[0123] 6. 7ppm (m) (6H 芳香族)
3. 6ppm (m) (6H エトキシ基メチレン基)
2. 6ppm (m) (10H ェチノレ基メチレン基)
1. 4ppm (m) (36H エトキシ基メチル基)
1. 2ppm (m) (15H ェチル基末端メチル基)
この結果から、得られたィ匕合物が式 (c)に示すィ匕合物であることを確認した。
[0124] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0125] 実施例 4 式 (d)にて表される有機シランィ匕合物の合成
[0126] [化 18]
Figure imgf000039_0001
[0127] 表記の化合物は以下の手法により合成した。まず、実施例 1の中間体である 2' , 6' , 2" , 6,,一テトラ一 tert—ブチル [1, 1 ' ;4, 4" ; 1 " , 1,,,]クォーターフエ- ルを 20mM含む四塩化炭素溶液中に 50mMの NBS及び 50mMの AIBNをカロえ、 60°Cで 1. 5時間反応させたのちに金属マグネシウムをカ卩えることによってグリニヤー ル試薬を形成し、 2 ブロモターチォフェン 20mMをカ卩え、 45°Cで 2時間反応させる ことで 5— (2,, 6' , 2" , 6,,ーテトラー tert—ブチルー [1, 1,;4,, 4,,; 1,, , 1, " ]クォーターフエ-ルー 4ーィル) [2, 2,;5,, 2,,]ターチォフェンを合成した。
[0128] 更に続いて前記 5—(2,, 6' , 2" , 6,,ーテトラー tert—ブチルー [1, 1,;4,, 4"
; 1 " , 1,,,]クォーターフエ-ルー 4—ィル) [2, 2,;5,, 2,,]ターチォフェンを 10 mM含む四塩化炭素溶液中に、 20mMの NBS及び AIBNをカ卩え、 50°Cで 1. 5時 間反応させたのちに金属マグネシウムを加えることによってグリニャール試薬を形成 し、クロロトリメトキシシラン 10mMを含む THF溶液に加えて 45°Cで 2時間反応させる ことで表記の化合物を合成した。
上記合成法のスキームを下記する。
[0129] [化 19]
Figure imgf000040_0001
NBa, BN Mg SiCI(OMe)3
► ► ► 式 (d)
CCI4 THF
[0130] 更に化合物の核磁気共鳴 (NMR)測定を行った。
7. oppm i,m) (6H 芳香族フ ニル基)
7. 4ppm (m (6H 芳香族チォフェン基)
7. 3ppm、m) (6H 芳香族フ ニル基)
7. 2ppm (m) (1H 芳香族チォフェン基)
3. 6ppm (m) (6H エトキシ基メチレン基)
1. 5ppm (m) (9H エトキシ基メチル基)
1. 2ppm (m) (36H メチル基)
この結果から、得られたィ匕合物が式 (d)に示すィ匕合物であることを確認した。
[0131] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0132] 実施例 5 式 (e)にて表される有機シランィ匕合物の合成 [0133] [化 20]
Figure imgf000041_0001
[0134] 表記の化合物は以下の手法により合成した。まず、 m—ジクロ口ベンゼン 0. 5Mを 四塩化炭素に溶解させ、金属マグネシウム 0. 5Mをカ卩えた後、 60°C1時間反応させ ることによってグリニャール試薬を形成した。
[0135] 続いて、クロロトリフエ-ルシラン 1Mをカ卩え、 20°C2時間反応させることによって、 m
—ジ(トリフエ-ルシリル)一ベンゼンを形成した。
[0136] 続いて、前記 m—ジ(トリフエニルシリル) ベンゼンを 0. 5M含む四塩化炭素溶液 に 1Mの NBS及び 1Mの AIBNを加え、 5 ブロモー 1, 3 ジ—トリフエ-ルシリルべ ンゼンを合成した。
[0137] 更に、前記 5 ブロモ—1, 3 ジ—トリフエ-ルシリルベンゼン 0. 3Mを含む四塩 化炭素溶液に金属マグネシウム 0. 3Mを加え、 60°C1時間反応させた後、 0. 3Mブ ロモベンゼンを加え、 25°C2時間反応させることで、 3, 5 ビス一トリフエ-ルシリルビ フエ-ルを合成した。
[0138] 更に、前記 3, 5 ビス トリフエ-ルシリルビフエ-ルを 0. 5M含む四塩化炭素溶 液に 1Mの NBS及び 1Mの AIBNを加え、 60°C2時間反応させることで、 4 ブロモ — 3, 5—ビス—トリフエ-ルシリルビフエ-ルを合成した。
[0139] その後、 0. 5Mの p ジブロモベンゼン及び 0. 5Mの金属マグネシウムより形成し たグリニャール試薬 0. 2Mを含む THF溶液中に前記 4ーブロモー 3, 5 ビス トリ フエ-ルシリルビフエ-ル 0. 3Mの THF溶液を加え、 25°C1時間反応させることで、 2' , 6' , 2" ' , 6,,,一テトラキス一トリフエ-ルシリル [1, 4,;1,, 1 " ;4" , 1, ";4 " ' , 1,,,, ]クインケフエ-ルを合成した。
[0140] 更に、前記 2,, 6' , 2" ' , 6,,,一テトラキス一トリフエニルシリル [1, 4,;1,, 1 " ;4
" , 1,,,;4,,,, 1,,,,]クインケフエ-ルを 0. 1M含む四塩化炭素溶液中に 0. 1M の NBS及び 0. 1Mの AIBNをカ卩え、 60°Cで 3時間反応させたのちに金属マグネシゥ ムを加えることによってグリニャール試薬を形成し、クロロトリメトキシシラン 0. 1Mを含 む THF溶液にカ卩えて 45°C2時間反応させることで表記の化合物を合成した。
[0141] 更に得られた化合物の核磁気共鳴 (NMR)測定を行った。
7. 9ppm (m (4H クウインケフエ-ル基)
7. Dppm i,m) (28H クウインケフエ-ル基及びトリァリ -ルシリル基)
7. oppm i,m) (4H クウインケフエ-ル基)
7. 4ppm (m) (36H クウインケフエ-ル基及びトリァリ -ルシリル基)
7. 3ppm (m) (4H クウインケフエ-ル基)
3. 6ppm (m) (9H エトキシ基メチレン基)
1. lppm (m) (36H メチル基)
この結果から、得られたィ匕合物が式 (e)に示すィ匕合物であることを確認した。
[0142] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0143] 実施例 6 式 (f)にて表される有機シランィ匕合物の合成
[0144] [化 21]
Figure imgf000042_0001
[0145] 表記の化合物は以下の手法により合成した。
まず、 5mMの 5, 6, 11, 12—テトラフエ-ルーナフタセンを含む四塩化炭素溶液 中に、 20mMの NBS及び 20mMの AIBNをカ卩え、 65°Cで 1時間反応させることで、 3 ブロモ 5, 6, 11, 12—テトラフエ-ルーナフタセンを合成した。続いて、前記 3 ーブロモー 5, 6, 11, 12—テトラフエ二ルーナフタセンを 2mM含むジクロロエタン溶 液中に金属マグネシウム 2mMをカ卩えてグリニャール試薬を形成した後、 2mMのクロ ロトリメトキシシランを加え、 20°Cで 2時間反応させることで、表記の化合物を合成した 上記合成法のスキームを下記する。
[0146] [化 22]
Figure imgf000043_0001
SiCI(OMe)3
► 式
[0147] 上記スキーム中、 Meはメチルを意味する。
得られたィ匕合物について、赤外吸収スペクトル測定を行ったところ、 1090cm 1に Si C由来の吸収が観測され、化合物が SiC結合を有することが確認できた。
[0148] 更に化合物の核磁気共鳴 (NMR)測定を行った。
7. 9ppm (m (4H 芳香族)
7. 5ppm、m) (8H 芳香族)
7. 4ppm (m (3H 芳香族)
7. 3ppm、m) (8H 芳香族)
7. 2ppm (m) (4H 芳香族)
3. 6ppm (m) (9H メトキシ基メチル基)
この結果から、得られたィ匕合物が式 ωに示すィ匕合物であることを確認した。
[0149] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0150] 実施例 7 式 (g)にて表される有機シラン化合物の合成
[0151] [化 23]
Figure imgf000044_0001
[0152] 表記の化合物は以下の手法にて合成した。
参考例
まず、 2, 3, 6, 7—テトラ(トリメチルシリル) 5, 8 ジ(トリイソプロビルシリル)ナフ タレンを、以下の方法により合成した。
[0153] 詳細には、まず、攪拌機、還流冷却器、温度計、滴下ロートを備えた 200mlガラス フラスコに、マグネシウム 0. 4M、 HMPT (へキサメチル亜リン酸トリアミド) 100mL、 THF20mL及び I (触媒)、 1, 2, 4, 5—テトラクロ口ベンゼン 0. 1Mを加えた後、温
2
度 80°Cにて、クロロトリメチルシラン 0. 4Mを滴下し、 30分間攪拌した後、 130°Cにて 4日間還流させること〖こより、 1, 2, 4, 5—テトラ(トリメチルシリル)ベンゼンを合成した
[0154] 続いて、 200mLナスフラスコに、 i PrNH 20mM、 Phi (OAc) (ジァセトキショー
2 2
ドベンゼン) 50mM、ジクロロメタン 50mLをカ卩えた後、 0°Cにて CF CO H (TOH) 5
3 2 f
OmMを滴下し、 2時間攪拌した。
[0155] 続いて前記 1, 2, 4, 5—テトラ(トリメチルシリル)ベンゼン 50mMを含むジクロロメタ ン溶液 10mLを 0°Cにて滴下し、室温にて 2時間攪拌することにより、フエニル [2, 4, 5—トリス(トリメチルシリル)フエ-ル]ョードニゥム トリフレートを合成した。
[0156] 更に続 、て、 50mLナスフラスコに、 Bu NF2. OMの THF溶液を仕込み、前記フ
4
ェ-ル [2, 4, 5 トリス(トリメチルシリル)フエ-ル]ョード -ゥム トリフレート 5mM及 び 2, 5 トリ(イソプロピル)シリル— 3, 4 ジ(トリメチルシリル)フラン 10mMを含む ジクロロメタン溶液 10mLを 0°Cにて滴下し、 30分間攪拌することで反応を進行させ た。反応終了後、ジクロロメタン及び水にて抽出を行ない、カラムクロマトグラフにて精 製を行うことで、 1, 4 ジヒドロ一 1, 4 エポキシナフタレン誘導体を合成した。
[0157] その後、前記 1, 4ージヒドロー 1, 4 エポキシナフタレン誘導体をヨウ化リチウム 1 mM, DBUlOmMを含む THF溶液 10mLを、攪拌機、還流冷却器、温度計、滴下 ロートを備えた 50mlガラスフラスコに仕込み、前記 1, 4ージヒドロー 1, 4 エポキシ ナフタレン誘導体 ImMを加えた後、窒素雰囲気下にて 3時間還流させることで、反 応を進行させた。反応終了後、抽出及び MgSOによる水分除去を行うことで、標記
4
の 2, 3, 6, 7—テトラ(トリメチルシリル)ー 5, 8 ジ(トリイソプロビルシリル)ナフタレン を合成した。
[0158] 式 (g)の化合物の合成例
次に、上記 2, 3, 6, 7—テトラ(トリメチルシリル)ー 5, 8 ジ(トリイソプロビルシリル) を出発原料とし、合成手法は、 2, 5 トリ (イソプロピル)シリル— 3, 4 ジ(トリメチル シリル)フランの代わりに 3, 4—ジ(トリメチルシリル)フランを使用することを除き、参考 例の 1, 2, 4, 5—テトラ(トリメチルシリル)ベンゼンから 2, 3, 6, 7—テトラ(トリメチル シリル) - 5, 8—ジ(トリイソプロビルシリル)ナフタレンを合成する手法と同様の手法 にて 2, 3, 7, 8—テトラ(トリメチルシリル)ー 6, 9 ジ(トリイソプロビルシリル)アントラ センを合成した。
[0159] 更に、 3, 4 ジ(トリメチルシリル)フランの代わりに、 2, 5 トリ(イソプロピル)シリル
- 3, 4ージ(トリメチルシリル)フランを使用することを除き、上記 2, 3, 6, 7—テトラ(ト リメチルシリル) 5, 8 ジ(トリイソプロビルシリル)ナフタレンから 2, 3, 7, 8—テトラ (トリメチルシリル) 6, 9—ジ(トリイソプロビルシリル)アントラセンを合成する手法と 同様の手法を適用することより、 2, 3, 8, 9—テトラ(トリメチルシリル)一 5, 7, 10, 12
[0160] 更に、 2, 5 トリ(イソプロピル)シリル一 3, 4 ジ(トリメチルシリル)フランの代わり に、 3, 4ージ(トリメチルシリル)フランを使用することを除き、上記 2, 3, 7, 8—テトラ( トリメチルシリル) 6, 9 ジ(トリイソプロビルシリル)アントラセンから 2, 3, 8, 9ーテ トラ(トリメチルシリル) 5, 7, 10, 12—テトラ(トリイソプロビルシリル)テトラセンを合 成する手法と同様の手法を適用することより、 2, 3, 9, 10—テトラ(トリメチルシリル) - 5, 7, 12, 14ーテトラ(トリイソプロビルシリル)ペンタセンを合成した。
[0161] 続いて、前記 2, 3, 9, 10—テトラ(トリメチルシリル)— 5, 7, 12, 14—テトラ(トリィ ソプロビルシリル)ペンタセン 10mMを少量の水及び PhNMe Fを含む THF溶媒に
3
溶解させた後、攪拌することで、 5, 7, 12, 14—テトラ(トリイソプロビルシリル)ペンタ センを合成した。
[0162] 更に、窒素雰囲気下にて、 200mlナスフラスコに乾燥 THF5ml、前記 5, 7, 12, 1 4ーテトラ(トリイソプロビルシリル)ペンタセンを 5mM、マグネシウムを加えた後、 1時 間攪拌することにより、グリニャール試薬を形成したのち、攪拌機、還流冷却器、温 度計、滴下ロートを備えた 100mlナスフラスコにクロロトリメトキシシラン 5mM、 THF3 Omlを仕込み、氷冷したのち、前記グリニャール試薬を加え、 30°Cにて 1時間成熟を 行った。次いで、反応液を減圧にてろ過し、塩化マグネシウムを除いた後、ろ液から T HF及び未反応のクロロトリメトキシシランをストリップすることにより標記化合物を 10% の収率で得た。
上記合成法のスキームを下記する。
[0163] [化 24]
c)
Figure imgf000047_0001
SiMe3 SiMe3
Figure imgf000047_0002
上記スキーム中、 Meはメチル、 i Prはイソプロピル、 Phはフエ-ル、 Acはァセチ ル、 Buはブチルを意味する。 得られたィ匕合物について、赤外吸収スペクトル測定を行ったところ、 1090cm 1に Si C由来の吸収が観測され、化合物が SiC結合を有することが確認できた。
[0165] 更に化合物の核磁気共鳴 (NMR)測定を行った。
7. 9ppm (m) (6H 芳香族)
7. 4ppm (m) (2H 芳香族)
3. 6ppm (m) (9H メトキシ基メチル基)
1. 5ppm (m) (48H イソプロピル基)
1. 2ppm (m) (12H イソプロピル基)
この結果から、得られたィ匕合物が式 (g)に示すィ匕合物であることを確認した。
[0166] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0167] 実施例 8 式 (h)にて表される有機シラン化合物の合成
[0168] [化 25]
Figure imgf000048_0001
[0169] 表記の化合物は以下の手法により合成した。
5mMの 5, 6, 11, 12—テトラフエ-ルーナフタセンを含む四塩化炭素溶液中に、 40mMの NBS及び 40mMの AIBNをカ卩え、 65°Cで 6時間反応させることで、 3, 8— ジブ口モー 5, 6, 11, 12—テトラフエ二ルーナフタセンを合成した。
[0170] 続いて、ブロモジフエ-ルを 10mM含む四塩化炭素溶液中に金属マグネシウムを 加え、 60°Cで 1時間反応させることによって、グリニャール試薬を形成し、前記 3, 8 —ジブ口モー 5, 6, 11, 12—テトラフエ-ルーナフタセン 4mMをカ卩え、 20°Cで 8時 間反応させることで、 2, 8—ビス一ビフエ-ル一 4—ィル一 5, 6, 11, 12—テトラフエ 二ルーナフタセンを合成した。
[0171] 続いて、前記 2, 8—ビス一ビフエ-ル一 4—ィル一 5, 6, 11, 12—テトラフエ-ル ナフタセンを 2mM含む四塩化炭素溶液中に、 10mMの NBS及び 10mMの AIB Nを加え、 65°Cで 1時間反応させた後、金属マグネシウムを用いてグリニャール試薬 を形成し、テトラクロロシラン 2mMを含む THF溶液に加えて 45°Cで 2時間反応させ ることで表記の化合物を合成した。
上記合成法のスキームを下記する。
[化 26]
Figure imgf000049_0001
式 (h)
ecu THF
[0173] 得られたィ匕合物について、赤外吸収スペクトル測定を行ったところ、 1075cm 1に Si C由来の吸収が観測され、化合物が SiC結合を有することが確認できた。
更に化合物の核磁気共鳴 (NMR)測定を行った。得られた化合物を直接 NMR測 定することは、化合物の反応性が高いことより不可能であるため、化合物をエタノー ルと反応させ (塩ィ匕水素の発生を確認した)、末端の塩素をエトキシ基に変換した後 、測定を行った。
[0174] 8. lppm (m) (2H 芳香族テトラセン骨格)
7. 9ppm (m) (2H 芳香族テトラセン骨格)
7. 6ppm (m) (2H 芳香族テトラセン骨格) 7. 5ppm (m) (8H 芳香族フエ-ル基)
7. 4ppm (m) (12H 芳香族フエ-ル基)
7. 3ppm (m) (12H 芳香族フエ-ル基)
7. 2ppm (m) (5H 芳香族フエ-ル基)
3. 6ppm (m) (6H エトキシ基メチレン基)
1. 4ppm (m) (9H エトキシ基メチル基)
この結果から、得られたィ匕合物が式 (h)に示すィ匕合物であることを確認した。
[0175] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0176] 実施例 9 式 (i)にて表される有機シラン化合物の合成
[0177] [化 27]
Figure imgf000050_0001
Me-Si-Me Me-Si-Me
Figure imgf000050_0002
表記の化合物は以下の手法により合成した。まず、 i PrNHの代わりに Ph— Si (C H ) NHを使用することを除き、実施例 7の参考例と同様の手法を適用することで、 2
3 2
, 3, 6, 7—テトラ(トリメチルシリル)ー5, 8—ジ(ジメチルフエニルシリル)ナフタレンを 合成した。続いて、 2, 3, 6, 7—テトラ(トリメチルシリル)ー 5, 8—ジ(トリイソプロピル シリル)ナフタレンの代わりに前記 2, 3, 6, 7—テトラ(トリメチルシリル)— 5, 8—ジ( ジメチルフヱ-ルシリル)ナフタレンを出発原料ならびに合成途中の試料とすることを 除き、実施例 7の合成例と同様の手法を適用することで、表記の化合物を得た。
[0179] 得られた化合物の核磁気共鳴 (NMR)測定を行った。
7. 9ppm (m) (6H ペンタセン)
7. 5ppm (m) (8H ジメチルフエ-ルシリル基)
7. 4ppm (m) (14H ペンタセン及びジメチルフエ-ルシリル基)
3. 6ppm (m) (18H メトキシ基メチル基)
1. lppm (m) (12H ジメチルフエ-ルシリル基メチル基)
この結果から、得られたィ匕合物が式 (i)に示すィ匕合物であることを確認した。
[0180] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0181] 実施例 10 式 (j)にて表される有機シラン化合物の合成
[0182] [化 28]
Figure imgf000052_0001
Me-C-Me Me-C-Me
Figure imgf000052_0002
[0183] 表記の化合物は以下の手法により合成した。まず、 i—PrNHの代わりに Naphtale ne-C (CH ) NHを使用することを除き、実施例 7の参考例と同様の手法を適用す
3 2
ることで、 2, 3, 6, 7—テトラ(トリメチルシリル)ー 5, 8—ジ(ジメチルナフチルアルキ ル)ナフタレンを合成した。続いて、 2, 3, 6, 7—テトラ(トリメチルシリル)一 5, 8—ジ( トリイソプロビルシリル)ナフタレンの代わりに前記 2, 3, 6, 7—テトラ(トリメチルシリル ) - 5, 8—ジ (ジメチルナフチルアルキル)ナフタレンを出発原料ならびに合成途中 の試料とすることを除き、実施例 7の合成例と同様の手法を適用することで、表記の 化合物を得た。
[0184] 得られた化合物の核磁気共鳴 (NMR)測定を行った。
7. 9ppm (m) (6H ペンタセン)
7. 8ppm (m) (4H ナフタレン)
7. 6ppm (m) (4H ナフタレン)
7. 5ppm (m) (4H ナフタレン)
7. 4ppm (m) (2H ペンタセン) 7. 3ppm (m) (8H ナフタレン)
7. 2ppm (m) (4H ナフタレン)
7. lppm (m) (4H ナフタレン)
3. 6ppm (m) (18H メトキシ基メチル基)
1. lppm (m) (12H ジメチルフエニルシリル基メチル基)
この結果から、得られた化合物が式 (j)に示すィ匕合物であることを確認した。
[0185] 更に、得られた化合物の主骨格及び側鎖の分子占有体積、主骨格の分子占有体 積に対する側鎖の分子占有体積の割合 (体積率)を表 2に示す。
[0186] [表 2]
Figure imgf000053_0001
[0187] 実施例 11 有機薄膜トランジスタの形成
図 2に示す有機薄膜トランジスタを作製するために、まず、シリコン力もなる基板 1上 にクロムを蒸着し、ゲート電極 2を形成した。
[0188] 次に、プラズマ CVD法によりチッ化シリコン膜力 なるゲート絶縁膜 3を堆積した後
、クロム、金の順に蒸着を行い、通常のリソグラフィー技術によりソース Zドレイン電極
(5、 6)を形成した。
[0189] 続 、て、得られた基板を、過酸化水素と濃硫酸の混合溶液 (混合比 3: 7)中にお!/、 て 1時間浸漬し、ゲート絶縁膜 3表面を親水化処理した。その後、得られた基板を嫌 気条件において、 2' , 6' , 2" , 6,,ーテトラー tert—ブチルー [1, 1 ' ;4, 4" ; 1 " , 1,,,]クォーターフ ニルトリメトキシシラン (実施例 1の化合物)を非水系溶媒 (例え ば、 n キサデカン)に溶解した 20mM溶液に 5分間浸漬させ、ゆっくりと引き上げ 、溶媒洗浄を行って有機薄膜 4を形成することで、有機 TFTを形成した。
[0190] また、上記で得られた有機薄膜トランジスタは、電界効果移動度が 4. 2 X 10"2cm2 /Vsで、オン オフ比が約 6桁であり、良好な性能が得られた。
[0191] 実施例 12 20
実施例 11と同様の方法にて、以下の表に示す化合物を製膜してなる有機薄膜トラン ジスタを形成した。各々の特性を評価したところ、下記の表に示す良好な性能が得ら れた。
[0192] [表 3]
Figure imgf000054_0001
[0193] 本発明は、上記のように説明されるが、同様に多くの手段により自明に変形されうる 。そのような変形例は、本発明の趣旨及び範囲力も離れるものではなぐそのような当 業者に自明である全ての変形例は、請求の範囲の範囲内に含まれることを意図され ている。
[0194] また、この出願は 2004年 8月 24日に出願された特願 2004— 243974号及び特願 2004— 243965号に関し、それらの開示をそのまま参照として入れる。

Claims

請求の範囲
[1] 式 R-Six'x'x3 (I)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有しており、 X1、 X2及び X3は、同一又は 異なって、加水分解により水酸基を与える基である)で表される側鎖含有型有機シラ ン化合物。
[2] 前記 Rが、ユニット間にビ-レン基を含む有機残基である請求項 1に記載の側鎖含 有型有機シラン化合物。
[3] 前記単環の芳香族炭化水素及び単環の複素環化合物が、ベンゼン又はチォフ ンである請求項 1に記載の側鎖含有型有機シランィ匕合物。
[4] 前記側鎖が、側鎖以外の有機残基の主骨格の分子占有体積の 60%以下の分子 占有体積を有する請求項 1記載の側鎖含有型有機シラン化合物。
[5] 前記側鎖が、炭素数 1〜4のアルキル基、炭素数 1〜4のアルキル基を有するトリア ルキルシリル基、炭素数 5〜18のァリール基を有するジ又はトリァリールアルキル基、 炭素数 5〜 18のァリール基を有するジ又はトリァリールシリル基である請求項 1に記 載の側鎖含有型有機シラン化合物。
[6] 前記 Rが、全体として分子軸に対する線対称性を有する請求項 1に記載の側鎖含 有型有機シラン化合物。
[7] 前記 Rが、全体として中心に対する点対称性を有する請求項 1に記載の側鎖含有 型有機シラン化合物。
[8] 前記 X1、 X2及び X3が、 V、ずれも同種のハロゲン原子又は低級アルコキシ基である 請求項 1に記載の側鎖含有型有機シラン化合物。
[9] 前記 Rが縮合多環化合物の有機残基であり、前記 Rと Siの間にァリール基 R2を介 する請求項 1に記載の側鎖含有型有機シラン化合物。
[10] 前記尺が
[化 1]
Figure imgf000057_0001
(式中、 nは 0〜8である)にて表されるァセン骨格を有する請求項 1に記載の側鎖含 有型有機シラン化合物。
[11] 式 R— Li (II)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有している基である)
で表される化合物と、
式 Υ - SiX^3 (III)
(式中、 X1、 X2及び X3は、同一又は異なって、加水分解により水酸基を与える基であ り、 Yは水素原子、ハロゲン原子又は低級アルコシキ基である)
で表される化合物とを反応させて、
式 R-SiX'x'x3 (I)
(式中、 R、 X1、 X2、 X3は上記と同義である)
で表される側鎖含有型有機シラン化合物を得ることを特徴とする側鎖含有型有機シ ラン化合物の製造方法。
[12] 式 R-MgX (IV)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有している基である)で表される化合物 と、
式 Υ - SiX^3 (III)
(式中、 X1、 X2及び X3は、同一又は異なって、加水分解により水酸基を与える基であ り、 Yは水素原子、ハロゲン原子又は低級アルコシキ基である)
で表される化合物とを、グリニャール反応に付して、
式 R-SiX'x'x3 (I)
(式中、 R、 X1、 X2、 X3は上記と同義である)
で表される側鎖含有型有機シラン化合物を得ることを特徴とする側鎖含有型有機シ ラン化合物の製造方法。
[13] 基板と、有機薄膜と、該有機薄膜の一表面にゲート絶縁膜を介して形成されたゲー ト電極と、該ゲート電極の両側であって、前記有機薄膜の一表面又は他表面に接触 して形成されたソース Zドレイン電極とを備えており、かつ、前記有機薄膜が、 式 R-Six'x'x3 (I)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有しており、 X1、 X2及び X3は同一又は 異なって、加水分解により水酸基を与える基である)で表される側鎖含有型有機シラ ン化合物に由来する膜であることを特徴とする有機薄膜トランジスタ。
[14] 基板と、有機薄膜と、該有機薄膜の一表面にゲート絶縁膜を介して形成されたゲー ト電極と、該ゲート電極の両側であって、前記有機薄膜の一表面又は他表面に接触 して形成されたソース Ζドレイン電極とを備えた有機薄膜トランジスタの製造方法であ つて、
式 R-SiX'x'x3 (I)
(式中、 Rは、単環の芳香族炭化水素に由来する基であるユニット、単環の複素環化 合物に由来する基であるユニット、及びこれら両ユニットが 3〜: LO個結合した π電子 共役系の有機残基又は 5員環あるいは 6員環が 2〜10縮合した縮合多環化合物の 有機残基であり、少なくとも 1つ以上の側鎖を有しており、 X1、 X2及び X3は同一又は 異なって、加水分解により水酸基を与える基である)で表される側鎖含有型有機シラ ン化合物を、単分子膜又は累積膜として積層することで有機薄膜を形成する工程を 含むことを特徴とする有機薄膜トランジスタの製造方法。
PCT/JP2005/014847 2004-08-24 2005-08-12 側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びその製造方法 WO2006027935A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/658,168 US20080303019A1 (en) 2004-08-24 2005-08-12 Side Chain-Containing Type Organic Silane Compound, Thin Film Transistor and Method of Producing Thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-243965 2004-08-24
JP2004243974 2004-08-24
JP2004243965 2004-08-24
JP2004-243974 2004-08-24

Publications (1)

Publication Number Publication Date
WO2006027935A1 true WO2006027935A1 (ja) 2006-03-16

Family

ID=36036223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014847 WO2006027935A1 (ja) 2004-08-24 2005-08-12 側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びその製造方法

Country Status (2)

Country Link
US (1) US20080303019A1 (ja)
WO (1) WO2006027935A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925024B1 (en) * 2005-09-01 2012-01-25 Freescale Semiconductor, Inc. Capping layer formation onto a dual damescene interconnect
WO2007087831A1 (en) * 2006-02-03 2007-08-09 Freescale Semiconductor, Inc. 'universal' barrier cmp slurry for use with low dielectric constant interlayer dielectrics
WO2007095973A1 (en) * 2006-02-24 2007-08-30 Freescale Semiconductor, Inc. Integrated system for semiconductor substrate processing using liquid phase metal deposition
US9419239B2 (en) 2011-07-08 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217392A (ja) * 1997-02-28 1999-08-10 Sumitomo Chem Co Ltd 含ケイ素化合物およびそれを用いた有機エレクトロルミネッセンス素子
US20030231851A1 (en) * 2002-05-17 2003-12-18 Rantala Juha T. Hydrophobic materials for waveguides, optical devices, and other applications
JP2004089902A (ja) * 2002-09-02 2004-03-25 Kawamura Inst Of Chem Res 有機シラン化合物多層薄膜及び有機シラン化合物薄膜の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW546301B (en) * 1997-02-28 2003-08-11 Sumitomo Chemical Co Silicon-containing compound and organic electroluminescence device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217392A (ja) * 1997-02-28 1999-08-10 Sumitomo Chem Co Ltd 含ケイ素化合物およびそれを用いた有機エレクトロルミネッセンス素子
US20030231851A1 (en) * 2002-05-17 2003-12-18 Rantala Juha T. Hydrophobic materials for waveguides, optical devices, and other applications
JP2004089902A (ja) * 2002-09-02 2004-03-25 Kawamura Inst Of Chem Res 有機シラン化合物多層薄膜及び有機シラン化合物薄膜の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEN F ET AL: "Evidence for an Organization of Nanostructured Silica Based Hybrid Materials Prepared by Sol-Gel Polymerization.", CHEMISTRY OF MATERIALS., vol. 12, no. 11, 2000, pages 3249 - 3252 *
CARBONNEAU C ET AL: "Efficient synthesis of new phosphonate terminated trialkoxysilane derived oligoarylenevinylene fluorophores.", TETRAHEDRON LETTERS., vol. 40, no. 32, 1999, pages 5855 - 5858 *
CARRE F ET AL: "Pentacoordinate silicon compounds: stereochemical non-rigidity of chelates formed by intramolecular ring-closure. Crystal structure of 8-dimethylamino-1-trifluorosilylnaphthalene.", JOURNAL OF ORGANOMETALLIC CHEMISTRY., vol. 470, no. 1-2, 1994, pages 43 - 57 *

Also Published As

Publication number Publication date
US20080303019A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
WO2006068189A1 (ja) 有機薄膜トランジスタ及びその製造方法
WO2005090365A1 (ja) 有機シラン化合物、その製造方法及びその用途
WO2005117157A1 (ja) 両末端に脱離反応性の異なる異種官能基を有する有機化合物、有機薄膜、有機デバイスおよびそれらの製造方法
EP1598387A1 (en) Functional organic thin film, organic thin-film transistor, pi-electron conjugated molecule-containing silicon compound, and methods of forming them
CN102675340B (zh) 化合物、聚合物、聚合物半导体材料及有机薄膜晶体管
WO2006027935A1 (ja) 側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びその製造方法
JP4365356B2 (ja) 側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びそれらの製造方法
JP4139902B2 (ja) ヘテロアセン化合物及びその製造方法
JP3955872B2 (ja) 両末端に脱離反応性の異なる異種官能基を有する有機化合物を用いた有機デバイスおよびその製造方法
JP4752269B2 (ja) ポルフィリン化合物及びその製造方法、有機半導体膜、並びに半導体装置
JP4528000B2 (ja) π電子共役系分子含有ケイ素化合物及びその製造方法
JP2007115986A (ja) 薄膜デバイス及びその製造方法
JP2007157752A (ja) 有機薄膜トランジスタ及びその製造方法
JP4065874B2 (ja) 有機薄膜トランジスタ及びその製造方法
JP4612443B2 (ja) 機能性有機薄膜、有機薄膜トランジスタ及びそれらの製造方法
JP2006080056A (ja) 両末端に脱離反応性の異なる異種官能基を有する有機化合物を用いた有機薄膜および該有機薄膜の製造方法
US20060234151A1 (en) Functional organic thin film, organic thin-film transistor, and methods for producing these
JP2005039222A (ja) 機能性有機薄膜、有機薄膜トランジスタ及びそれらの製造方法
US20090005557A1 (en) Electron-Conjugated Organic Silane Compound and Production Method Thereof
CN101006094A (zh) 含侧链型有机硅烷化合物,薄膜晶体管及其制造方法
JP2004311979A (ja) 有機薄膜トランジスタ及びその製造方法
JP4365357B2 (ja) 側鎖含有型有機シラン化合物、有機薄膜トランジスタ及びそれらの製造方法
WO2006016483A1 (ja) π電子共役系有機シラン化合物、機能性有機薄膜及びそれらの製造方法
JP2005298485A (ja) 有機ケイ素化合物及びその製造方法
JP2004307847A (ja) 機能性有機薄膜及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11658168

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580027999.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase